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Abstract In this paper, we study a special capture–recapture model, the Mt model,
using objective Bayesian methods. The challenge is to find a justified objective prior
for an unknown population size N . We develop an asymptotic objective prior for the
discrete parameter N and the Jeffreys’ prior for the capture probabilities θ . Simulation
studies are conducted and the results show that the reference prior has advantages over
ad-hoc non-informative priors. In the end, two real data examples are presented.
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1 Introduction

Capture–recapture is a method used to estimate population sizes. It was originally
developed for ecological studies and has been utilized extensively in epidemiologi-
cal and demographic research. A sequence of classic capture–recapture models were
discussed in Otis et al. (1978), commonly referred to as M0, Mt , Mb, Mh , Mtb, Mth ,
Mbh , and Mtbh . For all of these models, closed populations were assumed. Meanwhile,
each model allows for different assumptions regarding capture probabilities. Bayesian
approaches have been proved very useful in analyzing both classic capture–recapture
models and more complex, hierarchical models that incorporate spatial patterns and
covariates (see Royle 2008; Wang et al. 2007; Basu and Ebrahimi 2001; George and
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Robert 1992; Smith 1991). Results from these papers show that the Bayesian esti-
mates of population size N are sensitive to hyper-parameters of the prior distribu-
tion, especially when the number of sampling occasions k or capture probabilities
θ = (θ1, . . . , θk) are small. One common approach for selecting a prior for N is
imposing a hierarchical structure and placing priors on the hyper-parameters. For
example, Raftery (1988) and Smith (1991) recommended using Poisson(λ) as prior
for N and assume Gamma distribution on λ. Another solution is to use non-informative
priors. For example, Smith (1991) suggested the Jeffreys prior 1/N when very vague
prior information is available. George and Robert (1992) also studied Mt model and
computed Bayesian estimates via Gibbs sampling. They suggested using the 1/N or
Poisson prior on N . Bolfarine et al. (1992) used the proper prior 1/(N + 1)2. Far-
cdella and collaborators Farcomeni and Tardella (2010); Tardella (2002) proposed
both parametric and nonparametric methods to estimate N under Mh model. More
recently, Wang et al. (2007) compared a family of non-informative priors 1/Nr with
r = 0 (uniform prior) and r = 1 (Jeffreys prior) being two special cases. However,
these priors are ad-hoc and do not work well consistently. For instance, Wang et al.
(2007) proved that under Mt model with fixed N and θ , Bayesian estimate of N would
decrease as the number of sampling occasions increases. Consequently, Bayesian esti-
mates underestimate N for large k.

Objective Bayesian methods have been widely used to develop non-ad-hoc priors
for N . Berger et al. (2012) proposed a new approach to develop objective priors for
integer parameters. In their approach, the nuisance parameters are integrated out from
the model and the marginal likelihood function of the integer parameter is obtained.
They treat the integer parameter as a continuous one and obtain the Jeffreys prior. This
approach has been proved to work for some challenging problems, such as estimating
the number of failures when the survival time is under type II censoring. In our paper,
we will apply this approach to develop prior distributions for N in a capture–recapture
model. An alternative method was proposed by Barger and Bunge (2010), who devel-
oped objective priors for the number of species based on the linear difference score
(see Lindsay and Roeder 1987).

We will focus on the Mt model, one of the nine classic capture–recapture mod-
els described in Otis et al. (1978). In addition to the common “closed population”
assumption, Mt models require (1) homogeneity among all units in the population or
in other words, that all different units in the population have the same probability to
be captured and (2) capture probabilities vary across multiple sampling occasions. In
this model, the observed capture history data follow a multinomial distribution with
parameters N and θ . There are several reasons why we choose to study such a simple
model. First of all, the Mt model has prodigious applications in wildlife management,
ecology, epidemiology, and other areas. Second, this is the first paper that attempts to
formally develop the reference prior for population size in a capture–recapture model.
We start with a simple model and will continue by working on more complex ones.
Third, the formal approach of deriving reference prior is rather complicated even for
a model as simple as Mt .

The paper is organized as following: in Sect. 2, the conditional Jeffreys prior for θ

given N will be derived from the conditional likelihood. In Sect. 3, we will develop the
asymptotic reference prior for large N based on the marginal likelihood. A discussion
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of the conditions for proper posterior and the existence of any fixed moment will be
given in the end of this section. In Sect. 4.1, we will present and explain the simulation
results and show that the reference priors have advantages over more commonly used
non-informative priors. An analysis of a real data example is presented in Sect. 4.2.
We will discuss future works in the conclusion, Sect. 5.

2 Reference prior of θ

We assume that the capture–recapture experiment consists of k sampling occasions
and give the reference prior of (N , θ). Let θ j be the capture probability and m j be the
number of animals captured during the j th samplings occasion, j = 1, . . . , k. The
capture history data may be denoted by k digits binary numbers, within which ‘0’
represents ‘not captured’ and ‘1’ represents ‘captured’. For example, if k = 3, Y101
denotes the number of animals that are caught in the first and the third trappings, but
escaped from the second. Clearly, there are L = 2k number of Y ’s. Converting these
binary numbers to decimals, we define n1, . . . , nL to be the complete capture record
data. Let n = ∑L

i=1 ni be the number of animals that were captured at least once and
n0 = N −n be the number of animals that were never captured. The goal is to estimate
N , or equivalently n0, based on n1, . . . , nL . For i = 0, . . . , L , ni follows a binomial
distribution with parameters N and pi (θ). Define

pi (θ) =
k∏

j=1

θ
bi j
j (1 − θ j )

1−bi j , (1)

where bi j is the j th binary digit of the integer i . The probability mass function of
n1, . . . , nL given N and θ is

f1(N , θ | n1, . . . , nL) = N !
n0!n1! · · · nL !

L∏

i=0

pi (θ)ni . (2)

The Jeffreys prior Jeffreys (1961) for θ given N can be derived easily as in the following
theorem.

Theorem 1 The Jeffreys prior for θ given N is the product of Beta( 1
2 , 1

2 ), and given
by

π(θ | N ) ∝ 1
∏k

i=1
√

θi (1 − θi )
. (3)

The proof is given in the appendix.
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3 Parameter-based asymptotic objective prior of N

In general, we assume for j = 1, . . . , k,

θ j
iid∼ Beta(a, b), (4)

where a, b are two positive constants. Denote πa,b(θ) be the joint density of vector θ .
For convenience, we rewrite the likelihood function (2) in the following form:

f2(N , θ | n1, . . . , nL) = N !
n0!n1! · · · nL !

k∏

i=1

θ
mi
i (1 − θi )

N−mi . (5)

The equivalence of (2) and (5) can be verified by simple algebra. First, we obtain the
marginal likelihood of N by averaging θ over its prior.

f3(N | n1, . . . , nL) =
∫

L2(N , θ | n1, . . . , nL)πa,b(θ)dθ

=
∫ 1

0
· · ·

∫ 1

0

N !
n0!n1! · · · nL !

k∏

i=1

θ
mi
i (1 − θi )

N−mi θa−1
i (1 − θi )

b−1dθ1 · · · dθk

= N !
n0!n1! · · · nL !

∫ 1

0
· · ·

∫ 1

0

k∏

i=1

θ
mi +a−1
i (1 − θi )

N−mi +b−1dθ1 · · · dθk

= N !
n0!n1! · · · nL !

k∏

i=1

Γ (mi + a)Γ (N − mi + b)

Γ (N + a + b)
. (6)

Taking the second derivative of log f3(N | n1, . . . , nL) with respect to N , we have

∂2

∂ N 2 log f3(N | n1, . . . , nL)

= ∂2

∂ N 2 log Γ (N + 1) − k
∂2

∂ N 2 log Γ (N + a + b)

+ ∂2

∂ N 2

k∑

l=1

log Γ (N − ml + b) − ∂2

∂ N 2 log Γ (N − n + 1). (7)

Using the following property of trigamma function (Abramowitz and Stegun 1972),

∂2

∂ N 2 log Γ (N ) =
∞∑

i=0

1

(N + i)2 , (8)

we have

The RHS of (7) = −J1(N ) + J2(N ) + J3(N ) − J4(N ), (9)
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where

J1(N ) =
∞∑

i=0

k

(N + a + b + i)2 −
∞∑

i=0

1

(N + 1 + i)2 , (10)

J2(N ) =
k∑

l=1

∞∑

i=0

1

(N − ml + b + i)2 −
k∑

l=1

1

N − ml + 1
, (11)

J3(N ) =
k∑

l=1

1

N − ml + 1
, (12)

J4(N ) =
∞∑

i=0

1

(N − n + 1 + i)2 . (13)

The Fisher information of N is then

I (N ) = J1(N ) − E(J2(N )) − E(J3(N )) − E(J4(N )), (14)

where the expectation is taken under the marginal distribution of (n1, . . . , nL), given
by (6). We treat N as a continuous random variable and the reference prior of N will
be obtained by taking the square root of the Fisher information I (N ). The main results
are summarized below:

Lemma 1 For any fixed k ≥ 2 and 0 < a, b ≤ 1, as N → ∞, we have

E(J1(N )) ∼ k

N + a + b
− 1

N + 1
(15)

E(J4(N )) ∼ (log N )k+[b]−1

(N + 1)b
, (16)

where [b] denotes the largest integer that is less than or equal to b. For 0 < b < 1,

E(J2(N )) ∼ 1

(N + 1)b
, (17)

E(J3(N )) ∼ 1

(N + 1)b
. (18)

For b = 1,

E(J2(N )) ∼ log(N + a)

N + 1
, (19)

a

N + a
≤ E(J3(N )) ≤ C1 log(N + a)

N + 1
, (20)

where C1 is a positive constant.

The proof the the lemma is given in the appendix.
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Theorem 2 Let π R(N ) be the reference prior of N . For any fixed k ≥ 2 and 0<a ≤1,

π R(N ) ∝ (log N )
k+[b]−1

2

(N + 1)
b
2

. (21)

Proof Since

π R(N ) = −E(I (N )),

Theorem 2 follows directly from (14) and Lemma 1. 	


Corollary 1 For any fixed k ≥ 2, 0 < a, b ≤ 1, and non-negative integer g, under
prior (21), the gth posterior moment of N exists if there exists ε > 0 such that

k∑

l=1

ml − n + ka + b/2 ≥ g + 1 + ε. (22)

When g = 0, the inequality above ensures a proper posterior.

Proof We obtain the marginal likelihood function of N by integrating out θ over
πa,b(θ).

L(N | n1, . . . , nL) =
∫

L(N , θ | n1, . . . , nL)πa,b(θ)dθ

∝ Γ (N + 1)

Γ (N − n + 1)

k∏

l=1

Γ (ml + a)Γ (N − ml + b)

Γ (N + a + b)

∝ Γ (N + 1)

Γ (N − n + 1)

k∏

l=1

Γ (N − ml + b)

Γ (N + a + b)
. (23)

Gamma functions have the following property (see Erdelyi and Tricomi (1951)): as
z → ∞,

Γ (z + α)

Γ (z + β)
∼ zα−β. (24)

It follows from (23) to (24) that as N → ∞,

L(N | n1, . . . , nL) ∼ N−(ka−n+∑k
l=1 ml ). (25)

The right tail of the marginal posterior density of N can be calculated below. For
0 < b < 1,
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π(N | n1, . . . , nL) ∝ L(N | n1, . . . , nL)π R(N )

∼ (log N )
k−1

2 (1 + N )−
b
2 N

−
[
ka−n+∑k

l=1 ml

]

∼ (log N )
k−1

2 N
−

[
ka+b/2+∑k

l=1 ml−n
]

. (26)

For b = 1, similarly we have

π(N | n1, . . . , nL) ∼ (log N )
k
2 N

−
[
ka+1/2+∑k

l=1 ml−n
]

. (27)

Clearly, if condition (22) holds, for 0 < b < 1 we have

E(N g) =
∞∑

N=n

N gπ(N | n1, . . . , nL) ≤
∞∑

N=n

(log N )
k−1

2

N 1+ε
< ∞; (28)

for b = 1,

E(N g) =
∞∑

N=n

N gπ(N | n1, . . . , nL) ≤
∞∑

N=n

(log N )
k
2

N 1+ε
< ∞. (29)

This completes the proof. 	

This condition is very easy to satisfy in practice. For example, when g = 0, inequal-

ity (22) holds as long as there is at least one recapture.

4 Numerical examples

4.1 Simulation studies

In the simulation study, we compare the estimation of N under four different prior
combinations for (N , θ) and the maximum likelihood estimate. With the Jeffreys
prior fixed on θ j , we consider the asymptotic reference prior π R(N ), the uniform
prior πU (N ) = 1, and the Jeffreys prior π J (N ) = 1/N for N . We also consider the
uniform prior for θ (a = b = 1) and the corresponding asymptotic prior for N . These
four prior combinations are coded as πRU , πR J , πJ J , and πU J . The first subscript
indicates the prior for N and the second subscript indicates the prior for θ , where ‘R’
for the asymptotic reference prior, ‘U’ for the uniform prior, and ‘J’ for the Jeffreys
prior. The details and results of the simulation study are summarized below.

In the simulation, the number of sampling occasions k varies from 3 to 8. The rest
of simulation setups are adopted from Wang et al. (2007). The population size N is
set to vary from 50 to 800 with 50 increments. Three sets of capture probabilities are
used. They are (0.09, 0.08, 0.07, 0.06, 0.08, 0.09, 0.06, 0.07), (0.09, 0.18, 0.07, 0.16,
0.08, 0.19, 0.06, 0.17), and (0.26, 0.27, 0.28, 0.29, 0.28, 0.29, 0.26, 0.27), representing
small, moderate, and large capture probabilities, respectively.

123



252 C. Xu et al.

The posterior means are estimated numerically when they exist. For each (N , θ , k)

combination, 2,000 capture history datasets are generated according to likelihood (2).
For the j th dataset, the posterior mean, given it exists, is estimated by

N̂ j =
∑V

N=n N L(N | data j )π
R(N )

∑V
N=n L(N | data j )π R(N )

, (30)

where V = 106/2 (in some cases V is set to be 106 to ensure convergence) and
L(N | data) is given in (2). The mean of the posterior means is denoted as N̂ . The
estimated bias and mean square error can be calculated based on N̂ j ’s:

̂Bias = N̂ − N , (31)

̂MSE = 1

2,000

2,000∑

j=1

(N̂ j − N )2. (32)

We also compare 95 % frequentist coverage probabilities and credible intervals of the
posterior mean of N . The average 95 % credible intervals of the estimated population
size are calculated for each setting under four different priors on θ j : Beta (0.25, 0.25),
Beta (0.5, 0.5), Beta (0.75, 0.75), and Beta (1.0, 1.0). Tables 1 and 2 list the credible
intervals under small capture probabilities. The Jeffreys’ prior Beta (0.5, 0.5) always
produce reasonable credible intervals that cover the true N . However, when N = 50
or 100, the credible intervals under the uniform prior (Beta (1.0, 1.0)) fail to or barely
cover the true N .

The simulation results on bias, MSE, and coverage probabilities are presented
in Figs. 1, 2, 3, 4. The figures summarize the results when the sampling occasion
k = 3, 5, 6, 8. Each figure contains three panels. The top, middle, and bottom panels
correspond to the small, moderate, and large capture probabilities, respectively. In
each panel, the left graph compares the bias, the middle one compares the square root
of MSE, and the right one compares the 95 % frequentist coverage probability. In every
graph, the x-axis denotes the true population sizes from 50 to 800. From the figures,
we can see that under all the four priors, the bias decreases as the capture probabilities
or the number of sampling occasions increase. This is reasonable because larger θ or
k means more data and thus more accurate estimates. We can also see that the four
biases keep the same order under all different (N , θ , k) combinations. It appears that
when capture probabilities are small or moderate and k ≥ 5, πR J and MLE perform
best since they have the smallest bias. With large capture probabilities, πR J leads to
the minimum bias when k ≥ 6 and stays stable as k increases. In terms of coverage
probability, πU J , πR J , and MLE have very similar performances and are better than the
other two priors. The MSEs under the four priors and MLE are very close to each other.

4.2 Real data analysis

Example 1 Least Chipmunk. V. Reid (as reported in Otis et al. (1978), and re-analyzed
by Wang et al. (2007)) did a capture–recapture experiment on the Least chipmunk
Eutamias minimus in 1975. In the study, a 9 × 11 livetrapping grid was set up spaced
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Table 1 95 % credible interval under small probability setting: k = 8, 7, 6

k N a = b = 0.25 a = b = 0.5 a = b = 0.75 a = b = 1

L U L U L U L U

8 50 32.36 84.71 29.51 60.60 27.91 51.42 26.93 46.35

100 71.14 133.73 67.30 118.40 64.40 107.84 62.25 100.40

150 112.34 188.05 107.87 174.34 104.18 163.50 101.24 155.10

200 154.92 242.64 150.02 229.66 145.78 218.71 142.25 209.79

250 197.95 295.91 192.77 283.49 188.13 272.63 184.20 263.49

300 241.89 349.67 236.43 337.55 231.49 326.71 227.18 317.40

350 286.59 403.75 280.91 391.82 275.69 380.98 271.10 371.51

400 331.40 457.06 325.55 445.33 320.12 434.53 315.27 424.99

500 421.85 563.00 415.74 551.58 409.97 540.89 404.74 531.28

600 512.78 667.68 506.49 656.52 500.49 645.98 495.00 636.35

700 603.08 770.11 596.66 759.20 590.51 748.83 584.84 739.27

800 697.06 877.12 690.46 866.28 684.10 855.87 678.20 846.22

7 50 27.51 62.92 25.80 51.54 24.82 45.68

100 68.19 143.80 63.81 122.59 60.63 109.26 58.35 100.39

150 108.12 197.14 103.06 179.24 98.99 165.76 95.83 155.72

200 149.53 251.90 143.95 235.26 139.22 221.69 135.37 211.00

250 191.68 305.56 185.77 289.89 180.56 276.51 176.21 265.51

300 234.62 359.50 228.41 344.35 222.84 331.08 218.08 319.89

350 278.11 413.10 271.67 398.40 265.80 385.25 260.71 373.96

400 321.99 466.68 315.37 452.25 309.25 439.17 303.85 427.79

500 411.13 573.88 404.14 559.88 397.61 546.90 391.77 535.41

600 500.75 679.05 493.55 665.48 486.75 652.73 480.57 641.26

700 590.59 783.41 583.22 770.12 576.18 757.52 569.77 746.07

800 682.45 889.31 674.89 876.20 667.65 863.70 661.00 852.26

6 50 25.75 67.35 23.99 52.51 23.01 45.75

100 65.51 158.64 60.61 128.64 57.20 111.88 54.88 101.42

150 104.16 210.39 98.50 186.59 94.10 169.75 90.77 157.77

200 144.56 265.07 138.34 243.65 133.18 226.91 129.08 214.15

250 185.83 319.34 179.22 299.39 173.53 282.90 168.84 269.78

300 227.61 372.77 220.70 353.95 214.60 337.79 209.47 324.53

350 270.26 427.13 263.06 408.90 256.60 392.88 251.08 379.44

400 313.27 480.79 305.86 463.15 299.10 447.36 293.27 433.86

500 399.06 585.11 391.41 568.48 384.26 553.21 377.97 539.84

600 488.62 693.97 480.59 677.67 473.04 662.47 466.32 648.99

700 577.09 799.40 568.84 783.44 560.98 768.43 553.93 754.95

800 666.57 904.41 658.15 888.79 650.08 873.96 642.77 860.54

50 feet apart and Least chipmunks were trapped once a day, for 6 consecutive days
(k = 6). Otis et al. (1978) suggested using the Mt model based on a discrimination
procedure. Using Bayes factor, we can show that Mt model fits the data at least better
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Table 2 95 % credible interval under small probability setting: k = 5,4,3

k N a = b = 0.25 a = b = 0.5 a = b = 0.75 a = b = 1

L U L U L U L U

5 50 22.61 76.71 20.69 53.14 19.74 44.53

100 54.56 144.22 50.56 115.98 48.07 101.34

150 90.05 205.79 84.65 177.44 80.86 159.91

200 135.74 304.08 127.51 263.78 121.10 236.72 116.33 218.00

250 175.00 357.04 166.23 321.00 159.08 294.77 153.53 275.45

300 214.98 408.89 205.87 377.07 198.13 351.67 191.94 332.09

350 255.50 461.77 246.07 432.18 237.88 407.55 231.17 387.93

400 297.18 516.93 287.42 488.54 278.78 464.23 271.58 444.45

500 379.67 622.37 369.50 595.98 360.26 572.58 352.38 552.91

600 465.60 732.17 454.93 706.70 445.08 683.59 436.56 663.78

700 552.72 840.86 541.70 816.18 531.42 793.47 522.40 773.69

800 641.10 950.17 629.74 926.01 619.06 903.53 609.58 883.72

4 50 19.29 103.99 17.17 55.88 16.24 43.85

100 48.03 192.61 43.10 126.09 40.48 102.93

150 80.54 257.14 73.64 193.86 69.42 165.09

200 114.86 311.64 106.68 256.67 101.21 226.05

250 151.13 371.66 141.81 319.57 135.21 287.48

300 199.69 488.49 187.19 421.32 177.32 375.76 169.99 344.52

350 239.16 543.46 225.98 482.26 215.27 437.71 207.07 405.70

450 317.37 645.58 303.61 594.18 291.82 552.84 282.43 521.10

500 358.64 703.24 344.44 653.50 332.12 612.65 322.12 580.66

600 437.32 801.59 422.98 757.62 410.17 719.69 399.52 688.88

700 520.10 911.84 505.21 869.77 491.67 832.63 480.25 801.81

800 606.10 1,025.16 590.68 984.49 576.52 947.92 564.40 917.09

3 50 14.08 62.65 13.35 45.13

100 36.07 144.76 33.66 107.91

150 62.65 223.91 58.49 175.16

200 91.95 293.67 86.32 241.28

250 123.47 362.42 116.47 307.50

300 156.03 425.22 147.98 370.35

350 190.02 485.68 181.04 432.61

400 240.81 634.81 227.12 551.99 217.17 499.29

500 314.38 749.80 299.16 674.13 287.72 621.86

600 411.43 955.55 392.33 865.83 376.03 796.48 363.31 745.40

700 490.32 1, 061.85 470.47 980.81 453.23 914.99 439.49 864.65

800 564.79 1,151.19 545.02 1,079.07 527.49 1,018.23 513.23 970.31

than the simplest model M0, which assumes constant capture probability throughout
the experiment. Integrating out the parameters, we obtain the density functions of data
under Mt as
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Fig. 1 Simulation results for k = 3. Four priors πRU , πR J , πJ J , πU J , and MLE are compared. The top,
middle, and bottom panel corresponds to the small, moderate, and large capture probabilities. In each panel,
the left graph compares the bias, the middle graph compares the square root of MSE, and the right graph
compares the 95 % coverage probability. In each graph, the x-axis denotes the true values of N from 50 to
800

ft (Data | Mt ) =
∞∑

N=n

π R(N )

∫

f2(N , θ | n1, . . . , nL)π(θ)dθ

=
∞∑

N=n

π R(N )N !
Dπk(N − n)!

k∏

i=1

Γ (mi + 1/2)Γ (N − mi + 1/2)

Γ (N + 1)
, (33)

where D = n1!n2! · · · nL−1!. On the other hand, M0 model assumes that the capture
probability remains constant during the experiment and has the likelihood function

L0(N , θ | n1, . . . , nL) = N !
D(N − n)!θ

∑
mi (1 − θ)k N−∑

mi . (34)
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Fig. 2 Simulation results for k = 5. Four priors πRU , πR J , πJ J , πU J , and MLE are compared. The top,
middle, and bottom panel corresponds to the small, moderate, and large capture probabilities. In each panel,
the left graph compares the bias, the middle graph compares the square root of MSE, and the right graph
compares the 95 % coverage probability. In each graph, the x-axis denotes the true values of N from 50 to
800

The density function of data under M0 is

f0(Data | M0) =
∞∑

N=n

π R(N )N !
π D(N − n)!

Γ (
∑

mi + 1/2)Γ (k N − ∑
mi + 1/2)

Γ (k N + 1)
.

(35)

The Bayes factor of Mt over M0 is defined by f (Data|Mt )
f (Data|M0)

.
The capture history data, after being processed, are given in Table 3. Since k is

relatively large, we choose the prior π R(N ) and Jeffrey prior for θ (a = b = 0.5).
This combination of priors is denoted by πR J . The Bayes factor under πR J is 2.81,
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Fig. 3 Simulation results for k = 6. Four priors πRU , πR J , πJ J , πU J , and MLE are compared. The top,
middle, and bottom panel corresponds to the small, moderate, and large capture probabilities. In each panel,
the left graph compares the bias, the middle graph compares the square root of MSE, and the right graph
compares the 95 % coverage probability. In each graph, the x-axis denotes the true values of N from 50 to
800

indicating Mt fits the data better. We compare πR J with the ad-hoc priors πUU , πU J ,
πJU , and πJ J proposed in Wang et al. (2007). The first subscript indicates the prior
for N , where ‘U’ and ‘J’ stand for the uniform prior π(N ) ∝ 1 and the Jeffreys prior
π(N ) = N−1, respectively. The second subscript indicates the prior for θ , where
‘U’ and ‘J’ stand for the uniform prior π(θ) ∝ 1 and the Jeffreys prior π(θ) =
∏k

j=1 θ
−1/2
j (1 − θ j )

−1/2. We present our results, as well as Wang et al. (2007)’s, in
Table 4. Clearly, although all five estimates are very close to each other, πR J produces
the shortest 95 % credible interval. The estimated capture probabilities under πR J are
(0.137, 0.294, 0.314, 0.471, 0.373, 0.137).

Example 2 Turtle. In summer 2011, the research team in the department of fisheries
and wildlife sciences at the University of Missouri conducted a mark–recapture study

123



258 C. Xu et al.

200 400 600 800 200 400 600 800 200 400 600 800

200 400 600 800

200 400 600 800

200 400 600 800

200 400 600 800200 400 600 800

200 400 600 800

−40

−20

0

20

40
B

ia
s

0

20

40

60

80

100

S
qu

ar
e 

ro
ot

 o
f M

S
E

50

60

70

80

90

100

95
%

 c
ov

er
ag

e 
pr

ob
ab

ili
ty

−10

−5

0

5

10

B
ia

s

0

10

20

30

40

50
S

qu
ar

e 
ro

ot
 o

f M
S

E

70

75

80

85

90

95

100

95
%

 c
ov

er
ag

e 
pr

ob
ab

ili
ty

−2

−1

0

1

2

B
ia

s

0

5

10

15

20

S
qu

ar
e 

ro
ot

 o
f M

S
E

80

85

90

95

100
95

%
 c

ov
er

ag
e 

pr
ob

ab
ili

ty

a=b=0.50 a=b=1.00 pi_UJ pi_JJ MLE

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Simulation results for k = 8. Four priors πRU , πR J , πJ J , πU J , and MLE are compared. The top,
middle, and bottom panel corresponds to the small, moderate, and large capture probabilities. In each panel,
the left graph compares the bias, the middle graph compares the square root of MSE, and the right graph
compares the 95 % coverage probability. In each graph, the x-axis denotes the true values of N from 50 to
800

Table 3 Least Chipmunk data
by V. Reid (1975) Sampling occasion (i) 1 2 3 4 5 6

Animals caught (mi ) 7 15 16 24 19 7

Total caught 45

of smooth softshell turtles on the Missouri River for eight trap nights (k = 8). The
purpose of this study was to compare the specie abundance at sites where turtles are
commercially harvested and where they are not. The Bayes factor of Mt and M0 is
5.17, favoring Mt model. The sufficient statistics are summarized in Table 5. The
estimates of N , 95 % credible intervals, and standard deviations under 5 priors and
the MLE are summarized in Table 6. The estimates appear to be dependent on the
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Table 4 Least Chipmunk example results. πU J , πJ J , πUU , and πJU denote the four combinations of
non-informative priors studied in Wang et al. (2007)

Estimate of N S.d. 95 % C.I.

πU J 53 3.54 (47, 61)

πJ J 51 3.27 (46, 59)

πUU 52 3.78 (47, 60)

πJU 51 3.15 (46, 58)

MLE 50 3.14 (44, 56)

πR J 51 3.38 (46, 56)

The first subscript represents the prior for N , and the second subscript represents the prior for θ with U
uniform prior and J Jeffreys prior

Table 5 Smooth softshell Turtle data (2011)

Sampling occasion (i) 1 2 3 4 5 6 7 8

Animals caught (mi ) 12 14 18 8 23 26 22 24

Total caught 115

Table 6 Smooth softshell Turtle example results

Estimate of N S.d. 95 % C.I.

πU J 245 34 (190, 322)

πJ J 240 32 (188, 315)

πUU 230 29 (182, 297)

πJU 227 28 (180, 291)

MLE 251 35 (182, 320)

πR J 247 34 (191, 325)

πU J , πJ J , πUU , and πJU denote the four combinations of non-informative priors studied in Wang et al.
(2007). The first subscript represents the prior for N , and the second subscript represents the prior for θ

with U uniform prior and J Jeffreys prior

prior specification and in the same order as in the simulation. The estimated capture
probabilities under πR J are (0.047, 0.056, 0.073,0.032, 0.093, 0.104, 0.090, 0.097),
corresponding to the small capture probabilities case in the simulation. According to
the upper panel in Fig. 4, both the MLE and πR J will give accurate estimates.

5 Comments

In summary, we developed a set of asymptotic reference priors for discrete parameter N
in the capture–recapture model Mt and compared them with several commonly used
non-informative priors and MLE. Based on the simulation results, we recommend
using πR J , i.e., asymptotic reference prior for N and Jeffreys prior for θ when k is
relative large (k ≥ 6) because of the small bias under this prior. For smaller k, πJU

performs well, resulting in small biases and accurate coverage probabilities.
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The methodology we developed in this paper can be easily extended to other sim-
ple capture–recapture models such as M0 and Mb, for they have similar likelihood
functions as Mt . It will be more challenging to extend our method to Mh model, as
constraints or hierarchical structures must be introduced on θ to ensure the identi-
fiability of N , making the likelihood function more complicated. Furthermore, our
method can be applied to epidemiology research. For example, Seber et al. (2000)
and Wang et al. (2005) analyzed the patient list mismatch data in medical records
with capture–recapture models. The objective Bayesian method in our paper can be
applied in this problem and potentially lead to more accurate estimates of the number
of patients.

Appendix A: Proof of Theorem 1

The likelihood function (2) can be written as the product of the probability mass
functions of iid random vectors e j ’s, j = 1, . . . , N , where e j = (e j0, e j1, · · · , e j L)

and

e j | θ ∼ Multi(1; p0(θ), . . . , pL(θ)). (36)

The logarithm of the density of e j is

log p(e j | θ) =
L∑

i=0

e ji log pi (θ). (37)

For convenience, define

C j
.=

{
s ∈ {0, 1, . . . , L = 2k} : the j th binary digit (from left to right) of s is 1

}

For any r = 1, . . . , k, we have

∂2

∂θ2
r

L∑

i=0

e ji log pi (θ)

=
L∑

i=0

ei j

k∑

j=1

∂2

∂θ2
r

(
bi j log θ j + (1 − bi j ) log(1 − θ j )

)

= −
L∑

i=0

ei j

(
bir

θ2
r

+ 1 − bir

(1 − θr )2

)

. (38)

Since E(e ji ) = pi (θ), we have

E

(
∂2

∂θ2
r

L∑

i=0

e ji log pi (θ)

)

= −
L∑

i=0

(
pi (θ)bir

θ2
r

+ pi (θ)(1 − bir )

(1 − θr )2

)

. (39)
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Let Qir = pi (θ)bir
θ2

r
+ pi (θ)(1−bir )

(1−θr )2 . If bir = 0,

Qir = pi (θ)

(1 − θr )2 = (1 − θr )
−1

∏

j �=r

θ
bi j
j (1 − θ j )

1−bi j . (40)

If bir = 1,

Qir = pi (θ)

θ2
r

= θ−1
r

∏

j �=r

θ
bi j
j (1 − θ j )

1−bi j . (41)

Notice that
∏

j �=r θ
bi j
j (1 − θ j )

1−bi j does not depend on bir and equals 1. Therefore,
we have

E

(
∂2

∂θ2
r

L∑

i=0

e ji log pi (θ)

)

= 1

θr (1 − θr )
. (42)

Also, we have

∂2

∂θsθt

L∑

i=0

e ji log pi (θ) = 0. (43)

Therefore, the Fisher information matrix for θ is Diag
{
θ−1

1 (1 − θ1)
−1, . . . , θ−1

k
(1 − θk)

−1
}
, which yields the result. 	


Appendix B: Proof of Lemma 1

B.1 Proof of (15)

We start from studying J1(N ) to prove (15). Since 1
(N + a + b + i)2 is decreasing in i ,

for i = 0, 1, · · · ,

k

(N + a + b + i + 1)2 <

∫ i+1

i

k

(N + a + b + x)2 dx <
k

(N + a + b + i)2 .

Adding up the inequality from i = 0 to infinity, we get

0 ≤
∞∑

i=0

k

(N + a + b + i)2 −
∫ ∞

0

k

(N + a + b + x)2 dx ≤ k

(N + a + b)2 . (44)
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The integral in (44) is k
N+a+b . Therefore,

k

N + a + b
≤

∞∑

i=0

k

(N + a + b + i)2 ≤ k

N + a + b
+ k

(N + a + b)2 . (45)

Apply (45) for k = 1 and a + b = 1, we have

1

N + 1
≤

∞∑

i=0

1

(N + 1 + i)2 ≤ 1

N + 1
+ k

(N + 1)2 . (46)

Combing (45) and (46), we can bound J1(N ) by

k

N + a + b
− 1

N + 1
− 1

(N + 1)2 ≤ J1(N )

≤ k

N + a + b
− 1

N + 1
+ k

(N + a + b)2 . (47)

J1(N ) does not depend on the data, so E(J1(N )) = J1(N ). So (15) follows from (47)
immediately.

B.2 Proofs of (17) and (19)

The asymptotic order of E(J2(N )) depends on the value of b and is summarized in
(17) and (19). To prove these equations, we need the following result from Chao and
Strawderman (1972). For X ∼ Bin(N , p),

E

(
1

X + 1

)

= 1 − (1 − p)N+1

(N + 1)p
.

For all 1 ≤ l ≤ k, since ml | N , θl ∼ Bin(N , 1 − θl), we can apply the above result
and get

1

k
E(J2(N )) = E

[

E

(
1

N − m1 + 1
| θ1

)]

=
∫ 1

0

1 − θ N+1
1

(N + 1)(1 − θ1)

Γ (a + b)

Γ (a)Γ (b)
θa−1

1 (1 − θ1)
b−1dθ1

= Γ (a + b)

Γ (a)	(b)(N + 1)

N∑

j=0

∫ 1

0
θ

j+a−1
1 (1 − θ1)

b−1dθ1

= Γ (a + b)

Γ (a)(N + 1)

N∑

j=0

Γ ( j + a)

Γ ( j + a + b)
. (48)
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Therefore, we have the following decomposition which will be used for several times
throughout the proof of Lemma 1.

1

k
E (J2(N )) = J21(N ) + J22(N ) + J23(N ), (49)

where

J21(N ) = Γ (a + b)

Γ (a)(N + 1)

∫ N

0

1

(x + a)b
dx, (50)

J22(N ) = Γ (a + b)

Γ (a)(N + 1)

⎛

⎝
N∑

j=0

1

( j + a)b
−

∫ N

0

1

(x + a)b
dx

⎞

⎠ , (51)

J23(N ) = Γ (a + b)

Γ (a)(N + 1)

N∑

j=0

(
Γ ( j + a)

Γ ( j + a + b)
− 1

( j + a)b

)

. (52)

Next, we will study the limiting behaviors of these three terms. The order of J21(N )

can be found out straightforwardly. When 0 < b < 1, J21(N ) can be written as

J21(N ) = Γ (a + b)

(1 − b)Γ (a)(N + 1)

(
(N + a)1−b − a1−b

)
∼ 1

N b
. (53)

When b = 1,

J21(N ) = Γ (a + b)

(1 − b)Γ (a)(N + 1)
log

(
N + a

a

)

∼ log(N + a)

N + 1
. (54)

For the second term J22(N ), we show that it is asymptotically smaller than N−1. For
any 0 < a, b ≤ 1, due to the monotonicity of (x + a)−b, we can bound the integral as

N∑

j=1

1

( j + a)b
<

∫ N

0

1

(x + a)b
dx <

N−1∑

j=0

1

( j + a)b
, (55)

which is equivalent to

1

(N + a)b
<

N∑

j=0

1

( j + a)b
−

∫ N

0

1

(x + a)b
dx <

1

ab
. (56)

Therefore, J22(N ) can be bounded as

Γ (a + b)

Γ (a)(N + 1)(N + a)b
< J22(N ) <

Γ (a + b)

Γ (a)ab(N + 1)
, (57)

where the upper bound is in the order of 1/N .
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Lastly, we prove that third term J23(N ) approaches 1/N as N → ∞ for any
0 < a, b ≤ 1. It follows from Erdelyi and Tricomi (1951) that for fixed α, β ≥ 0, as
z → ∞,

Γ (z + α)

Γ (z + β)
= zα−β

(

1 + (α − β)(α + β − 1)

2z
+ O

(
1

z2

))

. (58)

Applying this expansion with z = j + a, α = 0, and β = b,

Γ ( j + a)

Γ ( j + a + b)
= 1

( j + a)b

(

1 + b(1 − b)

2( j + a)
+ J ∗

23( j)

)

, (59)

where J ∗
23( j) ∼ O

(
( j + a)−2

)
, as j → ∞. Thus, we can rewrite J23(N ) as

J23(N ) = Γ (a + b)

Γ (a)(N + 1)

⎛

⎝b(1 − b)

2

N∑

j=0

1

( j + a)1+b
+

N∑

j=0

J ∗
23( j)

( j + a)b

⎞

⎠ .

The facts that

∞∑

j=0

1

( j + a)1+b
< ∞ and

∞∑

j=0

J ∗
23( j)

( j + a)b
< ∞

ensure that as N → ∞,

J23(N ) ∼ 1

N
. (60)

Applying (53), (54), (57), and (60) to (49) will prove (17) and (19). 	


B.3 Proofs of (18) and (20)

Note that J3(N ) can be bounded from both sides. On one hand,

J3(N ) ≤
k∑

l=1

[
1

(N − ml + b)2 +
∫ ∞

0

1

(N − ml + b + x)2 dx

]

−
k∑

l=1

1

N − ml + 1

=
k∑

l=1

1

(N − ml + b)2 +
k∑

l=1

(
1

N − ml + b
− 1

N − ml + 1

)

=
k∑

l=1

1

(N − ml + b)2 +
k∑

l=1

1 − b

(N − ml + b)(N − ml + 1)
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≤
k∑

l=1

1

(N − ml + b)2 +
k∑

l=1

1 − b

(N − ml + b)2

=
k∑

l=1

2 − b

(N − ml + b)2 . (61)

On the other hand,

J3(N ) ≥
k∑

l=1

(∫ ∞

0

1

(N − ml + b + x)2 dx − 1

N − ml + 1

)

=
k∑

l=1

1 − b

(N − ml + b)(N − ml + 1)
≥

k∑

l=1

b(1 − b)

(N − ml + b)2 . (62)

Let

J ∗
3 (N ) = E

(
1

(N − m1 + b)2

)

.

Inequalities (61) and (62) imply that E(J3(N ))/J ∗
3 (N ) can be controlled by positive

constants.

b(1 − b)J ∗
3 (N ) ≤ E(J3(N )) ≤ (2 − b)J ∗

3 (N ). (63)

It suffices to find out the asymptotic order of J ∗
3 (N ). In fact,

J ∗
3 (N ) = Γ (a + b)

Γ (a)	(b)

∫ 1

0

1

(N − ml + b)2

N∑

ml=0

(
N

ml

)

θ
ml+a−1
l (1 − θl)

N−ml+b−1dθl

= Γ (a + b)

Γ (a)	(b)

N∑

i=0

Γ (N + 1)	(i + a)Γ (N − i + b)

(N − i + b)2Γ (i + 1)	(N − i + 1)Γ (N + a + b)
, (64)

where ml is replaced by i for notation simplicity. Since J ∗
3 (N ) is a finite summation

of positive components, it can be bounded from below by its last term,

J ∗
3 (N ) ≥ Γ (a + b)	(N + a)

b2Γ (a)	(N + a + b)
≈ Γ (a + b)

b2Γ (a)(N + a)b
. (65)

Now, we bound J ∗
3 (N ) from above. Applying (17) and (19) , we have for any 0 <

b ≤ 1, as N → ∞,

J ∗
3 (N ) ≤ 1

b2 E

(
1

(N − m1 + 1)

)

∼ log[b] N

(N + 1)b
. (66)
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It follows from (65) and (66) that, as N → ∞, when 0 < b < 1,

J ∗
3 (N ) ∼ N−b. (67)

When b = 1,

a

N + a
≤ J ∗

3 (N ) ≤ C1 log(N + a)

N + 1
. (68)

Combining (63), (67), and (68), we completed the proof of (18) and (20). 	


B.4 Proof of (16)–Basis: k = 2, 0 < b < 1

E(J4(N )) is the leading term. Finding out its asymptotic order is the most challenging
part of this proof. We will use induction method to study E(J4(N )) and prove (16).
In subsections B.4 and B.5, we will focus on the base case (basis) when k = 2.
Specifically, in B.4, we will show that (16) holds when k = 2, 0 < b < 1. In B.5, we
will prove (16) when k = 2, b = 1 with a different approach. Finally, we will prove
(16) for any arbitrary k ≥ 3 (the inductive step) in B.6.

When k = 2, n follows a Binomial distribution:

n | N , θ1, θ2 ∼ Bin (N , 1 − (1 − θ1)(1 − θ2)) .

Let δi = 1 − θi , i = 1, 2. For 0 < b < 1, the expectation of J4(N ) when k = 2,
denoted by E2(J4(N )), can be expressed as

E2(J4(N )) =
N∑

n=0

( ∞∑

i=0

1

(N − n + 1 + i)2

)
Γ (N + 1)

Γ (n + 1)	(N − n + 1)

∫ 1

0

∫ 1

0
(1−δ1δ2)

n(δ1δ2)
N−n B−2(a, b)(δ1δ2)

b−1(1 − δ1)
a−1(1 − δ2)

a−1dδ1dδ2

=
N∑

n=0

( ∞∑

i=0

1

(N − n + 1 + i)2

)
B−2(a, b)Γ (N + 1)

Γ (n + 1)	(N − n + 1)

∫ 1

0

∫ 1

0
(1 − δ2 + δ2(1 − δ1))

n(δ2δ2)
N−n+b−1(1 − δ1)

a−1(1 − δ2)
a−1dδ1dδ2

=
N∑

n=0

( ∞∑

i=0

1

(N − n + 1 + i)2

)
B−2(a, b)Γ (N + 1)

Γ (n + 1)	(N − n + 1)

n∑

j=0

Γ (n + 1)

Γ ( j + 1)	(n − j + 1)

∫ 1

0

∫ 1

0
δN−n+b−1

1 (1 − δ1)
n− j+a−1δ

N− j+b−1
2 (1 − δ2)

j+a−1dδ1dδ2

= J41 + J42 + J43, (69)
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where for l = 1, 2, 3,

J4l(N ) = B−2(a, b)Γ (N + 1)

Γ (N + a + b)

N∑

n=0

∞∑

i=0

1

(N − n + 1 + i)2

Γ (N − n + b)

Γ (N − n + 1)
J ∗

4l(n),

(70)

and

J ∗
41(n) =

∫ n

0

1

(x + 1)1−a(n − x + 1)1−a(N − x + 1)a
dx, (71)

J ∗
42(n) =

n∑

j=0

1

( j + 1)1−a(n − j + 1)1−a(N − j + 1)a
− J ∗

41(n), (72)

J ∗
43(n) =

n∑

j=0

Γ ( j + a)	(n − j + a)Γ (N − j + b)

Γ ( j + 1)	(n − j + 1)Γ (N − j + a + b)
− J ∗

41(n) − J ∗
42(n). (73)

Notice that the forms of J ∗
42(n), J ∗

43(n) are similar with those of J22(N ), J23(N ).
Therefore, the asymptotic bounds of J ∗

42(n), J ∗
43(n) can be obtained by adopting the

similar approaches in the proof of (51) and (52). We omit the details and present the
results below:

J4l(N ) ≤ 1

(N + 1)b
, l = 2, 3. (74)

The term J41(N ) can be decomposed into two partial sums,

J41(N ) = J411(N ) + J412(N ), (75)

where

J411(N ) = B−2(a, b)Γ (N + 1)

Γ (N + a + b)

N−log N−1∑

n=0

∞∑

i=0

1

(N − n + 1 + i)2

Γ (N − n + b)

Γ (N − n + 1)
J ∗

41(n), (76)

J412(N ) = B−2(a, b)Γ (N + 1)

Γ (N + a + b)

N∑

n=N−log N

∞∑

i=0

1

(N − n + 1 + i)2

Γ (N − n + b)

Γ (N − n + 1)
J ∗

41(n). (77)

Interestingly, although J412(N ) has much less terms than J411(N ), it is the leading
term. In fact, for k = 2 and 0 < b < 1, there exists positive constants C2, C3 such
that as N → ∞,

J411(N ) ≤ C2 logb N

(N + 1)b
, (78)

J412(N ) ∼ C3 B−2(a, b) log N

(N + 1)b
. (79)
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For J411(N ), let y = x/n and we can bound J ∗
41(n) by

J ∗
41(n) = 1

n1−a

∫ 1

0

1

(y + 1
n )1−a(1 − y + 1

n )1−a(1 − y + 1
n + N−n

n )a
dy

≤ 1

n1−a

∫ 1

0

1

(y + 1
n )1−a(1 − y + 1

n )
dy. (80)

The integral can be bounded as following. Notice that

0≤
∫ 1/2

0

1

(y + 1/n)1−a(1 − y + 1/n)
dy

≤ 1

1/2 + 1/n

∫ 1/2

0

1

(y + 1/n)1−a
dy ≤ 2

a

(
1

2
+ 1

n

)a

→ 21−a

a
. (81)

Similarly, we have

log n/2 ≤
∫ 1

1/2

1

(y + 1/n)1−a(1 − y + 1/n)
dy ≤ 21−a log(1 + n/2). (82)

It follows from (80), (81), (82) that,

J ∗
41(n) ≤ 21−a log(n + 1)

(n + 1)1−a
. (83)

and consequently, applying the same decomposition and arguments as in (50), (51),
(52), we have

J411(N ) ≤ 2B−2(a, b)Γ (N + 1)

Γ (N + a + b)

N−log N∑

n=0

Γ (N − n + b)

Γ (N − n + 2)

21−a log(n + 1)

(n + 1)1−a

≤ 24−2a B−2(a, b) logb N

(1 − b)N b
. (84)

Let C2 = 24−2a B−2(a,b)
1−b and we proved (78).

For J412(N ), note that J ∗
41(n) ≤ log(n+1)

(n+1)1−a , we get

J412(N ) ≤ B−2(a, b)Γ (N + 1)

Γ (N + a + b)

N∑

n=N−log N

( ∞∑

i=0

1

(N − n + 1 + i)2

)

× log(n + 1)Γ (N − n + b)

(n + a)1−aΓ (N − n + 1)

≤ B−2(a, b) log(N + 1)Γ (N + 1)

(N − log N + 1)1−aΓ (N + a + b)
H(N ), (85)
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where

H(N ) =
N∑

n=N−log N

( ∞∑

i=0

1

(N − n + 1 + i)2

)
Γ (N − n + b)

Γ (N − n + 1)
. (86)

On the other hand, notice that

J ∗
41(N ) ≥ 1

n1−a

∫ 1

0

1
(
y + 1

n + N−n
n

)1−a (
1 − y + 1

n + N−n
n

)dy

≥ 1

n1−a
(
1 + 1

n + N−n
n

)1−a

∫ 1

0

1
(
1 − y + 1

n + N−n
n

)dy

= 1

(N + 1)1−a (log n − log(N − n + 1)) .

Since n < N − log N and N − n > log N , we have

J ∗
41(N ) ≥ 1

(N + 1)1−a (log(N − log N ) − log(1 + log N )) . (87)

Consequently, we obtain a lower bound of J412(N ) by

J412(N ) ≥ B−2(a, b)
[log(N − log N ) − log(1 + log N )]Γ (N + 1)

(N + 1)1−aΓ (N + a + b)
H(N ). (88)

Let m = N − n and we have

H(N ) =
log N∑

m=0

( ∞∑

i=0

1

(m + 1 + i)2

)
Γ (m + b)

Γ (m + 1)

≤
log N∑

m=0

2Γ (m + b)

(m + 1)Γ (m + 1)
≤

∞∑

m=0

2Γ (m + b)

Γ (m + 2)
∼

∞∑

m=0

1

m2−b
< ∞. (89)

Since H(N ) is an increasing function of N , the limit of H(N ) as N → ∞ exists and
we assume limN→∞ H(N ) = C4, where C4 is a positive constant. Combining (85)
and (88), we have

C4 B−2(a, b)[log(N − log N ) − log(1 + log N )]Γ (N + 1)

(N + 1)1−aΓ (N + a + b)

≤ J412(N ) ≤ C4 B−2(a, b) log(N + 1)Γ (N + 1)

(N − log N + 1)1−aΓ (N + a + b)
, (90)

which yields (79) immediately.
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It follows from (75), (78), (79) that as N → ∞,

J41(N ) ∼ C3 B−2(a, b) log N

(N + 1)b
. (91)

Combining with (69) and (74), it is clear that J41(N ) is the leading term of E2(J4(N )),
hence (16) holds for k = 2, 0 < b < 1. 	


B.5 Proof of (16)–Basis: k = 2, b = 1

To show (16) for k = 2, b = 1, a different approach is required. Because J4(N ) can
be bounded by

1

N − n + 1
≤ J4(N ) ≤ 1

N − n + 1
+ 1

(N − n + 1)2 , (92)

it suffices to obtain the asymptotic orders of E 1
N−n+1 and E 1

(N−n+1)2 . Applying Chao
and Strawderman (1972)’s result, the former expectation can be decomposed as

E2

( 1

N − n + 1

)
= E

(
E
( 1

N − n + 1
| θ

))

= B−2(a, 1)

∫ 1

0

∫ 1

0

1 −
(

1 − ∏2
i=1(1 − θi )

)N+1

(N + 1)
∏2

i=1(1 − θi )

2∏

i=1

θa−1
i dθ1dθ2

= B−2(a, 1)

∫ 1

0

∫ 1

0

1 −
(

1 − ∏2
i=1 δi

)N+1

(N + 1)
∏2

i=1 δi

2∏

i=1

(1 − δi )
a−1dδ1dδ2

= B−2(a, 1)

N +1

N∑

j=0

∫ 1

0

∫ 1

0
(1−δ2+δ2(1−δ1))

j
2∏

i=1

(1 − δi )
a−1dδ1dδ2

= B−2(a, 1)

N + 1

N∑

j=0

Γ ( j + 1)

Γ ( j + a + 1)

j∑

i=0

Γ (i + a)	( j − i + a)

Γ (i + 1)	( j − i + a + 1)

= J44(N ) + J45(N ) + J46(N ), (93)

where for l = 4, 5, 6,

J4l(N ) = B−2(a, 1)

N + 1

N∑

j=0

Γ ( j + 1)

Γ ( j + a + 1)
J ∗

4l( j), (94)
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and

J ∗
44( j) =

∫ j

0

1

(x + a)1−a( j − x + a)
dx, (95)

J ∗
45( j) =

j∑

i=0

1

(i + a)1−a( j − i + a)
−

∫ j

0

1

(x + a)1−a( j − x + a)
dx, (96)

J ∗
46( j) =

j∑

i=0

Γ (i + a)	( j − i + a)

Γ (i + 1)	( j −i +a+1)
−

j∑

i=0

1

(i + a)1−a( j −i +a)
. (97)

The asymptotic orders or bounds of J4l(N ), l = 4, 5, 6, and E
(

1
(N−n+1)2

)
are sum-

marized below. For fixed 0 < a ≤ 1 and b = 1, sending N to infinity, we have

B−2(a, 1) log2 N

2(N + 1)
≤ J44(N ) ≤ B−2(a, 1) log2 N

2(N + 1)
+ B−2(a, 1)(log N )3/2

a(N + 1)
, (98)

J4l(N ) ≤ B−2(a, 1) log N

N + 1
, l = 5, 6, (99)

E

(
1

(N − n + 1)2

)

≤ 2B−2(a, 1) log(N + 1)

N
. (100)

Due to the similarity of the proofs in nature, we will only prove (98), which gives the
asymptotic order of the leading term. In fact, we let y = x/j and write J ∗

44( j) as

J ∗
44( j) = 1

j1−a

∫ 1

0

1

(y + a/j)1−a(1 − y + a/j)
dy. (101)

This integral can be shown to have an order of log j for j large enough. Let ε =
(log j)−1/2. First, we integrate from 0 to 1 − ε.

∫ 1−ε

0

1

(y + a/j)1−a(1 − y + a/j)
dy ≤ 1

ε + a/j

∫ 1−ε

0

1

(y + a/j)1−a
dy

= 1

a(ε + a/j)

[
(1 − ε + a/j)a − (a/j)a] ≤ (1 − ε + a/j)a

a(ε + a/j)
. (102)

Second, we integrate from 1 − ε to 1.

∫ 1

1−ε

1

(y + a/j)1−a(1 − y + a/j)
dy

≤ 1

(1 − ε + a/j)1−a

∫ 1

1−ε

1

1 − y + a/j
dy = 1

(1 − ε + a/j)1−a
log

ε j + a

a
.

(103)
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On the other hand,

∫ 1

1−ε

1

(y + a/j)1−a(1 − y + a/j)
dy

≥ 1

(1 + a/j)1−a

∫ 1

1−ε

1

1 − a + a/j
dy = 1

(1 + a/j)1−a
log

ε j + a

a
. (104)

It follows from (81), (103), and (104) that

1

(1 + a/j)1−a
log

ε j + a

a
≤

∫ 1

0

1

(y + a/j)1−a(1 − y + a/j)
dy

≤ 1

(1 − ε + a/j)1−a
log

ε j + a

a
+ (1 − ε + a/j)a

ε(ε + a/j)
. (105)

Clearly,

lim
j→∞

1

(1 + a/j)1−a

log(ε j + a)/a

log j
= 1, (106)

lim
j→∞

1

(1 − ε + a/j)1−a

log(ε j + a)/a

log j
= 1. (107)

Also, by the definition of ε, we have

(1 − ε + a/j)a

a(ε + a/j) log j
∼ 1

a(log j)1/2 . (108)

It follows from (105), (106), (107), and (108) that

log j ≤
∫ 1

0

1

(y + a/j)1−a(1 − y + a/j)
dy ≤ log j + 1

a
(log j)1/2. (109)

Combining (109) and (101), we have

log j

j1−a
≤ J ∗

44( j) ≤ log j

j1−a
+ (log j)1/2

aj1−a
. (110)

From (110), we can apply the same decomposition as in (50), (51), (52) and prove
(16) for k = 2, b = 1. The details of the decomposition are omitted to reduce the
redundancy of the proof. 	


B.6 Proof of (16)–Inductive step

Here, we prove (16) for general k ≥ 3, 0 < b ≤ 1. Based on the discussions in B.4
and B.5, the asymptotic order of E2(J4(N )) can be summarized as the following. For
k = 2 and 0 < a ≤ 1,
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(1) when 0 < b < 1,

C2 B−2(a, b) log(N + 1)

N b
≤ E2(J4(N ))≤ C2 B−2(a, b) log(N + 1)

N b
+ logb N

N b
;

(111)

(2) when b = 1,

B−2(a, 1) log2 N

2(N + 1)
≤ E2(J4(N )) ≤ B−2(a, 1) log2 N

2(N + 1)
+ B−2(a, 1) log3/2 N

a(N + 1)
.

(112)

In general, we assume the capture–recapture experiment consists of k + 1 sampling
occasions. So

n | N , θ ∼ Bin
(

N , 1 −
k+1∏

i=1

(1 − θi )
)
.

For any fixed 0 < a, b ≤ 1 and u = 1, · · · , k + 1, we let δu = 1 − θu , r = n − j , and
m = N − j . The expected value of J4(N ) can be expressed as

Ek+1(J4(N ))

=
N∑

n=0

∞∑

i=0

1

(N − n + 1 + i)2

N !
n!(N − n)!

∫ 1

0
· · ·

∫ 1

0

(

1 −
k+1∏

u=1

δu

)n (
k+1∏

u=1

xu

)N−n

B−(k+1)(a, b)

k+1∏

u=1

δb−1
u

k+1∏

u=1

(1 − δu)a−1dδ1 · · · dδk+1

= B−(k+1)(a, b)

N∑

n=0

∞∑

i=0

1

(N −n+1+i)2

Γ (N +1)

Γ (n+1)	(N −n+1)

×
n∑

j=0

Γ (n + 1)

Γ ( j + 1)	(n − j + 1)

∫ 1

0
· · ·

∫ 1

0
(1 − δk+1)

jδ
n− j
k+1

(

1 −
k∏

u=1

δu

)n− j

δN−n+b−1
u

×
k+1∏

u=1

(1 − δu)a−1dδ1 · · · dδk+1.

In this way, we can integrate out δk+1 and get the recursive formula.

RHS = B−(k+1)(a, b)Γ (N + 1)

Γ (N + a + b)

N∑

n=0

∞∑

i=0

1

(N − n + 1 + i)2

1

Γ (N − n + 1)
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×
n∑

j=0

Γ ( j + a)	(N − j + b)

Γ ( j + 1)	(n − j + 1)

∫ 1

0
· · ·

∫ 1

0

(

1 −
k∏

u=1

δu

)n− j k∏

u=1

δN−n+b−1
u

k∏

u=1

(1 − δu)a−1dδ1 · · · dδk

= B(a, b)Γ (N + 1)

Γ (N + a + b)

N∑

m=0

Γ (N − m + a)Γ (m + b)

Γ (N − m + 1)Γ (m + 1)

m∑

r=0

( ∞∑

i=0

1

(m − r + 1 + i)2

)

∫ 1

0
· · ·

∫ 1

0

B−k(a, b)Γ (m + 1)

Γ (r + 1)	(m − r + 1)

(

1 −
k∏

u=1

δu

)r

×
k∏

u=1

δm−r+b−1
u

k∏

u=1

(1 − δu)a−1dδ1 · · · dδk

= B(a, b)Γ (N + 1)

Γ (N + a + b)

N∑

m=0

Γ (m + b)	(N − m + a)

Γ (m + 1)	(N − m + 1)
Ek(J4(m)),

where Ek(J4(N )) denotes the expectation of J4(N ) when there are k sampling occa-
sions. For fixed k ≥ 3, 0 < a ≤ 1, and 0 < b < 1, we assume that for some constants
C5(k), C6(k) depending on k, such that as m → ∞,

∣
∣
∣
∣Ek(J4(m)) − C2 B−k(a, b) logk−1(m)

mb

∣
∣
∣
∣ ≤ C5(k) logk−2+b(m)

mb
. (113)

For b = 1, we assume that

∣
∣
∣
∣Ek(J4(m)) − B−k(a, 1) logk(m)

m

∣
∣
∣
∣ ≤ C6(k) logk−1/2(m)

m
. (114)

Clearly, assumptions (113) and (114) hold for k = 2.
For k ≥ 3, we will show the following results that directly lead to (16). Assuming

k + 1 sampling occasions and assumptions (113) and (114), we have for 0 < b < 1,

∣
∣
∣
∣
∣
Ek+1(J4(N )) − C2 B−(k+1)(a, b) logk(N )

N b

∣
∣
∣
∣
∣
≤ C5(k + 1) logk−1+b(N )

N b
. (115)

For b = 1,

∣
∣
∣
∣
∣
Ek+1(J4(N )) − B−(k+1)(a, 1) logk+1(N )

N

∣
∣
∣
∣
∣
≤ C6(k + 1) logk+1/2(N )

N
. (116)

We focus on the case when 0 < b < 1 and prove (115). Ek+1(J4(N )) can be decom-
posed after removing the first M + 1 terms (M is a fixed integer).
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Ek+1(J4(N ))= C2 B−(k+1)(a, b)Γ (N + 1)

Γ (N + a + b)

N∑

m=M

Γ (m + b)	(N − m + a) logk−1 m

mbΓ (m + 1)	(N − m + 1)

+ B(a, b)Γ (N + 1)

Γ (N + a + b)

N∑

m=M

Γ (m + b)	(N − m + a)

Γ (m + 1)	(N − m + 1)

×
(

Ek(J4(m)) − C2 B−k(a, b) logk−1 m

mb

)

≡ J4k1(N ) + J4k2(N ). (117)

By the similar approach in the proof of (50), (51), (52), we can approximate J4k1(N )

by

J4k1(N ) ≈ C2 B−(k+1)(a, b)Γ (N + 1)

Γ (N + a + b)
Ik(N ), (118)

where

Ik(N ) =
∫ N

M

logk−1 x

(x + 1)(N − x + 1)1−a
dx . (119)

Below, we show that for any 0 < b < 1 and k ≥ 2, there exist positive constants C7
such that

logk N

N 1−a
− C7 logk−1 N

N 1−a
≤ Ik(N ) ≤ logk N

N 1−a
. (120)

To prove (120), we first find the order of Ik(N ) for k = 2. Let y = N − x ,

I2(N ) =
∫ N

M

log x

(x + 1)(N − x + 1)1−a
dx

= 1

N 1−a

∫ 1

M/N

log y + log N

(y + 1/N )(1 − y + 1/N )1−a
dy

∼ log2 N

N 1−a
+ 1

N 1−a

∫ 1

M/N

log y

(y + 1/N )(1 − y + 1/N )1−a
dy

≤ log2 N

N 1−a
. (121)

Now, we bound I2(N ) from below. Notice that

1

N 1−a

∫ 1/2

M/N

log y

(y + 1/N )(1 − y + 1/N )1−a
dy

≥ 1

(1/2 + 1/N )N 1−a

∫ 1/2

M/N

log y

(1 − y + 1/N )1−a
dy
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≥ log M − log N

(1/2 + 1/N )N 1−a

∫ 1/2

M/N

1

(1 − y + 1/N )1−a
dy

= log M − log N

a(1/2 + 1/N )N 1−a

[
(1 − M/N + 1/N )a − (1/2 + 1/N )a]

≈ log M − log N

aN 1−a
. (122)

We also have

1

N 1−a

∫ 1

1/2

log y

(y + 1/N )(1 − y + 1/N )1−a
dy ≥ − log 2

N 1−a

∫ 1

1/2

1

(1 − y + 1/N )1−a
dy

= − log 2

a(1/2 + 1/N )N 1−a

[
(1/2 + 1/N )a − (1/N )a] ≈ − log 2

aN 1−a
. (123)

It follows from (121), (122), and (123) that

log2 N

N 1−a
+ log M − log N

aN 1−a
− log 2

aN 1−a
≤ I2(N ) ≤ log2 N

N 1−a
. (124)

For any fixed k ≥ 2, we obtain the upper bound of Ik+1(N ).

Ik+1(N ) =
∫ N

M

logk x

(x + 1)(N − x + 1)1−a
dx

= 1

N 1−a

∫ 1

M/N

(log y + log N )k

(y + 1/N )(1 − y + 1/N )1−a
dy

= 1

N 1−a

∫ 1

M/N

(log y + log N )k−1(log y + log N )

(y + 1/N )(1 − y + 1/N )1−a
dy

= Ik(N ) log N + 1

N 1−a

∫ 1

M/N

(log y + log N )k−1 log y

(y + 1/N )(1 − y + 1/N )1−a
dy

≤ Ik(N ) log N . (125)

Next, we seek the lower bound of Ik+1(N ). First of all,

1

N 1−a

∫ 1/2

M/N

(log y + log N )k−1 log y

(y + 1/N )(1 − y + 1/N )1−a
dy

≥ (log M − log N ) logk−1 M

N 1−a

∫ 1/2

M/N

1

(y + 1/N )(1 − y + 1/N )1−a
dy

≥ (log M − log N ) logk−1 M

(1/2 + 1/N )N 1−a

∫ 1/2

M/N

1

(1 − y + 1/N )1−a
dy

= (log M − log N ) logk−1 M

a(1/2 + 1/N )N 1−a

[
(1 − M/N + 1/N )a − (1/2 + 1/N )a]

≈ 2(1 − 2−a)(log M − log N ) logk−1 M

aN 1−a
. (126)
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Similarly,

1

N 1−a

∫ 1

1/2

(log y + log N )k−1 log y

(y + 1/N )(1 − y + 1/N )1−a
dy

≥ − (log N − log 2)k−1 log 2

a(1/2 + 1/N )N 1−a

[
(1/2 + 1/N )a − (1/N )a]

≈ −21−a log 2(log N − log 2)k−1

aN 1−a
. (127)

It follows from (125), (126), and (127) that

0 ≤ Ik(N ) log N − Ik+1(N )

≤ 2(1 − 2−a)(log N − log M) logk−1 M

aN 1−a
+ 21−a log 2(log N − log 2)k−1

aN 1−a
. (128)

Combining (124) and (128), we have proved (120). It follows from (118) and (120)
that

∣
∣
∣
∣
∣
J4k1(N ) − C2 B−(k+1)(a, b) logk N

N b

∣
∣
∣
∣
∣
≤ C2C7 B−(k+1)(a, b) logk−1 N

N b
. (129)

Similarly, we can show that

|J4k2(N )| ≤ B(a, b)Γ (N + 1)

Γ (N + a + b)

N∑

m=M

Γ (m + b)	(N − m + a) logk−2+b N

mbΓ (m + 1)	(N − m + 1)

≤ C8 logk−1+b N

N b
, (130)

where C8 is a positive constant. Combining (117), (129), (130), we get (115). In the
case of b = 1, (116) can be proved in a similar manner. (115) and (116) imply (16) in
Lemma 1. 	
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