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Abstract In this paper, we introduce the notion of efficiency (consistency) and exam-
ine some asymptotic properties of Markov chain Monte Carlo methods. We apply
these results to the data augmentation (DA) procedure for independent and identically
distributed observations. More precisely, we show that if both the sample size and the
running time of the DA procedure tend to infinity, the empirical distribution of the
DA procedure tends to the posterior distribution. This is a local property of the DA
procedure, which may be, in some cases, more helpful than the global properties to
describe its behavior. The advantages of using the local properties are the simplicity
and the generality of the results. The local properties provide useful insight into the
problem of how to construct efficient algorithms.

Keywords Monte Carlo · Markov chain · Asymptotic normality

1 Introduction

This paper investigates conditions under which a Markov chain Monte Carlo (MCMC)
procedure has a good stability property in the Bayesian context. There is a vast literature
related to the sufficient conditions for ergodicity; see reviews such as Tierney (1994)
and Roberts and Rosenthal (2004) and textbooks such as Nummelin (1984) and Meyn
and Tweedie (1993). The transition kernel of the MCMC procedure is Harris recurrent
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64 K. Kamatani

under fairly general assumptions. Moreover, it is sometimes geometrically ergodic.
In practice, the Foster–Lyapunov type drift condition is commonly used to establish
geometric ergodicity and calculation of its rate. This condition is helpful for studying
the global property of the MCMC procedure. However, there are some limitations if
we want more information for the stability of the MCMC procedure, e.g., this approach
has difficulty in comparing two MCMC procedures.

We take another approach to study the stability of the MCMC procedure in the
Bayesian context. We will define local consistency as a measure of the performance
of the MCMC procedure. The following toy example illustrates our approach.

Assume we have n observation xn = {x1, . . . , xn} from a simple model

P(X = 1|θ) = �(θ), P(X = 0|θ) = 1 − P(X = 1|θ)

where θ is the parameter and � is the cumulative distribution function of the normal
distribution. The data augmentation (DA) procedures can be defined by the so-called
augmented data model that introduces latent variable y. We consider two DA proce-
dures corresponding to the following augmented data models:

y ∼ N (0, 1), x = 1{y≤θ} (1)

y ∼ N (−θ, 1), x = 1{y≤0}. (2)

Though the models are similar, the performances of the DA procedures are quite
different. Figure 1 is a trajectory of the sequences

θ0, . . . , θm−1

from the DA procedures with the sample sizes n = 50 and n = 250. The true value is
set to θ0 = 0.

The simulation result for the sample size n = 50 (upper) shows the poor perfor-
mance of the DA procedure for (1) than that for (2) that may cause the inference bias.
Such differences become clear [see n = 250 (lower)] and the analysis becomes easier
as the sample size grows.

With this observation in mind, we want to define consistency as an asymptotic prop-
erty as the sample size n → ∞. For each observation xn , the MCMC procedure results
in a Markov chain θ∞ = {θ0, θ1, . . .} that has the invariant probability distribution
p(dθ |xn). Write Pn for the probability measure for xn and θ∞. Let

I =
∫
ϕ(θ)p(dθ |xn), Im = m−1

m−1∑
i=0

ϕ(θi ) (3)

for a bounded continuous function ϕ. The goal of the MCMC procedure was to approx-
imate I by Im . It would be helpful if

|I − Imn | = oPn (1) (4)
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Fig. 1 Trajectory of the DA procedures for sample size n = 50 (upper) and n = 250 (lower). Solid line is
for (1) and dashed lines is for (2)

for any mn → ∞. Since the number m corresponds to the iteration counts of the
MCMC procedure, smaller is better. For each xn , usually limm→∞ |I − Im | = 0 in
P(·|xn) holds by ergodicity of the Markov chain. However, sometimes the relation (4)
does not hold. For example, under a reasonable scaling, the DA procedure that uses
the augmented data model (1) does not satisfy (4) for some mn → ∞ but it does
satisfy if mn/n → ∞. If (4) holds for any mn → ∞, we call the MCMC procedures
consistent. The DA procedure that uses (2) has consistency under the same scaling
that will be proved in Theorem 1.

We obtain the following results,

1. The consistency and the local consistency of the MCMC procedures are studied.
2. A reasonable set of sufficient conditions for the local consistency for the DA pro-

cedure is addressed for independent identically distributed observations. We only
assume (a) the identifiability of parameter, (b) the existence of uniformly consis-
tent test, (c) regularity of prior distribution, and (d) quadratic mean differentiability
of the full model.

For the treatment of a large sample setting (with a different motivation), Belloni and
Chernozhukov (2009) have recently studied the Metropolis algorithm for increased
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parameter dimension d. They obtained the rate of the running time of the Metropolis
algorithm for burn-in and after burn-in. To deal with the complex algorithm and to
obtain strong results, they assumed strong conditions [C.1, C.2 and (3.5)]. Another
paper (Nielsen 2000; Svensson and de Luna 2010) obtained stability properties of the
stochastic EM algorithm. Essentially, they studied finite dimensional convergence of
θ0, . . . , θk . However, without tightness arguments, the finite dimensional properties
are insufficient to describe the performance of the MCMC procedures. On the other
hand, we show the convergence of the law of the process {θi ; i ∈ N0} with a minimal
set of conditions.

It is not our intention to conclude that the DA procedure is always efficient. The con-
clusion of Theorem 1 is that, under regularity conditions, the DA procedure approx-
imates the posterior distribution in an ordinal running time. On the other hand, it
illustrates the causes of the performance bottlenecks of the MCMC procedures. For
example, (a) the choice of the initial guess θ0 is not good, (b) the model has the fragility
of the identification, (c) the Fisher information matrix g for the model is too small or
that for the hidden information is too large, or (d) the sample size is too small related
to its parameter dimension. For example, the DA procedure that uses the model (1)
suffers from (c). These studies of regular/non-regular properties are quite important
for the elimination of the performance bottlenecks of the MCMC procedures.

The rest of the paper is organized as follows. We prepare in Sect. 2 for needed
backgrounds. Consistency will be introduced in Sect. 3. We analyze local consistency
of the DA procedure in this section. Concluding remarks are summarized in Sect. 4.

2 Background

2.1 Quadratic mean differentiability

Let (X,X ) be a measurable space. Let M = {Pθ (dx) = pθ (x)dx; θ ∈ Rd} be a
parametric family on X. The family M is said to be quadratic mean differentiable at θ
if

√
pθ+h(x)− √

pθ (x)− h′η̃ = o(h2) in L2(dx) (5)

for any h → 0 and a square integrable function η̃ : X → Rd where v′ is the transpose
of a vector v ∈ Rd . A matrix g(θ) = 4

∫
η̃η̃′dx is called the Fisher information matrix.

In this paper, when xn = {x1, . . . , xn} ∼ P⊗n
θ = ∏n

i=1 Pθ (dxi ), the following random
variable is called the normalized score function:

η = ηθ (xn) = √
n

−1
n∑

i=1

2
η̃(xi )√
pθ (xi )

. (6)

Suppose now that M† = {P†
θ (dxdy) = p†

θ (xy)dxdy; θ ∈ Rd} is another model,

called the augmented data model on X × Y that satisfies Pθ (dx) = ∫
Y P†

θ (dxdy).
According to Proposition 7.4 of Le Cam and Yang (1988), if M† satisfies quadratic
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Local consistency of Markov chain Monte Carlo methods 67

mean differentiability at θ , then M also does. Let g and g† be the Fisher information
matrices of the models M and M† and write η and η† for the normalized score statistics,
and write û and û† for the maximum likelihood estimators of the models M and M†

under observations xn and xn, yn = {y1, . . . , yn}, respectively.
Let (�,F ,P) be a probability space and let G be a sub σ algebra of F .

Definition 1 (Stable convergence) A sequence of Rd -valued F-measurable random
variable Zn is said to converge G-stably if there exists a measure μ on �× Rd such
that

E[ f (Zn)Y ] →
∫
μ(dω, dx)Y (ω) f (x) (7)

for any continuous bounded function f and for any bounded G-measurable random
variable Y .

Let Xi (ω), Yi (ω) (i = 1, . . . , n) be i.i.d. observation from a probability measure
P†
θ (dxdy) and set X (ω) = {Xi (ω); i = 1, . . .} and G = σ(X).

Lemma 1 Let η∗ = η† −η and g∗ = g† −g. Then η∗ converges G-stably to N (0, g∗).

Proof By the law of large number, for almost all ω ∈ �,

E[η∗
i |G] = 0,E

[
n−1

n∑
i=1

η∗
i (η

∗
i )

′|G
]

→ g∗ (8)

and

E

[
n−1

n∑
i=1

|η∗
i |21{n−1/2|η∗

i |>ε}|G
]

→ 0 (9)

for ε > 0. Write Aε ∈ G for all ω ∈ � that satisfies the above three convergences.
Then A = ∩∞

i=1 Ai−1 is still a sure event, and for each of ω ∈ A, the Lindeberg
condition holds for the array {η∗

i (xi ,Yi (ω)); i = 1, . . . , } with probability measure
P(·|G)x=X (ω). Hence the claim follows. �


2.2 Key technical lemmas

Let {Pn; n = 1, 2, . . .} be a sequence of probability measures. The following is the
key results for the present study. Write θ∞ for {θ0, θ1, . . .}.
Lemma 2 Let θ∞ be a stationary Pn-Markov chain with the invariant probability
distribution pn that converges in probability to an ergodic Markov chain. Then for
any bounded continuous function ϕ and for any mn → ∞,

∫
ϕ(θ)pn(dθ)− m−1

n

mn−1∑
i=0

ϕ(θi ) = oPn (1). (10)
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68 K. Kamatani

Proof Let P be the limit of Pn(θ∞ ∈ ·). Write I n and Imn for the first and the second
term in the left-hand side of (10), respectively, and write Ii,k for k−1 ∑k−1

j=0 ϕ(θik+ j ).
Then

Im = k

m

[m/k]−1∑
i=0

Ii,k + 1

m

m−1∑
i=k[m/k]

ϕ(θi )

where [x] is the integer part of x ∈ R. This relation yields the upper bound of the
left-hand side of (10);

|I n − Im | ≤ k

m

[m/k]−1∑
i=0

|I n − Ii,k | + 1

m

m−1∑
i=k[m/k]

|I n − ϕ(θi )|.

By stationarity, each |I n − Ii,k | has the same law under Pn . Hence for a constant C > 0
that satisfies |ϕ(θ)| < C ,

En[|I n − Im |] ≤ k

m

[m

k

]
En[|I n − I1,k |] + 2

m − k[m/k]
m

C.

Since x − 1 < [x] ≤ x , the second term is negligible and the first term has a bound
En[|I n − I1,k |]. Write p for the limit of pn and let I = ∫

ϕ(θ)p(dθ). Then En[|I n −
I1,k |] ≤ En[|I − I1,k |] + |I − In|, but the second term is negligible again by weak
convergence of the law of the Markov chain. Thus, the claim follows if En[|I − I1,k |]
can be arbitrary small.

Since θ∞ �→ I1,k is continuous, En[|I − I1,k |] → E[|I − I1,k |], and by the law of
large numbers for stationary sequence, the right-hand side tends to 0 as k → ∞ that
proves the claim. �


We introduce a simple sufficient condition to apply this lemma. Let μ(dx) be a
probability measure and let K (x, dy) be a transition kernel. Letμ⊗ K be a probability
measure defined by

(μ⊗ K )(A × B) =
∫

A
K (x, B)μ(dx).

For any probability measures p, q on a measurable space (E, E), the total variation
distance is

‖p − q‖ = sup
A∈E

|p(A)− q(A)|. (11)

Lemma 3 Let K and Kn (n = 1, 2, . . .) be transition kernels that have the invariant
probability distributions p and pn, respectively. If ‖pn ⊗ Kn − p ⊗ K‖ → 0, then a
Markov chain θ∞ with transition kernel Kn with the initial distribution pn converges
in law to a Markov chain θ∞ with transition kernel K with the initial distribution p.
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Local consistency of Markov chain Monte Carlo methods 69

Proof It suffices to show finite dimensional convergence in law for θ∞, and this is
completed if we can prove the convergence in total variation distance. Let

Mm = p ⊗
m︷ ︸︸ ︷

K ⊗ · · · ⊗ K , Mn,m = pn ⊗
m︷ ︸︸ ︷

Kn ⊗ · · · ⊗ Kn .

The task is now to show‖Mm−Mn,m‖ → 0 for any m. For m = 0, 1, the convergence is
clear and assume that it is true up to m = k. For m = k+1, observe that Mk+1−Mn,k+1
equals to

(Mk − Mn,k)⊗ K + Mn,k ⊗ (K − Kn).

The total variation distance of the former term vanishes by assumption. For that of the
latter, since pn is the invariant probability distribution of Kn , we have a bound

∫
pn(dθ)‖(K − Kn)(θ, ·)‖ ≤ 4‖p ⊗ K − pn ⊗ Kn‖ → 0

by Lemma 12.2.2 of Le Cam (1986). �


2.3 Approximation of the DA procedure

Let pM be the prior distribution and let Pn = ∫
P⊗n
θ pM (dθ). Under some regularity

conditions,

û = θ + n−1/2g−1η(θ)+ oP⊗n
θ
(1), ‖p(dθ |xn)− N (û, n−1g−1)‖ = oP⊗n

θ
(1)

where g = g(û) and p(·|xn) is the posterior distribution of M . Define P†
θ (dy|x) so

that P†
θ (dxdy) = Pθ (dx)P†

θ (dy|x). Then under some regularity conditions,

û† =θ+n−1/2g†−1η†(θ)+ oP†⊗n
θ
(1), ‖p†(dθ |xn yn)− N (û†, n−1g†−1)‖=oP†⊗n

θ
(1)

where g† = g†(û) (not g†(û†)) and p†(·|xn yn) is the posterior distribution of M†.
Using models M and M†, the data augmentation procedure is defined as the iteration

of the following:

1. Simulate yn from
∏n

i=1 P†
θ (dyi |xi ) =: P†

θ (dyn|xn).
2. Simulate θ from p†(dθ |xn yn),

This procedure results in a Markov chain θ0, θ1, . . . with the invariant probability
distribution p(dθ |xn).

It is well known that this procedure is approximated by an auto-regressive process
(see Sahu and Roberts 1999; Meng and van Dyk 1999; Dempster et al. 1977). To
explain this approximation, define

η∗(θ) = η†(θ)− η(θ), g∗(θ) = g†(θ)− g(θ). (12)
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70 K. Kamatani

Then the law of η∗ = η∗(θ) tends to N (0, g∗) and

û† = θ + n−1/2g†−1(η + η∗)+ oP†⊗n
θ
(1) (13)

= θ + n−1/2g†−1gg−1η + n−1/2g†−1η∗ + oP†⊗n
θ
(1) (14)

= û + g†−1g∗(θ − û)+ n−1/2g†−1η∗ + oP†⊗n
θ
(1) (15)

where we omit θ in η(θ) and η∗(θ). This calculation yields n1/2(û† − û) =
g†−1g∗θ̃ + g†−1η∗ + oP†⊗n

θ
(1), where θ̃ = √

n(θ − û). With regularity conditions,

this approximation results in a Markov chain with a transition kernel defined by

K (θ̃ , ·) = N (g†−1g∗θ̃ , g†−1g∗g†−1 + g†−1). (16)

Remark 1 (Convergence Rate) In the limit, the matrix A := g†−1g∗ = I − g†−1g
defines the convergence rate. Let r ∈ [0, 1) be the spectral radius of A, which is the
same as the spectral radius of g†−1/2g∗g†−1/2. Then the marginal distribution of θ̃
converges geometric rate r2 to the invariant distribution (see Section 16.5.1 of Meyn
and Tweedie 1993). A small value of g†−1g leads to a poor performance.

Remark 2 (Invariant probability distribution) It is easy to check the invariant proba-
bility distribution of K (θ̃ , ·) is p(dθ) = N (0, g−1) since

g−1 = g†−1g∗g−1g∗g†−1 + g†−1g∗g†−1 + g†−1. (17)

Remark 3 (Bayesian paradigm) To show the convergence of the law of θ̃0, . . .,
Bayesian paradigm will be used efficiently. It is much difficult to show for similar
method such as the stochastic EM algorithm. This is probably the reason for the
robustness of the DA procedure.

3 Local consistency

3.1 Definitions of the local consistency

Let (Xn,Xn, Pn) (n = 1, 2, . . .) be a sequence of probability spaces. For given xn ∈
Xn , consider a Markov chain θ∞ = {θ0, θ1, . . .} on Rd with the transition kernel K
with the invariant distribution p. Note that they depend on xn and hence we will write
K (θ, dθ∗|xn) and p(dθ |xn). Write Pn for the joint law of xn and θ∞. We call the
sequence of the law {Pn(θ∞ ∈ ·|xn); xn ∈ Xn}n=1,2,... the MCMC procedure.

Definition 2 (Consistency) An MCMC procedure is called consistent if for any mn →
∞ and for any bounded continuous function ϕ,

∫
ϕ(θ)p(dθ |xn)− m−1

n

mn−1∑
i=0

ϕ(θi ) = oPn (1). (18)
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The first term in the left-hand side of (18) corresponds to the amount we are inter-
ested in and the second term is the Monte Carlo approximation for this amount. The
consistency means that this approximation tends to the targeted value after reasonable
number of iteration. However, since the posterior distribution converges to a point
mass under a mild condition, the convergence (18) may not have much information.
The local consistency claims that the same convergence holds even after the certain
scaling. Let û : Xn → Rd be a Xn-measurable map and consider θ �→ n1/2(θ − û).

Definition 3 An MCMC procedure is called locally consistent if for any mn → ∞
and for any bounded continuous function ϕ,

∫
ϕ(n1/2(θ − û))p(dθ |xn)− m−1

n

mn−1∑
i=0

ϕ(n1/2(θi − û)) = oPn (1). (19)

If each Pn(θ∞ ∈ ·|xn) (xn ∈ Xn, n = 1, 2, . . .) is a stationary process, we call the
MCMC procedure stationary. In the main theorem in the present paper, stationarity
is assumed which is unrealistic in practice. The choice of the initial probability dis-
tribution is an important part for designing Monte Carlo method. This choice heavily
depends on the structure of the model that prevents from constructing a general frame-
work. However, the following illustrates that a suitable choice of the initial distribution
does not change the results. For example, we can choose N (ũn, n−1) as the initial dis-
tribution q(·|xn), where ũn is an estimator that satisfies n1/2(ũn − û) = OPn (1).

For ε > 0, when two σ -finite measuresμ and ν of (E, E) satisfiesμ(A) ≤ ν(A)+ε
for any A ∈ E , we write μ ≤ ν + ε.

Lemma 4 Consider a stationary MCMC procedure that has initial distribution
p(dθ |xn) which is the invariant distribution. Consider another MCMC procedure
that replaces the initial distribution p(dθ |xn) to q(dθ |xn). Then if the former MCMC
procedure is consistent and if for any ε > 0, there exists c > 0 such that

lim sup
n→∞

Pn({xn; q(·|xn) > cp(·|xn)+ ε}) < ε, (20)

the latter is also consistent.

Proof Let Aε be the event that is measured by Pn in (20). Write Qn for Pn replacing the
initial distribution from p to q. For any continuous [0, 1]-valued function ψ(xn, θ∞),
we have

Qn(ψ) ≤ Pn(Aε)+ cPn(ψ)+ ε.

Hence if Pn(ψ) → 0, then Qn(ψ) → 0. Take ψ to be the absolute value of the
left-hand side of (18). �
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3.2 Local consistency of the standard the DA procedure

Let M and M† be as in Sect. 2.1 and let pM and Pn be as in Sect. 2.3. A sequence of
tests ψn : Xn → [0, 1] is said to be uniformly consistent for testing θ ∈ Rd against
K c ⊂ Rd if

P⊗n
θ (ψn) → 0, sup

ϑ∈K c
P⊗n
ϑ (1 − ψn) → 0. (21)

If there exists a uniformly consistent test for each θ with any compact set K that
includes θ , then M is said to have a uniformly consistent test.

Assume the following conditions.

Assumption 1 1. M† is quadratic mean differentiable.
2. The Fisher information matrix g of M is non-singular.
3. M has a uniformly consistent test.
4. The prior pM has a continuous, positive and bounded density.
5. M is identifiable.

Let

Kn(θ̃ , d θ̃∗|xn) =
∫

Yn

p†(û + n−1/2d θ̃∗|xn yn)P
†⊗n
û+n−1/2 θ̃

(dyn|xn) (22)

where θ̃ = n1/2(θ − û), θ̃∗ = n1/2(θ∗ − û). This is the transition kernel of the DA
procedure. The following is the main results for the present paper that says the DA
procedure works well under general conditions.

Theorem 1 Assume θ0 ∼ p(dθ |xn). Then under Assumption 1, the DA procedure has
the local consistency.

Proof By Bernstein–von Mises’s theorem of the model M†,

‖p†(dθ |xn yn)− N (û†, n−1g†−1)‖ = oP†⊗n
θ
(1) (23)

where g† = g†(û). It is possible to replace û† in (23) by the right-hand side of (15)
without oP⊗n

θ
(1) term. By θ �→ θ̃ = n1/2(θ− û), this is mapped to g†−1g∗θ̃+g†−1η∗.

We are now in a position to show

∥∥∥∥
∫

yn∈Yn

N (g†−1g∗θ̃ + g†−1η∗, g†−1)P†
θ (dyn|xn)− K (θ̃ , ·)

∥∥∥∥ = oP⊗n
θ
(1) (24)

for each θ . The left-hand side equals to

∫
x∈Rn

∣∣∣∣
∫
φ(x; g†−1η∗, g†−1)(P†

θ (dyn|xn)− φ(η∗; 0, g∗)dη∗)
∣∣∣∣ dx . (25)
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Local consistency of Markov chain Monte Carlo methods 73

For the moment, replace g† by g†(θ) and g∗ by g∗(θ) and fix x ∈ Rd . Let
ψn : Xn → [0, 1] be the value in the vertical bars in (25) after the replace-
ment and set ϕn ∈ {−1,+1} to be the sign of ψn . Then for the smooth function
l(z) = φ(x; g†−1(θ)z, g†−1(θ)), it is sufficient to show

P†⊗n
θ [ϕnl(η∗)] − P⊗n

θ [ϕn

∫
η∗

l(η∗)φ(η∗; 0, g∗(θ))dη∗] → 0. (26)

Since ϕn is P†⊗n
θ -tight, by choosing suitable probability space with a probability

measure P†⊗∞
θ , it is possible to assume ϕn → ϕ (n → ∞). Then by replacing ϕn by

ϕ in (26), the convergence follows by the stable convergence of η∗ (Lemma 1). Hence
we have

‖Kn(θ̃ , dθ̃∗|xn)− K (θ̃ , dθ̃∗)‖ = oP⊗n
θ
(1) (27)

where K is defined in (16). By Bernstein–von Mises’s theorem for model M , we have
‖pn − p‖ = oPn (1)where pn(d θ̃ |xn) = p(û +n−1/2d θ̃ |xn) and p(d θ̃ ) = N (0, g−1).
Hence Lemma 12.2.2 of Le Cam (1986) shows

‖pn ⊗ Kn − p ⊗ K‖ = oPn (1) (28)

since P⊗n
θ (dx)pM (dθ) = p(dθ |xn)Pn(dx) by integrating the left-hand side of (27)

by pM . Then Lemmas 2 and 3 prove the claim since for each û, K defines an ergodic
Markov chain and û is Pn-tight. �


4 Concluding remarks

4.1 Future work

What we did not discuss in this paper were the following. We believe that the framework
we proposed is helpful for these directions.

1. Research for poor performance of the MCMC procedures. The local properties are
helpful for identification of the performance bottlenecks of the MCMC procedures.
This is studied in two different directions by: Kamatani (2010), the rate of mn of
(4); Kamatani (2013b), the rate of |θi − θi−1|.

2. Research for constructing new Monte Carlo procedures. Though the present study
is for regular Monte Carlo procedures, these results are useful to eliminate the
performance bottlenecks of the MCMC procedures. For example, the paper of
Kamatani (2013a) studies an efficient MCMC procedure for the cumulative probit
model and there are many possibilities for this direction.
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4.2 A technical comment

We consider the maximum likelihood estimator û. Though it does not always exist,
it can be replaced by the central value of the posterior distribution. For a probability
measure μ on R, a central value is a point x ∈ R satisfying

∫
R

arctan(x − x)μ(dx) = 0.

Element of Rp is denoted by x = (x1, . . . , x p)T . For a probability measure μ on Rp,
letμi (A) be

∫
x∈R 1A(xi )μ(dx) for A ∈ B(R). Forμ, we call x = (x1, x2, . . . , x p)T ∈

Rp central value if each xi is a central value of μi . The central value always exists
and unique. See Ito (2004).
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