
Ann Inst Stat Math (2014) 66:121–140
DOI 10.1007/s10463-013-0407-z

Bias-corrected statistical inference for partially linear
varying coefficient errors-in-variables models
with restricted condition

Sanying Feng · Liugen Xue

Received: 14 October 2012 / Revised: 12 March 2013 / Published online: 27 April 2013
© The Institute of Statistical Mathematics, Tokyo 2013

Abstract In this paper, we consider the statistical inference for the partially liner
varying coefficient model with measurement error in the nonparametric part when
some prior information about the parametric part is available. The prior information
is expressed in the form of exact linear restrictions. Two types of local bias-corrected
restricted profile least squares estimators of the parametric component and nonpara-
metric component are conducted, and their asymptotic properties are also studied
under some regularity conditions. Moreover, we compare the efficiency of the two
kinds of parameter estimators under the criterion of Loẅner ordering. Finally, we
develop a linear hypothesis test for the parametric component. Some simulation stud-
ies are conducted to examine the finite sample performance for the proposed method.
A real dataset is analyzed for illustration.

Keywords Partially linear varying coefficient model · Errors-in-variables · Local
bias-corrected · Restricted estimator · Profile Lagrange multiplier test · Asymptotic
normality

1 Introduction

Partially linear varying coefficient model has attracted lots of attention due to its
flexibility to combine traditional linear model with varying coefficient model. For
example, Zhang et al. (2002, 2011), Xia et al. (2004), Fan and Huang (2005), Ahmad
et al. (2005), You and Zhou (2006), Zhou and Liang (2009), Li et al. (2011, 2012),
Kai et al. (2011), and among others. The partially linear varying coefficient model
assumes the following structure:
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122 S. Feng, L. Xue

Y = Xτβ + Zτα(T ) + ε, (1)

where α(·) = (α1(·), . . . , αq(·))τ is a q-dimensional vector of unknown coefficient
functions, β = (β1, . . . , βp)

τ is a p-dimensional vector of unknown parameters and
ε is the random error with E(ε) = 0 and Var(ε) = σ 2. In this model, the dependence
of α(·) on T implies a special kind of interaction between the covariate Z and T . The
model is quite general and includes many important statistical models. For example,
when α(·) = α, where α is a constant vector, model (1) reduces to the usual linear
regression model. When q = 1 and Z = 1, model (1) becomes the partially linear
regression model. When X = 0, model (1) reduces to the famous varying coefficient
model.

Measurement error data are often encountered in many fields, including engineer-
ing, economics, physics, biology, biomedical sciences and epidemiology. Statistical
inference methods for various parametric measurement error models have been well
established over the past several decades, such as Fuller (1987), and Carroll et al. (1995)
studied linear errors-in-variables (EV) models and nonlinear EV models in detail,
respectively. It is well known that, if the measurement errors are ignored entirely,
the resulting estimators will be biased. For the partially linear varying coefficient
model (1), when the covariate X is observed with additive error, You and Chen (2006)
studied the estimations of parametric and nonparametric components, they showed
that the proposed modified profile least squares estimator for parameter of interest is
strongly consistent and asymptotically normal. Hu et al. (2009) and Wang et al. (2011)
constructed the confidence regions of the unknown parameters by the empirical likeli-
hood method, respectively. However, in this paper, we consider the nonparametric part
covariate Z is measured with additive error and both X and T are measured exactly.
That is, instead of the true Z, the surrogate variable W is observed by

W = Z + U, (2)

where U is the measurement error, which is independent of (Xτ , Zτ , T, ε) and has
the known covariance Cov(U) = Σu . If Σu is unknown, we also can estimate it by
repeatedly measuring W . The specific details can be found in Liang et al. (1999).
The researches for models (1) and (2) are seldom discussed. When X = 0, You et al.
(2006) considered the varying coefficient EV models with corrected local polynomial
method, and studied the asymptotic properties of the estimators.

In many important statistical applications, in addition to sample information we
have some prior information on regression parametric vector which can be used to
improve the parametric estimators. In this paper, we consider the following restricted
condition

Aβ = d, (3)

where A is a k × p known full row rank matrix, d is a k × 1 known vector. For model
(1), Fan and Huang (2005) proposed the GLR test statistics and Wald test statistics
to test Aβ = 0; Wei and Wu (2008) constructed the profile Lagrange multiplier test
statistic under the restricted condition (3). In their papers, they did not consider the
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case of measurement errors. When X is measured with the additive error, Zhang et al.
(2011) and Wei (2012) proposed the restricted modified profile least-squares estimators
for parametric and nonparametric components, and constructed the modified profile
Lagrange multiplier test statistics under additional restricted condition.

In this paper, we consider models (1) and (2) based on the restricted condition (3),
and investigate the estimation and testing issues. Under the additional linear restricted
condition, we propose a local bias-corrected restricted profile least squares approach
by combining with the profile least squares, the so-called “correction for attenua-
tion” and Lagrange multiplier method, and we obtain two estimators of the parametric
component and the coefficient functions, respectively. Moreover, we compare the per-
formance of the two parameter estimators under the criterion of Loẅner ordering.
When A is taken to the different matrix, we can derive the different constrained esti-
mators. Therefore, the proposed method is more effective in practical application. At
last, we construct the local bias-corrected profile Lagrange multiplier (BCPLM) test
statistic for the unknown parameter vector β, and show that its limiting distribution is
a standard Chi-squared distribution under the null hypothesis.

The paper is organized as follows. In Sect. 2, we propose the local bias-corrected
restricted profile least squares method, and investigate the asymptotic properties of
the estimators. In Sect. 3, we construct the BCPLM test statistic. The asymptotic
distribution of the statistic is derived under regularity conditions. In Sect. 4, some
simulation studies are carried out to assess the performance of the proposed method.
A real data example is used for illustration in Sect. 5. Lastly, the article is concluded
with a brief discussion in Sect. 6. The proofs of the main results are given in Appendix.

2 Methodology and asymptotic properties

2.1 Local bias-corrected restricted profile least squares method

Suppose that {(Yi ; Xτ
i , W τ

i , Ti ), 1 ≤ i ≤ n} is an independent identically distributed
(iid) random sample which comes from models (1) and (2). That is, they satisfy

{
Yi = Xτ

i β + Zτ
i α(Ti ) + εi ,

Wi = Zi + Ui ,
(4)

where the covariate Zi is measured with additive errors, Wi = (Wi1, . . . , Wiq)τ is the
surrogate variable of Zi , Xi = (Xi1, . . . , Xip)

τ , α(·) = (α1(·), . . . , αq(·))τ , {εi }n
i=1

are independent and identically distributed random errors with mean zero and variance
σ 2. To avoid the curse of dimensionality, we assume that Ti is a univariate variable.

If β is known, we can write

Yi − Xτ
i β = Zτ

i α(Ti ) + εi , i = 1, . . . , n. (5)

Obviously, model (5) can be treated as the usual varying coefficient model. Thus, the
local linear regression approximation can be used to estimate the varying coefficient
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functions {α j (·), j = 1, . . . , q}. For T in a small neighborhood of t , approximate
each α j (T ) by

α j (T ) ≈ α j (t) + α′
j (t)(T − t) ≡ a j + b j (T − t), j = 1, . . . , q,

where α′
j (t) = ∂α j (t)/∂t . This lead to the following weighted local least-squares

problem: finding a and b to minimize

n∑
i=1

{Yi − Xτ
i β − Zτ

i [a + b(Ti − t)]}2 Kh(Ti − t), (6)

where a = (a1, . . . , aq)τ , b = (b1, . . . , bq)τ and Kh(·) = K (·/h)/h, K (·) is a
kernel function and h is a bandwidth.

For the sake of descriptive convenience, we denote Y = (Y1, . . . , Yn)τ , X =
(X1, . . . , Xn)τ , W = (W1, . . . , Wn)τ , Z = (Z1, . . . , Zn)τ , ωt = diag(Kh(T1 −
t), . . . , Kh(Tn − t)), ε = (ε1, . . . , εn)τ , and

DZ
t =

⎛
⎜⎝

Zτ
1

T1−t
h Zτ

1
...

...

Zτ
n

Tn−t
h Zτ

n

⎞
⎟⎠ , M =

⎛
⎜⎝

Zτ
1α(T1)

...

Zτ
nα(Tn)

⎞
⎟⎠ .

Then the solution to problem (6) is given by

[âτ , h b̂τ ]τ =
{
(DZ

t )τωt DZ
t

}−1
(DZ

t )τωt (Y − Xβ). (7)

However, in our case we observe Wi instead of Zi . If we directly replace Zi with Wi

in (7), we will get an inconsistent estimator due to the measurement error. In order
to overcome the effect of the measurement error, referring the method of You et al.
(2006), we modify (7) to define the corrected local linear estimator by

[âτ , h b̂τ ]τ =
{
(DW

t )τωt DW
t − Ω

}−1
(DW

t )τωt (Y − Xβ),

where DW
t has the same form as DZ

t except that Zi are replaced by Wi , and

Ω =
n∑

i=1

Σu ⊗
⎛
⎝ 1 Ti −t

h
Ti −t

h

(
Ti −t

h

)2

⎞
⎠ Kh(Ti − t),

where ⊗ is the Kronecker product. Therefore, when β is given, we can obtain the
estimate of the vector α(t) of coefficient functions by

α̂(t,β) = (Iq 0q)
{
(DW

t )τωt DW
t − Ω

}−1
(DW

t )τωt (Y − Xβ), (8)
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where Iq denotes a q-dimensional identity matrix and 0q is the q × q matrix with all
the entries being zero.

Denote Q = (Qτ
1, . . . , Qτ

n)τ , S = (Qτ
1 W1, . . . , Qτ

n Wn)τ , Ỹ = (I − S)Y , X̃ =
(I − S)X, where Qi = (Iq 0q){(DW

Ti
)τωTi D

W
Ti

− Ω}−1(DW
Ti

)τωTi , i = 1, . . . , n.
Then we can obtain the local bias-corrected profile least-square estimator of β by
minimizing

n∑
i=1

{Yi − Xτ
i β − W τ

i α̂(Ti ,β)}2 −
n∑

i=1

α̂τ (Ti ,β)Σu α̂(Ti ,β), (9)

that is

β̂ = (X̃τ X̃ − Xτ Qτ I ⊗ Σu QX)−1(X̃τ Ỹ − Xτ Qτ I ⊗ Σu QY). (10)

By the estimator (10) of β, we can define the estimator of α(t) by

α̃(t) = (Iq 0q)
{
(DW

t )τωt DW
t − Ω

}−1
(DW

t )τωt (Y − Xβ̂). (11)

Similar to the case in linear model, if some prior information for regression coeffi-
cients of interest can be obtained, the efficiency of the estimator can be improved by
using such prior information. Up to this point, we make use of exact linear restrictions
for the parameters of interest in model (1). Based on the linear restricted condition
(3), a modified Lagrange function of β is defined as

F(β,λ) =
n∑

i=1

{Yi − Xτ
i β − W τ

i α̂(Ti ,β)}2 −
n∑

i=1

α̂τ (Ti ,β)Σu α̂(Ti ,β)

+2λτ (Aβ − d).

Differentiating F(β,λ) with respect to β and λ and setting the result to zero, respec-
tively, we obtain

{
∂ F(β,λ)

∂β
= −2X̃τ (Ỹ − X̃β) + 2Xτ Qτ I ⊗ Σu Q(Y − Xβ) + 2Aτλ = 0,

∂ F(β,λ)
∂λ

= Aβ − d = 0.
(12)

The solution to the problem (12) is given by

{
β̂R1 = β̂ − P−1 Aτ (AP−1 Aτ )−1(Aβ̂ − d),

λ̂ = (AP−1 Aτ )−1(Aβ̂ − d),
(13)

where P = X̃τ X̃ − Xτ Qτ I ⊗ Σu QX.
An alternative strategy to obtain the consistent estimator of β satisfying the restric-

tions is to minimize (β̂−β)τ (β̂−β) with respect to β, subject to the linear restrictions
Aβ = d, similar to the argument of above, we obtain the following restricted estimator:
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β̂ R2 = β̂ − Aτ (AAτ )−1(Aβ̂ − d). (14)

We call the estimators β̂ Rk , k = 1, 2, as the local bias-corrected restricted profile least
squares estimator (BCRPLSE) of β. By (8), (13) and (14), we can define the estimators
of the coefficient functions α(·) as follows

α̂Rk (t) = (Iq 0q)
{
(DW

t )τωt DW
t − Ω

}−1
(DW

t )τωt (Y − Xβ̂ Rk ), k = 1, 2. (15)

2.2 Theoretical results

We begin this subsection with the following assumptions required to derive the main
results. These assumptions are quite mild and can be easily satisfied.

(A1) The random variable T has a compact support T . The density function f (·) of
T is Lipschitz continuous and bounded away from zero on T .

(A2) There is a s > 2 such that E ||X1||2s < ∞, E ||Z1||2s < ∞, E |ε|2s < ∞ and
E ||U1||2s < ∞, and for some r < 2 − s−1 there is n2r−1h → ∞ as n → ∞.

(A3) {α j (·), j = 1, . . . , q} have continuous second derivatives on T .
(A4) The kernel function K (·) is a symmetric probability density functions with

bounded support and the bandwidth h satisfies nh8 → 0 and nh2(log n)−2 → ∞
as n → ∞.

(A5) The q × q matrix Γ (t) = E(Z1 Zτ
1 |T = t) is non-singular for each t ∈ T .

E(X1 Xτ
1 |T = t), Γ −1(t) and Φ(t) = E(Z1 Xτ

1 |T = t) are all Lipschitz con-
tinuous.

Theorem 1 Assume that the conditions (A1)–(A5) hold. Then β̂ R1 is an asymptoti-
cally normal estimator, that is

√
n(β̂ R1 − β)

L−→ N (0,Σ), n → ∞,

where “
L−→” denotes the convergence in distribution, and

Σ = Σ−1
1 Σ2Σ

−1
1 − Σ−1

1 Σ2Σ
−1
1 Σ3Σ

−1
1 − Σ−1

1 Σ3Σ
−1
1 Σ2Σ

−1
1

+Σ−1
1 Σ3Σ

−1
1 Σ2Σ

−1
1 Σ3Σ

−1
1 ,

Σ1 = E(X1 Xτ
1 ) − E(Φτ (T1)Γ

−1(T1)Φ(T1)), Σ3 = Aτ [AΣ−1
1 Aτ ]−1 A,

Σ2 = E(ε1 − Uτ
1 α(T1))

2Σ1 + σ 2 E

{
Φτ (T1)Γ

−1(T1)ΣuΓ −1(T1)Φ(T1)

}2

+E

{
Φτ (T1)Γ

−1(T1)(U1Uτ
1 − Σu)α(T1)

}⊗2

.

Theorem 2 Assume that the conditions (A1)–(A5) hold. Then β̂ R2 is an asymptoti-
cally normal estimator, that is

√
n(β̂ R2 − β)

L−→ N (0,Π), n → ∞,
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where Σ4 = Aτ (AAτ )−1 A,

Π = Σ−1
1 Σ2Σ

−1
1 − Σ−1

1 Σ2Σ
−1
1 Σ4 − Σ4Σ

−1
1 Σ2Σ

−1
1 + Σ4Σ

−1
1 Σ2Σ

−1
1 Σ4.

To make statistical inference for β by Theorems 1 and 2, we need to estimate the
asymptotic variances Σ and Π . Note that we only need to estimate Σ1 and Σ2, then
we can get the consistent estimators of Σ and Π using plug-in method. Σ1 and Σ2
can be estimated, respectively, by

Σ̂1 = 1

n

n∑
i=1

X̃i X̃τ
i − 1

n

n∑
i=1

Xτ Qτ
i Σu Qi X

and

Σ̂2 = 1

n

n∑
i=1

{X̃i (Ỹi − X̃τ
i β̂) − Σu α̃(Ti )}⊗2,

where R⊗2 = R Rτ .

Corollary 1 Assume that the conditions (A1)–(A5) hold. β̂ R1 is less efficient than
β̂R2 under Löwner ordering if and only if λmax(ΠΣ−1) < 1, where λmax(ΠΣ−1) is
the maximum eigenvalue of ΠΣ−1.

Theorem 3 Assume that the conditions (A1)–(A5) hold. Then, as n → ∞, we have

√
nh

(
α̂Rk (t) − α(t) − h2

2

μ2
2 − μ1μ3

μ2 − μ2
1

α′′(t)
)

L−→ N
(

0,Δ
)
,

where Δ = (κ2
0 ν0 + 2κ0κ1ν1 + κ2

1 ν2) f (t)−1Σ∗, κ0 = μ2/(μ2 − μ2
1), κ1 =

−μ1/(μ2 −μ2
1), Σ

∗ = Γ −1(t)[σ 2Γ (t)+σ 2Σu + E{ξ1α(t)ατ (t)ξ τ
1 |T = t}]Γ −1(t),

ξ1 = Σu − U1Uτ
1 − X1Uτ

1 .

Theorem 4 Assume that the conditions (A1)–(A5) hold. Then,

max
1≤ j≤q

sup
t∈T

|α̂Rk
j (t) − α j (t)| = O{h2 + (log n/nh)

1
2 }. a.s.

Remark 1 If h takes the optimal bandwidth, that is hopt = cn−1/5 where c is a constant,
according to Theorem 4 we have

max
1≤ j≤q

sup
t∈T

|α̂Rk
j (t) − α j (t)| = O

{
n−2/5(log n)1/2

}
. a.s.

This mean that the estimators of the nonparametric component in model (4) achieve
the optimal strong uniform convergence rate of the usual nonparametric estimation in
nonparametric regression.
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3 Hypothesis testing

Applying the estimation method described in the previous section, we consider the
following linear hypothesis

H0 : Aβ = d vs. H1 : Aβ = d + δ, (16)

where δ is a k × 1 constant vector. For the partially linear varying coefficient model
(1), when covariate X is measured with errors, Zhang et al. (2011) and Wei (2012)
constructed the modified profile Lagrange multiplier test statistics for the testing prob-
lem (16) and studied the asymptotic distribution of the test statistics, respectively. In
this paper, the nonparametric covariate Z is measured with additive errors. In order to
eliminate the influence of measured error on hypothesis test, we proposed a local bias-
corrected profile Lagrange multiplier test method such that the proposed test statistic
can achieve the standard Chi-squared limit.

Let C0 = [AΣ̂−1
1 Aτ ]−1, L0 = AΣ̂−1

1 Σ̂2Σ̂
−1
1 Aτ , where Σ̂−1

1 Σ̂2Σ̂
−1
1 is a con-

sistent estimate of Σ−1
1 Σ2Σ

−1
1 which is defined in Theorem 1. By the estimator of

Lagrange multiplier defined in (13), we can construct the local bias-corrected profile
Lagrange multiplier statistic under null hypothesis H0 as follows

T̂BCPLM = 1

n
λ̂τ

(
C0 L0Cτ

0 )−1λ̂.

Theorem 5 Assume that the conditions (A1)–(A5) hold, then

(i) under H0 in (16), T̂BCPLM
L−→ χ2

k , as n → ∞;

(ii) under H1 in (16), T̂BCPLM follows the asymptotic noncentral χ2(k, ς) distribution
with k degrees of freedom, and the noncentral parameter is

ς = lim
n→∞(Aβ − d)τ (C LC)−1(Aβ − d),

where C = (AΣ−1
1 Aτ )−1, L = AΣ−1

1 Σ2Σ
−1
1 Aτ .

4 Simulation examples

To demonstrate the finite sample performance of the proposed method and the test-
ing procedure, we conduct two simulation studies. The data are generated from the
following model:

Yi = X1iβ1 + X2iβ2 + X3iβ3 + Ziα(Ti ) + εi , Wi = Zi + ui , i = 1, . . . , n,

(17)

where β = (1, 2, 1)τ , α(Ti ) = 2 cos(2πTi ), Ti ∼ U (0, 1), εi ∼ N (0, 0.52) and
(Xτ

i , Zi )
τ ∼ N4(μ,Σ) with μ = (1, 1, 1, 1)τ and σkl = 0.5|k−l|, k, l = 1, 2, 3, 4.
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Furthermore, we assume Ui ∼ N (0, σ 2
u ), and throughout the simulations, we take two

variances of measurement errors for comparison: σ 2
u = 0.25 and σ 2

u = 0.5.
Throughout the simulations, we use the Epanechnikov kernel function K (t) =

0.75(1 − t2)+, and the bandwidth h is selected by the least squares cross-validation
(CV) method. The CV statistic is defined as follows

CV(h) = 1

n

n∑
i=1

{Yi − Xτ
i β̂(−i) − W τ

i α̃h,(−i)(Ti )}2

−1

n

n∑
i=1

α̃τ
h,(−i)(Ti )Σu α̃h,(−i)(Ti ), (18)

where β̂(−i) is the local bias-corrected profile least-squares estimator defined by (9)
and is computed from data with measurements of the i th observation deleted, and
α̃h,(−i)(Ti ) is the estimator defined in (11) with β̂ replaced by β̂(−i). The CV bandwidth
hcv is selected to minimize (18), that is hcv = minh>0 CV(h).

In the first simulation example, we compare the performance of the unrestricted
estimator β̂ = (β̂1, β̂2, β̂3)

τ with that of the restricted estimators β̂ R1 , β̂R2 in terms of
sample mean (Mean), sample standard deviation (SD) and sample mean squared error
(MSE). Assume that the restricted condition is Aβ = d where A = (1, 0.5, 1). In our
simulation, the sample size is set to n =100, 200 and 400, respectively. For every case,
we replicate the simulation 1000 times. The simulation results are presented in Table 1.
In addition, when the sample size is 200 we compare three types of estimated curves
of the nonparametric component based on different measurement errors in Fig. 1:
α̂R1(t), α̂R2(t) and α̂N E (t), where the naive estimator α̂N E (t) is obtained by ignoring
the measurement error and applying the standard profile least-squares approach.

From Table 1 we can see that all the estimators of parameters are close to the
true value. As the sample size increases or the measurement error decreases, their
means are generally closer to the true values, the SD and MSE of all the estimators
decrease. It is noted that in all the scenarios we studied, the restricted local bias-
corrected profile least-square estimators of the parametric component outperform the
corresponding unrestricted estimator. In addition, by computing the average estimation
errors ‖β̂R1 −β‖ and ‖β̂ R2 −β‖ in L2-norm we find that β̂ R1 is slightly more efficient
than β̂R2 , the results are reported in Table 2.

Figure 1 shows that the proposed estimators of the nonparametric component α̂R1 (t)
and α̂R2(t) almost overlap, both of them are close to the true coefficient function
and improves when the measurement error decreases. The naive estimator α̂N E (t) of
the nonparametric component is biased, and the bias increases as the measurement
variability increases.

In the second simulation, we study the performance of the proposed testing
procedure. For model (17), we consider the null hypothesis Aβ = d where
A = (1, 0.5, 1), the corresponding alternative hypothesis is Aβ = d + δ, where
δ = 0, 0.12, 0.24, . . . , 1.08. If δ = 0, the alternative hypothesis becomes the null
hypothesis. For sample size n = 200, based on 1000 simulations, Fig. 2 depicts the
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Table 1 Finite sample performance of the restricted and unrestricted estimators for the parametric com-
ponents

β σ 2
u n β̂ β̂ R1 β̂ R2

Mean SD MSE Mean SD MSE Mean SD MSE

β1 0.25 100 1.0016 0.1264 0.0160 1.0095 0.1023 0.0105 1.0073 0.0981 0.0097

200 0.9960 0.0739 0.0055 0.9956 0.0600 0.0036 0.9955 0.0606 0.0037

400 0.9928 0.0511 0.0027 0.9961 0.0391 0.0015 0.9957 0.0390 0.0015

0.5 100 1.0386 0.1180 0.0154 1.0154 0.1299 0.0171 1.0181 0.1273 0.0165

200 0.9899 0.1138 0.0131 0.9806 0.0953 0.0095 0.9822 0.0981 0.0099

400 1.0079 0.0508 0.0026 1.0024 0.422 0.0018 1.0031 0.0421 0.0018

β2 0.25 100 2.0024 0.1338 0.0179 1.9944 0.1482 0.0220 2.0053 0.1475 0.0218

200 2.0014 0.0820 0.0064 2.0020 0.0755 0.0057 2.0011 0.0894 0.0080

400 2.0128 0.0550 0.0032 2.0096 0.0509 0.0027 2.0143 0.0626 0.0041

0.5 100 2.0072 0.1673 0.0280 2.0242 0.1623 0.0269 1.9969 0.1798 0.0324

200 2.0106 0.1294 0.0169 2.0177 0.1195 0.0146 2.0068 0.1445 0.0209

400 1.9805 0.0536 0.0033 1.9828 0.0655 0.0046 1.9781 0.0539 0.0034

β3 0.25 100 0.9844 0.1824 0.0335 0.9933 0.0872 0.0077 0.9901 0.1013 0.0104

200 1.0045 0.0847 0.0072 1.0034 0.0541 0.0029 1.0040 0.0591 0.0035

400 0.9943 0.0585 0.0035 0.9991 0.0359 0.0013 0.9972 0.0389 0.0015

0.5 100 1.0039 0.2118 0.0449 0.9725 0.1258 0.0166 0.9834 0.1513 0.0232

200 1.0220 0.1419 0.0206 1.0105 0.0807 0.0066 1.0144 0.0961 0.0095

400 1.0126 0.0613 0.0039 1.0061 0.0307 0.0010 1.0079 0.0321 0.0011
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Fig. 1 Simulation results when n = 200. In each plot, the solid curve is for the true coefficient function,
the dotted curve for α̂N E (t), the dashed curve for α̂R1 (t), the dash-dotted curve for α̂R2 (t)
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Table 2 The average estimation errors of the restricted and unrestricted estimators for the parametric
components

Method σ 2
u = 0.25 σ 2

u = 0.5

n = 100 n = 200 n = 400 n = 100 n = 200 n = 400

‖β̂ − β‖ 0.0673 0.0191 0.0092 0.0840 0.0500 0.0098

‖β̂ R1 − β‖ 0.0401 0.0122 0.0055 0.0577 0.0304 0.0066

‖β̂ R2 − β‖ 0.0418 0.0152 0.0071 0.0685 0.0399 0.0075
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Fig. 2 The simulated power functions for sample size n = 200, where the solid line computed with
σ 2

u = 0.25, the dash-dotted line computed with σ 2
u = 0.5

estimated power function curves with the significance level α = 0.05 for σ 2
u = 0.25

and σ 2
u = 0.5.

We see from Fig. 2 that when the null hypothesis holds (δ = 0), the size of our
test is close to the nominal 5%. This demonstrates that the proposed procedure gives
the right level of testing. When the alternative hypothesis is true (δ > 0), the power
functions increase rapidly as δ increases. These results show that the proposed test
statistic performs satisfactorily. In addition, the measurement errors affect the power
function, when the variance of the measurement error increases, the estimated power
function decreases.

5 Application to Boston housing data

We demonstrate the effectiveness of the proposed method by an application to the
Boston housing dataset, which originates from the work of Harrison and Rubinfeld
(1978). The dataset consists of the median value of owner-occupied houses in 506
census tracts within the Boston metropolitan area in 1970, together with several vari-
ables which might explain the variation of housing values. Following Fan and Huang
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(2005), we take per capita crime rate by town (CRIM), nitric oxide concentration parts
per 10 million (NOX), average number of rooms per dwelling (RM), proportion of
owner-occupied units built prior to 1940 (AGE), full value property tax per $ 10000
(TAX), pupil–teacher ratio by town school district (PTRATIO) and lower status of the
population (LSTAT) as the covariates, and simply denoted as Z2, . . . , Z7, respectively.
Take Z1 = 1 as the intercept term and T = √

LSTAT, Fan and Huang (2005) discussed
the effects of Z2, . . . , Z7, and LSTAT on housing prices, and used the partially linear
varying coefficient model

Y =
5∑

i=1

αi (T )Zi + β1 Z6 + β2 Z7 + ε (19)

to fit the given data. They employed the proposed GLR and Wald tests, and concluded
that the coefficient of Z7 is not significant at 0.01 significance level.

Now we impose a constraint on model (19) that β2 = 0, then A = [0, 1] and d = 0.
Before applying our method, both the response and the covariates (except for Z1)
are transformed to have zero mean and unit variance. The index variable LSTAT is
transformed so that its marginal distribution is U [0, 1]. To illustrate our method, we
conducted a sensitivity analysis, as mentioned in Lin and Carroll (2000). We assume
the covariate Z5 has measurement error, that is

W5 = Z5 + U5, (20)

where U5 ∼ N (0, 0.32). Thus, we apply the proposed procedure in Section 2 to models
(19) and (20), and obtain the BCRPLSE of parameter β as β̂ R1 = (−0.1479, 0)τ under
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Fig. 3 Application to the Boston housing data. In each plot, the solid curve is for the benchmark estimated
curve, the dotted curve for the naive estimator α̂N E (t), the dashed curve for the BCRPLSE α̂R1 (t), the
dash-dotted curve for the profile local bias-corrected estimator α̃(·)
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the restricted condition Aβ = d, and the local bias-corrected profile least-square
estimator β̂ = (−0.1494, 0.0543)τ without restriction. The estimated curves of the
coefficient functions are displayed in Fig. 3. The results based on β̂ R2 are similar, we
omit them here.

From Fig. 3 we see that: (1) the performance of BCRPLSE α̂R1(·) is very close
to that of benchmark estimator which is estimated based on the true data. (2) The
performance of BCRPLSE α̂R1(·) is better than that of α̃(·), this suggests that the
prior information can improve the effectiveness of the proposed local bias-correction
method. (3) The local bias-corrected procedure is effective, both the BCRPLSE α̂R1(·)
and the profile local bias-corrected estimator α̃(·) outperform the naive estimator
α̂N E (·) which ignores the measurement error.

6 Conclusion and discussion

We have studied the restricted estimation and hypothesis test of the partially liner
varying coefficient model with measurement error in the nonparametric part. Based
on the bias-corrected and local linear smoothing techniques, we obtained two types
of restricted estimators of the parametric component and nonparametric component
with the Lagrange multipliers method. Then the asymptotic normality and strong
uniform convergence rates of the proposed restricted estimators were established, and
the efficiency of the two kinds of parameter estimators were compared. Simulation
results indicated that our proposed restricted estimators are more efficient than the
unrestricted estimator. Moreover, in order to test the validity of the constraints on the
parametric component, we constructed a BCPLM test statistic. By the simulation, we
can find that the proposed statistic is powerful.

Statistical inferences for model (1) with measurement error in the parametric com-
ponent have been studied in literature, such as You and Chen (2006); Wang et al. (2011)
and Zhang et al. (2011). In this paper, our focus is on the case where the covariates in
the nonparametric component are measured with errors. To our knowledge, it seems
that there is no report on this issue. Furthermore, with appropriate modification, the
proposed method can be easily extended to the more general case that the covariates
in the parametric and nonparametric components of model (1) are both measured with
additive errors. Similar results with this paper can be derived while the proofs are
different, the exhaustive procedure will be presented in our future work.

Appendix: proofs of the main results

In order to prove the main results, we first introduce several lemmas. Let ε̃ = (I −
S)ε, cn = h2 +

{
log(1/h)

nh

}1/2
, μ j = ∫

t j K (t)dt, ν j = ∫
t j K 2(t)dt, j = 0, 1, 2, 4.

Lemma 1 Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. random vectors, where the Y ′
i s are

scale random variables. Further assume that E |y|s < ∞ and supx

∫ |y|s f (x, y)dy <

∞, where f denotes the joint density of (X, Y ). Let K be a bounded positive function
with a bounded support, satisfying a Lipschitz condition. Given that n2ε−1h → ∞ for
some ε < 1 − s−1, then
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sup
x

∣∣∣1

n

n∑
i=1

[
Kh(Xi − x)Yi − E

(
Kh(Xi − x)Yi

)]∣∣∣ = Op

({ log(1/h)

nh

}1/2)
.

This Lemma can be found in Fan and Huang (2005).

Lemma 2 Suppose that the conditions (A1)–(A5) hold, then, as n → ∞,

(DW
t )τωt DW

t − Ω = n f (t)Γ (t) ⊗
(

1 μ1
μ1 μ2

)
{1 + Op(cn)}, (21)

(DW
t )τωt X = n f (t)Φ(t) ⊗ (1, μ1){1 + Op(cn)}.

Proof Since the proofs of Lemma 2 are similar, we only provide the proof of (21)
here. By Lemma 1, we have

(DW
t )τωt DW

t =
n∑

i=1

Zi Zτ
i ⊗

(
1 Ti −t

h
Ti −t

h (
Ti −t

h )2

)
Kh(Ti − t)

+
n∑

i=1

Σu ⊗
(

1 Ti −t
h

Ti −t
h (

Ti −t
h )2

)
Kh(Ti − t) + O

{(
log n

nh

) 1
2
}

.

Similar to the proof of (7.1) in Fan and Huang (2005), we can derive the desired result.

Lemma 3 Suppose that the conditions (A1)–(A5) hold, as n → ∞, then we have

1

n
[X̃τ X̃ − Xτ Qτ I ⊗ Σu QX] → Σ1. a.s.

The proof of Lemma 3 is similar to that of Lemma 7.2 in Fan and Huang (2005). We
here omit the details.

Lemma 4 Suppose that the conditions (A1)–(A5) hold, then the local bias-corrected
profile least-squares estimator β̂ is asymptotically normal, namely,

√
n(β̂ − β)

L−→ N (0,Σ−1
1 Σ2Σ

−1
1 ), n → ∞,

where Σ1 and Σ2 are defined in Theorem 1.

Proof By (10), we have

√
n(β̂ − β) = √

n

{ n∑
i=1

(X̃i X̃τ
i − Xτ Qτ

i Σu Qi X)

}−1

×
{ n∑

i=1

[X̃i (Z̃τ
i α(Ti ) + ε̃i ) − Xτ Qτ

i Σu Qi (M + ε)]
}
.
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By Lemmas 1 and 2, it is easy to check that

1√
n

n∑
i=1

{
X̃i (Z̃τ

i α(Ti ) + ε̃i ) − Xτ Qτ
i Σu Qi (M + ε)

}

= 1√
n

n∑
i=1

{
Xi − Φτ (Ti )Γ

−1(Ti )Wi (1 + Op(cn))

}

×
{
εi + Op(cn)‖Wi‖ + Zτ

i α(Ti )Op(cn) − Uτ
i α(Ti )(1 + Op(cn))

}

− 1√
n

n∑
i=1

{
Φτ (Ti )Γ

−1(Ti )Σuα(Ti )(1 + Op(cn))

+Φτ (Ti )Γ
−1(Ti )Σu1q Op(cn)

}

= 1√
n

n∑
i=1

{
[Xi − Φτ (Ti )Γ

−1(Ti )Zi ][εi − Uτ
i α(Ti )] − Φτ (Ti )Γ

−1(Ti )Uiεi

+Φτ (Ti )Γ
−1(Ti )(Ui Uτ

i − Σu)α(Ti )

}
+ op(1)

∧= 1√
n

n∑
i=1

Jin + op(1).

Note that

Cov(Jin) = E

{
(εi − Uτ

i α(Ti ))(Xi − Φτ (Ti )Γ
−1(Ti )Zi )

}⊗2

+E

{
Φτ (Ti )Γ

−1(Ti )(Ui Uτ
i − Σu)α(Ti )

}⊗2

+E

{
Φτ (Ti )Γ

−1(Ti )Uiεi

}⊗2

,

lim
n→∞

1

n

n∑
i=1

Cov(Jin) = E(ε1 − Uτ
1 α(T1))

2Σ1

+σ 2 E

{
Φτ (T1)Γ

−1(T1)ΣuΓ −1(T1)Φ(T1)

}2

+E

{
Φτ (T1)Γ

−1(T1)(U1Uτ
1 − Σu)α(T1)

}⊗2

.

Invoking the Slutsky theorem, Lemma 3 and the central limit theorem, we obtain the
desired result.
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Proof of Theorem 1 We first denote that

J0 =: I − P−1 Aτ [AP−1 Aτ ]−1 A

where P = (X̃τ X̃ − Xτ Qτ I ⊗ Σu QX). By Lemma 3, we obtain

J0
P−→ I − Σ−1

1 Aτ [HΣ−1
1 Aτ ]−1 A =: J.

By (13), we have

β̂ R1 − β =
{

I − P−1 Aτ [AP−1 Aτ ]−1 A
}
(β̂ − β)

= J (β̂ − β) + (J0 − J )(β̂ − β).

Note that J0 − J = op(1) and β̂ − β = O(n−1/2). It is easy to check that

(J0 − J )(β̂ − β) = op(n
−1/2).

Invoking the Slutsky theorem and Lemma 4, we obtain the desired result.

Proof of Theorem 2 By the same arguments as used in the proof of Theorem 1, we
can prove Theorem 2, we omit the details.

Proof of Corollary 1 Since Σ and Π are positive definite matrices, we have

Σ > Π ⇔ Σ−1/2(Σ − Π)Σ−1/2 > 0

⇔ I − Σ−1/2ΠΣ−1/2 > 0

⇔ λmax(Σ
−1/2ΠΣ−1/2) < 1

⇔ λmax(ΠΣ−1) < 1.

Hence Corollary 1 holds.

Proof of Theorem 3 By (15), we have

α̂Rk (t) = (Iq 0q)((DW
t )τωt DW

t − Ω)−1(DW
t )τωt (Y − Xβ̂ Rk )

= (Iq 0q)

{
((DW

t )τωt DW
t − Ω)−1(DW

t )τωt M

+((DW
t )τωt DW

t − Ω)−1(DW
t )τωtε

+((DW
t )τωt DW

t − Ω)−1(DW
t )τωt X(β̂ Rk − β)

}
.

By the Taylor expansion, we obtain

(DW
t )τωt M = (DW

t )τωt DZ
t

(
α(t)

hα
′
(t)

)
+ h2

2
(DW

t )τωt�t Zα′′(t) + op(h
2),

where �t = diag

{(
T1−t

h

)2
, . . . ,

(
Tn−t

h

)2
}

.
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By Lemmas 1 and 2, it is easy to check that

{
(DW

t )τωt DW
t − Ω

}−1

(DW
t )τωt�t Zα′′(t)

=
{
(DW

t )τωt DW
t − Ω

}−1{
(DZ

t )τωt�t Zα′′(t) + O

((
log n

nh

) 1
2
)}

= 1

μ2 − μ2
1

(
(μ2

2 − μ1μ3)α
′′(t)

(μ3 − μ1μ2)α
′′(t)

)
{1 + o(1)} a.s.

(DW
t )τωt DZ

t

(
α(t)

hα′(t)

)
=

{
(DW

t )τωt DW
t − Ω

}(
α(t)

hα′(t)

)

+
{

− (DW
t )τωt DU

t + Ω

}(
α(t)

hα′(t)

)
,

Invoking Lemmas 2 and 4, we can obtain

(Iq 0q){(DW
t )τωt DW

t − Ω}−1(DW
t )τωt X(β̂ − β) = Op(n

−1/2),

Therefore,

α̂Rk (t) = α(t) + 1

2
h2 μ2

2 − μ1μ3

μ2 − μ2
1

α′′(t) + (Iq 0q)

{[
{(DW

t )τωt DW
t − Ω}−1

×{(DW
t )τωtε − (DW

t )τωt DU
t + Ω}

(
α(t)

hα′(t)

) ]}
+ Op(n

−1/2),

Using the same argument of (A4)–(A6) in You et al. (2006), we can obtain that

√
nh

[
{(DW

t )τωt DW
t − Ω}−1{(DW

t )τωtε − (DW
t )τωt DU

t + Ω}
(

α(t)
hα′(t)

)]

L−→ N (0,�),

where

� = f (t)−1Σ∗ ⊗ 1

μ2 − μ2
1

×
(

μ2
2ν0 − 2μ1μ2ν1 + μ2

1ν2 (μ2
1 + μ2)ν1 − μ1μ2ν0 − μ1μ2

(μ2
1 + μ2)ν1 − μ1μ2ν0 − μ1μ2 ν2 − μ1(2ν1 + μ1ν0)

)
,

Σ∗ = Γ −1(t)[σ 2Γ (t) + σ 2Σu + E{ξ1α(t)ατ (t)ξ τ
1 |T = t}]Γ −1(t),

ξ1 = Σu − U1Uτ
1 − X1Uτ

1 .

From the above discussion, it implies that Theorem 3 holds.

Proof of Theorem 4 By the same argument used in the proof of Theorem 3.1 in Xia
and Li (1999), we can complete the proof. Hence, we here omit the details.

123



138 S. Feng, L. Xue

Proof of Theorem 5 Under the null hypothesis of testing problem (16), and applying
Lemma 4, we can prove that

√
n A(β̂ − d)

L−→ N (0, AΣ−1
1 Σ2Σ

−1
1 Aτ ), n → ∞. (22)

By Lemmas 1–3, we have

L0 = AΣ̂−1
1 Σ̂2Σ̂

−1
1 Aτ P−→ AΣ−1

1 Σ2Σ
−1
1 Aτ =: L , (23)

and

C0 =
[

A

(
1

n
X̃τ X̃ − 1

n
Xτ Qτ I ⊗ Σu QX

)−1

Aτ

]−1
P−→ (AΣ−1

1 Aτ )−1 =: C. (24)

By (13) and (22), and again invoking the Slutsky theorem and Lemma 3, we can derive
that

1√
n
λ̂ =

[
A

(
1

n
X̃τ X̃ − 1

n
Xτ Qτ I ⊗ Σu QX

)−1

Aτ

]−1 √
n(Aβ̂ − d)

L−→ N (0, C LCτ ). (25)

By (23)–(25), we have that

1

n
λ̂τ

(
C0L0Cτ

0 )−1λ̂
L−→ χ2

k .

On the other hand, under the alternative hypothesis, and again applying Lemma 4,
we have

√
n A(β̂ − d)

L−→ N (Aβ − d, AΣ−1
1 Σ2Σ

−1
1 Aτ ), n → ∞.

By using the same argument as (23) and (24), it can be shown that

1√
n
λ̂ =

[
A

(
1

n
X̃τ X̃ − 1

n
Xτ Qτ I ⊗ Σu QX

)−1

Aτ

]−1 √
n(Aβ̂ − d)

L−→ N (Aβ − d, C LCτ ).

Then we have

1

n
λ̂τ

(
C0 L0Cτ

0 )−1λ̂
L−→ χ2(k, ς),
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where χ2(k, ς) denotes the asymptotic noncentral Chi-squared distribution with k
degrees of freedom, and the noncentral parameter

ς = lim
n→∞(Aβ − d)τ (C LC)−1(Aβ − d).
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