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Abstract This paper presents a truncated estimation method of ratio type functionals
by dependent sample of finite size. This method makes it possible to obtain estima-
tors with guaranteed accuracy in the sense of the Lm-norm, m ≥ 2. As an illustra-
tion, the parametric and non-parametric estimation problems on a time interval of a
fixed length are considered. In particular, parameters of linear (autoregressive) and
non-linear discrete-time processes are estimated. Moreover, the parameter estimation
problem of non-Gaussian Ornstein-Uhlenbeck process by discrete-time observations
and the estimation problem of a multivariate logarithmic derivative of a noise density
of an autoregressive process with guaranteed accuracy are solved. In addition to non-
asymptotic properties, the limit behavior of presented estimators is investigated. It is
shown that all the truncated estimators have asymptotic properties of basic estima-
tors. In particular, the asymptotic efficiency in the mean square sense of the truncated
estimator of the dynamic parameter of a stable autoregressive process is established.

Keywords Ratio estimation · Truncated estimation method · Fixed sample size ·
Multivariate autoregression · AR-ARCH model · Non-Gaussian Ornstein-Uhlenbeck
process · Non-parametric multivariate logarithmic density derivative estimation

1 Introduction

Modern evolution of mathematical statistics is directed toward development of data
processing methods by dependent sample of finite size. One of such possibilities
gives a well-known sequential estimation method, which was successfully applied to
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142 V. A. Vasiliev

parametric and non-parametric problems. This approach for various statistical prob-
lems for a scheme of independent observations has been primarily proposed by Wald
(1947). Then this idea has been applied to parameter estimation problem of continuous-
and discrete-time dynamic systems in many papers and books (see Dobrovidov et al.
2012; Galtchouk and Konev 2001; Konev 1985; Konev and Pergamenshchikov 1985,
1992; Küchler and Vasiliev 2010; Liptser and Shiryaev 1977; Novikov 1971 among
others). Sequential approach has been also applied to non-parametric estimation prob-
lems, for example, for estimation of regression, autoregression and density function
as well (see, e.g., Arkoun 2011; Arkoun and Pergamenchtchikov 2008; Dobrovidov
et al. 2012; Efroimovich 2007).

To obtain sequential estimators with an arbitrary accuracy one needs to have a
sample of unbounded size. However, in practice the observation time of a system is
usually not only finite but fixed. One of the possibilities for finding estimators with the
guaranteed quality of inference using a sample of fixed size is provided by the approach
of truncated sequential estimation. The truncated sequential estimation method was
developed in Fourdrinier et al. (2009), Konev and Pergamenshchikov (1990a,b) and
others for parameter estimation problems in discrete-time dynamic models. Using a
sequential approach, estimators of dynamic system parameters with known variance
by sample of fixed size were constructed in these papers.

Non-parametric truncated sequential estimators of a regression function by depen-
dent observations were presented by Politis and Vasiliev (2012a,b) on the basis of
Nadaraya–Watson estimators calculated at a special stopping time. These estimators
have known mean square errors as well. The duration of observations is also random
but bounded from above by a non-random fixed number.

Results in non-asymptotic parametric and non-parametric problems can be found
in Mikulski and Monsour (1991), Roll et al. (2002, 2005), Shiryaev and Spokoiny
(2000) among others.

The main purpose of this paper was to obtain a truncated modification of ratio
type estimator from a wide class, having guaranteed accuracy by dependent sample
of fixed size. When estimating the ratio type functionals one uses as a rule the sub-
stitution statistics, see Borovkov (1997), that is ratio of some estimators. Studying
the properties of such estimators, we face certain difficulties that are associated with
finding the dominant sequences, see Cramér (1999). In some cases, for instance, in
reconstruction of the multivariate logarithmic derivative of a distribution density one
can use estimators for which an exact asymptotic expression of the mean square error
(MSE) is available (see Dobrovidov et al. 2012; Novak 1996).

The theory of smoothing can also be used for this problem. It makes it possible to
find the principal term of the MSE of the ratio estimators with an improved rate of
convergence, similar to the case of independent observations. Moreover, the rate of
convergence of the estimators of their ratio in metric Lm, m ≥ 2, can be obtained
(see, e.g., Dobrovidov et al. 2012; Penskaya 1990).

In this paper the truncated estimation method of ratio type functionals by depen-
dent sample of fixed size is presented. This method allows to obtain estimators with
guaranteed accuracy in the sense of the Lm-norm, m ≥ 2. Examples of parametric
and non-parametric estimation problems on a time interval of a fixed length are con-
sidered. It is shown that truncated estimators may keep asymptotic properties of basic
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estimators. In particular, the asymptotic efficiency in the mean square sense is derived
for the truncated estimator of the parameter of a stable autoregression. Early similar
results for scalar ratio type estimators were published in Vasiliev (2012).

2 Statement of the problem and main result

Let (Ω,F , P) be a probability space with a filtration {Fn}n≥0 and let ( fn)n≥1 and
(gn)n≥1 be {Fn}–adapted sequences of random s × q matrices and numbers, respec-
tively.

Let

ΨN = fN /gN , N ≥ 1 (1)

be an estimator of a matrix Ψ . For instance, the matrix Ψ can be a ratio

Ψ = f/g

and fN and gN are estimators of matrix f and number g �= 0, respectively.
Consider the following modification of the estimator ΨN :

Ψ̃N (H) = ΨN · χ(|gN | ≥ H), N ≥ 1, (2)

where H is a positive number or sequence H = (HN )N≥1, defined below and the
notation χ(A) means the indicator function of set A.

Our main aim was to formulate general conditions on the sequences ( fN ), (gN )

and on the parameter H giving a possibility to estimate Ψ with a guaranteed accuracy
in the sense of the Lm-norm, m ≥ 2.

Define for some ϕN (m), wN (μ), H and g, the function

VN (m, μ, H) = 1

H2m
ϕN (m) + ||Ψ ||2m

(|g| − H)2μ
wN (μ),

as well as for positive integer p < m, β ∈ (0, 1) and positive numbers HN , the
function

VN (p) = 2p−1g−2pϕN (p)+22p−1g−2p H−p
N ϕ

p/m
N (m)w

p/2μ
N (μ)

+ 4p−1g−2p H−2p
N ϕ

p/m
N (m)w

p/μ
N (μ)+||Ψ ||2p ·

[
(β|g|)−2μwN (μ)+γN

]
,

where γN = χ(HN > (1 − β)|g|)(= 0 for N large enough).

Theorem 1 Assume for some integers m ≥ 1 and μ ≥ 1 there exist sequences of
positive numbers (ϕN (m))N≥1 and (wN (μ))N≥1, decreasing to zero, as well as a
number g �= 0 such that for every N ≥ 1 the following assumptions hold:

(A1) E || fN − Ψ gN ||2m ≤ ϕN (m);
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(A2) E(gN − g)2μ ≤ wN (μ).

Then, the estimator Ψ̃N (H) defined in (2) has the following properties:

(i) in the case of known number g for every H ∈ (0, |g|)

E ||Ψ̃N (H) − Ψ ||2m ≤ VN (m, μ, H); (3)

(ii) in the case of unknown g for every (possibly slowly decreasing to zero) sequence
H = (HN ) of positive numbers and every positive integer p, satisfying

mp

m − p
≤ μ, m > 1 and μ > 1,

it holds

E ||Ψ̃N (HN ) − Ψ ||2p ≤ VN (p). (4)

Proof Proof of Theorem 1 is presented in Sect. 5. ��
Corollary 1 Assume that Ψ = f/g for some matrix f, where g is defined in Theorem 1
and, instead of the assumption (A1), for some ν ≥ 1 there exists sequence (vN (ν))N≥1
of non-negative numbers, decreasing to zero, such that

E || fN − f ||2ν ≤ vN (ν), N ≥ 1.

Then the assumption (A1) of Theorem 1 is fulfilled, where the function ϕN (m) should
be replaced by the following one:

ϕN (m) = 22m−1

g2m

[
g2mv

m/ν
N (m) + || f ||2νw

m/μ
N (ν)

]
, m = min(ν, μ).

Corollary 2 If it is known that the matrix Ψ belongs to a bounded set Q, then the
estimator (2) can be taken in the form

Ψ̃ ∗
N (H) = ΨN · χ(|gN | ≥ H) + Ψ χ(|gN | < H), N ≥ 1,

where Ψ = argminS∈Q sup
Ψ ∈Q

||S − Ψ ||. In this case the number ||Ψ || in the definition

of VN (m, μ, H) and VN (p) should be replaced by the number ||Ψ − Ψ ||.
If, in particular, Ψ is a scalar number and Ψ ∈ Q := [A, B], then Ψ = (A+ B)/2

and the number ||Ψ || in VN (m, μ, H) and VN (p) should be replaced by the number
Ψ ∗ = (B − A)/2.

Remark 1 If the number g in Theorem 1 is unknown but a positive lower bound g∗
for |g| is known, then the parameter H in the definition of the truncated estimator (2)
should be taken from the interval (0, g∗) and the number |g| in the definition of the
function VN (m, μ, H) should be replaced by g∗.
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Remark 2 The functions VN (m, μ, H) and VN (p) may depend of unknown para-
meters. At the same time the knowledge of the rate of Lm-convergence of proposed
estimators can be useful in various adaptive procedures (control, prediction, filtration
etc.; see Sect. 3.5 below as well) and for the construction of pilot estimators (see, e.g.,
Dobrovidov et al. 2012; Vasiliev 1997; Vasiliev and Koshkin 1998).

Remark 3 The properties of estimators of the often encountered form G−1
N ΦN (G N

and ΦN are random matrices) can be investigated using the presented method (see,
e.g., Example 3.4 below).

Remark 4 Theorem 1 and all the corollaries and remarks can be similarly reformulated
for the case of observations with continuous time.

3 Examples

We consider in this section applications of the presented method to parameter esti-
mation problems (first four examples) and to a non-parametric one (fifth example).
Moreover, the model AR(1) in the last two examples is multivariate.

3.1 Estimation of parameters of a stable first order scalar autoregression

Consider the process satisfying the following equation:

xn = λxn−1 + ξn, n ≥ 1, (5)

where noises ξn, n ≥ 1 are i.i.d. zero mean random variables with finite (for some even
number γ ≥ 2) moments σ 2γ = Eξ

2γ
n , as well as Ex2γ

0 < ∞ and |λ| < 1. It should
be noted that under these conditions the process (5) is stable (see, e.g., Anderson 1971)
and there exist functions σ

2γ
x (θ), θ = (λ, σ 2, σ 2γ ), such that

sup
n

Eθ x2γ
n ≤ σ

2γ
x (θ) < ∞, (6)

where Eθ denotes the expectation under the distribution Pθ with the given parameter
θ.

Consider the estimation problem of λ and σ 2 with a guaranteed accuracy. Note
that similar results in the L1-metrics can be found in Mikulski and Monsour (1991),
Shiryaev and Spokoiny (2000).

(a) Non-asymptotic estimation of λ

We define the estimator of the type (2) on the basis of the least squares estimator
(LSE) of the form (1)

λ̂N =
1
N

∑N
n=1 xn xn−1

1
N

∑N
n=1 x2

n−1

, N ≥ 1. (7)
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According to general notation, in this case we set

Ψ = λ, ΨN = λ̂N , fN = 1

N

N∑
n=1

xn xn−1, gN = 1

N

N∑
n=1

x2
n−1.

Define Ψ̃N = λ̃N (we omit H for simplicity), where

λ̃N = λ̂N · χ(gN ≥ H). (8)

Theorem 2 Assume model (5). Then by m = μ = γ /2

(i) for the case of known σ 2, 0 < H < σ 2 and for some numbers C̃1(m, θ), C̃2(m, θ)

we have

Eθ

(
λ̃N − λ

)2m ≤ C̃1(m, θ)

N m
+ C̃2(m, θ)

N 2m
, N ≥ 1; (9)

(ii) for the case of unknown σ 2, in the definition of the estimator (8) we put, for
example, H = (log N )−1. Suppose the condition (6) for every γ > 1 holds (for
simplicity). Then for some numbers C1(m, θ), . . . , C4(m, θ) and every m > 1 we
have

Eθ (λ̃N − λ)2m ≤ ṼN (m, θ), N > 1,

where

ṼN (m, θ) = C1(m, θ)

N m
+ C2(m, θ)

(
log N

N 3/2

)m

+C3(m, θ)

(
log N

N

)2m

+ C4(m, θ)

N 2m
+ γN ,

with the numbers γN = 0 for N large enough, by the definition.

Proof Proof of Theorem 2 is presented in Sect. 5.

Corollary 3 In the case m = 1, the numbers C̃1(1, θ) and C̃2(1, θ) in the upper
bound in (9) have the form

C̃1(1, θ) = 1

(1−λ2)2(σ 2 − H)2

[
12λ2σ 2

(
λ2 Ex2

0+ σ 2

1−λ2

)
+3Eξ4

1

]

+ (σ 2)2

(1 − λ2)H2 ,

C̃2(1, θ) = 1

(1−λ2)2(σ 2 − H)2

[
24

(
λ4 Ex4

0+ 4(σ 2)2

(1−λ2)2

)
+Ex4

0

]
.
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Remark 5 From the proof of Theorem 2 (see, in particular, 39) it follows that

Pθ

(
λ̃N = λ̂N

)
= 1, θ ∈ Θ

for N large enough.

Remark 6 By making use of the following representation for the deviation of λ̃N

λ̃N − λ = λ̂N − λ − λ̂N χ(gN < H)

and asymptotic properties of the estimator λ̂N , see Mikulski and Monsour (1991),
Shiryaev and Spokoiny (2000), it is easy to establish the uniform asymptotic normality
of the estimator λ̃N with the smallest asymptotic variance:

lim
N→∞ sup

ϑ∈Θ̃

∣∣∣Pϑ

(√
N
(
λ̃N − λ

)
≤ x
)

− Φ
(

x/
√

1 − λ2
)∣∣∣ = 0,

where Φ(·) is a standard Gaussian distribution function and Θ̃ = {ϑ = (λ, x) : |λ| ≤
1 − r, x ∈ R1}, r ∈ (0, 1).

(b) Efficiency of λ̃N

Analogously to Theorem 2, by γ = 4, m = μ = 2 according to the assertion (ii)
of Theorem 1 we can get the following inequality for the estimator (8):

Eθ

(
λ̃N − λ

)2 ≤ 1 − λ2

N
+ C1

log N

N 3/2 + C2

(
log N

N

)2

+ C3

N 2 + γN , N > 1, (10)

where C1, C2 and C3 are some numbers. According to (10) for every |λ| < 1 we have

lim
N→∞N Eθ

(
λ̃N − λ

)2 ≤ 1 − λ2. (11)

From (11) it follows that the truncated estimator (λ̃N )N≥1 is optimal (see, e.g.,
Ibragimov and Khasminskii 1981; Shiryaev and Spokoiny 2000) in the asymptotic
minimax sense

lim
N→∞

Rr,N (λN ) ≥ lim
N→∞

inf
λN

Rr,N (λN ) = lim
N→∞ Rr,N

(
λ̃N

)
= 1, (12)

where

Rr,N (λN ) = sup
P

sup
|λ|≤1−r

I (λ, f )N Eλ(λN − λ)2, r ∈ (0, 1)

and the infimum is taken over the class of all (non-randomized) estimators λN of the
parameter λ. Here P is the class of all densities f (·) of the noises (ξn) having finite
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second moments and the Fisher information I (λ, f ) = gI ( f )(= (1 − λ2)−1 for the
case of Gaussian densities f (·)),

I ( f ) =
∫ (

f ′(x)

f (x)

)2

f (x)dx .

(c) Guaranteed estimation of λ

For the parameter estimation with a guaranteed accuracy we assume that, e.g., θ ∈
Θ, where Θ = {θ = (λ, σ 2, σ 2γ ) : |λ| ≤ r < 1, 0 < σ 2 ≤ σ 2 ≤ σ 2, σ 2γ ≤ σ 2γ }.

In this case, for 0 < H < σ 2 we can find the numbers

C̃1(m)= sup
θ∈Θ

C̃1(m, θ) < ∞, C̃2(m)= sup
θ∈Θ

C̃2(m, θ) < ∞,

and then, according to (9), we have

sup
θ∈Θ

Eθ

(
λ̃N − λ

)2m ≤ C̃1(m)

N m
+ C̃2(m)

N 2m
, N ≥ 1. (13)

In particular, for m = 1, according to Corollary 3 it holds

C̃1(1) = 1

(1 − r2)2(σ 2 − H)2

[
12r2σ 2

(
r2 Ex2

0 + σ 2

1 − r2

)
+ 3σ 4

]
+ (σ 2)2

(1 − r2)H2 ,

C̃2(1) = 1

(1 − r2)2(σ 2 − H)2

[
24

(
r4 Ex4

0 + 4(σ 2)2

(1 − r2)2

)
+ Ex4

0

]
.

(d) Non-asymptotic estimation of σ 2

For the estimation problem of the noise variance σ 2 in the model (5).
We consider the LSE-type estimator σ̂ 2

N defined as

σ̂ 2
N = 1

N

N∑
n=1

(
xn − λ∗

N xn−1
)2

, N ≥ 1, (14)

where

λ∗
N = proj[−1,1]λ̃N

and we use the estimator λ̃N of λ, defined in (8) with non-asymptotic properties
(13) for m = 1 and m = 2. It should be noted that this estimator is asymptotically
equivalent to the corresponding LSE.

Define the function

V N = sup
θ∈Θ

V ∗
N (θ) < ∞, N ≥ 1,
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A truncated estimation method 149

where

V ∗
N (θ) = 3

[
2
(

C̃1(2, θ)σ 8
x (θ)

)1/2 + σ 4 − (σ 2)2
]

1

N
+ 6

[(
C̃2(2, θ)σ 8

x (θ)
)1/2

+2
(

C̃1(2, θ)σ 4σ 4
x (θ)

)1/2
]

1

N 2 + 12
(

C̃2(2, θ)σ 4σ 4
x (θ)

)1/2 1

N 3 .

Corollary 4 Assume the model (5) with γ = 4. Then

sup
θ∈Θ

Eθ

(
σ̂ 2

N − σ 2
)2 ≤ V N , N ≥ 1. (15)

Proof Proof of Corollary 4 is presented in Sect. 5.

3.2 AR-ARCH(1,1)

Consider the process satisfying the following equation:

xn = λxn−1 +
√

σ 2
0 + σ 2

1 x2
n−1 · ξn, n ≥ 1, (16)

where noises ξn, n ≥ 1 are i.i.d. zero mean random variables with the variance equal
to one and finite fourth moments σ 4 = Eξ4

1 , as well as Ex4
0 < ∞.

We consider the estimation problem of λ, σ 2
0 and σ 2

1 with a guaranteed accuracy.

(a) Non-asymptotic estimation of λ

Define the LSE λ̂N of λ of the following form:

λ̂N =
1
N

∑N
n=1 xn xn−1

1
N

∑N
n=1 x2

n−1

, N ≥ 1,

which is strongly consistent (see, e.g., Malyarenko 2010) under the following stability
condition:

λ4 + 6λ2σ 2
1 +

(
σ 2

1

)2
σ 4 < 1. (17)

According to general notation, in this case we set

Ψ = λ, ΨN = λ̂N , fN = 1

N

N∑
n=1

xn xn−1, gN = 1

N

N∑
n=1

x2
n−1.

Define Ψ̃N = λ̃N (we omit H for simplicity), where

λ̃N = λ̂N · χ(gN ≥ H). (18)
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We assume that θ = (λ, σ 2
0 , σ 2

1 ) ∈ Θ, where

Θ =
{
θ =
(
λ, σ 2

0 , σ 2
1

)
: λ4+6λ2σ 2

1 +
(
σ 2

1

)2
σ 4 ≤r, σ 2

0 ≤σ 2
0 ≤σ 2

0, σ 2
1 ≤σ 2

1 ≤σ 2
1

}

for some numbers r ∈ (0, 1), σ 2
0, σ

2
0, σ

2
1, and σ 2

1.

Define

ϕN =
(
σ 2

0σ
2
x + σ 2

1σ
4
x

) 1

N
,

wN =
{

12
(
σ 2

0σ
2
x + σ 2

1σ
4
x

)
+ σ 4

ξ ·
((

σ 2
0

)2 + 2σ 2
0σ

2
1σ

2
x +

(
σ 2

1

)2
σ 4

x

)}
1

N

+
{

Ex4
0 + 3σ 4

x 4
} 1

N 2 ,

where σ 4
ξ is an upper bound for E(ξ2

1 − 1)2.

Theorem 3 Assume the model (16) and in the definition (18) the number 0 < H <

σ 2
0/(1 − σ 2

1). Then

sup
θ∈Θ

Eθ

(
λ̃N − λ

)2 ≤ 1

H2 ϕN +
(
1 − σ 2

1

)2
(
σ 2

0 − (1 − σ 2
1

)
H
)2 wN , N ≥ 1. (19)

Proof Proof of Theorem 3 is presented in Sect. 5. ��
Remark 7 It should be noted that in the absence of a priori information on parameters
of the system the inequalities of the type (10) can be obtained as well.

(b) Non-asymptotic estimation of σ 2
0 and σ 2

1

We will construct estimators with guaranteed accuracy on the basis of correlation
estimators:

(1b) σ 2
0 with known σ 2

1 :

σ̂ 2
0N = 1

N

N∑
n=1

[
x2

n −
(
λ̂2

N + σ 2
1

)
x2

n−1

]
;

(2b) σ 2
1 with known σ 2

0 :

σ̂ 2
1N =

∑N
n=1

(
x2

n − σ 2
0

)
∑N

n=1 x2
n−1

− λ̂2
N ,

which are strongly consistent under the condition (17), see, e.g., Malyarenko
(2010).
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Define estimators for considered cases

(1b)

σ̃ 2
0N = 1

N

N∑
n=1

[
x2

n −
((

λ∗
N

)2 + σ 2
1

)
x2

n−1

]
;

(2b)

σ̃ 2
1N =

1
N

∑N
n=1

(
x2

n − σ 2
0

)
1
N

∑N
n=1 x2

n−1

χ(gN ≥ H) − (λ∗
N

)2
,

where

λ∗
N = proj[−1,1]λ̃N ,

λ̃N and gN are defined in (18).

Similar to Sects. 3.1 and 3.2a, the upper bounds for the MSE’s of these estimators
with known constants C0 and C1 can be found:

(i) sup
θ∈Θ0

Eθ

(
σ̃ 2

0N − σ 2
0

)2 ≤ C0

N
, (20)

where Θ0 = {θ = (λ, σ 2
0 ) : λ4 + 6λ2σ 2

1 + (σ 2
1 )2σ 4 ≤ r, σ 2

0 ≤ σ 2
0 ≤ σ 2

0} and

(ii) sup
θ∈Θ1

Eθ

(
σ̃ 2

1N − σ 2
1

)2 ≤ C1

N
, (21)

where Θ1 = {θ = (λ, σ 2
1 ) : λ4+6λ2σ 2

1 +(σ 2
1 )2σ 4 ≤ r, σ 2

1 ≤ σ 2
1 ≤ σ 2

1}, r ∈ (0, 1).

3.3 Non-Gaussian Ornstein-Uhlenbeck process by discrete–time observations

The results presented below make it possible to do the statistical inferences for
continuous-time stochastic systems by fixed sample size of observations. Moreover,
one of the main assumption is a discrete scheme of observations. It corresponds to
numerous real situations, in particular, in problems of financial mathematics.

Consider the following regression model:

dx(t) = ax(t)dt + dξ(t), 0 ≤ t ≤ T (22)

with an initial condition x(0) = x0, having all the moments. Here ξ(t) = ρ1W (t) +
ρ2 Z(t), ρ1 �= 0 and ρ2 are some constants, (W (t), t ≥ 0) is a standard Wiener
process, given on a probability space (Ω,F , {Ft }t≥0, P), adapted to a filtration
{Ft }t≥0, Z(t) = ∑Nt

k=1 Yk is a compound Poisson process, where Yk, k ≥ 1 are
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i.i.d. random variables having all the moments and (Nt ) is a Poisson process with the
intensity λ > 0. It should be noted that for ρ2 = 0 the process (22) is a standard
Ornstein-Uhlenbeck process.

We suppose that a ∈ [−Δ,−δ], where δ and Δ > δ are known positive numbers.
The problem is to estimate the parameter a by observations of the discrete-time process
y = (yk),

yk = x(tk), tk = k

n
T, k = 0, . . . , n.

Using the following representation for the solution of the Eq. (22)

x(t) = eat x0 +
∫ t

0
ea(t−z)dξ(z), 0 ≤ t ≤ T ,

we get the recurrent equation for the observations (yk) :

yk = byk−1 + ηk, k = 0, . . . , n, (23)

where b = eaT/n, ηk = ∫ tk
tk−1

ea(tk−s)dξ(s) are i.i.d. random variables with

Eaηk = 0, σ 2 := Daηk = 1

2a

(
ρ2

1 + λρ2
2

)
[b2 − 1].

Moreover, for this model all the moments σ 2m = Eaη2m
k are finite and there exist

their upper bounds σ 2m = supa≤−δ σ 2m, m ≥ 1.
Define the estimator ãn of a using an estimator b̃n of b as follows:

ãn = n

T
log b̃n, n ≥ 1, (24)

where

b̃n = b̂n · χ(gn ≥ H) + Lχ(gn < H)

is constructed using Corollary 2. Here b̂n = fn/gn is the LSE of b, obtained from the
Eq. (23) with

fn = 1

n

n∑
k=1

yk yk−1, gn = 1

n

n∑
k=1

y2
k−1,

L = [e−δT/n + e−ΔT/n]/2 and the number g is defined as

g = σ 2

1 − b2 .

123



A truncated estimation method 153

Then the estimator b̃n has all the properties of the estimator λ̃N , defined in (8).
In particular, according to Theorem 1, which holds for this model for all m ≥ 1 and
μ ≥ 1, the following inequalities

sup
a≤−δ

Ea

(
b̃n − b

)2m ≤ C∗
1 (m)

nm
+ C∗

2 (μ)

nμ
, n ≥ 1 (25)

for an arbitrary 0 < H ≤ σ 2 hold, where

σ 2 = 1

2δ

(
�2

1 + λ�2
2

) [
1 − e−2δ

]

and numbers C∗
1 (m), C∗

2 (μ) are known.
From (24) and (25) it is easy to verify the following property of estimators ãn for

every m ≥ 1 and μ > m :

sup
a∈[−Δ,−δ]

Ea(ãn − a)2m = (nT −1)2m sup
a∈[−Δ,−δ]

Ea

[
log

(
1 + b̃n − b

b

)]2m

≤ (nT −1eΔT/n)2m
{

C∗
1 (m)

nm
+ C∗

2 (μ)

nμ

}
, n ≥ 1. (26)

3.4 Vector AR(1)

We show in this section a possibility to apply the presented general truncated method
for guaranteed estimation of matrix parameters in multivariate systems.

Consider the s-dimensional process (s > 1) satisfying the following equation:

x(n) = Ax(n − 1) + ξ(n), n ≥ 1, (27)

where noises ξ(n), n ≥ 1 are i.i.d. zero mean random vectors with finite moments of
the order 8(s − 1), as well as E ||x(0)||8(s−1) < ∞ and the stability condition for the
process (27) is satisfied, i.e. all the eigenvalues of the matrix A lie within the unit circle
(see, e.g., Anderson 1971). Define the number σ 4

ξ = E ||ξ(1)||4. We suppose that the
matrix parameter A to be estimated belongs to a compact set � from the stable region.

It should be noted that under these conditions there exist finite numbers σ 2m
x , such

that

sup
A∈�,n

E A||x(n)||2m ≤ σ 2m
x , 1 ≤ m ≤ 4(s − 1). (28)

Consider the estimation problem of A with a guaranteed accuracy.
We define the estimator of the type (2) on the basis of the LSE of the form (1)

ÂN = ΦN G
−1
N , N ≥ 1,
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where

G N = 1

N
G N , G N =

N∑
n=1

x(n − 1)x ′(n − 1),

ΦN = 1

N
ΦN , ΦN =

N∑
n=1

x(n)x ′(n − 1), N ≥ 1.

Define the matrix

G
+
N = ΔN G

−1
N , ΔN = det

(
G N
)
.

According to the general notation, in this case we set

Ψ = A, ΨN = ÂN , fN = ΦN G
+
N , gN = ΔN .

Using formula (27) it is easy to verify that with PA-probability one it holds

lim
N→∞ G N = F and lim

N→∞ ΔN = Δ > 0,

where F is a positive definite s × s-matrix (see, e.g., Anderson 1971), such that
Δ∗ = inf

A∈�
Δ > 0.

Then

f = AΔ, g = Δ

and Ψ̃N = ÃN (we omit H for simplicity), where

ÃN = ÂN · χ
(
ΔN ≥ H

)
, (29)

and H ∈ (0,Δ∗).
In Sect. 5, it is shown that there exists a given number C� such that for every N ≥ 1,

sup
A∈�

E A|| ÃN − A||2 ≤ C�

N
. (30)

3.5 Logarithmic density derivative

Consider the problem of estimating the multivariate logarithmic derivative (q = 1 in
the general problem statement),

Ψ (t) = ∇ f (t)/ f (t)

(∇ f (t) is a s × 1-vector of the first-order partial derivatives of f (t)) of a distribution
density f (t) of the i.i.d. vector noises ξ(n) = (ξ1(n), . . . , ξs(n))′ in the model (27)

123



A truncated estimation method 155

considered in Sect. 3.4. Noises ξ(n), n ≥ 1 are zero mean random vectors with finite
moments of the order 4α, where α = max{4(s − 1), ν + 1 + δ} for some δ > 0, as
well as E ||x(0)||4α < ∞ (the number ν will be defined below in Assumption (f)) and
the stability condition is satisfied. It is supposed that the matrix parameter A to be
estimated belongs to a compact set � from the stable region.

ASSUMPTION (f) We suppose that the function f (·) satisfies the following con-
dition:

sup
z∈Rs

f (z) ≤ C f ,

and, for some even ν ≥ 2, as well as L > 0 and γ ∈ (0, 1], for all the partial
derivatives of the order 1 + ν the Lipshitz condition

∣∣∣ f (1+ν)(x) − f (1+ν)(y)

∣∣∣ ≤ L||x − y||γ

holds.
The knowledge of Ψ (t) is important in various statistical problems, e.g. for con-

structing the algorithm of optimal control of an autoregressive process, estimating
of a regression curve, and testing close hypotheses. These problems are of particular
interest in the case of dependent observations, for example, where the logarithmic
derivative of a density is used for designing the optimal algorithms of nonlinear filter-
ing and adaptive control of random processes (see, e.g., Dobrovidov et al. 2012 and
references therein).

We will construct estimators of f (t) and ∇ f (t) using the following estimators ξ̃ (n)

of noises ξ(n) in (27):

ξ̃ (n) = x(n) − A∗
n−1x(n − 1), n = 1, . . . , N , (31)

where A∗
n−1 = proj� Ãn−1, Ãn is the estimator defined in (29).

As a non-parametric estimator of a density f (t) = f (0)(t) satisfying Assumption
(f) and its partial derivative f (1)(t) = ∂ f (t)/∂t j , we use the combined statistic of the
form

̂

f (r)
N (t) = 1

Nhs+r
r,N

N∑
i=1

K (r)

(
t − ξ̃ (i)

hr,N

)
, r = 0, 1, (32)

where K (0)(u) = K (u) = ∏s
k=1 K (uk) is a s-dimensional multiplicative kernel

which, generally speaking, does not necessarily possess the characterizing properties
of density (nonnegativity and normalization to 1), K (1)(u) = ∂K (u)/∂u j , sequences
of numbers hr,N ↓ 0, N → ∞.

Then, as an estimator of the ratio Ψ (t) from the observations (x(n))n≥1, one can
use the ratio

Ψ̂N (t) = ∇̂ f N (t)/ f̂N (t)

of statistics defined in (32).
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Estimators of type (32) of the density and its derivatives from observations (31)
were considered in Dobrovidov et al. (2012), Chapter 4, where it was established,
in particular, their asymptotic normality and convergence with probability one. The
results on asymptotic ratio estimation of the partial derivatives of the noise distribu-
tion density in multivariate dynamic systems are given in Dobrovidov et al. (2012),
Sect. 5.1.

To obtain estimators of Ψ (t) with a known MSE we apply Theorem 1.
First we suppose in addition to Assumption (f) that there exists a known number

c f such that

0 < c f ≤ f (t).

Define the estimator

Ψ̃N (t) = Ψ̂N (t)χ
(

f̂N (t) ≥ H
)

, N ≥ 1

with a given number H ∈ (0, c f ).

By the definition (31), the estimators ξ̃ (n) can be represented in the form

ξ̃ (n) = ξ(n) + (A − A∗
n−1

)
x(n − 1), n = 1, . . . , N .

Note that the matrices A − A∗
n−1 are uniformly bounded

sup
A∈�,n

||A − A∗
n−1|| ≤ C, n ≥ 1 (33)

and, similar to Sect. 3.4, the following properties of the estimator A∗
n−1 can be obtained:

sup
A∈�

E A||A − A∗
n−1||4 ≤ sup

A∈�

E A||A − Ãn−1||4 ≤ C�

n2 . (34)

Using (33), (34) and the Cauchy-Schwarz inequality, we can find the known num-
bers C1 and Cm, such that

sup
A∈�

N∑
n=1

E A|| (A − A∗
n−1

)
x(n − 1)||2m ≤

{
C1 log N , m = 1,

Cm, 1 < m ≤ ν + 1.
(35)

Similar relations were obtained in Dobrovidov et al. (2012) (see Lemmas 5.1.3 and
5.1.5) for another type of estimators.

Then, using technique of Theorems 4.3.1 and 5.1.3 from Dobrovidov et al. (2012)
and (35), by appropriate chosen kernels K (·) in (32), we can find known numbers Ci,1
and Ci,2, i = 0, 1, such that
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sup
A∈�

E A

(
f̂N (t) − f (t)

)2 ≤ C0,1

Nhs
0,N

+ C0,2h2(ν+1+γ )

0,N , (36)

sup
A∈�

E A||∇̂ f N (t) − ∇ f (t)||2 ≤ C1,1

Nhs+2
1,N

+ C1,2h2(ν+γ )

1,N . (37)

Thus, to minimize the obtained upper bounds, it is natural to put

h0,N =
(

sC0,1

2(ν + 1 + γ )C0,2

) 1
2(ν+1+γ )+s

N− 1
2(ν+1+γ )+s ,

h1,N =
(

(s + 3)C1,1

2(ν + γ )C1,2

) 1
2(ν+1+γ )+s

N− 1
2(ν+1+γ )+s

and for obviously defined numbers C̃0,1 and C̃1,1 we have

sup
A∈�

E A

(
f̂N (t) − f (t)

)2 ≤ C̃0,1 N− 2(ν+1+γ )
2(ν+1+γ )+s ,

sup
A∈�

E A||∇̂ f N (t) − ∇ f (t)||2 ≤ C̃1,1 N− 2(ν+γ )
2(ν+1+γ )+s .

It makes possible to apply Theorem 1 (taking into account Corollary 1) to estimation
of Ψ (t) for H ∈ (0, c f ) with a known upper bound

sup
A∈�

E A||Ψ̃N (t) − Ψ (t)||2 ≤ C̃0 N− 2(ν+γ )
2(ν+1+γ )+s + C̃1 N− 2(ν+1+γ )

2(ν+1+γ )+s . (38)

For the case of unknown lower bound c f for the number f (t), Theorem 1 can be
applied if noises ξ(n) and the initial time x(0) of the process (27) have moments of
the order 8max{2(s − 1), (ν + 1 + δ)}. Under these conditions, similar to (36) and
(37), the following inequalities can be obtained:

sup
A∈�

E A

(
f̂N (t) − f (t)

)4 ≤ C0 N− 4(ν+1+γ )
2(ν+1+γ )+s ,

sup
A∈�

E A||∇̂ f N (t) − ∇ f (t)||4 ≤ C1 N− 4(ν+γ )
2(ν+1+γ )+s ,

where C0 and C1 are some constants.
Put H = (log N )−1 in the definition of the estimator Ψ̃N (t). Then, according to (4)

with p = 1, m = μ = 2, for some numbers C∗
1 , C∗

2 and C∗
3 for N large enough (to

eliminate γN ) and using Corollary 1 we have

sup
A∈�

E A||Ψ̃N (t) − Ψ (t)||2 ≤ C∗
1 N− 2(ν+γ )

2(ν+1+γ )+s

+C∗
2 (log N )2 N− 4(ν+γ )+2

2(ν+1+γ )+s + C∗
3 N− 4(ν+1+γ )

2(ν+1+γ )+s .
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It should be noted that in both considered cases (known and unknown number c f )

the estimator Ψ̃N (t)has equal rates of convergency in the mean square sense. Moreover,
this rate is similar to the case of independent observations (see, e.g., Dobrovidov et al.
2012).

4 Summary

We have presented the truncated estimation method of ratio type functionals con-
structed by dependent samples of finite size. This method allows to obtain estimators
with a guaranteed accuracy on a time interval of a fixed length.

As an illustration, parametric and non-parametric estimation problems are con-
sidered.The presented method was applied to estimation of parameters of a linear
autoregressive and a non-linear AR-ARCH processes, as well as a non-Gaussian
Ornstein-Uhlenbeck process by discrete-time observations (see properties 13, 15, 19,
20, 21, 26 and 30). Moreover, the estimators with a guaranteed accuracy in the mean
square sense of a multivariate logarithmic derivative of the noise density of an autore-
gressive process with an unknown dynamic matrix parameter was investigated, see
(38). The asymptotic efficiency in the sense (12) of the truncated estimator of the
parameter of a stable autoregression is established.

The presented method can be similarly applied to samples from continuous-time
models.

5 Proofs

5.1 Proof of Theorem 1

From the definition of the estimator Ψ̃N (H) we find its deviation

Ψ̃N (H) − Ψ = fN − Ψ gN

gN
· χ(|gN | ≥ H) − Ψ · χ(|gN | < H).

Then, using the Chebyshev inequality and the definition of VN (m, μ, H) we can
estimate the desired moment

E ||Ψ̃N (H) − Ψ ||2m = E
|| fN − Ψ gN ||2m

g2m
N

· χ(|gN | ≥ H)

+||Ψ ||2m · P(|gN | < H) ≤ 1

H2m
E || fN − Ψ gN ||2m

+||Ψ ||2m · P(|gN − g| > |g| − H)

≤ 1

H2m
ϕN (m) + ||Ψ ||2m · E(gN − g)2μ

(|g| − H)2μ
≤ VN (m, μ, H).

The inequalities (4) can be proved similarly. Let β ∈ (0, 1) be the given number.
Using the Cr -inequality (α + β)r ≤ 2r−1(|α|r + |β|r ), r ≥ 1, Hölder’s inequality
and assumptions (A1), (A2) of the theorem, we have
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E ||Ψ̃N (HN ) − Ψ ||2p ≤ E || fN − Ψ gN ||2p
[

1

|g| +
∣∣∣∣

1

gN
− 1

g

∣∣∣∣
]2p

· χ(|gN | ≥ HN )

+||Ψ ||2p · P(|gN |< HN )≤g−2p E || fN −Ψ gN ||2p

[
1+2

|gN −g|
|gN | + |gN −g|2

g2
N

]p

+||Ψ ||2p · P(||g| − |gN − g|| < HN ) ≤ 2p−1g−2p E || fN − Ψ gN ||2p

+22p−1g−2p H−p
N

(
E || fN − Ψ gN ||2m

)p/m (
E |gN − g|mp/(m−p)

)(m−p)/m

+4p−1g−2p H−2p
N

(
E || fN − Ψ gN ||2m

)p/m (
E |gN − g|2mp/(m−p)

)(m−p)/m

+||Ψ ||2p · [P(|gN − g| > β|g|) + γN ] ≤ 2p−1g−2pϕN (p)

+22p−1g−2p H−p
N ϕ

p/m
N (m)w

p/2μ
N (μ) + 4p−1g−2p H−2p

N ϕ
p/m
N (m)w

p/μ
N (μ)

+||Ψ ||2p ·
[
(β|g|)−2μwN (μ) + γN

]
= VN (p).

5.2 Proof of Theorem 2

To proof Theorem 2 we verify assumptions of Theorem 1.
Using the equality

gN = σ 2

1 − λ2 + 1

(1 − λ2)N

[
x2

0 − x2
N + 2λ

N∑
n=1

xn−1ξn +
N∑

n=1

(
ξ2

n − σ 2
)]

,

which can be obtained from (5), it is easy to verify (see, e.g., Shiryaev and Spokoiny
2000) that

g = lim
N→∞ gN = σ 2

1 − λ2 Pθ − a.s. (39)

and g ≥ σ 2 > 0. Then for m = γ /2, μ = m, there exist constants C1(m, θ) and
C2(m, θ) such that

wN (m, θ) = C1(m, θ)

N m
+ C2(m, θ)

N 2m

and, using the Burkholder and Hölder inequalities, we have

Eθ ( fN − λgN )2m = 1

N 2m
Eθ

(
N∑

n=1

xn−1ξn

)2m

≤ B2m
2m

N 2m
Eθ

(
N∑

n=1

x2
n−1ξ

2
n

)m

≤ B2m
2m σ 2m

N m+1

N∑
n=1

Eθ x2m
n−1 ≤ B2m

2m σ 2mσ 2m
x (θ)

1

N m
=: ϕN (m, θ),
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where B2m is the coefficient from the Burkholder inequality (see, e.g., Burkholder
1973; Liptser and Shiryaev 1989).

Thus all the assumptions of Theorem 1 hold.

5.3 Proof of Corollary 4

Using (5), (6), (9), (14) and the Cauchy-Schwarz inequality, we have

Eθ

(
σ̂ 2

N − σ 2
)2 = Eθ

[(
λ∗

N − λ
)2 1

N

N∑
n=1

x2
n−1 − 2

(
λ∗

N − λ
) 1

N

N∑
n=1

xn−1ξn

+ 1

N

N∑
n=1

(
ξ2

n − σ 2
)]2

≤ 3

⎡
⎢⎣2

⎛
⎝Eθ

(
λ̃N − λ

)4
Eθ

(
1

N

N∑
n=1

x2
n−1

)4⎞
⎠

1/2

+4

⎛
⎝Eθ

(
λ̃N − λ

)4
Eθ

(
1

N

N∑
n=1

xn−1ξn

)4⎞
⎠

1/2

+ Eθ

(
1

N

N∑
n=1

(
ξ2

n − σ 2
))2

⎤
⎥⎦

≤ 3

⎡
⎣2

((
C̃1(2, θ)

N 2 + C̃2(2, θ)

N 4

)
1

N

N∑
n=1

Eθ x8
n−1

)1/2

+ 4

((
C̃1(2, θ)

N 2 + C̃2(2, θ)

N 4

)
σ 4

N 3

N∑
n=1

Eθ x4
n−1

)1/2

+ σ 4 − (σ 2)2

N

⎤
⎦ ≤ V ∗

N (θ).

5.4 Proof of Theorem 3

Using the following equation for the process (x2
n ) :

x2
n =

(
λ2 + σ 2

1

)
x2

n−1 + σ 2
0 + ςn, n ≥ 1,

where

ςn = 2λxn−1

√
σ 2

0 +σ 2
1 x2

n−1 · ξn+σ 2
0

(
ξ2

n −1
)

+σ 2
1 x2

n−1

(
ξ2

n −1
)

,

it is easy to find the supremums

σ 2
x = sup

θ∈Θ,n
Eθ x2

n , σ 4
x = sup

θ∈Θ,n
Eθ x4

n

and for θ ∈ Θ the limit (see, e.g., Malyarenko 2010)

g := lim
N→∞ gN = σ 2

0

1 − λ2 − σ 2
1

Pθ − a.s.
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For this model we can calculate

sup
θ∈Θ

Eθ (gN − g)2 ≤ wN

and, by the definition of fN and gN we have

sup
θ∈Θ

Eθ ( fN − λgN )2 = 1

N 2 sup
θ∈Θ

Eθ

(
N∑

n=1

xn−1

√
σ 2

0 + σ 2
1 x2

n−1 · ξn

)2

= 1

N 2

N∑
n=1

sup
θ∈Θ

Eθ x2
n−1

(
σ 2

0 + σ 2
1 x2

n−1

)
≤ ϕN .

5.5 Proof of (30)

To prove (30) we verify the conditions of Theorem 1 by m = μ = 2 :
sup
A∈�

E A|| fN − AΔN ||2 ≤ ϕN , (40)

sup
A∈�

E A
(
ΔN − Δ

)2 ≤ wN . (41)

Define the matrices

ζ N = 1

N
ζN , ζN =

N∑
n=1

ξ(n)x ′(n − 1), N ≥ 1.

We prove (40) using (28) and the Burkholder inequality (the number B4 is the
constant from the upper bound in the Burkholder inequality, see Burkholder 1973;
Liptser and Shiryaev 1989 and Sect. 3.1):

sup
A∈�

E A|| fN − AΔN ||2 = sup
A∈�

E A||ζ N G
+
N ||2 ≤

(
sup
A∈�

E A||ζ N ||4
)1/2

×
(

sup
A∈�

E A||G+
N ||4

)1/2

≤ s B2
4

(
σ 4

ξ σ 4
x

)1/2 1

N
· (s5σ 8(s−1)

x )1/2 =: ϕN .

Also, (41) follows from (28) and the inequalities

sup
A∈�

E A||G N − F ||4 ≤ CG N−2,

where CG is a given number. This can be proved similar to Lemma 5.1.6 in Dobrovidov
et al. (2012). Then the function wN in (41) is inverse proportional to N :

wN = Cw/N ,

where Cw is a given number.
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