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Abstract For time series nonparametric regression models with discontinuities, we
propose to use polynomial splines to estimate locations and sizes of jumps in the
mean function. Under reasonable conditions, test statistics for the existence of jumps
are given and their limiting distributions are derived under the null hypothesis that the
mean function is smooth. Simulations are provided to check the powers of the tests.
A climate data application and an application to the US unemployment rates of men
and women are used to illustrate the performance of the proposed method in practice.

Keywords B splines · Discontinuities · Jump detection · α-Mixing process ·
Time series · Nonparametric regression

1 Introduction

Regression analysis, as a major statistical tool, builds a functional relationship between
response variables and explanatory variables. In certain applications, such a functional
relationship has discontinuous points at some unknown positions, representing struc-
tural changes of a related process. In practice, structural changes may be caused by
sudden events, abrupt policy changes and catastrophes among others. For example,
the real estate price series would have a jump if new government policies are imple-
mented (Hui et al. 2010). The temperature of the ocean off of Granite Canyon would
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have a significant drop between February and April, called a spring transition, due to
the change of ocean currents (Koo 1997). Jumps are an important part of the under-
lying regression function; accurate detection of them is crucial for understanding the
structural changes of the process and for estimating the regression function properly.
In addition, detecting jumps inspires one to investigate the underlying reasons for
structural breaks.

Assume that observations (Xt , Yt )
n
t=1 are from a strictly stationary bivariate sto-

chastic process and consider the following nonparametric regression model,

Yt = m(Xt ) + σ(Xt )εt , t = 1, . . . , n, (1)

where {εt }n
t=1 is a conditional white noise process with E(εt |Xt = x) =

0, Var(εt |Xt = x) = 1, t = 1, . . . , n. The conditional mean function m(x) =
E(Yt |Xt = x) and the conditional variance function σ 2(x) = Var(Yt |Xt = x) are
defined on a compact interval [a, b]. Assume m(x) is continuous on [a, b] except at
a finite number of points, called jumps. Neither the number nor the locations of the
jumps are known.

Jump regression analysis started in the early 1990s and has become an important
research topic in statistics. There has been an increasing amount of literature on the
detection of jumps in nonparametric regression models, tackled with different tech-
niques. For instance, assuming the break points were known, Shiau (1987) applied
partial splines to estimate the magnitude of discontinuities. Qiu (1991) proposed a
trimmed spline estimate to deal with the second jump regression function. Müller
(1992) and Qiu (1994) detected jumps based on kernel-type methods. For a fixed
design model, Koo (1997) detected discontinuities by linear splines without theoreti-
cal justifications. Qiu and Yandell (1998) suggested a jump detection algorithm using
local polynomial smoothing. More recently, under the i.i.d. assumption, Ma and Yang
(2011) proposed a spline smoothing method to detect jumps. For more studies, refer
to Qiu et al. (1991), Wu and Chu (1993), Müller and Stadtmüller (1999), Qiu (2003,
2005), Bowman et al. (2006), Gijbels et al. (2007), Joo and Qiu (2009) and references
therein. A majority of references listed above focus on independent errors. However,
this restriction would be problematic in time series analysis, and Wu and Zhao (2007)
considered this problem in the dependent case. Lin et al. (2008) studied the nonpara-
metric regression model with dependent observations by local polynomial smoothing.
Another widely used approach is wavelet analysis. For details, see Wong et al. (2001),
Chen et al. (2008), Hui et al. (2010), Zhou et al. (2010) and references therein.

In this paper, we propose a quick and direct method to detect possible jumps in
nonparametric time series models through spline regression. The number, locations,
as well as magnitudes of the jumps are all assumed unknown. Compared with the exist-
ing kernel/local polynomial smoothing-based method, the spline smoothing method
has the advantages of simple implementation and fast computation; see Huang and
Yang (2004) and Xue and Yang (2006). Our test statistics are based on the maximal
difference of the spline estimators between neighboring knots. By applying the strong
approximation results similarly as in Wang and Yang (2010), we obtain the limiting
distributions of the test statistics in a conservative sense under the null hypothesis that
m(x) is continuous.
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Jump detection for time series nonparametric regression 327

By investigating both theoretical properties and numerical performance of such
detection procedure, certain practical guidelines are provided about their use. Basi-
cally, we use linear splines and we undersmooth the data in the first step to detect
possible jumps with their locations. Then we apply a multiple-ordered regression
spline procedure to refit the data and estimate the jump magnitudes.

The rest of the paper is organized as follows. Section 2 introduces the constant and
linear spline smoothers, together with the test statistics. Section 3 describes the actual
steps to implement the spline estimation and the test procedure. Numerical results are
provided in Sects. 4 and 5. Section 6 is a brief discussion of our method. All technical
proofs are included in the Appendix.

2 Estimation and main results

2.1 Spline estimation

In the first step, we use constant and linear splines to estimate m(x) in model (1).
To introduce spline functions, we divide the interval [a, b] into (N + 1) subintervals
J j = [t j , t j+1), j = 0, . . . , N −1, JN = [tN , b]. {t j }N

j=1 is assumed to be a sequence
of equally spaced interior knots, given as

t0 = a < t1 < · · · < tN < b = tN+1, t j = a + jh, j = 0, 1, . . . , N + 1, p = 1, 2,

where h = (b − a)/(N + 1) is the distance between neighboring knots. We denote
C (p)[a, b] as the space of functions that have pth-order continuous derivatives on the
interval [a, b] and G(p−2)

N = G(p−2)
N [a, b] as the space of all C (p−2)[a, b] functions

that are polynomials of degree (p − 1) on each subinterval J j . The B-spline basis of

G(p−2)
N can be constructed recursively; see de Boor (2001). We denote the j th B-spline

of order p as b j,p. Specifically, the first-order (constant) spline and the second-order
(linear) spline basis functions are given as

b j,1(x) = IJ j (x), j = 0, . . . , N ,

b j,2(x) = K {(x − t j+1)h
−1}, j = −1, . . . , N ,

where IJ j (·) is the indicator function on J j and K (u) = (1 − |u|)+ is a triangular
function. For any L2-integrable functions φ, ϕ on [a, b], we define the empirical inner
product 〈φ, ϕ〉n = n−1 ∑n

t=1{φ(Xt )ϕ(Xt )} and the theoretical inner product 〈φ, ϕ〉 =
E{φ(X)ϕ(X)}. The corresponding empirical and theoretical L2 norms are defined as
||φ||22,n = n−1 ∑n

t=1 φ2(X) and ||φ||22 = E{φ2(X)}, respectively. For the technical

simplicity, we rescale the B-spline basis and denote B j,p(x) = ||b j,p(x)||−1
2 b j,p(x).

Based on the B-spline basis {B j,p(x)}N
j=−1, we denote Vn,p and Vp as its empirical

and theoretical inner product matrices, respectively, i.e.

Vn,p = (〈B j ′,p, B j,p〉n)N
j, j ′=1−p, Vp = (〈B j ′,p, B j,p〉)N

j, j ′=1−p.
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Vn,1 is a diagonal matrix and Vn,2 is a tridiagonal matrix, which go to their determin-
istic versions V1 and V2 as n goes to infinity. Furthermore, denote S as the inverse
matrix of V2 and S j the 2 × 2 diagonal submatrices of S, i.e.

S = (s j ′, j )
N
j, j ′=−1 = V−1

2 , S j =
(

s j−1, j−1 s j−1, j

s j, j−1 s j, j

)

, j = 0, . . . , N . (2)

The polynomial spline estimators are

m̂ p(x) = arg min
g∈G(p−2)[a,b]

n∑

t=1

{Yt − g(Xt )}2 .

Solving the least squares problem under regular conditions, with the spline basis
defined above, we write the spline estimators as

m̂ p(x) = {B j,p(x)}T
1−p≤ j≤N V−1

n,p

{〈Y, B j,p〉n
}N

j=1−p , (3)

where Y = (Y1, . . . , Yn)T is the response vector. In particular, p = 1, 2 correspond
to constant and linear spline estimators, respectively.

2.2 Jump detection

For strictly stationary bivariate time series {(Xt , Yt )}n
t=1, to detect jumps in the con-

ditional mean function m(x), we test the hypotheses H0 : m ∈ C (p)[a, b] vs. H1 :
m /∈ C[a, b]. We list the following assumptions for our theoretical justification.

(A1) There exist a function m0(x) ∈ C (p)[a, b] and a vector c = (c1, . . . , ck) of jump
magnitudes such that the conditional mean function m(x) = cl + m0(x), x ∈
[τl , τl+1), for l = 1, . . . , k − 1, m(x) = m0(x), x ∈ [τ0, τ1) , m(x) = ck +
m0(x), x ∈ [τk, τk+1], where {τi }k

i=1 is a sequence of potential jump points,
given as a = τ0 < τ1 < · · · < τk < τk+1 = b.

(A2) The density f (x) of X is continuous and positive on its compact support [a, b].
The standard deviation σ(x) is continuous and positive on [a, b].

(A3) There exist positive constants K0 and λ0 such that α(k) ≤ K0 exp−λ0k for all k,
with the strong mixing coefficient of order k defined as

α(k) = sup
B∈σ {Ys ,s≤t},C∈σ {Ys ,s≥k+t}

|P(B ∩ C) − P(B)P(C)|, k ≥ 1.

(A4) The number of interior knots N ∼ n1/(2p+1), i.e. cN n1/(2p+1) ≤ N ≤
CN n1/(2p+1) for some positive constants cN , CN .

(A5) The noise εt satisfies E(εt |Xt = x) = 0, E(ε2
t |Xt = x) = 1, and there exists

an M0 > 0 such that

sup
x∈[a,b]

E(|εt |3 |Xt = x) ≤ M0.
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Remark 1 Assumption (A1) is similar as that in Ma and Yang (2011) and Müller and
Song (1997). Assumptions (A2–A5) are regular in the polynomial spline smoothing
literature; see, for instance, Huang and Yang (2004), Xue and Yang (2006), Wang and
Yang (2007), Song and Yang (2009) and Wang and Yang (2010). Assumption (A1)
says our target curve is smooth enough with exception at a few jumping locations.
In application, one can truncate the data set to satisfy Assumption (A2). Assumption
(A3) assumes a weak dependence in the time series. Assumption (A4) is a technique
assumption we use for the selection of number of knots. We achieve our asymptotics
using knots number with the assumed rate, and the proof is in the appendix. Assumption
(A5) is a moment assumption on the noise.

Under Assumption (A1), the hypotheses amount to H0 : ||c||2 = 0 vs. H1 :
||c||2 > 0, where ||c||2 = (c2

1 + · · · + c2
k )

1/2 is the Euclidean norm of the vector c of
all the k jump magnitudes. Based on the polynomial spline estimators given in Eq. (3),
we define the test statistics Tp,n for p = 1, 2 as

Tp,n = max
0≤ j≤N−1

δ̂p, j , δ̂p, j = |m̂ p(t j+1) − m̂ p(t j )|
σn,p, j

, (4)

where

σ 2
n,1, j = σ 2(t j+1)( f (t j+1)nh)−1 + σ 2(t j )( f (t j )nh)−1, (5)

σ 2
n,2, j = σ 2(t j+1)

(
2 f (t j+1)nh

3

)−1

ζT
j S jζ j , (6)

with S j defined in Eq. (2) and

ζ j = (−q j−1, q j )
T, q j =

{
1, 0 ≤ j ≤ N − 1,√
2, j = −1, N .

Theorem 1 Under Assumptions (A1−A5) and the null hypothesis H0, for any α ∈
[0, 1], we have, for p = 1, 2,

lim sup
n→∞

P
[
Tp,n > {4 log (N + 1)}1/2 dn (α/2)

]
≤ α,

where

dn (α) = 1 − {2 log(N + 1)}−1
[

log
(α

2

)
+ 1

2
{log log (N + 1) + log 4π}

]

.
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3 Implementation

3.1 Calculate test statistic for detection of jumps

In this section, we provide practical guidance to implement the jump detection proce-
dure. Given any sample {(Xt , Yt )}n

t=1, we denote the minimum and maximum values
of {Xt }n

t=1 as the endpoints of interval [a, b]. The optimal order of N , by Assump-
tion (A4), is n1/(2p+1). In practice, we select number of knots C pn1/(2p+1) with a
relatively large positive constant C p to deliberately undersmooth the data to capture
possible jump points. In our numerical analysis, we take C p in a range of [5, 10],
and we optimize N from

[
5n1/(2p+1), min

(
10n1/(2p+1), n/2 − p − 1

)]
through the

following BIC:

BIC = log (RSS/n) + log(n)(N + p)/n, (7)

where N + p is the number of parameters to be estimated and RSS is the residual
sum of squares, i.e. RSS = ∑n

t=1

{
Yt − m̂ p (Xt )

}2. Some other widely used selection
criteria such as AIC can also be considered. We use equally spaced knots for technical
simplicity.

To calculate Tp,n in Eq. (4), we need to estimate the unknown functions f (x)

and σ 2(x). We estimate f (x) using the density estimator f̂ (x) with Quartic kernel
K̃ (u) = 15(1−u2)2 I{|u|≤1}/16 and the rule-of-thumb bandwidth of Silverman (1986),
i.e. hrot,f = (4π)1/10 (140/3)1/5 n−1/5sn . For σ 2(x), we take the spline estimator
σ̂ 2

p(x) based on the data
{(

Xt , Zt,p
)}n

t=1, where Zt,p is denoted as the square of the
residual (Yt − m̂ p (Xt ))

2, p = 1, 2. The calculation of S j in Eq. (6) is as follows.
According to Lemma A.2 of Wang and Yang (2010), the inner product matrix V2 is
approximated by the following distribution-free matrix

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√

2/4 0√
2/4 1 1/4

1/4 1
. . .

. . . 1/4
1/4 1

√
2/4

0
√

2/4 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(N+2)×(N+2)

.

Define its inverse matrix as L = J−1. Then S j , the diagonal submatrices the inverse
matrix of V2, can be approximated by

L j =
(

l j−1, j−1 l j−1, j

l j, j−1 l j, j

)

, j = 0, 1, . . . , N ,

which are the 2 × 2 diagonal submatrices of L.
The asymptotic p value, i.e. pvalue,p is obtained by solving the equation Tp,n =

{4 log (N + 1)}1/2 dn (α/2) with Tp,n defined in Eq. (4) for p = 1, 2. Replacing
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f (x), σ 2(x) and S j in Eqs. (5) and (6) with f̂ (x), σ̂ 2
p(x) and L j , respectively, we

derive the p value

pvalue,p = 4 exp
{[2 log(N + 1)][1 − (4 log(N + 1))−1/2Tp,n]
−2−1[log log(N + 1) + log 4π ]} .

(8)

If the p value is below a pre-determined significant level α, we conclude that there
exist jump points in m(x) at the α level.

3.2 Construction of multiple-ordered spline space

We have discussed how to test whether a mean function contains jumps. Naturally, the
next question is to locate these jumps if there are any. Our idea of locating jumps is
to apply our test statistics to local time intervals between consecutive knots and then
decide whether these time intervals contain jumps or not. We replace Tp,n in Eq. (8)
with δ̂p, j , j = 0, . . . , N − 1 to obtain the corresponding pvalue,p, j for each δ̂p, j . If
pvalue,p, j < α, we deduce there exists a jump point around t j . Since we deliberately
use a large amount of knots to capture the possible jumps, it is not surprising that there
could be two or three consecutive pvalue,p < α around where there is a true jump point.
In this circumstance, we only count one jump. To be specific, suppose the i th jump point
is detected with pvalue,p, jleft,i < α, . . . , pvalue,p, jright,i < α consecutively from left to
right, the location of the i th jump point is then estimated as τ̂i = (t jleft,i −1+t jright,i +1)/2.
As n goes to infinity, one has τ̂i → τi for τi ∈ [t jleft,i −1, t jright,i +1], i = 1, . . . , k.

Since using a large amount of knots may lead to overfitting, we refit the data using
polynomial splines with number of knots by a data-driven BIC method in the next
step. To accommodate the detected jumps, we will adjust the spline space by adding
discontinuous basis functions to the spline basis. Basis functions (x − t j )+ at knot t j

or (x − t j )+ and (x − t j+1)+ at two adjacent knots t j and t j+1 are considered to be
added to the spline basis if there is a jump there or in between. We use the similar idea
of multiple-order regression splines by Koo (1997). The magnitude of the i th jump
point is then estimated by m̂ p(t jright,i +1) − m̂ p(t jleft,i −1).

4 Simulation

In this section, we conduct simulation study to investigate the finite sample properties
of our test statistics described in Sect. 2. We generated data from model (1) with

m(x) = sin(2πx) + c1 I (τ1 ≤ x < τ2) + c2 I (τ2 ≤ x ≤ 1) , (9)

here τ1 =√
2/4, τ2 =√

2/2. We set σ(x)=σ0
[
100−exp(x)

]
/
[
100+exp(x)

]
, ε ∼

N (0, 1), where σ0 = 0.2, 0.5, 0.8 are the noise levels. {Xi }n
i=1 were generated as

Xi = �(ηi ), i = 1, . . . , n, where {ηi }n
i=1 were simulated from a moving average

sequence of order 4,
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ηi = (ξi + 0.2ξi−1 + 0.2ξi−2 + 0.2ξi−3 + 0.2ξi−4)√
1 + 0.22 + 0.22 + 0.22

.

Here, ξi ’s are i.i.d. r.v.’s ∼ N (0, 1). The sample sizes were taken to be n =
200, 600, 1000 and the significant levels α = 0.05, 0.01. In each simulation, a total of
200 + n observations were generated and the first 200 observations were discarded to
ensure the asymptotic stationarity. For each setting, we generated 500 replications, and
we let Tp,n,q be the qth replication of the test statistic Tp,n in Eq. (4). We denote the
asymptotic detection power by β̂p(c1, c2) for p = 1, 2, where β̂p(c1, c2) is defined as

β̂p(c1, c2) =
500∑

q=1

I
[
Tp,n,q > {4 log (N + 1)}1/2 dn (α/2)

]
/500.

Table 1 shows jump detection rate β̂p(c1, c2) for function m(x) in (9) for c1 =
c2 = 0 (no jump), c1 = 2, c2 = 0 (one jump) and c1 = 2, c2 = −2 (multiple jumps).
For comparison, we also list, in the last two columns, the detection rate using kernel
smoothing by Qiu (1994) by β̂ks under different nominal level α = 0.05, 0.01. It
is worth to point out that the method in Qiu (1994) was proposed for independent
data set. While as our referee suggested, we believe that the method is robust to
the independence assumption. From Table 1, we observe that as the sample size n
increases, β̂p(2, 0) and β̂p(2,−2), p = 1, 2 approach 1 and β̂p(0, 0), p = 1, 2 tend
to below the pre-determined significant level α, in agreement with the asymptotic
theory. Note that, when there are no jumps (c1 = c2 = 0) and the noise levels are
high (σ0 = 0.5, 0.8), β̂ks(0, 0)s tend to be 1 instead of 0, which indicate a serious
over-detecting. It seems that the kernel smoothing detection by Qiu (1994) tends to
over-detection by reading noise as jumps when noise level is high. Therefore, we
conclude that our method has an advantage for highly noisy data sets. In all our tables,
we present the simulation results with the number of knots chosen by the BIC given
in (7). We actually have tried other selection criterion like AIC, and the results are
comparable with small advantage on BIC.

For 500 replications satisfying pvalue,p < α = 0.05, p = 1, 2 in the settings
when there is only one jump with size c1 = 2, c2 = 0 or when there are two jumps
with sizes c1 = 2, c2 = −2, we calculated the frequencies of detection for more
than one jump points (FDO) or the frequencies for not detecting two jumps (FDU).
These results are displayed in Tables 2 and 3, respectively. In Tables 2 and 3, we
also show the frequencies for τ1, τ2 falling between t jleft,1−1 and t jright,1+1 described in
Sect. 3. From Tables 2 and 3, we can observe that the frequencies of coverage for τ1 or
τ1, τ2 obtained by linear splines are higher than those got by constant splines, getting
close to the nominal level 0.95. We do observe some situations with occurrence of
underestimating number of jumps since our test statistics are conservative. While, the
underestimating rates decrease as n goes large. Furthermore, as described in Sect. 3,
we obtain the estimates of τ1, τ2, c1, c2, and we plot their kernel density estimates in
Fig. 1 with sample sizes n = 600 and n = 1000 at σ0 = 0.5, α = 0.05. The vertical
lines are set at τ1 = √

2/4, τ2 = √
2/2 and magnitudes 2,−4. As seen in Fig. 1,

the centers of the density plots become narrower and closer to the vertical lines as the
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Table 1 Asymptotic power of the proposed tests over 500 replications in model (9)

c1, c2 σ0 Sample β̂2(c1, c2) β̂2(c1, c2) β̂1(c1, c2) β̂1(c1, c2) β̂ks (c1, c2) β̂ks (c1, c2)

size (n) α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

0.2 200 0.128 0.102 0.270 0.134 0.568 0.922

600 0.044 0.024 0.194 0.074 0.152 0.476

1000 0.032 0.002 0.158 0.046 0.040 0.276

c1 = 0 0.5 200 0.194 0.086 0.054 0.024 0.998 1.000

c2 = 0 600 0.086 0.036 0.010 0.004 0.990 1.000

1000 0.046 0.008 0.004 0.002 0.948 1.000

0.8 200 0.140 0.068 0.038 0.012 1.000 1.000

600 0.034 0.022 0.004 0.004 1.000 1.000

1000 0.016 0.004 0.000 0.002 1.000 1.000

0.2 200 0.560 0.324 0.998 0.998 0.946 0.996

600 0.972 0.786 1.000 1.000 0.576 0.942

1000 1.000 0.974 1.000 1.000 0.410 0.850

c1 = 0 0.5 200 0.798 0.532 0.692 0.562 1.000 1.000

c2 = 2 600 0.998 0.988 0.956 0.894 0.984 1.000

1000 1.000 1.000 0.996 0.984 0.968 1.000

0.8 200 0.374 0.232 0.268 0.130 1.000 1.000

600 0.832 0.616 0.566 0.352 1.000 1.000

1000 0.978 0.924 0.790 0.656 1.000 1.000

0.2 200 1.000 0.996 1.000 1.000 1.000 1.000

600 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 0.988 1.000

c1 = 2 0.5 200 1.000 0.988 0.996 0.980 1.000 1.000

c2 = −2 600 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

0.8 200 0.964 0.850 0.922 0.860 1.000 1.000

600 1.000 1.000 1.000 0.988 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2 Frequencies of
detection for more than one
jump point and frequencies of
coverage for τ1 in model (9) for
c1 = 2, c2 = 0

FDO: frequencies of detection
for more than one jump point,
FCτ : frequencies of coverage
for τ

σ0 Sample FDO FCτ FDO FCτ

size (n) p = 2 p = 2 p = 1 p = 1

0.5 200 0.046 0.826 0.002 0.639

600 0.006 0.901 0.000 0.462

1000 0.006 0.911 0.000 0.468

0.8 200 0.026 0.702 0.000 0.526

600 0.002 0.896 0.000 0.508

1000 0.002 0.932 0.000 0.464
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Table 3 Frequencies for not
detecting two jumps and
frequencies of coverage for
τ1, τ2 in model (9) for
c1 = 2, c2 = −2

FDU: frequencies for not
detecting two jumps,
FCτ1 : frequencies of coverage
for τ1, FCτ2 : frequencies
of coverage for τ2

σ0 Sample FDU FCτ1 FCτ2 FDU FCτ1 FCτ2

size (n) p = 2 p = 2 p = 2 p = 1 p = 1 p = 1

0.5 200 0.462 0.743 0.807 0.582 0.522 0.507

600 0.232 0.859 0.911 0.388 0.526 0.500

1000 0.228 0.878 0.940 0.182 0.501 0.513

2000 0.184 0.887 0.949 0.062 0.512 0.542

0.8 200 0.292 0.370 0.415 0.812 0.500 0.457

600 0.242 0.858 0.921 0.660 0.518 0.506

1000 0.102 0.898 0.953 0.478 0.529 0.467

2000 0.036 0.927 0.971 0.196 0.537 0.532
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Fig. 1 Kernel density plots of τ̂1, τ̂2 and ĉ1, ĉ2, n = 600 (dashed curve), n = 1000 (solid curve)

sample size n increases. Finally, to make an impression of the spline estimation for
both smooth and discontinuous functions, at the noise level σ0 = 0.5 with sample size
n = 1000, we plot the linear spline estimate m̂2(x) together with the true conditional
mean function m(x) in Fig. 2.
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Fig. 2 Plots of the true function m(x) (solid curve) and the linear spline estimates m̂2(x) (dashed curve)

Table 4 Computing time (in
seconds) per replication of
generating and detecting jumps
by local constant kernel
smoothing, constant and linear
splines

Sample
size (n)

Local constant
kernel smoothing

Constant
splines

Linear
splines

200 0.03 0.02 0.04

600 0.12 0.04 0.06

1000 0.26 0.07 0.08

In all our simulation experiments, the proposed spline method worked quickly, and
we provide the time in seconds for all the methods in Table 4. The proposed spline
method only needs to solve a moderate number of linear least squares; so in most cases
one can see that the spline method worked much faster compared to its competitors
such as kernel smoothing. We refer Xue and Yang (2006) and Wang and Yang (2007)
for more computational time comparison results of the two methods.

5 Application

5.1 Global land-surface air temperature anomalies

The analysis of abrupt climate changes has recently found increasing interest; see,
for instance, Alley et al. (2003), Ivanov and Evtimov (2010) and Matyasovszky
(2011). Such abrupt changes may be caused by natural or human activities,
such as solar and volcanic activities, greenhouse gases. Here, we consider the
time series of global monthly land-surface air temperature anomalies from 1880
to 2011. The data set is available with the National Aeronautics and Space
Administration Goddard Institute for Space Studies at http://data.giss.nasa.gov/
gistemp/tabledata_v3/GLB.Ts.txt. Figure 3 displays the data together with the
cubic spline estimator m̂4(x). Given α = 0.05, we detect five jump points
in the year 1900, 1918, 1950, 1962, 1976, and the magnitudes (◦C) (p val-
ues) are 0.02 (0.008), −0.01 (0.000), −0.07, (0.041), −0.11 (0.015), 0.11 (0.000),
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Fig. 3 Global land-surface air
temperature anomalies (points)
and the cubic spline estimate
m̂4(x) (solid curve)
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Fig. 4 Global land-surface air temperature: a plots of the residuals, b the estimated ACF with 95 % Bartlett
intervals for the residuals

respectively. Besides these jumps, we see a warming tendency after the last positive
jump in 1976.

For diagnostic purposes, we show in the Fig. 4 the residuals plot and the estimated
autocorrelation function (ACF) plot of the residuals with 95 % Bartlett intervals. One
sees that the temperature series is stable and the autocorrelation in the time series is
very small.

5.2 Unemployment rates for men and women

We apply the proposed jump detection method to the monthly unemployment rates
of men and women (20 years and over) in the United States. Each data set contains
565 observations from January 1965 to January 2012. Figure 5 displays these data
points together with the linear spline estimates. Given the significant level α = 0.01,
we detect 4 jump points for men and 9 for women. We include in the Figs. 6 and 7
the residuals plots and the estimated ACF plots of the residuals with 95 % Bartlett
intervals. An examination of these plots justifies the model assumptions.

123



Jump detection for time series nonparametric regression 337

**

*

*

****
***
*

***

*
******
*
*
***
*
****
**
**

***

*
*
*******

***
********
*

*
****
*****
*

*

**
*

*
******
*
*

**
*
*
***
*****

***
*
******
*
*

***
*
***
***

*

*

*
**
*
***
***
**

**
*

*

*
**
***

*
*

*
*

*

*
****
***
*

**
*

*
*******
*

***

*
**
****
**

****
**
**
****

**
*

***
***
*

*

*

***

*
*
****
*

*

*

**

*

*

*
*
*
*
****

*
*
*
*

*
*****
*
*

**
*
*

*
**
***
**

*
*
*

****
***
**

**
*

*
***
*
**
**

**
*

**
***
**
**

**
**
******
**

**
**
*****
*

*
*

*

*
*

*
******
*

*

**

*

***
*****
*

**
*

*
****
****

**

*

*

****
****

*
**
**
****
*
**

***

*
*
**
***
**

*
**

*

*******
*
***

***
*
****
*

**

*
********
*

**
*

********
*

***
*
***
**
*
*
*

***

*
******
*
*

*
**
*******
**

***

********
*

**
*

********
*
***
*****
**
*
*

**
*
********

*

***

***
**
**
*

*

*

**

******
**

*

**
*

*

*****
*

*
*

**
*

*******
*
*
*

Men

x

y

1969 1981 1993 2005

2
4

6
8

10

*

*

*

*

*

*

*

*

*
*
*

*

*
*
*
**
*
*

*
**
*
*

*
*
*

*
*

*
**

*
*

*

*

**

*
*
*

**
**

**

*

**

**
*

*
*

**

*

*

*

*

**

*
*

*
*
*
*

*
*

*

***
*
*

**

**

**

*

*

**
**

*
*
**

*

*

*

*
*
*

*
*

**
**

***

**

*

**

*
*
*

*

*

**

***
**
**
**

*
*

*

**

*

*

*

*

*
**

*
*

*

*
*

*

*

*

**

**

**

*

*

*
*
**

*

***

**
*

**

*

**

**

*

*
*
*
*

**

*
*
*

*
*
*

*
*
*
*

*

*
*
*
*
*
**
****

*
****

*

****
*
*

*

*

*

**

*

*
*

*

*

*
*

*

*
*
***

*
*

**

*

*

*
*
*
*
**
*
**

*
*

*

*

*
*

**
**
*
*
*
*

*

*
**

***
***

*
*

*

**

*
*
**
***

**

*

*
***
*
*
**
***
*

**
****

*
**
***

***
*

*
**

*
****

**
*
**

*

*
*

*

***

*

*

***

*
**
*
*
*
*

*

**

**

**
*
*

**

*

*
***
*

*
**
*
*
*
*

*

**
*
*
*

*
*

****

*
**

*
*
**
*
*

*
**

*
**

**

*
**
*
**

*

***
*
*

*

*
*
*

**

*

*
**

*

*
**
*

*
**
*

*
****

*
*

*
****

*****
*
**

****

***
**

*
**

*
*
**

*
**

**

**
*
***
*

**
***

*
*

**
**
*
**
***

*

*
**

**
*

*

****

*

**
*
***

*
*
*

*

*

*
*

*

**
**

**
*
*

*

*

**
*
*
**

***
**
*

**

*
*
*

*

*
*
*
*
*

*

**
*

*
**

*

Women

x

y

1969 1981 1993 2005

3
4

5
6

7
8

9

Fig. 5 Monthly unemployment rates (points) and the linear spline estimates m̂2(x) (solid curve)
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Fig. 6 Monthly unemployment rates for men: a plots of the residuals, b the estimated ACF with 95 %
Bartlett intervals for the residuals
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Fig. 7 Monthly unemployment rates for women: a plots of the residuals, b the estimated ACF with 95 %
Bartlett intervals for the residuals
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Here and hereafter, we refer to the business cycle reference dates reported by NBER
(2011) to compare the trends of unemployment rates of men and women. First, we
present some jump points which are detected at the same time for men and women.
Around December 1973, we detect a jump point for men with p value 0.0019 and
magnitude 1.50, and a jump point for women with p value 0.0000 and magnitude
1.06. Then, for men, two consecutive p values 0.0019 and 0.0000 are detected to
below the pre-determined α around March 1982. Thus, we deduce there exists a jump
point at this time of year and the magnitude is estimated to be 2.08. For women, we
also detect two consecutive p values 0.0000 and 0.0000 around March 1982. So a jump
point is detected and the estimated magnitude is 0.99. According to the business cycle
reference dates, we can see the economy during these periods is in recession, resulting
in sudden increases in the trends of unemployment rates. Undoubtedly, around March
2008, two jump points are detected in the financial crisis period; one for men with
p value 0.0000 and magnitude 3.05, the other for women with p value 0.0000 and
magnitude 1.63. Besides the above three jump points detected for men, around January
1979, there is one more jump point detected for men with p value 0.0026 and magnitude
0.20. Although the business cycle reference dates show a new recession starts from
January 1980, from Fig. 5, we can see the trend of unemployment rate for men indeed
begins to rise from January 1979. Next we list jump points that are only detected for
women. Around January 1965, September 1977 and August 1986, three jump points
are detected with p values 0.0011, 0.0073, 0.0004 and declined magnitudes 0.49, 1.44,
1.40, respectively. Since these years are all in the periods of expansion, the trends of
unemployment rates fall. Another three jump points are detected around February
1970, June 1990 and August 2000. The p values of the three jumps are all 0.0000 and
the magnitudes are 1.28, 1.78, 1.08. Similarly as stated before, these sudden increased
trends occur either in the recession periods or several months before the recession
periods.

In conclusion, the trends of unemployment rates for men and women both vary
with the business cycles. With less jumps detected, the trend of unemployment rate
for men is more stable than that of women. However, we observe that the magnitudes
of positive jumps of men’s unemployment rate is larger than (almost twice as) those
of women’s at the same period. showing that the crisis has more negative impact on
men.

6 Concluding remarks

We have discussed jump detection and estimation of (dis)continuities of regression
functions for time series data. The problem has wide applicability in empirical eco-
nomic analysis and other areas. We have proposed a regression spline based algorithm
that is intuitively appealing and simple to use. Test statistics for the existence of jumps
are provided and their limiting distributions are derived under the null hypothesis that
the mean function is smooth. Our idea of locating jumps is to apply our test statistic
to local time intervals between consecutive knots and then decide whether these time
intervals contain jumps or not. Simulations show that it has potential to work well in
practice. Although we use equally spaced knots for the technical simplicity, it can be
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proven that the same result will hold if the distance between neighboring knots are of
the same order. Therefore, we can add some knots as needed.

Although our detection method is conservative, with proper selection of knot num-
bers, our simulation study shows that our method works quite well for data set with
moderate size.

7 Appendix

The following notations are used throughout the proof. We define || · ||∞ as the supre-
mum norm of a function r on [a, b], i.e. ||r ||∞ = supx∈[a,b] |r(x)|. We will use c, C
to denote some positive constants in a generic sense through the proof.

To prove Theorem 1, we decompose the estimation error m̂ p(x) − m p(x) into
a bias term and a noise term. Denoting m = (m (X1) , . . . , m (Xn))T and Eσ =
(σ (X1) ε1, . . . , σ (Xn) εn)T, we can rewrite Y as Y = m+Eσ . We project the response
Y onto the spline space G(p−2)

N spanned by {B j,p(X)}N
j=1−p, where B j,p (X) is denoted

as

B j,p (X) = {
B j,p (X1) , . . . , B j,p (Xn)

}T
, j = 1 − p, . . . , N ,

with B j,p (x) introduced in Sect. 2.1. We obtain the following decomposition

m̂ p(x) = m̃ p(x) + ε̃p(x),

where

m̃ p(x) = {B j,p(x)}T
1−p≤ j≤N V−1

n,p{〈m, B j,p〉n}N
j=1−p,

ε̃p(x) = {B j,p(x)}T
1−p≤ j≤N V−1

n,p{〈Eσ , B j,p〉n}N
j=1−p. (10)

The bias term is m̃ p(x) − m p(x) and the noise term is ε̃p(x).

Lemma 1 As n → ∞,

∣
∣
∣
∣b j,1

∣
∣
∣
∣2
2 = f (t j )h(1+r j,n,1),

∣
∣
∣
∣b j,2

∣
∣
∣
∣2
2 = 2 f (t j+1)h

3

{
1+r j,n,2, 0≤ j ≤ N −1,

1
2 +r j,n,2, j =−1, N ,

〈b j,1, b j ′,1〉=
{

1, j = j ′,
0, j �= j ′, 〈b j,2, b j ′,2〉 = 1

6
f
(
t j+1

)
h

{
1+r̃ j,n,2,

∣
∣ j ′− j

∣
∣=1,

0,
∣
∣ j ′− j

∣
∣>1,

where max0≤ j≤N
∣
∣r j,n,1

∣
∣+max−1≤ j≤N

∣
∣r j,n,2

∣
∣+max−1≤ j≤N−1

∣
∣r̃ j,n,2

∣
∣ ≤ Cω ( f, h)

and ω( f, h) = maxx,x ′∈[a,b],|x−x ′|≤h | f (x) − f (x ′)| is the moduli of continuity of a
continuous function f on [a, b]. Furthermore,

1

3
f (t j+1)h {1 − Cω( f, h)} ≤ ∣

∣
∣
∣b j,2

∣
∣
∣
∣2
2 ≤ 2

3
f (t j+1)h {1 + Cω( f, h)} .
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Proof of Theorem 1 for p = 1 When p = 1, V−1
n,1 is a diagonal matrix, and ε̃1(x) in

Eq. (10) can be rewritten as

ε̃1(x) =
N∑

j=0

ε∗
j B j,1(x)

∣
∣
∣
∣B j,1

∣
∣
∣
∣−2
2,n , ε∗

j = n−1
n∑

i=1

B j,1(Xi )σ (Xi )εi , x ∈ [a, b].

We define ε̂1(x) = ∑N
j=0 ε∗

j B j,1(x), and it is straightforward that ε̂1(t j ) =
B j,1(t j )ε

∗
j , j = 0, . . . , N . We treat the variance of ε̂1(t j+1) − ε̂1(t j ) as follows.

Lemma 2 The variance of ε̂1(t j+1) − ε̂1(t j ), j = 0, . . . , N − 1, is σ 2
n,1, j in Eq. (5),

which satisfies

σ 2
n,1, j = E{ε̂1(t j+1) − ε̂1(t j )}2 = σ 2(t j+1)( f (t j+1)nh)−1 + σ 2(t j )( f (t j )nh)−1.

Accordingly, under Assumption (A2), one has c(nh)−1/2 ≤ σn,1, j ≤ C(nh)−1/2 for
any j = 0, . . . , N − 1 as n sufficiently large.

The proof can be easily obtained by Lemma A.1 combining with the fact that
〈B j,1, B j+1,1〉 = 0.

Denote, for 0 ≤ j ≤ N − 1, ξ̃n,1, j = σ−1
n,1, j {ε̃1(t j+1) − ε̃1(t j )} and ξ̂n,1, j =

σ−1
n,1, j {ε̂1(t j+1) − ε̂1(t j )}. The next lemma follows from Lemma A.6 of Wang and

Yang (2010).

Lemma 3 Under Assumptions (A2−A4), as n → ∞,

∣
∣
∣
∣
∣

sup
0≤ j≤N−1

∣
∣
∣ξ̂n,1, j

∣
∣
∣− sup

0≤ j≤N−1

∣
∣
∣ξ̃n,1, j

∣
∣
∣

∣
∣
∣
∣
∣
= Op

{
(nh)−1/2 log n

}
.

Proof Rewrite ε̂1(t j+1)− ε̂1(t j ) as ε̂1(t j+1)− ε̂1(t j ) = D j,1
T� j,1, j = 0, . . . , N −1,

where

D j,1 = (−n−1/2 B j,1(t j ), n−1/2 B j+1,1(t j+1))
T,

� j,1 =
(

n−1/2 ∑n
i=1 B j,1 (Xi ) σ (Xi ) εi

n−1/2 ∑n
i=1 B j+1,1 (Xi ) σ (Xi ) εi

)

.

It follows that σ 2
n,1, j = D j,1

TCov
(
� j,1

)
D j,1 with

Cov
(
� j,1

) =
(

E B2
j,1 (X) σ 2 (X) 0

0 E B2
j+1,1 (X) σ 2 (X)

)

.
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Let Z j = (Z j1, Z j2)
T = �T

j,1{Cov(� j,1)}−1/2. Specifically, for 0 ≤ j ≤ N − 1,

Z j1 =
{

nE B2
j,1(X)σ 2(X)ε2

}−1/2
{

n∑

i=1

B j,1(Xi )σ (Xi )εi

}

,

Z j2 =
{

nE B2
j+1,1 (X) σ 2 (X) ε2

}−1/2
{

n∑

i=1

B j+1,1 (Xi ) σ (Xi ) εi

}

.

By Lemmas 3.2, 3.3 and A.7 of Wang and Yang (2010), we have uniformly in j ,

P
[∣
∣Z jγ

∣
∣ ≤ {2 log (N + 1)}1/2 dn

(α

2

)]
= 1 − α

2 (N + 1)
+ o

(
N−1

)
, γ = 1, 2.

Therefore, for γ = 1, 2,

lim sup
n→∞

P

[

max
0≤ j≤N

Z2
jγ > 2 log (N + 1)

{
dn

(α

2

)}2
]

≤ α

2
.

Denote Q j,1 = �T
j,1

{
Cov

(
� j,1

)}−1
� j,1 = Z j ZT

j = ∑
γ=1,2 Z2

jγ , j =
0, . . . , N −1. According to the maximization lemma of Johnson and Wichern (1992),

{
σ−1

n,1, j [ε̂1(t j+1) − ε̂1(t j )]
}2 ≤ �T

j,1

{
Cov(� j,1)

}−1
� j,1 = Q j,1.

Hence,

lim inf
n→∞ P

[

sup
0≤ j≤N−1

∣
∣
∣σ−1

n,1, j

[
ε̂1(t j+1) − ε̂1(t j )

]∣∣
∣ ≤ 2 {log (N + 1)}1/2 dn

(α

2

)
]

≥ lim inf
n→∞ P

[

max
0≤ j≤N−1

Q j,1 ≤ 4 log (N + 1)
{

dn

(α

2

)}2
]

≥ 1 −
∑

γ=1,2

lim sup
n→∞

P

[

max
0≤ j≤N−1

Z2
jγ > 2 log (N + 1)

{
dn

(α

2

)}2
]

≥ 1 − α.

Note that m̂1(t j+1) − m̂1(t j ) = [m̃1(t j+1) − m(t j+1)] − [m̃1(t j ) − m(t j )] +
[m(t j+1) − m(t j )] + [ε̃1(t j+1) − ε̃1(t j )]. The theorem of de Boor (2001) on page
149 and Theorem 5.1 of Huang (2003) entail that under H0 the orders of the first three
terms are all Op (h), which makes

σ−1
n,1, j [log(N + 1)]−1/2 ||m̃ − m||∞ = Op

{
(nh)1/2 h[log(N + 1)]−1/2

}
= op(1).
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We finally apply Lemma 3 to get

lim sup
n→∞

P

[

sup
0≤ j≤N−1

σ−1
n,1, j

∣
∣m̂1(t j+1) − m̂1(t j )

∣
∣ > {4 log (N + 1)}1/2 dn (α/2)

]

= lim sup
n→∞

P

[

sup
0≤ j≤N−1

σ−1
n,1, j

∣
∣ε̂1(t j+1) − ε̂1(t j )

∣
∣ > {4 log (N + 1)}1/2 dn (α/2)

]

≤ α.

��
Proof of Theorem 1 for p = 2 For p = 2, we can rewrite the noise term ε̃2 (x) in
Eq. (10) as ε̃2 (x) = ∑N

j=−1 ã j B j,2 (x), where

ã = (ã−1, . . . , ãN )T = V−1
n,2

{

n−1
n∑

i=1

B j,2 (Xi ) σ (Xi ) εi

}N

j=−1

.

Similarly as before, we denote ε̂2 (x) = ∑N
j=−1 â j B j,2 (x), where â = (â−1, . . . , âN )T

is defined by replacing V−1
n,2 in the above formula with S = V−1

2 , i.e.

â = S

{

n−1
n∑

i=1

B j,2 (Xi ) σ (Xi ) εi

}N

j=−1

=
⎧
⎨

⎩

N∑

j=−1

s j ′ j n
−1

n∑

i=1

B j,2 (Xi ) σ (Xi ) εi

⎫
⎬

⎭

N

j ′=−1

.

Thus, for any x ∈ [a, b],

ε̂2 (x) =
N∑

j ′=−1

â j B j ′,2 (x) =
∑

j, j ′=−1

s j ′ j n
−1

n∑

i=1

B j,2 (Xi ) σ (Xi ) εi B j ′,2 (x) .

Denote ξ̃2, j = ε̃2(t j+1) − ε̃2(t j ), ξ̂2, j = ε̂2(t j+1) − ε̂2(t j ), and ξ̃n,2, j =
σ−1

n,2, j ξ̃2, j , ξ̂n,2, j = σ−1
n,2, j ξ̂2, j . It follows that ξ̂2, j = D j,2

T� j,2, j = 0, . . . , N − 1,
where

D j,2 =
(
−n−1/2 B j−1,2(t j ), n−1/2 B j,2(t j+1)

)T
,

� j,2 =
⎛

⎝
n−1/2 ∑N

j ′=−1
∑n

i=1 B j ′,2 (Xi ) σ (Xi ) εi s j−1, j ′

n−1/2 ∑N
j ′=−1

∑n
i=1 B j ′,2 (Xi ) σ (Xi ) εi s j, j ′

⎞

⎠ .

In the next lemma, we calculate the variance of ξ̂2, j .
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Lemma 4 The variance of ξ̂2, j is σ 2
n,2, j in Eq. (6), which satisfies

σ 2
n,2, j = σ 2(t j+1)

(
2 f (t j+1)nh

3

)−1

ζT
j S jζ j , j = 0, . . . , N − 1.

And for large enough n, c (nh)−1/2 ≤ σn,2, j ≤ C (nh)−1/2.

Proof Since σ 2
n,2, j = E ξ̂2

2, j = DT
j Cov(� j )D j , by applying Lemma A.10 of Wang

and Yang (2010), we can get the desired results. ��
Similar arguments used in Lemmas A.11 and A.12 of Wang and Yang (2010) yield

that

lim inf
n→∞ P

[

sup
0≤ j≤N−1

∣
∣
∣ξ̂n,2, j

∣
∣
∣ ≤ 2 {log (N + 1)}1/2 dn

(α

2

)
]

≥ 1 − α.

Then we can finish the proof similarly as for p = 1. ��
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