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Abstract In terms of the two-parameter Mittag-Leffler function with specified para-
meters, this paper introduces the Mittag-Leffler vector random field through its finite-
dimensional characteristic functions, which is essentially an elliptically contoured one
and reduces to a Gaussian one when the two parameters of the Mittag-Leffler function
equal 1. Having second-order moments, a Mittag-Leffler vector random field is char-
acterized by its mean function and its covariance matrix function, just like a Gaussian
one. In particular, we construct direct and cross covariances of Mittag-Leffler type for
such vector random fields.

Keywords Covariance matrix function · Cross covariance · Direct covariance ·
Elliptically contoured random field · Gaussian random field · Mittag-Leffler function ·
Variogram

1 Introduction

A Mittag-Leffler function Eα,β(z), named after its originator, the Swedish mathemati-
cian Gö Mittag-Leffler (1846–1927), is defined by a series expansion

Eα,β(z) =
∞∑

n=0

zn

�(αn + β)
, z ∈ C,
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942 C. Ma

where α and β are positive constants, and C is the set of complex numbers. For α = 0
and β = 1, one may define E0,1(z) by E0,1(z) = 1

1−z , |z| < 1. This is a generalization
of the exponential function, to which it reduces for α = β = 1, E1,1(z) = ez, z ∈ C.
It is easy to see that

E1,2(z) = ez − 1

z
, E1,3(z) = ez − 1 − z

z2 ,

and, for an integer n ≥ 2,

E1,n(z) = 1

zn−1

(
ez −

n−2∑

k=0

zk

k!

)
, z ∈ C.

Also, it is known that

E2,1(z) = cosh(
√

z), E2,2(z) = sinh(
√

z)√
z

, E 1
2 ,1(z) = ez2

erfc(−z),

where erfc(z) is the error complement function defined by

erfc(z) = 2√
π

∫ ∞

z
e−t2

dt, z ∈ C.

For properties of the Mittag-Leffler function, we refer the reader to Erdélyi (1995),
Djrbashian (1993), and Paris and Kaminski (2001). This and related functions have
been widely adopted in the literature of statistics, probability, and various sciences.
For example, Mittag-Leffler and related distributions have been studied by Pillai
(1990), Fujita (1993), Lin (1998), Jose and Uma (2009), Jayakumar et al. (2010),
Haubold et al. (2011), among others. The Mittag-Leffler and related functions appear
naturally in connection with the description of relaxation phenomena in various com-
plex physical, biophysical and chemical systems (Glockle and Nonnenmacher 1995;
Blumenfeld and Mandelbrot 1997; Berberan-Santos 2005; Weron and Klauzer 2010),
within the framework of fractional (non-integer) kinetic equations. Recently, there is
an increasing interest in time series or stochastic processes involving Mittag-Leffler or
related functions. One type of those time series or stochastic processes have Mittag-
Leffler or related marginals, such as a Mittag-Leffler process of Jayakumar (2003),
and first-order autoregressive processes considered by Jayakumar and Pillai (1993),
Jose and Uma (2009), Jayakumar et al. (2010) and Jose et al. (2010). Another type
is the so-called Mittag-Leffler noise investigated by Glockle and Nonnenmacher
(1995), Kneller and Hinsen (2004), Viñales and Despósito (2007), and Uma et al.
(2011). It is a univariate Gaussian process with the Mittag-Leffler covariance function
E1,β(−θ |x |β), x ∈ R, where θ > 0 and 0 < β ≤ 1, and includes an Ornstein–
Uhlenbeck process as a special case with β = 1. Barndorff-Nielsen and Leonenko
(2005) constructed stationary processes with prescribed one-dimensional marginal
laws and Mittag-Leffler covariance functions Eα,β(−|x |) and Eα,1(−|x |γ ), x ∈ R,
where α > 0, β > 0, and 0 < γ < 1. This paper adopts a different approach, and
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Mittag-Leffler vector random fields 943

our objective is to introduce Mittag-Leffler vector random fields, which have second-
order moments and form a subclass of elliptically contoured (spherically invariant)
vector random fields (Du and Ma 2011; Ma 2011a), and to construct a particular type
of covariance matrix functions for such random fields with Mittag-Leffler direct and
cross covariances.

By an m-variate random field, we mean a family of m-variate real random vectors
on the same probability space, {Z(x) = (Z1(x), . . . , Zm(x))′, x ∈ D}, where the
index set D could be a temporal, spatial, or spatio-temporal domain. This paper is
concerned with second-order random fields, each of whose components has second-
order moments. For an m-variate second-order random field {Z(x), x ∈ D}, its mean
or expectation (function) is defined by

EZ(x) = (E Z1(x), . . . , E Zm(x))′, x ∈ D.

Its covariance matrix (function), C(x1, x2), is a two-point function with m ×m entries,

Ci j (x1, x2) = E{[Zi (x1) − E Zi (x1)][Z j (x2) − E Z j (x2)]}, x1, x2 ∈ D,

i, j = 1, . . . , m,

where each diagonal entry is called a direct covariance (function) and each off-diagonal
entry is called a cross covariance (function). In particular, a second-order vector ran-
dom field {Z(x), x ∈ D} is said to be (second-order, or weakly) stationary or homo-
geneous, if its mean function EZ(x) does not depend on x ∈ D, and its covariance
matrix function cov(Z(x1), Z(x2)) depends on the lag x1 − x2 only. In such a case, we
write cov(Z(x1), Z(x2)) as C(x1 − x2) for simplicity. For properties of second-order
vector random fields, we refer the reader to Cramér and Leadbetter (1967), Gikhman
and Skorokhod (1969), Yaglom (1987) and Ma (2011a), among others. It is known
that linear combinations with positive coefficients, Hadamard (or Schur) products,
and convergent products of covariance matrix functions are again covariance matrix
functions, under the Gaussian or second-order elliptically contoured setting (see, e.g.,
Ma 2011a,b,c,d).

The rest of this paper is organized as follows. Section 2 defines a Mittag-Leffler
vector random field through its finite-dimensional characteristic functions, and Sect. 3
presents some covariance matrix structures for Mittag-Leffler vector random fields,
with particular attention to Mittag-Leffler direct and cross covariances. Some con-
cluding remarks are given in Sect. 4, while our theorems are proved in Sect. 5.

2 Mittag-Leffler vector random fields

This section provides the definition for a Mittag-Leffler vector random field through
its finite-dimensional characteristic functions after Theorem 1, which guarantees the
existence of such a vector random field with any given covariance matrix structure
and with finite-dimensional characteristic functions of Mittag-Leffler type.

Theorem 1 Let α and β be positive constants, 0 < α ≤ 1, and β ≥ α. If an m × m
matrix function C(x1, x2), x1, x2 ∈ D, possesses the following two properties:
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944 C. Ma

(i) the transpose of C(x1, x2) equals C(x2, x1), i.e.,

{C(x1, x2)}′ = C(x2, x1), x1, x2 ∈ D,

and
(ii) the inequality

n∑

i=1

n∑

j=1

a′
i C(xi , x j )a j ≥ 0 (1)

holds for every natural number n, any xi ∈ D and any ai ∈ R
m, i = 1, 2, . . . , n,

then there exists an m-variate random field {Z(x), x ∈ D} with mean 0, covariance
matrix function C(x1, x2), and the finite-dimensional characteristic functions

E exp

{
ı

n∑

k=1

Z′(xk)ωk

}
= �(β)Eα,β

⎛

⎝−�(α + β)

2�(β)

n∑

i=1

n∑

j=1

ω′
i C(xi , x j )ω j

⎞

⎠ ,

ω1, . . . ,ωn ∈ R
m, (2)

for every natural number n and any xi ∈ D, i = 1, 2, . . . , n.
Conversely, the covariance matrix function C(x1, x2) of an m-variate random field

{Z(x), x ∈ D} with the finite-dimensional characteristic functions (2) satisfies the
above properties (i) and (ii).

We call an m-variate random field {Z(x) + μ(x), x ∈ D} a Mittag-Leffler random
field, where {Z(x), x ∈ D} is described in Theorem 1 and μ(x), x ∈ D, is an m-
valued (non-random) function. The term is so called because its finite-dimensional
characteristic functions are of the Mittag-Leffler form. In the particular case where
α = β = 1, it reduces to a Gaussian vector random field, since E1,1(x) = ex . From
Theorem 1, one may see that a Mittag-Leffler vector random field is characterized by
its mean function and its covariance matrix function, just like a Gaussian or a second-
order elliptically contoured one. For the construction of such a random field, it suffices
to construct its covariance matrix function.

It should be remarked that the two parameters α and β are restricted to 0 < α ≤
min(1, β) of the Mittag-Leffler function employed in Theorem 1 or in the above
definition of a Mittag-Leffler vector random field. Although it is not clear how to
deal with other cases generally, the above procedure does not work for, for example,
E2,1(−x) = cosh(

√−x) = cos(
√

x), x ≥ 0. Nevertheless, E2,1(x2) = cosh(x) can
be used to construct a covariance matrix function, as the following example shows.

Example 1 For given real functions g1(x), . . . , gm(x), x ∈ D, there exists an m-
variate Mittag-Leffler random field with direct and cross covariances

Ci j (x1, x2) = cosh(gi (x1) + g j (x2)), x1, x2 ∈ D, i, j = 1, . . . , m.
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Mittag-Leffler vector random fields 945

To see this, it suffices to verify inequality (1), which follows from

n∑

i=1

n∑

j=1

a′
i C(xi , x j )a j =

n∑

i=1

n∑

j=1

m∑

k=1

m∑

l=1

aik cosh(gk(xi )+gl(x j ))a jl

=
{

n∑

i=1

m∑

k=1

aik cosh(gk(xi ))

}2

+
{

n∑

i=1

m∑

k=1

aik sinh(gk(xi ))

}2

≥0.

A reason for we restrict 0 < α ≤ min(1, β) is due to the following Schneider’s
(1996) theorem on the completely monotone property of a Mittag-Leffler function
with 0 < α ≤ 1 and β ≥ α, which contains Pollard’s (1948) theorem as a special case
with β = 1. We cite Schneider’s theorem here for convenience in the proofs of our
theorems in Sect. 5.

Theorem 2 (Schneider’s theorem) The Mittag-Leffler function Eα,β(−x), x ≥ 0, is
completely monotone on [0,∞) if and only if

0 < α ≤ 1, β ≥ α. (3)

Moreover, in the Laplace–Stieltjes representation

Eα,β(−x) = 1

�(β)

∫ ∞

0
e−xt dμα,β(t), x ≥ 0, (4)

the underlying probability measure μα,β(x) on [0,∞) has the following properties
involving α and β:

(i) for 0 < α < 1 and β = 1, μα,1(x) is absolutely continuous with respect to the
Lebesgue measure and its density fα,1(x) is given by

fα,1(x) = α−1x−1−1/α pα(x−1/α), x ≥ 0,

where pα(x) is the density of the one-sided stable distribution whose Laplace
transform is exp(−tα);

(ii) for α = β = 1, μ1,1(x) is the Dirac measure at the point 1;
(iii) for α = 1 and β > 1, μ1,β(x) is a beta distribution function with density

f1,β(x) =
{

(β − 1)(1 − x)β−2, 0 < x < 1,

0, elsewhere;

(iv) for α < 1 and β ≥ α,μα,β(x) is absolutely continuous with density

fα,β(x) = �(β)

∞∑

k=0

(−x)k

k!�(β − α − αk)
, x ≥ 0.
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946 C. Ma

3 Mittag-Leffler direct and cross covariances

As we have seen in the last section, a Mittag-Leffler vector random field is characterized
by its mean function and its covariance matrix function. For the development of such a
random field, we just need to construct its covariance matrix function. In this section,
we concentrate on a particular subclass of Mittag-Leffler vector random fields whose
direct and cross covariance functions are of the Mittag-Leffler form. Our construction
method involves two ingredients or building blocks, a scalar (or univariate) variogram
and a conditionally negative definite matrix, which are briefly reviewed below.

A symmetric, real m × m matrix Θ = (θi j ) is said to be conditionally negative
definite (Bapat and Raghavan 1997), if the inequality

m∑

i=1

m∑

j=1

ai a jθi j ≤ 0

holds for any real numbers a1, . . . , am subject to
∑m

k=1 ak = 0. Without the restrict
condition

∑m
k=1 ak = 0,Θ = (θi j ) is often said to be negative definite. In general, a

necessary condition for the above inequality is

θi i + θ j j ≤ 2θi j , i, j = 1, . . . , m,

which implies that all entries of a conditionally negative definite matrix are non-
negative whenever its diagonal entries are non-negative. If all its diagonal entries
vanish, a conditionally negative definite matrix is also named a Euclidean distance
matrix (Dattorro 2005). It is known that Θ = (θi j ) is conditionally negative definite
if and only if an m × m matrix with entries exp(−θi j u) is positive definite, for every
fixed u ≥ 0 (cf. Theorem 4.1.3 of Bapat and Raghavan 1997). Some simple examples
of conditionally negative definite matrices are

(i) θi j = θi + θ j ,
(ii) θi j = θi − θ j ,

(iii) θi j = |θi − θ j |,
(iv) θi j = (θi − θ j )

2,
(v) θi j = −θiθ j ,

(vi) θi j = max(θi , θ j ), i, j = 1, . . . , m, where θi s are real numbers.

In what follows, ‖x‖ and |x| denotes the Euclidean norm and the �1 norm of x ∈
R

d , respectively. An m × m matrix with entries ‖xi − x j‖ is a Euclidean distance
matrix, for m given points xi ∈ R

d (i = 1, . . . , m). So is a matrix with entries |xi −
x j |, i, j = 1, . . . , m. The Euclidean norm and the �1 norm involves in the covariance
matrix structures of Theorems 3 and 4, respectively, besides two conditionally negative
definite matrices, one having entries βi j , and the other having entries θi j .

Theorem 3 Let λ be a positive constant with 0 < λ ≤ 1. If β = (βi j ) is an m × m
conditionally negative definite matrix with all entries greater than 1, and Θ = (θi j ) is
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Mittag-Leffler vector random fields 947

an m ×m conditionally negative definite matrix with positive entries, then there exists
an m-variate stationary Mittag-Leffler random field with direct and cross covariances

Ci j (x) = Γ (βi j )

βi j − 1
θ

− 1
2

i j E1,βi j

(
−θ

λ
2

i j ‖x‖λ

)
, x ∈ R

d , i, j = 1, . . . , m. (5)

Theorem 4 Let λ be a positive constant with 0 < λ ≤ 1. If β = (βi j ) is an m × m
conditionally negative definite matrix with all entries greater than 1, and Θ = (θi j ) is
an m ×m conditionally negative definite matrix with positive entries, then there exists
an m-variate stationary Mittag-Leffler random field with direct and cross covariances

Ci j (x) = Γ (βi j )

βi j − 1
θ

− d
2

i j E1,βi j

(
−θ

λ
2

i j |x|λ
)

, x ∈ R
d , i, j = 1, . . . , m. (6)

Obviously, a major difference between (5) and (6) appears in the θi j ’s exponent,
associated with the different norm employed in the difference construction.

It is known that the Euclidean norm and the �1 norm are scalar (or univariate)
variograms. A scalar variogram or structure function γ (x1, x2), x1, x2 ∈ D, associated
with a scalar random field with second-order increments (see, e.g., Cressie 1993), is a
non-negative function with γ (x, x) ≡ 0, x ∈ D, and satisfies the inequality

n∑

i=1

n∑

j=1

ai a jγ (xi , x j ) ≤ 0,

for every integer n ≥ 2, any xk ∈ D, and any ak ∈ R (k = 1, . . . , n) subject to∑n
k=1 ak = 0. The covariance matrix structures in the following theorems involve a

scalar variogram, besides a conditionally negative definite matrix.

Theorem 5 If γ (x1, x2), x1, x2 ∈ D, is a scalar variogram, and β = (βi j ) is an
m ×m conditionally negative definite matrix with all entries greater than 1, then there
exists an m-variate Mittag-Leffler random field with direct and cross covariances

Ci j (x1, x2) = Γ (βi j )

βi j − 1
E1,βi j (−γ (x1, x2)), x1, x2 ∈ D, i, j = 1, . . . , m. (7)

In the particular case whereβi j ≡ 1, E1,1(−γ (x1, x2))=exp(−γ (x1, x2)), x1,x2 ∈
D, is a scalar covariance function whenever γ (x1, x2) is a scalar variogram, according
to Schoenberg’s theorem (see, e.g., Ma 2005).

The parameter α of the Mittag-Leffler function is assumed to be equal to 1 in each
of covariance matrix structures in Theorems 3–5, in contrast to the parameter β that
varies from entry to entry. It would be of interest to consider a case with distinct α’s.
Nevertheless, the parameter α is not limited to be 1 in Theorem 6 or 7 below.

Theorem 6 Let α and βk be positive constants, 0 < α < 1, and βk > α
2 (k =

1, . . . , m). If γ (x1, x2), x1, x2 ∈ D, is a scalar variogram, then there exists an m-
variate Mittag-Leffler random field with direct and cross covariances
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948 C. Ma

Ci j (x1, x2) = Γ (βi + β j − α)Eα,βi +β j (−γ (x1, x2)), x1, x2 ∈ D,

i, j = 1, . . . , m. (8)

Theorem 7 Let α and β be positive constants, 0 < α < 1, and β ≥ α. If γ (x1, x2) is
a scalar variogram on D and Θ = (θi j ) is an m × m conditionally negative definite
matrix with non-negative diagonal entries, then there is an m-variate Mittag-Leffler
random field with direct and cross covariances

Ci j (x1, x2) = Eα,β(−γ (x1, x2) − θi j ), x1, x2 ∈ D, i, j = 1, . . . , m. (9)

Example 2 For α ∈ (0, 1) and ν ∈ (0, 1], in (9) taking β = 1 and γ (x, 0) = ‖x‖ν, x ∈
R

d , yields a stationary covariance matrix function with entries

Ci j (x) = Eα,1(−‖x‖ν − θi j ), x ∈ R
d , i, j = 1, . . . , m.

In the particular case where d = 1 and θi j = 0, Ci j (x) reduces to the univariate cor-
relation model proposed by Barndorff-Nielsen and Leonenko (2005), and by Viñales
and Despósito (2007).

Although E2,1(x) = cosh(
√

x) and E2,2(x) = sinh(
√

x)√
x

, x ≥ 0, do not belong

to any of the families in Theorems 3–7, a quotient of E2,1(x) and the reciprocal of
E2,2(x) can be used to construct covariance matrix structures as follows.

Theorem 8 Let λ be a positive constant and 0 < λ < 1. If γ (x1, x2) is a scalar
variogram on D and Θ = (θi j ) is an m × m conditionally negative definite matrix
with non-negative diagonal entries, then there exist three m-variate Mittag-Leffler
random fields, the first one has direct and cross covariances

Ci j (x1, x2) = cosh{λ(γ (x1, x2) + θi j )
1
2 }

cosh{(γ (x1, x2) + θi j )
1
2 }

, x1, x2 ∈ D, i, j = 1, . . . , m, (10)

the second one has direct and cross covariances

Ci j (x1, x2) = sinh{λ(γ (x1, x2) + θi j )
1
2 }

sinh{(γ (x1, x2) + θi j )
1
2 }

, x1, x2 ∈ D, i, j = 1, . . . , m, (11)

and the third one has direct and cross covariances

Ci j (x1, x2) = (γ (x1, x2) + θi j )
1
2

sinh{(γ (x1, x2) + θi j )
1
2 }

, x1, x2 ∈ D, i, j = 1, . . . , m. (12)

In particular, letting λ → 0+ in (10) yields direct and cross covariances

Ci j (x1, x2) = 1

cosh{(γ (x1, x2) + θi j )
1
2 }

, x1, x2 ∈ D, i, j = 1, . . . , m.
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4 Concluding remarks

The Mittag-Leffler vector random field introduced in this paper is formulated through
its finite-dimensional characteristic functions, in terms of the two-parameter Mittag-
Leffler function with 0 < α ≤ min(1, β). This type of vector random fields allows
every possible covariance matrix structure that satisfies the conditions of Theorem 1,
just as a Gaussian one does. A Gaussian vector random field belongs to the family of
Mittag-Leffler ones, which in turn belong to that of elliptically contoured ones (Ma
2011a). Examples of elliptically contoured vector random fields include Gaussian,
Student’s t (Ma 2013a), stable, logistic, hyperbolic (Du et al. 2012), Mittag-Leffler,
Linnik, and Laplace ones. It should be remarked that the finite-dimensional character-
istic functions of a Mittag-Leffler vector random field are of Mittag-Leffler type, but
its finite-dimensional distribution functions are not of Mittag-Leffler type. In contrast,
time series or stochastic processes whose finite-dimensional densities are of Mittag-
Leffler type are studied in Pillai (1990), Jayakumar and Pillai (1993), Lin (1998),
Jayakumar (2003), and Jose et al. (2010).

A Mittag-Leffler vector random field is characterized by its mean and covariance
matrix functions, just like a Gaussian one. An important feature of such a random field
is that there is not a restriction or a tight connection between its mean and covariance
matrix functions, unlike a log-Gaussian (Matheron 1989), Chi-square (Ma 2011c), or
K -distributed case (Ma 2013b), so that the Mittag-Leffler vector random field may be
relatively more flexible for applications, just like a Gaussian one.

As an important ingredient or building block, we also employ the Mittag-Leffler
function to construct covariance matrix functions, besides two other building blocks
(see also Du and Ma 2011; Ma 2011b,c,d, 2013a), a scalar variogram and a condi-
tionally negative definite matrix. Of course, other covariance matrix structures, which
satisfy the conditions of Theorem 1, can be adopted for the Mittag-Leffler vector ran-
dom field as well. An immediate application of these covariance matrix functions in
geostatistics is for the co-kriging or linear predication (Cressie 1993). A recent exam-
ple may be found in Kleiber and Nychka (2012), where non-stationary covariance
matrix models are highlighted, while covariance matrix functions in our Theorems 5–8
may be stationary or non-stationary relevant to the choice of γ (x1, x2). Covariance
matrix structures constructed in this paper are, of course, admissible for other second-
order elliptically contoured vector random fields, besides the Mittag-Leffler one, but
may not be available for another non-Gaussian vector random field, such as a log-
Gaussian, skew-Gaussian (Minozzo and Ferracuti 2012), Chi-square, or K -distributed
one.

5 Proofs

5.1 Proof of Theorem 1

For a given matrix function C(x1, x2) that possesses the two properties (i) and (ii), it
is known (e.g., Gikhman and Skorokhod 1969) that there is an m-variate Gaussian
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950 C. Ma

random field, {Y(x), x ∈ D}, say, with mean 0 and covariance matrix function
C(x1, x2). Let U be a non-negative random variable with distribution μα,β(x) defined
in Theorem 2, and let U and {Y(x), x ∈ D} be independent. The expectation of U is
obtained from (4),

EU = − d

dx

∫ ∞

0
e−xu dμα,β(u)

∣∣∣
x=0

= −Γ (β)E ′
α,β(0) = Γ (β)

Γ (α + β)
,

where E ′
α,β(0) = 1

Γ (α+β)
follows from the Taylor series expansion of Eα,β(x).

Based on U and {Y(x), x ∈ D}, we define an m-variate random field

Z(x) = (EU )−
1
2 U

1
2 Y(x), x ∈ D.

Clearly, this is an m-variate random field with second-order moments, its mean func-
tion is EZ(x) = 0, and its covariance matrix function is

cov(Z(x1), Z(x2)) = cov(Y(x1), Y(x2)) = C(x1, x2), x1, x2 ∈ D.

For every natural number n and any xk ∈ D (k = 1, . . . , n), the characteristic function
of (Z′(x1), . . . , Z′(xn))′ is

E exp

{
ı

n∑

k=1

Z′(xk)ωk

}
= E exp

{
ı(EU )−

1
2 U

1
2

n∑

k=1

Y′(xk)ωk

}

=
∫ ∞

0
E exp

{
ı(EU )−

1
2 u

1
2

n∑

k=1

Y′(xk)ωk

}
dμα,β(u)

=
∫ ∞

0
exp

⎧
⎨

⎩− 1

2EU
u

n∑

i=1

n∑

j=1

ω′
i C(xi , x j )ω j

⎫
⎬

⎭ dμα,β(u)

= Γ (β)Eα,β

⎛

⎝− 1

2EU

n∑

i=1

n∑

j=1

ω′
i C(xi , x j )ω j

⎞

⎠ , ω1, . . . ,ωn ∈ R
m,

where the third equality follows from the characteristic function of the normal random
vector (Y′(x1), . . . , Y′(xn))′, and the last equality follows from identity (4).

Conversely, it is easy to check that the covariance matrix function of an m-variate
random field {Z(x), x ∈ D} with the finite-dimensional characteristic functions (2)
satisfies the properties (i) and (ii) in Theorem 1. ��
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5.2 Proof of Theorem 3

We start by showing that the matrix function

H(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ
− 1

2
11 exp(−θ

1
2

11‖x‖) θ
− 1

2
12 exp(−θ

1
2

12‖x‖) · · · θ
− 1

2
1m exp(−θ

1
2

1m‖x‖)

θ
− 1

2
21 exp(−θ

1
2

21‖x‖) θ
− 1

2
22 exp(−θ

1
2

22‖x‖) · · · θ
− 1

2
2m exp(−θ

1
2

2m‖x‖)
· · · · · · · · · · · ·
θ

− 1
2

m1 exp(−θ
1
2

m1‖x‖) θ
− 1

2
m2 exp(−θ

1
2

m2‖x‖) · · · θ
− 1

2
mm exp(−θ

1
2

mm‖x‖)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x ∈ R
d ,

(13)

is a stationary covariance matrix function. To do so, we evaluate its Fourier transform
matrix, which is positively proportional to

⎛

⎜⎜⎜⎜⎝

(θ11 + ‖ω‖2)− d+1
2 (θ12 + ‖ω‖2)− d+1

2 · · · (θ1m + ‖ω‖2)− d+1
2

(θ21 + ‖ω‖2)− d+1
2 (θ22 + ‖ω‖2)− d+1

2 · · · (θ2m + ‖ω‖2)− d+1
2

· · · · · · · · · · · ·
(θm1 + ‖ω‖2)− d+1

2 (θm2 + ‖ω‖2)− d+1
2 · · · (θmm + ‖ω‖2)− d+1

2

⎞

⎟⎟⎟⎟⎠
, ω ∈ R

d ,

by Theorem 1.14 of Stein and Weiss (1971, page 6). This matrix is positive definite
for each fixed ω ∈ R

d , since its entries can be rewritten as

(θi j + ‖ω‖2)−
d+1

2 = 1

Γ ( d+1
2 )

∫ ∞

0
u

d+1
2 −1 exp(−‖ω‖2u) exp(−θi j u) du, i, j

= 1, . . . , m,

and the matrix with entries exp(−θi j u) is positive definite due to the assumption that
Θ is conditionally negative definite. It follows from the Cramér–Kolmogorov theorem
(see Cramér 1940) that H(x) is a covariance matrix function.

According to Pollard (1946), the function exp(−xλ), x ≥ 0, is the Laplace trans-
form of a distribution function, G(ω), say, with support on the interval [0,∞); that
is,

exp(−xλ) =
∫ ∞

0
exp(−xω) dG(ω), x ≥ 0. (14)

From (13) and Theorem 4 of Ma (2011b), we obtain that an m × m matrix function
with entries

θ
− 1

2
i j exp(−θ

λ
2

i j ‖x‖λ)=θ
− 1

2
i j

∫ ∞

0
exp(−θ

1
2

i j ‖x‖ω) dG(ω), x ∈ R
d , i, j =1, . . . , m,
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is a covariance matrix function. So is the matrix function with entries

θ
− 1

2
i j exp(−θ

λ
2

i j ‖x‖λu), x ∈ R
d , i, j = 1, . . . , m, (15)

where u is an arbitrary non-negative number.
For α = 1, β > 1, according to Schneider’s theorem, we can express E1,β(−x) as

E1,β(−x) = β − 1

Γ (β)

∫ 1

0
(1 − u)β−2e−xu du, x ≥ 0. (16)

Consequently, (5) can be rewritten as

Ci j (x) = θ
− 1

2
i j

∫ 1

0
exp

(
−βi j ln

1

1 − u

)
exp(−θ

λ
2

i j ‖x‖λu)
du

(1 − u)2 , x1, x2 ∈ R
d ,

i, j = 1, . . . , m.

For each fixed u ∈ [0, 1), an m × m matrix with entries exp
(
−βi j ln 1

1−u

)
is positive

definite, since β = (βi j ) is conditionally negative definite, and an m × m matrix with
entries (15) is a covariance matrix function. Therefore, it follows from Theorem 4 of
Ma (2011b) that an m × m matrix function with entries Ci j (x) is a covariance matrix
function. ��

5.3 Proof of Theorem 4

As in the proof of Theorem 3 we start by showing that the matrix function

H(x) =

⎛

⎜⎜⎜⎜⎜⎜⎝

θ
− d

2
11 exp(−θ

1
2

11|x|) θ
− d

2
12 exp(−θ

1
2

12|x|) · · · θ
− d

2
1m exp(−θ

1
2

1m |x|)

θ
− d

2
21 exp(−θ

1
2

21|x|) θ
− d

2
22 exp(−θ

1
2

22|x|) · · · θ
− d

2
2m exp(−θ

1
2

2m |x|)
· · · · · · · · · · · ·
θ

− d
2

m1 exp(−θ
1
2

m1|x|) θ
− d

2
m2 exp(−θ

1
2

m2|x|) · · · θ
− d

2
mm exp(−θ

1
2

mm |x|)

⎞

⎟⎟⎟⎟⎟⎟⎠
, x ∈ R

d ,

(17)

is a stationary covariance matrix function. Its Fourier transform matrix is positively
proportional to

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∏
k=1

(θ11 + ω2
k )

−1
d∏

k=1
(θ12 + ω2

k )
−1 · · ·

d∏
k=1

(θ1m + ω2
k )

−1

d∏
k=1

(θ21 + ω2
k )

−1
d∏

k=1
(θ22 + ω2

k )
−1 · · ·

d∏
k=1

(θ2m + ω2
k )

−1

· · · · · · · · · · · ·
d∏

k=1
(θm1 + ω2

k )
−1

d∏
k=1

(θm2 + ω2
k )

−1 · · ·
d∏

k=1
(θmm + ω2

k )
−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ω ∈ R
d ,
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and is positive definite for each fixed ω = (ω1, . . . , ωd)′ ∈ R
d , since its entries can

be rewritten as

d∏

k=1

(θi j + ω2
k )

−1 =
d∏

k=1

∫ ∞

0
exp(−ω2

k u) exp(−θi j u) du, i, j = 1, . . . , m,

and, by assumption, Θ is conditionally negative definite. According to the Cramér–
Kolmogorov theorem, H(x) is a covariance matrix function.

It then follows from (14), (17), and Theorem 4 of Ma (2011b) that an m ×m matrix
with entries

θ
− d

2
i j exp(−θ

λ
2

i j |x|λ) = θ
− d

2
i j

∫ ∞

0
exp(−θ

1
2

i j |x|ω) dG(ω), x ∈ R
d , i, j = 1, . . . , m,

is a covariance matrix function. So is the matrix function with entries

θ
− d

2
i j exp(−θ

λ
2

i j |x|λu), x ∈ R
d , i, j = 1, . . . , m, (18)

where u is an arbitrary nonnegative number. In terms of identity (16), (6) can be
rewritten as

Ci j (x) = θ
− d

2
i j

∫ 1

0
exp

(
−βi j ln

1

1 − u

)
exp(−θλ

i j |x|λu)
du

(1 − u)2 , x1, x2 ∈ R
d ,

i, j = 1, . . . , m,

which form a covariance matrix function by Theorem 4 of Ma (2011b). ��

5.4 Proof of Theorem 5

By using identity (16), (7) can be rewritten as

Ci j (x1, x2) =
∫ 1

0
e−βi j ln 1

1−u e−γ (x1,x2)u du

(1 − u)2 , x1, x2 ∈ D, i, j = 1, . . . , m.

Since γ (x1, x2) is a scalar variogram, e−γ (x1,x2)u, x1, x2 ∈ D, is a scalar covariance
function for each fixed u ∈ [0, 1], by Schoenberg’s theorem. Also, for each fixed

u ∈ (0, 1), an m × m matrix with entries e−βi j ln 1
1−u is positive definite. Thus, the

matrix function with entries e−βi j ln 1
1−u e−γ (x1,x2)u is a covariance matrix function. So

is the matrix function with entries (7) by Theorem 4 of Ma (2011b). ��
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5.5 Proof of Theorem 6

For 0 < α ≤ 1 and β > α, it follows from (2.15) of Schneider (1996) that the function
Eα,β(−x) can be expressed as

Eα,β(−x) =
∫ ∞

0
e−xu fα,β(u) du, x ≥ 0,

where

fα,β(x−α) = 1

Γ (β − α)
x1+α−βhα,β(x), x > 0,

and

hα,β(x) =
∫ x

0
yβ−α−1gα(x − y) dy, x > 0,

where gα(x) is a density of the one-sided stable distribution with the Laplace transform
exp(−ωα), ω ≥ 0. Alternatively, the function Eα,β(−x) can be expressed as

Eα,β(−x) = 1

Γ (β − α)

∫ ∞

0
e−xuu

β−α−1
α hα,β(u− 1

α ) du, x ≥ 0.

Based on such an expression, we rewrite (8) as

Ci j (x1, x2) =
∫ ∞

0
e−γ (x1,x2)uu

βi +β j −α−1
α hα,βi +β j (u

− 1
α ) du,

x1, x2 ∈ D, i, j = 1, . . . , m.

For each fixed u > 0, an m × m matrix with entries u
βi +β j −α−1

α is clearly positive

definite. Also, an m × m matrix with entries hα,βi +β j (u
− 1

α ) is positive definite, since
the following inequality holds for any ak ∈ R (k = 1, . . . , m),

m∑

i=1

m∑

j=1

ai a j hα,βi +β j (u
− 1

α )

=
m∑

i=1

m∑

j=1

ai a j

∫ u− 1
α

0
yβi +β j −α−1gα(u− 1

α − y) dy

=
∫ u− 1

α

0

(
m∑

i=1

ai yβi

)2

y−α−1gα(u− 1
α − y) dy ≥ 0.

Thus, the matrix function with entries e−γ (x1,x2)uu
βi +β j −α−1

α hα,βi +β j (u
− 1

α ) is a covari-
ance matrix function, due to the fact that e−γ (x1,x2)u is a scalar covariance function
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by Schoenberg’s theorem. So is the matrix function with entries (8) by Theorem 4 of
Ma (2011b). ��

5.6 Proof of Theorem 7

For 0 < α ≤ 1 and β ≥ α, according to Schneider’s theorem, the function Eα,β(−x)

can be expressed as

Eα,β(−x) =
∫ ∞

0
e−xu fα,β(u) du, x ≥ 0,

where fα,β(x) is a density function and

fα,β(x) = Γ (β)

∞∑

n=0

(−x)n

n!Γ (β − α − αn)
, x ≥ 0.

As a result, (9) can be rewritten as

Ci j (x1, x2) =
∫ ∞

0
e−θi j ue−γ (x1,x2)u fα,β(u)du, x1, x2 ∈ D, i, j = 1, . . . , m.

Since γ (x1, x2) is a scalar variogram, e−γ (x1,x2)u, x1, x2 ∈ D, is a scalar covariance
function for each fixed u ≥ 0, by Schoenberg’s theorem. Since Θ is conditionally
negative definite, an m × m matrix with entries e−θi j u is positive definite. Thus, the
matrix function with entries e−θi j ue−γ (x1,x2)u is a covariance matrix function. So is
the matrix function with entries (9) by Theorem 4 of Ma (2011b). ��

5.7 Proof of Theorem 8

Notice that cosh(x) can be decomposed into an infinite product as

cosh(x) =
∞∏

n=1

(
1 + 4x2

(2n − 1)2π2

)
, x ∈ R.

As a result, (10) can be rewritten as

Ci j (x1, x2) =
∞∏

n=1

(
λ2 + (1 − λ2)(2n − 1)2π2

4(γ (x1, x2) + θi j ) + (2n − 1)2π2

)
,

x1, x2 ∈ D, i, j = 1, . . . , m.
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Similarly, using the product expansion of sinh(x), sinh(x) = x
∏∞

n=1

(
1 + x2

n2π2

)
, we

rewrite (11) as

Ci j (x1, x2) = λ

∞∏

n=1

(
λ2 + (1 − λ2)n2π2

γ (x1, x2) + θi j + n2π2

)
,

x1, x2 ∈ D, i, j = 1, . . . , m,

and rewrite (12) as

Ci j (x1, x2) =
∞∏

n=1

(
1 + γ (x1, x2) + θi j

n2π2

)−1

, x1, x2 ∈ D, i, j = 1, . . . , m.

By Theorems 1–3 of Ma (2011b), the function (10), (11), or (12) forms a covariance
matrix function once we are able to show that an m × m matrix function with entries

{1 + (γ (x1, x2) + θi j )τ }−1, x1, x2 ∈ D, i, j = 1, . . . , m,

is a covariance matrix function, for each fixed τ > 0. In fact, this is true since these
entries can be re-expressed as

{1 + (γ (x1, x2) + θi j )τ }−1

=
∫ ∞

0
e−γ (x1,x2)τue−θi j τu du x1, x2 ∈ D, i, j = 1, . . . , m,

and the functions

e−γ (x1,x2)τue−θi j τu x1, x2 ∈ D, i, j = 1, . . . , m,

form a covariance matrix function, under the assumptions. ��
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