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Abstract Large sample statistical analysis of threshold autoregressive models is usu-
ally based on the assumption that the underlying driving noise is uncorrelated. In this
paper, we consider a model, driven by Gaussian noise with geometric correlation tail
and derive a complete characterization of the asymptotic distribution for the Bayes
estimator of the threshold parameter.

Keywords Asymptotic statistics - Bayes estimator - Threshold autoregression -
Hidden Markov models

1 Introduction: the setting and the main result
Let (X;) jez, be the sequence generated by the recursion

Xj= ", 200+ 0 Lix; <o Xjo14€j, j=1 (D
where (€;) jez, is a random process with known distribution, o and p~ are known

constants, and 6 is the unknown threshold parameter to be estimated from the sample
X" := (X1, ..., Xy,). The Eq. (1) is a basic instance of the threshold autoregression
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960 P. Chigansky, Y. A. Kutoyants

(TAR) models, which play a considerable role in the theory and practice of time
series. This type of models have been studied by statisticians for already more than
three decades, producing interesting theory and finding many important applications,
some of which can be traced in the early and more recent surveys (Tong 1983, 2011;
Tsay 1989; Hansen 2011; Chan and Kutoyants 2010; Kutoyants 2012) [see also, e.g.,
Ling and Tong 2005; Ling et al. 2007 for the analysis of the related moving average
threshold (TMA) models].

When it comes to the large sample asymptotic analysis of the estimators, the stan-
dard conditions imposed on the models such as (1) are

(i) strong ergodicity of the observed process (X ;)
(ii) independence of the driving random variables ¢;’s.

Departure from these assumptions poses challenging problems. For the model (1),
the condition (i) fails if the absolute value of either p™ or p~ is greater or equal to 1.
If the process (X ;) is null recurrent (e.g., o+ = 1 and |p_| < 1), characterization of
the exact large sample asymptotic distribution of the likelihood-based estimators of
the threshold parameter € remains an open problem (see Remark 1 below). If 6 # 0
is assumed to be known, the asymptotic distribution of the coefficients’ estimators in
the non-ergodic case has been studied in Pham et al (1991), Caner and Hansen (2001),
and Liu et al (2011).

TAR models beyond the independence assumption (ii) of the driving noise sequence
has not yet been addressed. As we shall shortly see, in the dependent case, the
problem falls into the framework of statistical inference of hidden Markov models
(HMM), where the driving noise plays the role of the hidden state (see Ch. 10-12 in
Cappé et al. 2005 and the references therein). However, most of the HMM litera-
tures deal with locally asymptotically normal (LAN) experiments and, to the best of
our knowledge, non-LAN models with partial observations have not yet been studied
systematically.

In this paper, we consider the model (1) in which (¢) is a sequence with geomet-
rically decaying correlation. More precisely, let X = (X ) ez, be generated by the
recursion

Xj = x,_=0)+ 0 Lix,_ <o) X1 + &1+, (2)

subject to Xo ~ N(0, 1), where p := [pT| V |[p~| < 1 and the unknown parameter 6
takes values in an open bounded subset ® C R. We shall consider the problem with
discontinuous drift function f(x,0) := (p"1x>gy + o~ 1{x<g})x, and thus assume
pT # p~and 0 ¢ ©. The driving noises (¢j)jez. and (§)) jez., are assumed indepen-
dent: the white noise component (¢;) is a sequence of i.i.d. N (0, 1) random variables
and the colored noise (&) is the Gaussian AR(1) process, generated by the linear
recursion

& =atj_1+¢, j=1, ©)

where (§;) jez, areii.d. N(0, 1) random variables and a is a known constant |a| < 1,
controlling the bandwidth of the noise.
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Estimation in TAR models with correlated noise 961

All the aforementioned random variables are defined on a measurable space (€2, F),
with the family of probabilities (IPy)gce, indexed by the unknown parameter. For
integers k > m, we define Fi,, = o{¢i,ei k < i < m} and set Fy, := Fom
and Fi o0 := V> Fr.i- All the processes in our problem are adapted to the filtration
(Fj)jez, and we shall assume that F = F0.00- Finally we define the observed filtration
.7:X =o{X;, i < j}CF.

The recursions (2) and (3) form a conditionally Gaussian system, which means that
the conditional law of &, given X" is Gaussian, and by Theorem 13.5 in Liptser and
Shiryaev (2001)

Xj=f(Xjo1.0) +&10) + 1+ yj_15;, )
where
1 ~
€, Ej-1—&10)+¢j), j=1

i V1I+via

is the innovation sequence of i.i.d. N(0, 1) random varlables The process é j(0) =
Eg(§;1F ]X ) and the deterministic sequence y; := Eg(&; E I (0))2 satisfy the gener-
alized Kalman filter equations

E(0) = akj_ 1(9)+1V;‘< i = f(X21.0) —E_1(0)) ©)
+ YVi—1
a2y-2
2., _ -t
yi=a"yj_1+1 T (6)

subject togo = 0 and yp = var(&y).
To avoid inessential technicalities, we shall assume that &y and X are independent
and & ~ N (0, y), where y is the unique positive root of the equation
a2y?
I+vy

y=a’y +1-
In this case, the conditional mean E, (0) satisfies (5) with constant coefficients:
£(0) =ak;10) + —(x — f(Xj_1.0) = &_1(0)). ™

It can be seen that (y;) converges to y exponentially fast and all the results claimed
below hold for &y with an arbitrary Gaussian distribution.

Let Xo := X and )_(j =X;— f(X;-1,60), j > 1 and note that]—'/X = ]—'JX for all
J = 0. By definition of the conditional expectation, §; 1 —/E\j_] is orthogonal to F ]{] ,
and thus to ]-"J{]. Moreover, since the process (}_(j, é‘j,é‘\j) is Gaussian, §; 1 — Ej_l
is independent of F ;_S] and thus of F ]{] as well. Further, since /T + y&; = &;_1 —
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962 P. Chigansky, Y. A. Kutoyants

Ej,l + ¢; and ¢; is independent of F;_1, independence of ’§j and F ]X_l follows and
the representation (4) implies that the likelihood of the sample X" is given by

R ey (U Y
En (X5 0) = mexp( 2X°) (Jiznuw))

11 -~
X exp —Emj;(xj—f(xj_l,m—s,-_l(e))z .®

The likelihood function is discontinuous in # and hence we are faced with an irregular
statistical experiment. In such problems, the maximum likelihood estimator (MLE)
is often asymptotically inferior to the Bayes estimator 6,,, while the latter is typi-
cally asymptotically efficient for arbitrary continuous positive prior densities in the
following minimax sense (see Theorem 9.1, Ibragimov and Has’minskii 1981):

lim lim inf sup n*Eo(T, — 6)*> > lim lim  sup n*Eq (6, — 0)?,
=000 Tn 0:10—0|<5 =0 1n-000:10—6| <5

where T),’s are FX -measurable statistics.

The Bayes estimator for the problem at hand has relatively low computational
complexity, since the likelihood function is piecewise constant in 6 and has at most n
jumps at {Xo, ..., X,—1}. More precisely, for a prior density r, the Bayes estimator
with respect to the quadratic risk is given by

. f@ OL,(X";0)m(6)do
T Jo La(X" 0)m(6)d6
X
Zji{X(j—l),Xo)}ﬂ@;é@ L,(X"; X)) fX((jljl) O (0)do

= : ©)
. X(j)
Z.jZ{X(j_”,X(j)}ﬂ(");ﬁﬂ Ln (Xn’ X(.])) fX(jj,l) ﬂ(@)de

where X ;) is the jth order statistic of X". If the prior 7 is chosen so that numerical
integration in the right-hand side is avoided, the computation of 6, can be carried out
in polynomial time of order O (n?).

The following property, whose proof is deferred to “Appendix” (see Lemma 7),
plays a crucial role in the forthcoming analysis.

Proposition 1 Assume
ot <1 and |a] <1, (10

then the Markov process (X j, §;) is geometrically ergodic under Py, 0 € ©, with the
unique invariant probability density p(x, y; 0).

Remark 1 Obviously, recurrence of (X ;) is necessary for consistent estimation of the
threshold parameter. The condition (10) guarantees positive recurrence of the process
(X ), which is an essential ingredient in derivation of the large sample asymptotic of
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Estimation in TAR models with correlated noise 963

Theorem 1 below. In the null recurrent case, i.e., when one of the coefficients have unit
absolute value, consistent estimation of 6 seems to be possible and some preliminary
calculations show that the corresponding rate may depend on the distribution tail of
the driving noise. The exact characterization of the large sample asymptotic in this
setting remains an open problem, even for independent innovations.

The main result of this paper is the following characterization of the asymptotic
distribution of the sequence of Bayes estimators:

Theorem 1 Let (6,) be the sequence of the Bayes estimators with respect to the
quadratic loss function and a prior with continuous positive density . Then for any
continuous function ¢ with at most polynomial growth

lim Eg,¢ (1 (6, — 60)) = Eg (@),

uniformly on compacts from ®, where

. JgpuZ@w)du
i="=—"
Jr Z(u)du

and In Z(u), u € R is the following two-sided compound Poisson process:

STt — 1) u=0
InZ(u) = (11)

ZH (lu‘)(ﬂ - %/32) u < 0.

Here I, 1™ are i.i.d Poisson processes with the intensity

w :/RP(GO»)’Q 6o)dy,

p(x,y;60)is the unique invariant probability density of the Markov process (X, &;)
under Py,, (8 ) are i.i.d. N(0, 1) random variables, independent of I and T1~ and

ﬂ2:(90(0+—/0_))2 1+( ay )2§( a )2f

J1I+y L+vy = l+y

_ 1+y3

=05(p T —p ).
0 (1+py)(1+y2)

1.1 Generalizations

(i) If &y is replaced in (2) with &;, i.e., if the colored noise component enters
without the one-step delay, the model

Xj=f(Xj-1.0) +a&j—1 +¢j +¢j.
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964 P. Chigansky, Y. A. Kutoyants

is obtained. In this case, the Kalman filter equations take a slightly different form
and the asymptotic analysis can be carried out exactly as in our setting.

On the other hand, if the white noise component ¢; is omitted, the observed
process satisfies the equation

Xj=fXj—1,0)+& = f(Xj-1,0) +a&;1 + ¢
= [(Xj1.0)+a(Xj 1 — [(X;2.0) + ;.
Being a completely observed system, this model fits the setting of Chan (1993)
or Chan and Kutoyants (2012) after a straightforward modification.

(i) Our method is directly applicable to the models, where the colored noise is
generated by a linear multivariate recursion:

£, =AE;, | +BL;. j=1, (12)
where (¢ j) are i.i.d. standard Gaussian vectors in R and A and B are N x N

and N x M matrices, respectively. In this case, the observed process satisfies the
scalar recursion

Xj= (o x, =00+ p Lix,_ <o) X1 + CTEj—l +éj,

where C is a column vector of size N. In this setting, the Kalman filter equations
read [cf. (5) and (6)]

o~ o~ Ay171C ™
§;00)=A&;_,(0) + m(xj —f(Xj-1,0) —C §;_1(0))
-
Ay;CCTy; AT
Vi= A A 1+CTy,_C

subject to :‘,-'\0 = 0andyy = cov(o, &o). If A is a stability matrix, i.e., the absolute
values of its eigenvalues are strictly <1, and the pair (A, B) is controllable:

rank(B AB ... AN-1B) = N,
then the solution of the Riccati equation converges to the matrix y, which is
the unique strictly positive definite root of the corresponding algebraic Riccati

equation (see, e.g., Liptser and Shiryaev 2001)

AyCCTyAT

= AyAT + BB' — .
y=ArA + 1+ CTyC

The statement of Theorem 1 holds with the rate

w =/ p (6o, y; 60)dy,
RN
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Estimation in TAR models with correlated noise 965

(iii)

(iv)

)

where p(x, y; 6p) is the invariant density of the process (§ ;, X ;), and

2 ; 2
Bo(pt —p~ > AyccT \ ATycC
’322 o(p P7) 1+Z CT(A— )’T ) YT
V1I+CTyC = 1+CTyC) 1+CTyC
The latter formula emerges in the proof of the Lemma 3 below, with the obvious

adjustments to the multivariate setting.
The model (12) incorporates the case of the stationary ARMA(p, ¢) noise:

p q
§j=— Zakgjfk + Zblijfe,
k=1 =0

where ay, ..., a, and by, ..., b, are constants, such that the roots of the poly-
nomial a,z? + --- + a;z + 1 lie in the open unit disk of the complex plain.
The canonical state space representation (12) is obtained through the usual state
augmentation

T. T
E/ = (Ejv"‘%‘j—p-i-l, Ej,...&‘j—q-l-l) e RPT4,

Assuming noises with Gaussian distribution is essential, since in this case, the
filtering equations for the conditional density of &; given F jX are finite dimen-

sional and, moreover, the conditional mean?;:j satisfies the linear recursion, whose
explicit solution is used on several occasions through the proof and appears in
the expression for 82. The result can be extended to more general conditionally
Gaussian models, such as, e.g., higher order TAR with possibly heteroscedastic
driving noise. We expect that for non-Gaussian noise, the limit likelihood will still
be a two-sided compound Poisson process, but no neat closed form expression
for A2 will be available.

In principle, our technique is applicable to Gaussian sequences with non-Markov
structure, such as fractional noises, etc. The analysis in this setting is more com-
plicated, depending on the ergodic properties of the processes and the complexity
of the filtering equations (whose linearity will be intact).

Joint asymptotic analysis of the likelihood-based estimators of all the parameters
in the model can be in principle carried out using the same weak convergence
approach, used in the proof of Theorem 1 below (see a brief outline in Sect. 2.2).
In this case, the likelihood (8) is considered as a function of the four unknown
parameters p*, p~,a € (—1,1) and & € © and the corresponding normalized
likelihood ratios read [cf. (14) below]

Lo (X" pf + Jmopg + a0+ 260 + 1)
L,(X"; pg . py » a0, 00)

Zn(yv w, v, M) =

)

for a fixed value of the parameter vector (p(‘; , P » @0, B) and variables y, w, v, u
taking values in appropriate sets. Note that the localizing scaling of 6 differs
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966 P. Chigansky, Y. A. Kutoyants

from that of the other parameters, in which the likelihood function is smooth. It
is possible to check the weak convergence of processes

Zn(y,w,v,u) = Z(y,w, v)Z(u), as n — oo, (13)

where Z(u) is the same as in (11) and

1
Z(y, w, v) = exp (nTv — EnTln) , n:=(,w,v) e R3,

with v ~ N (0, /) and the Fisher information matrix 7, whose explicit expression
is cumbersome. The convergence (13) implies the weak convergence of errors
for the corresponding Bayes estimators

(@, = pd)s VB, — py)s /n@n — ao), n (B, — 60)) = (5, W, B, i),

with & as in Theorem 1 and zero mean normal vector (y, w, v) with covariance
I~!, independent of ii. Since the LAN property holds with respectto (o™, p~, a),
the corresponding MLEs are also asymptotically efficient.

The proof of Theorem 1 is given in the next section and supplementary results, con-
cerning the ergodic properties of the relevant processes, appear in “Appendix”. Some
simulations, demonstrating the contributions of this paper, are gathered in Sect. 3.

2 The proof of Theorem 1
2.1 The notations

The actual unknown value of the parameter will be denoted by 6y and will be assumed
to belong to a generic compact K C ©. We shall use C;, i € N to denote absolute
constants, whose values depend only on the known parameters of the model and the
compact K and may change at each appearance. For random sequences (x,), (y,) and a
positive real decreasing sequence (1), X, = y,+ O (r,) means thatsup,, [x, —y,|/7r 18
arandom variable with moments, bounded uniformly over K. Throughout, we reserve

a ay
and c¢:= .
14+y 14y

b=

For an integer n, the quantities such as n'/? and n'/4, are understood to be rounded to
the nearest integer if needed. For £ < k, we set Zﬁ»:k(. ..) = 0and Hf.:k(. L) =1
For a vector z € R?, | z|| stands for the £; norm. Finally, ]I~”90 and Ego denote the
probability on (€2, F) and the corresponding expectation, under which all the processes
are stationary (the unique existence of such probability is argued in “Appendix”).
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Estimation in TAR models with correlated noise 967

2.2 Preliminaries

Consider the scaled sequence of likelihoods

La(X"; 60 +u/n) _
Zo(u) == R CY N ueU, =n@®—6), n>1. (14)

The Bayes estimator of 6 is given by

> _ JoOLn(X":0)m(0)d0 _ Juy, (B0 +5) Ln (X": 60 + 7) 7 (60 + ) du
" [ La(X™; 0)m(6)d6 Ju, L (X560 + %) 7 (60 + %) du
1 Jy, uln (X" 60+ 5) 7 (60 + &) du

=6+~
0 n [y Ln (X700 + %) 7 (60 + %) du

and thus

fUn uZy (W) (0o + %) du
Ju, Zn)m (60 + %) du

n (é;, —90) =

The right-hand side is a functional of Z,, (1), u € U,,, which under appropriate tightness
conditions, converges weakly to the random variable

fIR{ uZ(u)du
fR Zw)du ’

u=

if the finite dimensional distributions of Z,, (1) converge to those of Z(u). More pre-
cisely, the result claimed in Theorem 1 follows from Theorem 1.10.2 in Ibragimov and
Has’minskif (1981), whose assumptions we check in Sects. 2.3 and 2.4 below.

2.3 Convergence of finite dimensional distributions

We shall prove that the characteristic functions of the finite dimensional distributions of
log likelihoods Y, (1) := In Z,,(u) converge to those of the compound Poisson process
in (11). To this end, we will show that forany d > 1 and real numbersu_4 < --- < uy

d
Yn(0)i=Ea, exp( > i (Yn(uk)—Yn(uk_o))
k=—d
d i 2 12,2
222 T exp (w(uk—uk_l)(e_%)‘kﬂ —2B% —1)) —y(), YaeRY,  (15)
k=—d

uniformly over compacts from ®, where @ and f are constants, defined in Theorem 1.
Without loss of generality, we shall assume that ug = 0 and consider only positive
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968 P. Chigansky, Y. A. Kutoyants

ur’s. The symmetric case of negative uy’s is treated similarly and independence of the
emerging compound Poisson processes 1™ and I1~ will be evident from the proof.

Let & ;j be the vector with the entries

k=% +m/n), k=0,...d (16)
Using the expression (8) for the likelihood, we get
Yy (ui) — Yn(ug—1)
11 < 2
- - o , _ Tk
T 214y JZ; (%) = ottt/ ~ B
|
+§T Zl (Xj — f(Xj—1,00 +ug—1/n) — Eljj)
j=
|
- = k-1
_5 (Xjfl(p-‘r —-—p )1{Xj—1€D5} - c“j,] + :‘j—l)
j=1
X (2Xj — f(Xj-1,00 +ur/n) — f(X;-1,00 + ug—1/n) — /57;_1 - :l;j)
A7)
where we set Dﬁ = [0 + % — L 6y + “"] and used the identity
f @, 00 +ur—1/n) = f(x, 600 +ur/n) = x(p™ = p7)xepiy-
If we define
k._Sk—1 Sk k=1._ 30 _ Sk—1
8..__41. g7, and o; =g CHI
the expression (17) takes the following form under Py,
Yn(up) — Yn(ug—1)
n
s> (X Wt = p )y epiy + 68 1)
- J— i—1€Dy; Jj—
j=1 I+y '
x (VIF78) + Xjm1 (0" = )y oy + 01
(18)

! + - k
+5 (qu(p —p >1{x]-71e0m+5j—1) ’

ke 1] The sequences (81‘) and (ak l) satisfy the recursions

with BX=1 .= [6y, 6 +
5k = bSJ 1 —C(P+ —P_)Xjfll{xjfleDﬁp j=1
(19)

80 =0,
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Estimation in TAR models with correlated noise 969

and
k—1 k—1 — .
o; =b0j_1 —c(pt—p )Xjfll{x.,-qu,f’l}’ j=1
ok =0 (20)
where we set b = ﬁ, c = % In what follows, both representations (17) and
(18) will be useful.

To prove the convergence (15), we shall partition the terms in the sum (17) or (18)
into n'/? consecutive blocks of size n'/? and discard n'/* first terms in each block. As
shown in the Lemma 1 below, discarding the total of n!/# . n!/? terms does not alter
the limit of the sum and, by Lemma 2, the remaining blocks become approximately
independent due to the fast mixing of the process (X, §;, o) j)- Moreover, in each
remaining block, the probability of having exactly one of the events {X; | € Dﬁ }
occurred is of order n'/2. Hence, the sum of n!/? such nearly independent blocks
yields the compound Poisson limit of Lemma 3. This approach to Poisson limits dates
back to at least Meyer (1973).

Denote by s; x the summands in the right-hand side of (17) or (18). Set

d n
Spi= ) Ak Zsj,kv
k=1 j=I
and, form = 1, ..., n'/2, define
d mnl/?

Spom = A Z Sjk-
1

k= j=(m—1)nl/24nl/4
For v,,(1) and v (A) defined in (15), the triangle inequality yields the bound

al2

V(W) = Y ()| < Eg, |exp(iSy) —exp [ 1D Sum
m=1

a2

. = . /2
+ |Eg, exp | i Z Sum | — Eqg, GXP(lSn,l))n]
m=1
~ . 12
| B expasn, ™ = v e

where E@O stands for the expectation with respect to the probability ]TD@O on (2, F),
under which the process (X, §;, 2 j) is stationary (see Lemma 8). In the following
lemmas, we show that all three terms in the right-hand side of (21) vanish as n — oo,
uniformly over 8y on compacts from ©.
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970 P. Chigansky, Y. A. Kutoyants

Lemma 1 Forany € R? and a compact K C O,

nl/2
lim sup Eg,|Sy — D Sum|=0. (22)
m goek m=1
and consequently
nl/2
lim Eg, | exp(iS,) — exp [i D Sum ’ =0, (23)
n
m=1

uniformly over 6y € K.

Proof We shall assume that n is large enough so that maxy |6y + uy/n| < sup |[K|+ 1
and hence on the events {X;_| € Dﬁ} and {X;_; € B,’f}, we have |X;_i| < sup
|K |+ 1. Using the representation (18), we get

/2
3/4 _ '
E(?o Sn_zl Snm| < n / dm}flx Mkll}g},{E% Xj—l(p+_10 )I{Xj_1€D§}+8j—1
m=

X

VI+yEi+X1(p" —pi)l{inleBrlf—l}-‘rO'J]-{__ll

. (24)

1 —
+5 (Xj—l(p+—/? )I{XJ—IED§}+8~]/€'—1)

By Jensen’s inequality, it follows from (19), that

gy (85)% < |b|Eg, (85_)* + (" — p7)*(sup |K| + 1)*Pgy (X1 € Dy),

1 —1b]

which, in view of (44) and 8]6 = 0, implies max j <, Eg, (81]‘.)2 < Cy/n. Further, since

€ is independent of F) |, ]E90|5’;_1||§,-| = IE90|8’]‘._1|E90 [€j] < Ca/n. Similarly
Eg, (aj].‘_l)2 < C3/n. Plugging these bounds into (24), we obtain (22)
nl/2

Eg,

Sy — Z Sn,m‘ =< C4I’l_1/4,

m=1

with a constant Cy4, depending only on K. The uniform convergence in (23) follows,
since | exp(ix) — exp(iy)| < |x — y|. O

Lemma 2 Forany )\ € R4,

a2

lim |Eg, exp | i E Sn.m —(Egoexp(iS,,,l))”l/2 =0,
n
m=1

uniformly over 6y € K for any compact K C ©.

@ Springer



Estimation in TAR models with correlated noise 971

Proof We shall use the bound (50) of Lemma 8 and thus will need to establish the
corresponding Lipschitz property. To this end, for fixed x, y € R and z € R4*t!, let
(X (x),&;(y), Ej(z)) be the solution of the recursions (2), (3) and [cf. (7) and (16)]

[])

BN =bEBY | +o(Xj - f(Xj1.00 +w/n), k=0,...d.
subject to the initial conditions x, y and z, respectively. The latter recursions give
EN() = bz + e D (Xi — f(Xim1, 00+ /m)bI (25)
i=1
Consider the random variable [cf. the right-hand side of (17)]

Qe(x,y,2)
d 14 11
— E E . + - r-wk 1
_k_l)\‘kj_l_im(xj_l(p —p )I{Xj,1€D5} ] 1(Z)+ (Z))

x (2Xj—f(Xj_1,90+uk/n)—f(Xj_1,90+uk_1/n)— L @-8C 1(z))

where we dropped the dependence on x and y for brevity. Define the function
h(x,y,z) := Eg, exp(i®¢(x, y, z)). We aim to show that for z, 7’ € RI+L,

h(x, y,2) = h(x, y, 20| < LA+ x| + 1y + Dzl + 12Dz = 2l (26)

for some constant L, independent of £. Using the definition of ®,(x, y, z) and the
explicit formula (25), a tedious but straightforward calculation gives

d

|De(x, y, 2) = Pe(x, ¥, 2D < D el 2k =2
k=1

l
a1 =z ) [ D21 AX 141X,
j=1

+ Izl +11z’ ||)W+22 |b|J Z (|Xi|+|Xi—1|+|‘§i_1|)|b|j7i) )
i=1

Taking the expectation of both sides, we get

lh(x, y,2)—h(x,y,2)| < Egl®Pe(x,y,2)—Pe(x, y,2)| < |b| 7—

2|l

Y4 14 J
D 2061 2By | X1+ 2l + 121D +4 D 161 D 161 Egy (1Xi -1 |+ 15 -11)

j=I1 j=1 i=1
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972 P. Chigansky, Y. A. Kutoyants

and applying the bound (45), the inequality (26) follows. Note that by the Markov
property, Eg,e etSnl = Egoh(Xo &o, u()) and form =1,...,n'/?

Eq, (eis”‘m |‘7:(m71)n|/2)

= E90 (h (X(m—l)n1/2+n1/4—17 ‘i:(m—l)nl/2+nl/4—17 E(m—l)nl/z—&-nl/“—l) |‘7:(m—1)n1/2) .
Hence, by the Lemma 8

nl/4

)

‘]EOO € Smm | F o pymi2) — Egpetr1| < Cigq

with a positive constant ¢ < 1 and C1, independent of 8. Finally, considering the
telescopic series, we get

212

12
Eg, exp Z Sp.m ]E@O exp(isSy, 1))

W21 W2k W2
is ~ is
— Z E@o H el n,m H E@()el n, 1
k=0 m=1 m=n1/2—k+1
nl/Z_k_l nl/2
_EQO H eISn,m H Egoelsn,l ’
m=1 m=n1/2—k
W21

< Clnl/zqnl/4 — 0,

< ZE%

Eg, (e nnl/Z—k}]:(nl/Z_k_l)nl/z) _ Eeoelsn,l

as claimed. O

Lemma 3 Forany X € R4,

. = . nl/?
lim ‘ (Egy exp(iSp,1))  — ¥ ()| =0,

uniformly over 6y € K for any compact K C ©.

Proof Let D, := Ufle D¥ and define the following events

(i) All samples avoid D,;:

Q12

Ay = ﬂ {Xj-1 & Dn}

j=1
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(i1) Only (j — 1)th sample falls in Dfl:

nl2
Ajp = {Xj—l € D,li} N m {Xi—1 & Dn}
i#j, i=1
(iii) Precisely one sample falls in D,,:
d n1/2
A= U4
k=1 j=1

(iv) Two or more samples fall in D,;:

Axy = (AgU A"

Note that
d ol
Egoels"vl = Egoels”" 1ag + z ZE@OCIS"-' I{Ajyk} + Egoels"*' 1(a,,)- 27
k=1 j=1
Below we shall show that
nl/2
Z Eeoeis,,,l 1A, — e s MBI (g —up_)on 20 mn=34 (28)
j=1
N d
Eope™ iag) = 1 = D (ux —wen)an /> + 03/ (29)
k=1
Py, (Azy) = O(n 7%, (30)

where @ := [ p(6o, y; 6p)dy and p(x, y; 6p) is the unique invariant density of the
chain (X, &;) (see Lemma 7). Plugging these expressions into (27), we obtain

12

d
~ . n
(Eeoelsn’l) = (1 = (kg — ug—)wn"/?
k=1
12

(1 n
+ D e IRy — gy 4 O(”_3/4))

no exp(z (e—%kkﬁZ_%ﬁM% _ 1) (g — uk_l)w),

k=1

The claimed result follows, once we check that (28)—(30) hold uniformly in 6y on
compacts from ©.
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974 P. Chigansky, Y. A. Kutoyants

To this end, note that on the event A ;, the equation (19) give
st =85, €#k
and
5 = 860" —cp™ = pIX 1y, ey’ iz,

where 86, ¢ = 1,..., k are bounded random variables under ﬁgo. Similarly, since
Dl c B! for € > k, and Py (Xj—1 € B--' N D}y =0fore <k,

of t=a{T, tefl,.. k)

1

and
0—1 _ 014 + Y. J=iq,._ .
51’ =0 b'—c(p™ —p )Xjfll{xj,leD',f}b Li=p, tefk+1,...,d}.

1

Hence, for nl/4 < j<n /2 on the event Ajk, by (18) we have

d a2 12
n1/4
Sp1 = Z Z AeSip = Ak z Sik+ O (b )
=1 j=pl/4 i=nl/4
L2

1 _ k
= —Ak Z 1y (Xi—l('oJr — P yx,_epiy + 51'71)
i=j

- 1 _ 1/4
X (,/1 + ye + 3 (X,-_l(,oJr —p )I{X,-_leDl;'} + 5;‘_1)) + 0 (b" )

n!/2 - - 2
c(pt—p7) vt~ L fcpT=p7) i 1)
= A P Ay pitly 22 Ty p it
"_Z( JiEy T Uy

i=j+1
+ - + -\ 2
pr—p ~ I fpT=p 2 1/4
—)\k(T _ij]Sj—}—E(—m) Xj_1)+0(b” )
n1/2

1
=n 3 (eU-ixpE - L pxi) vo (),

i=j

=Wk
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Estimation in TAR models with correlated noise 975

where we defined the kernel

0 i<O0
fi i=0

o) =" /Tty
C(P+—,0_) i—1 i>0
JI+y

By the triangle inequality

Ege ’”l{A ) —€ — k-3 Ak(uk—uk nwon- 1'

™ iAWk ™ iAWk
< |Egpe™ a0y — B ™ Ly epty

~ : ) _i 2_1p252 _
+ Eﬂoem"w""l{xj,lez)/;} — e M N e — ) ™!

+0 ().
(31
By (46), fori < j
Pg,(X; € Dy, X; € DY)

~ 1 1 ,
= Eg,1(x;eD, / e 2 (= f(Xj-1.60)=§j-1)" 4
pRED Dk /21

Py, (Xi € Dy) < Cin 2,

Up —u
Sk k—1335

with a constant C1, independent of 6. Similar bound holds for j < i and hence, using
the identity 1{4) — 1{angy = 1{a\(anB)) = l{anpe}, we get

I VYR R R VA
Ege / I{Aj.k} Egye / I{Xj_leD{;'}

L2
< Py, {Xj—l € D,’ﬁ} N U {Xi—1 € Dy}
i#j, i=nl/*
a2
< > B (XH €D, Xj | € D’;) <Cin732, (32)
i#j, i=nl/4

Further, since (%;) are i.i.d N(0, 1) and &; is independent of .7-'5(_1 fori > j

™ MWk
Egqe l{xj,leD,ﬁ}
nl/2 nl/2

= Eoy1x,_ cpyy exp ——X2 IZQ (i—j )——x2 lZQ )
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976 P. Chigansky, Y. A. Kutoyants

~ A292" [ mke
=Ealix,_eng exp (-5 Z QX (i)——2 Z 0% (i) | +om™)

=0

- 2B B 62
k k 0
:]EOOI{XjfléDL‘} exXp ——2 — > +—

> QM6+ | +om).

i=nl/2—j+1

By (46),

™ 1 202 -1 2
BooLix,_ eps) exp (_5)‘](:3 — s
1 1
= exp (—Exiﬁz - iz)\kﬁz) @ (g — ug—)n~' + 0™,

and thus we have

= i, — 1282 il B2 -1
Eg,e'* !~k1{Xj71€D,1§} — e 2N M o (uy — u_n

fod : . = _ 143252 ;1 2 _
< Eéoel)hkw'hkl{X_/_leDlrf} _ Eeoe A B iz I{Xj_leD,lg} + 0 2)
—~ 1 2 ad 2. 2 . -2
< Boolix, et [oxp | 565 > QPO0;+in) | -1+ 0@
i=nl/2—j+1

< By, (x,-_l c D’,j) Cb? =D L 02y < Csn~ " 4 0 ?).

Plugging this bound and (32) into (31), we obtain

o~ 0 _ i 2_1p242 _ _ 1/2_; _
Egoe'S”’ll{A,_k} — e M 2B Ny —up_ Do < Can BT 4 Can3?,

and in turn (28):

a2

= iS —Lpr-1p22 —-1/2
ZEQOCI "gay —e 2 BB M (g — up_)onY
W12

=2 ‘Ee S IR B (g — up_ e

j=nl/4
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~ . i 2 1p2,2
+ z Egpe'™ 114, | + Z e M 2B My — up_yyorn !

j<nll4 j<nl/4
W2 s
< Csn~! Z P 4 Can' P 4 n1/4]P’90(A1,k) + Csn 3% < Cen™3/4.
j=nl/A

By setting all A;’s to zero, we also get

d n'l? d
Poy(A1) =D D " Pg(Aju) = D e —upn)wn™ 2+ 0. (33)
k=1 j=1 k=1
Further,
nl/2
Pgy(Ag) = 1—Py, [ (J1Xj-1 € D}
j=1
d n1/2
=12 > Py(Xj-1 €Dy
k=1 j=1
d n'/?
13> —wep@n + 0
k=1 j=1
d
=1=> (e —u—pon 2+ 002 (34)
k=1

where in the equality { we used (46). On the other hand, [F)@O (Ag) <1-— ﬁgo (A1) and
the estimate (29) follows from (33) and (34) and the asymptotic

~ ~ 1/4
Egoels’“ll{Ao} = ]Pgo (Ag) + O(bn ).

Finally, (30) follows since Pg,(A2;) = 1 — By, (Ag) — Py, (A1) = O(n~3/4). 0

2.4 Tightness

In Lemmas 4 and 5, we check the tightness conditions (1.1) and (1.2) of Theorem
1.10.2, Ibragimov and Has minskif (1981), respectively.

Lemma 4 For any compact K C O, there is a constant C > 0, such that

2
p = |~ ey (VZa(02) = v/ Zu(un)) = €U+ R,

[u1| <R, |uz|<R

forall 6y K and R > 0. 35)
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978 P. Chigansky, Y. A. Kutoyants

Proof Suppose uy > uj, then using the elementary inequality In )lc > 2(1 — /x),
x > 0 we get

2
2 Z,
B, (VZn02) —/Zulur)) = Eewl/n( R 1)
Z(u2) Zn(uy)
= 2Egy+u /n (1 - Zn(Z?)) < Eoytuy/nIn TZ;)

Similarly to (17), we find that under Pg, 4y, /x,

n

> (Xj—l(PJr =P )Nx,_epyy + 3?—1)
Jj=1

SO - 2
X ( I+yei+5 (Xj—l(er =P )x; jepzy + 5,~1)) ,

1 Zy(uy) 1
n—"—~>=——
Zy(u2) l+y

where (8J2.) is defined in (19). Note that ?,- is independent of .7-' ,X_l under Pg 4,/ and,

2
as in the proof of Lemma 1, Eg, 14, /x (63) < C1(u2 — up)n~L. Hence,

EQO (\/Zn(MZ) - \/Zn(ul))z

n
2
< E Eoo+u,/n (qu(;OJr =P ix;_epyy + 33_1) < Calup — uil,
j=1

where C, depends only on K. By symmetry, the same inequality holds when uy < u
and (35) follows. O

Lemma 5 For any p > 1, there is a constant C (p), such that

C
B2y ) = S0 e U, = n© - a.
u

Proof The proof is an adaptation of the analogous Lemma 2.2 in Chan and Kutoyants
(2012). We shall assume 6y > 0 and # > 0, omitting the similar complementary cases
(recall that 0 ¢ ®). Note that for a constant ¢ > 0,

1/2

Egy Zn' ™ () = IE@OZ:L/Z(M)I{ZJ/2 + Eq Zrll/z(”)l{zf./2

(u)=e~c} (u) <€}

1/2 .
= (EaZa@)"” (Pay (222w 2 ™)) e

12 .
_ (PQO (ln 72w > —Cu)) oS,
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and hence it is enough to check the large deviation bound

C(p)

1
Pay (Eln Zn(u) = —cu) == (36)

for some positive constants ¢ and C(p) and all p > 1.
For uy := u > 0, the formula (18) gives

n
InZ,(u) = T (Xj—l(P+ — P )ix,_jen} +3/’—1)
j=1

5% 1 _
X (Mzzj +5 (Xj—l(,o+ — 0 ) ix,_epyy + 51‘—1))
n 1
S (= 2
= (Sjle — EVj_l)
i

where D,i = [6o, 6o + u/n], the sequence (§;) is generated by (19) with k = 1, and

Vio1i=— (Xj—l(10+ =) x, epyy + 5]'—1) :

1
14y
Further,

1
P, (5 InZ, (u)> —cu)

- 1 1/1 2 1 -
2 -~ ‘, ‘, ‘,2
j=1

j=1
! 1 1(1 2 1 <
<Pg, Z(/E\f (Evj_l)_i (Evj_l) )ZCM +Pg, 3 V]-Z_IZ—ZCM ,
j=1 j=1
and since
n 2
(1 1/1
Pag Z(&‘j (5"11) ) <§Vj1) ) Z cu
j=1
! 1 1/1 2
< e—cuEgo exp Zl(’é\j (Ele) =3 (Ele) ) =e
]=

the bound (36) holds, if we show that for some positive constant ¢ and all p > 1,
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980 P. Chigansky, Y. A. Kutoyants

n—1

SvVica| < cr) (37)

ub

To this end, we shall split the consideration to the cases u < n* and u > n*, where
s € (0, 1) is a constant to be chosen later on, depending on p in (37).

Case u < n®.In this case, D,I, [00, 6o + ] and since

8] = baj—l - C(,0+ - p_)Xj—ll{Xj_leD’ll}a J Z 19

subject to 69 = 0, it follows that

5l < +_ - (9 sfl)
51 = lello™ = p71 (o027 =
laly - - _ -
= m|ﬂ+ —p (90+n‘Y 1) <lallp™ —p~| (90 +n’ 1),
where we used the definitions ¢ := % and b := ﬁ and the assumption |a| < 1.
Further,

1 2
2 —
Vi = Tty (Xj(P+ =P Nxepy + 5/')

_ 2
> — T4y (Xj(pt = p)+3y) Lixeny)

(pt —p)? —1\)?
2T<90—|a|(90+n5 )) Lix,ep)y

_ = p)1

T 90 (1 —|a|) 1{X eDly = Cll{X/-eD,‘,}

where the latter inequality holds for all n large enough. Consequently,

n—1 n—1
ZV2<CM <P90 Zl{x ED1}<C_M <P90 Z l{X ED1}<_M
=0 nl/2

By Lemma 7, the process (X ;) is geometric mixing and we have

Botu/n
P, (X; € D)) = Eeo/ e b= 1— (X100 g

6o A/ 2

U L g inf e s Xme) s 0"
n n

2
2 1€[6o,60+1]

@ Springer



Estimation in TAR models with correlated noise 981

where the constant C> > 0 can be chosen for all 6y € K to be independent of j and

n by the ergodic properties of (X, &;) from Lemma 7. Hence, with ¢ := %C 1Co, for
an integer p > 1,

n—1 n—1
C
Pog | D2 Vi <cu] <Poy| D lixjeny < oo
=0 j=nl/2 !
n—1 1
<P || 2 (I{X_/eDn‘}—Eeol{XjeDi}) z 3 Cou
j=nl/2
1 n—1 2p
-2p___ .
=@ B | 2 i
j=nl/2

where we defined n; := I{XjeD},} — EQOIKX]_GD}I}. Since [n;| < 2, by Lemma 7,

n—1 2p n—1 2p
Eoo [ D mi| —Ea | D
j=nl/2 j=nl/2
n—1 2p n—1 2p
2p 1 ~ 1 2p 012
<n“PEy, |Eg, p Z n;j Fo | —Eg, p Z nj < Cn°Pr" <1,
j=nl/2 j=nl/2

for all n large enough. Hence, it is enough to check

2p
n—1
Eo | D nj| =<Cpu’. (38)

j=nl/2

To estimate the latter expectation, we shall apply the covariance inequality (8.1) from
Dedecker and Doukhan (2003):

_ n—1 2p _ n—nl/2-1 2p
Eo [ D mi| =Ea| 2 n
j=nl/2 j=
P
LI ~ P\
= [ 4pn X (Ba [noBa G170 ") ) . (39)
j=0
Since |no| < 2,
D = P AP T |T (. P 4p (4 i\
a0 [10Eg, (nj1F0)|” < 47 Egy[Eo, (n;1F0)|” < 4 —CaCrl ), (40)
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982 P. Chigansky, Y. A. Kutoyants

where the latter inequality holds by Lemma 7, since
Eo, (n1F0) = Eq, (EOO(Wj|fj—l)|f0)

and |E90 (nj|.7-'j_1)| < Cy47. Plugging the bound (40) into (39), we obtain (38) and
consequently (37) for u < n®.

Case u > n®. For a fixed integer k and all j > k, define
j—1
Fjoe= [ {Xi ¢ ©)
i=j—k
and note that on I'j_; x we have
|b|*

1 —|b]

18;1/1p" = p" 1= =: b~

< |c|sup |®]

Jj—k
Czbj_lxifll{x,-,leD,'l}
i=1

Now let k' be such that, C; bK< %00, then (recall that both 6y and u are positive)

Vi

_ 2
T+y (X" =P +8) Lx,epnlir,_ )

_ Wt =p)1

2 .
T+y 4901 xeonlir, ) = Colixepn i, -

Define W; := 1;x,epylir;_, ;) and note that

EgWj = Eo Lir;_, k}Peo (Xj € DiIXH’EH)

inf o2 (=8-1— (X 1:600))” >C3—

i- ”‘/}1/ 1e®

where the positive constant C3 can be chosen independent of j and n due to the ergodic
properties of (X ;, §;) from Lemma 7. Hence, with ¢ := 1C3C; and any integer p > 1,

> Egol{r

j=K
| a1 2p+2
< (3/C3)*P*? s Eg, z (W; —Eq,W;)
j=K
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for all sufficiently large n. Now (37) follows if we show that for a positive constant
C(p).

2p+2
n—1 s

Ego [ D (W) = Ea W) < C(pul™? Yu>n' (41)
=

To this end, we shall use the Marcinkiewicz—Zygmund inequality from Doukhan and
Louhichi (1999). For a sequence of random variables (1) jen., the coefficient of weak
dependence is defined

Crq == sup|cov (ms . My Ny - - Mi,)

3

where the supremum is taken over all {71, .. ., fy},suchthatl <7 < ... <1, andm,
t satisty ty,41 — ty, = 1.

Theorem 2 (Theorem 1, Doukhan and Louhichi 1999) Let (1) jen be a sequence of
central random variables such that for a fixed integer g > 2,

Cry= 0™ 1%) as t — . (42)

Then there exists a positive constant B, independent of n, for which

n—1 4

E Z nj < Bn?%, (43)
j=0

We shall apply this theorem to the bounded sequence n; := W; —IEq, W;. Since n;
is a function of (X ; 4, ..., X;), it inherits the mixing property (49). More precisely,
with

h(x,y) :=Eg, (r/tl. 1 X, = X,6, = y) ,
g(-x9 y) = E90 (nler] . -771,, |Xtm+1—k’ =X, Ethrl—k’ = y)

by the Markov property of (X, &;), fort > k’

Crq = |Eaony-- -1, — Booey- - 10, Beg My - - 101, |
= |Eaoh (X1, £,)8 Xy 1=k Etyry1—k)
_EQOh(Xtms Srm )Eeog(szH—ku étm+1—k’)|
< 29Cr" 7K (1 4 r'my < 20F1Cp R,

which clearly satisfies (42). Since n < ul/s | (43) now gives
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984 P. Chigansky, Y. A. Kutoyants

" 2p+2

gy [ D (W) —EgyW)) < BnP*! < Bu(tV/s,
j=1

and the bound (41) follows, if we choose s := (p + 1)/(p + 2). O

3 Simulated experiments

The objective of this section is to illustrate the results of Theorem 1 by means of a
simulation. To this end, we fixed the following values of the parameters

6y = 1.5, ,oJr =09,p_=-05,a=09

and estimated the root mean square errors of the Bayes estimator 6, and the MLE
0, by averaging over a large number of Monte Carlo trials. This has been done in
two ways: by computing the estimators, based on simulated data, and computing the
corresponding limit quantities, based on simulated process from the limit experiment.
The practical advantage, offered by Theorem 1, is that the latter simulation requires
much less CPU time than the former.

3.1 Simulated data

Using the recursions (2) and (3), we generated a large number (M = 20.000) of sample
paths. For each path, we computed the Bayes estimator 6, using the formula (9) and
the uniform prior on the interval ® := (1,2). Then we calculated the normalized
empirical root mean square error for a number of sample sizes

1/ Eq, (60 — 90)2,

where Ego denotes averaging over the paths.

Similarly, we computed the (central) MLE and the pseudo MLE, which assumes
independent innovations with the same variance 1 + 1/(1 — a?). The results, depicted
at Fig. 1, indicate that the errors converge as the sample size n increases and that the
Bayes estimator performs better than the others for smaller sample sizes as well.

3.2 Simulated limit experiment

While the distribution of the random variable i, defined in Theorem 1, cannot be com-
puted in a closed form, it is easy to sample and the expectations can be approximated
by averaging over Monte Carlo trials. To this end, we estimated the value of

2 =/ p (6o, y; 6p)dy ~ 0.0576
R
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/ —c—BE

—+— MLE B
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0 500

1000 1500 2000 2500 3000 3500 4000 4500 5000

sample size n

Fig. 1 The normalized empirical root mean squares of the BE, MLE and pseudo MLE versus the sample
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0.1

0.09

0.08
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Fig. 2 The estimated stationary density of (X ;)

using standard kernel estimator, applied to a single long trajectory of (X ).

depicts the estimated marginal density

Figure 2
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0.8} B

0.4} 4

0.2} B

50 100

-100 -50

ol

Fig.3 A typical sample path of the limit likelihood ratio process Z(u), u € R. The marks are the positions
of it and i
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0.025( N :
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0.015
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Fig. 4 The estimated probability densities of & and u
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/Rp(x,y; 0o)dy, x €[-8,38].

Next, we generated a large number (M = 10°) of samples from the compound Poisson
process Z(u), defined in (11) and computed the approximate root mean square errors

\/m ~ 38.64 and \/ﬁm ~ 46.88,

where 1 is the central maximizer of Z(u) and Ego denotes the empirical expectation.

Note that the obtained estimates are at good correspondence with the plots at Fig. 1.
The typical realization of Z (1) along with i and # are plotted at Fig. 3. The densities

of & and i1, whose kernel estimates are depicted at Fig. 4, appear to be heavy tailed.

Appendix: Ergodic lemmas used in the proof

The proofs in Sect. 2 use the ergodic properties of the processes, summarized in the
following lemmas. Our standing assumption is (10).
Lemma 6 For all integers j > 0and p > 1,
[v]
P, (X; € [60, 60 + v/n]) < o (44)

and
Eg, (1X;17 + €17 [Xo = x, 60 = y) < r{ Ri (IxI” + y|") + Ro,  (45)
with a positive constant r1 < 1 and constants Ry and R, independent of .

Proof For j > 1,

6p+v/n 1 v

1 . 2
Py, (X ;i € [6p, 00 + v/n]) = Ey, / e 2O S(Xj-1.00)=j-1)" g < —.
0( J / ) 0 % \/E n

Further, by Jensen’s inequality

1 p
€17 < (Ialéj—l +d- Ial)l_—mllfjl) < lallgj—11” + (1 —laD'Plg;17,

and hence

Eq, (€17%0 = y) < lal/[y]” + Ci.

Similarly, with p := [p™| Vv |p~|
P 2\
1X17 < (pIXj—1]+IEj—11+]e;) =:0|le|[)+(§) (IE;—117 + I&j17)
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and
Eo, (1X;17| X0 = x, & = y) < p’|x|” + Calal/[y|” + C3,
which gives (45). O

Lemma 7 The Markov chain (X j, ;) has the unique invariant measure under Py,
with uniformly bounded probability density p(x, y; 6p) satisfying

Pg, (X, € [0, B0 + v/nl)

Oo+v/n v 5
=/ /P(x,y;Go)dxdy = —/ p(bo, y: 60)dy + O(n™"), (46)
2 R nJr

0

where @90 is the corresponding stationary probability on (2, F).
Moreover, the chain is geometrically ergodic, i.e., there exist positive constants C
and r < 1, such that for a measurable function |h| < 1 and m > k

Eay (X, ) X =2, =) ~Eayh (s, 80| <Cr"F(xl 41y, x,y € R
7)

and consequently, for an F,, ~-measurable random variable |H| < 1
Eop|Eaq (H1F) — By H| < €. (48)

Finally, (X;,&;) is geometrically mixing, i.e., for measurable functions |g| < 1,
|l <1

Eoog (X, &V (Xitms Ektm) — Bapg Xk, 80 Eagh Xkt Em) | < Cr™ (1 4 15).
(49)

In particular, (48) and (49) hold with the stationary expectation Ego.

Proof The transition kernel of the process (X ;, &;) has a positive density with respect
to the Lebesgue measure:

1 1 1
(Plap(x, y) = /A 5P (—5 ( — f(x,00) —y)* — S@= ay)z) dudv

and hence in the terminology of Meyn and Tweedie (2009), it is r-irreducible and
aperiodic. Further, a ball Br of radius R > 0 around the origin is a small set with
respect to, e.g., the measure

V(dx, dy) = e~ 2@ +D=+R(ul+eD gy gy
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and V(x, y) = |x| + |y| satisfies the drift condition

1
(PV)(x.y) =V(x.y) = =5 (L= p A laDV. y) + 2 y)esp).  (X.7) € R?,

for sufficiently large R. By Theorem 15.0.1 in Meyn and Tweedie (2009), it follows
that there exists a unique invariant probability measure 7 and for any measurable

h(x,y) < V(x,y),
‘P”h —/hdn

with positive constants C and r < 1, i.e., (47) holds. Since IE@OH = IE@Oh(Xm, En)
and Eg, (H|Fi0) = Eg, (X, &n)|Fe) with h(x, y) := Egy(H|X,n = x, & = ), the
claim (48) follows from (45) and (47). Since the transition kernel P has a bounded
continuously differentiable density with respect to the Lebesgue measure, so does
the invariant measure 7 and (46) follows. The mixing inequality (49) follows from
Theorem 16.1.5 in Meyn and Tweedie (2009). O

<Cr'V(x,y),

The theory, used in the proof of the previous lemma, does not directly apply to the
Markov chain (X}, &;, e j) [see (16) for the definition of z ;1 since it is generated
by a (3 + d)-dimensional recursion, driven by two dimensional noise. This typically
excludes y-irreducibility. Fortunately, for our purposes the following weaker proper-
ties are sufficient:

Lemma 8 The Markov process (X;, &, g j) has the unique invariant measure. Let
Py, denote the corresponding stationary probability (by uniqueness, the stationary
probabilities Py,, introduced in Lemmas T and 8, coincide). Then for a measurable
function h(x, y, 2), satisfying |h(x, v, z)| < 1 and the Lipschitz condition

|h(x,y,2)—h(x, y, )| <L (1+Ix|+Iy[+zll+121) z=2"1,

x,y €R, z,7 e R,

with a positive constant L,

Eoo |Eao (h(Xoms &my Em)|Fe) — Egyh(Xo, &0, Eo)| < Cg™ ™" (50)

for some positive constants C and g < 1 and all integers m > £ > Q.

Proof Under the stationary measure ]I~D90 from Lemma 7, we can extend the definition
of (X}, &;) to the negative integers and define

0
Bpi=c z b (X; — f(Xi—1,00 +ux/n)), k=0,....d (51)

i=—00
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a
I+y
establish uniqueness, let .« and i’ be two invariant measures and note that by Lemma 7

their (X, &) marginals coincide. Hence,

where b = Ep) is invariant. To

._ ay
and ¢ = T

w(dx,dy,dz) = v(dx, dy)u(x, y;dz), w'(dx,dy,dz) = v(dx,dy)u (x, y; dz)

where v is the invariant measure of the process (X;,&;) and u(x,y;dz) and
w'(x, y;dz) are corresponding regular conditional probabilities. Let (X;,&;, E ])
and (X;,§;, B z ) be the solutions of the recursions (2), (3) and (7) with u = uy,

k=0,...,d subject to the 1n1t1a1 conditions (X, &o, u()) and (X, &, uo) where
(Xo, So) is sampled from v andAuo and _:é are ﬁampled from ©(Xo, &o; dz) and
' (Xo, &; dz). Note that ""j -8 = bf( — Bo) and hence for any uniformly
continuous function g

‘/gdu—/gdu/

Since uniformly continuous functions form a measure defining class, the uniqueness
follows.
To derive the bound (50), note that for £ < m

_]—)OO

< Eq|e(X;j. 8. B)) — g(X;. £, B)| —

m
Eh =8 e D (X = f(Xj1. 00+ ur/n) b7

j=t+1
Lm+0)
= p2=O [ B30 1o S (X — f(Xj1. 60 +ug/m) b2 O
j=t+1
m
e D> (X f(Xjor. 60+ ue/m) b = b3 O g 4 gk
j=1m+0)+1
Using the bound (45), we get
3 (m4)
Ego| £ <2Bqp |52 4C1 D Bgy (IX;1+1X,01) D29 <o (52)
j=C+1

By the triangle inequality

Eg,

Egy (h (X, &, En)| Fe) — Bagh (Xo. &0, Z0)|
Eay (h(Xms &ms E)| Fe) = Bogh (Xim, 6m, B

Egy (h e 6. 3"t + 1| Fe) = Eay (B 6, )| 7o) |

= EGO

=< E90
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+Eg,

Eay (h(Xons s )| Fe) = Boph X, s )|

B . 6. ) = Eayh (X, 60 5301 + )| (53)

Note that h(X,,, &,, J>) is measurable with respect to F Ln+0),00 and by (48)

Eq,

w 1
E90 (h(Xm’ Em, JZ)"’FZ) - Egoh(Xm, Em, JZ)‘ < er(m—f).
By the Lipschitz property of z and (52), we have

Eg,

Eoy (X, &, 53014+ 12) | Fe) ~Eay (Ko, 6, 2| F2) |

< Eg,

1 -
B s &, 5270 1+ 1) = h X, i, )|
Lm— 5
< b2 O L (141X |+ &+ I Emll+ 1021 11
Lom— ~ N 1/2 1/2
b3 L (Bgy (141Xl +16m +1Eml+1020)°)  (Baol117)

C3p2 0,

IA

IA

Similar bound holds for the last term in (53) and the claim follows with g := /|b| V r.
O
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