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Abstract Nonlinear state-space models driven by differential equations have been
widely used in science. Their statistical inference generally requires computing the
mean and covariance matrix of some nonlinear function of the state variables, which
can be done in several ways. For example, such computations may be approximately
done by Monte Carlo, which is rather computationally expensive. Linear approxima-
tion by the first-order Taylor expansion is a fast alternative. However, the approxi-
mation error becomes non-negligible with strongly nonlinear functions. Unscented
transformation was proposed to overcome these difficulties, but it lacks theoretical
justification. In this paper, we derive some theoretical properties of the unscented
transformation and contrast it with the method of linear approximation. Particularly,
we derive the convergence rate of the unscented transformation.

Keywords Unscented transformation · Nonlinear transformation · Monte Carlo ·
Linear approximation

1 Introduction

Many scientific studies employ nonlinear state-space models for describing the dynam-
ics of a continuous-time state process driven by a system of an ordinary differential
equation (Diekmann and Heesterbeek 2000; Simon 2006). The unscented Kalman

K. W. Ahn (B)
Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
e-mail: kwooahn@mcw.edu

K.-S. Chan
Department of Statistics and Actuarial Science, The University of Iowa,
Iowa City, IA 52242, USA
e-mail: kung-sik-chan@uiowa.edu

123



890 K. W. Ahn, K.-S. Chan

filter (UKF) was proposed by Julier and Uhlmann (1997) to overcome difficulties
such as high computational cost from simulation-based methods and inaccuracy of
the extended Kalman filter (EKF), which approximates the nonlinear system by its
first-order Taylor expansion. See Simon (2006) for details. Empirical works suggest
that the UKF is a promising technique with satisfactory performance, see Julier and
Uhlmann (1997, 2004); Wan and van der Merwe (2000). The UKF mimics the updat-
ing scheme of the Kalman filter, with each updating step requiring the computation
of the mean and covariance matrix of some nonlinear function of the state vector,
which is done via the unscented transformation (UT). Specifically, the latter problem
concerns computing the mean and covariance matrix of some nonlinear transforma-
tion y = f (x), as well as the covariance matrix between y and x, where the mean
and covariance matrix of x are known. In contrast with Monte Carlo methods, the
UT makes use of a small number of deterministic “sigma points” in estimating these
population characteristics. Julier and Uhlmann (1997, 2004) studied the error rates of
the UT estimators. However, their derivation of the error rates was heuristic as they
did not provide exact error terms and conditions under which such error rates can be
obtained. In addition, they did not investigate the error rate of the UT estimator of
the covariance matrix between x and y. Since the UKF has been widely applied to
inference with a nonlinear differential equation model that is discretized with a small
time step, denoted by h > 0, it is essential to study the theoretical properties of the UT
where the nonlinear transformation is indexed by a parameter h > 0. The main issue
we address in this paper concerns a rigorous derivation of the error rates of the UT as
h → 0. (We do not pursue the study of the error rate of the UKF in this paper.) Note
that for an antisymmetric transformation, i.e., f (·) = − f (−·), if the distribution of x
is symmetric, i.e., the distribution of x is same as that of −x, then the distribution of
y = f (x) is symmetric. Thus, it is also of interest to study the error rates of the UT for
the case of symmetric distributions. In Sect. 2, we elaborate the definition of the UT.
The error rates of the UT are then derived in Sect. 3. Section 4 includes a simulation
study to compare UT, Monte Carlo, and linear approximation, which shows that the
UT is a relatively fast method that generally outperforms the linear approximation
method. We conclude briefly in Sect. 5.

2 Unscented transformation

The UT is an approximate scheme for computing the mean and covariance matrix of
y = f (x), where x is a a c × 1 random vector with known mean E(x) and covariance
matrix P, and f : Ω → R

q is a q × 1 vector function, i.e., f = ( f1, . . . , fq), where
R is a set of real numbers and Ω ⊆ R

c is the sample space of x, i.e., P(x ∈ Ω) = 1.
Let Py and Pxy be the covariance matrix of y and the covariance matrix between x and
y, respectively. For a constant λ > −c, the sigma points x̂(0), . . . , x̂(2c) are defined as
follows:

x̂(0) = E(x), x̂(i) = E(x) + x̆(i), i = 1, . . . , 2c,

x̆( j) =
(√

(c + λ)P
)T

j
, x̆(c+ j) = −

(√
(c + λ)P

)T

j
, j = 1, . . . , c,

123
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where
√

(c + λ)P is the matrix square root of (c + λ)P such that

(√
(c + λ)P

)T (√
(c + λ)P

)
= (c + λ)P,

and (
√

(c + λ)P) j is the j th row of
√

(c + λ)P. Here,
√

(c + λ)P can be obtained by
the Cholesky decomposition or singular value decomposition. The constant λ controls
the distance between the sigma points and E(x). If λ → −c, the sigma points tend to be
closer to E(x). If λ → ∞, the sigma points tend to be further away from E(x). Hence,
λ is a tuning parameter that controls the error between the true mean or covariance
matrices and their UT approximations to be defined below. Let ŷ(i) = f (x̂(i)), i =
0, . . . , 2c. The UT formulas for the approximate mean ŷ, covariance matrix P̂y of y,
and covariance matrix P̂xy between x and y are

ŷ =
2c∑

i=0

W (i)ŷ(i), P̂y =
2c∑

i=0

W (i)(ŷ(i) − ŷ)(ŷ(i) − ŷ)T ,

P̂xy =
2c∑

i=0

W (i)(x̂(i) − E(x))(ŷ(i) − ŷ)T ,

(1)

where W (0) = λ/(c + λ), W (i) = 1/(2c + 2λ), i = 1, . . . , 2c. Hence, the UT
estimates are weighted sample analogues based on the sigma points, see Simon (2006).
On the other hand, the linear approximation scheme used by the EKF approximates
the mean and covariance matrices via the first-order Taylor expansion, resulting in the
following formulas:

ŷL = f (E(x)), P̂y,L = HPHT , P̂xy,L = PHT (2)

for estimating E(y), Py, and Pxy, respectively, where H is the Jacobian matrix of f
evaluated at E(x). Clearly, the preceding UT method is computationally more efficient
than the Monte Carlo simulation. In addition, the UT does not require calculating
the Jacobian matrix. Below, we show that the UT method provides more accurate
approximation than linear approximation, see Sect. 3.

3 Convergence rates of the UT

Define x̃ = x − E(x) = (x1 − E(x1) . . . xc − E(xc))
T . The derivative ∂ i f (E(x))/

(∂xk1
1 . . . ∂xkc

c ) is the derivative of f evaluated at E(x) where i = ∑c
j=1 k j , and k j ’s

are non-negative integers. Assume f is an analytic function over Ω . Then, the Taylor
series expansion of f around E(x) is given as follows:

f (x) = f (E(x)) +
∞∑

i=1

(
x̃1

∂

∂x1
+ · · · + x̃c

∂

∂xc

)i f (E(x))

i ! .
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Define Dk
x̃ f as

Dk
x̃ f =

(
c∑

i=1

x̃i
∂

∂xi

)k

f (E(x)).

We assume that Dk
x̃ f is integrable on Ω for any non-negative integer k. We also assume

that there exists Y with finite absolute first moment such that |∑m
i=0 Di

x̃ f/ i !| ≤ Y
a.e. on Ω for all m. Since

∑m
i=0 Di

x̃ f/ i ! → f , we have limm→∞ E(
∑m

i=0 Di
x̃ f/ i !) =

limm→∞
∑m

i=0 E(Di
x̃ f/ i !) = E{ f (x)} by the dominated convergence theorem. In

practice, these conditions are satisfied if i) there exists a constant Q > 0 such that
E |x̃ k1

1 . . . x̃ kc
c | ≤ Q

∑c
j=1 k j , for any non-negative integers k j ; ii) for all j, 1 ≤ j ≤ q,

there exists some constant R > 0 such that

∣∣∣∣∣
∂
∑c

i=1 ki f j

∂xk1
1 . . . ∂xkc

c

∣∣∣∣∣ ≤ R
∑c

i=1 ki ,

for any non-negative integers k j , 1 ≤ j ≤ c. Thus, we can derive the following
results:

E(y) = f (E(x)) + 1

2!
c∑

i=1

c∑
j=1

Pi j
∂2

∂xi∂x j
f (E(x)) +

∞∑
j=3

1

j !E
[

D j
x̃ f
]
, (3)

ŷ = f (E(x)) + 1

2

c∑
i=1

c∑
j=1

Pi j
∂2

∂xi∂x j
f (E(x))

+ 1

2(c + λ)

2c∑
i=1

∞∑
j=2

1

(2 j)! D2 j
x̃(i) f, (4)

where Pi j is the (i, j)th entry of P. We consider the case that the random variable
x = xh is indexed by a positive number h such that x = E(x) + op(h) where
E(x) is independent of h, in which case Eq. (3) provides an heuristic expansion of
E(y) = E{ f (xh)} with summands of orders h j , j = 0, 1 . . .. The order of the error
rate of the UT estimator of E(y) may then be studied by comparing Eqs. (3) and (4).
If x has a symmetric distribution about its mean E(x), we have

E(y) = f (E(x)) + 1

2!
c∑

i=1

c∑
j=1

Pi j
∂2

∂xi∂x j
f (E(x)) +

∞∑
j=2

1

(2 j)!E
[

D2 j
x̃ f
]
. (5)

Define A = {(a, b)|a, b ∈ N but (a, b) �= (1, 1)} and B = {(a, b)|a, b ∈ N, but a �=
1, b �= 1, (a, b) �= (2, 2)} where N is the set of natural numbers. Then, we have
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On the convergence rate of the unscented transformation 893

Py = HPHT − 1

4
E
(

D2
x̃ f
)

E
(

D2
x̃ f
)T + E

⎡
⎣ ∑

(i, j)∈A

1

i ! j !
(

Di
x̃ f
) (

D j
x̃ f
)T

⎤
⎦

−
⎡
⎣ ∑

(i, j)∈B

1

i ! j !E
(

Di
x̃ f
)

E
(

D j
x̃ f
)T

⎤
⎦ ,

P̂y = HPHT − 1

4
E
(

D2
x̃ f
)

E
(

D2
x̃ f
)T

(6)

+ 1

2(c + λ)

2c∑
i=1

⎡
⎢⎢⎣

∑
k+�= even
(k,�)∈A

1

k!�!
(

Dk
x̃(i) f

) (
D�

x̃(i) f
)T

⎤
⎥⎥⎦

−
∑

(k,�)∈A

⎡
⎣ 1

(2k!)(2�!)
1

4(c + λ)2

2c∑
i=1

2c∑
j=1

(
D2k

x̃(i) f
) (

D2�
x̃( j) f

)T

⎤
⎦ .

If the distribution of x is symmetric about its mean,

Py =HPHT − 1

4
E
(

D2
x̃ f
)

E
(

D2
x̃ f
)T + E

⎡
⎢⎢⎣

∑
i+ j= even
(i, j)∈A

1

i ! j !
(

Di
x̃ f
) (

D j
x̃ f
)T

⎤
⎥⎥⎦

−
⎡
⎣ ∑

(i, j)∈A

1

(2i !)(2 j !)E
(

D2i
x̃ f
)

E
(

D2 j
x̃ f
)T

⎤
⎦ . (7)

In addition,

Pxy = PHT +
∞∑

i=2

1

i !E

[
x̃
(

Di
x̃ f
)T
]

,

P̂xy = PHT +
∞∑

k=1

1

(2k + 1)!
1

2(c + λ)

2c∑
i=1

x̃(i)
(

D2k+1
x̃(i) f

)T
.

(8)

When the distribution of x is symmetric about the mean E(x),

Pxy = PHT +
∞∑

i=1

1

(2i + 1)!E

[
x̃
(

D2i+1
x̃ f

)T
]

. (9)

Detailed derivations of (3)–(9) can be found in Appendix A. From (3)–(9), we have
the following lemma:
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Lemma 1 Assume that

1. f is an analytic function;
2. Dk

x̃ f is integrable on Ω for any non-negative integer k;
3. there exists Y with finite absolute first moment such that |∑m

i=0 Di
x̃ f/ i !| ≤ Y a.e.

on Ω for all m.

Then,

1. E(y) − ŷ =∑∞
j=3

1
j !E[D j

x̃ f ] − 1
2(c+λ)

∑2c
i=1
∑∞

j=2
1

(2 j)! D2 j
x̃(i) f ;

2. Py − P̂y = E
[∑

(i, j)∈A
1

i ! j ! (Di
x̃ f )(D j

x̃ f )T
]

−
[∑

(i, j)∈B
1

i ! j !E(Di
x̃ f )E(D j

x̃ f )T
]

− 1
2(c+λ)

∑2c
i=1

[∑
k+�= even
(k,�)∈A

1
k!�! (Dk

x̃(i) f )(D�
x̃(i) f )T

]

+∑(k,�)∈A

[
1

(2k!)(2�!)
1

4(c+λ)2

∑2c
i=1
∑2c

j=1(D2k
x̃(i) f )(D2�

x̃( j) f )T
]
;

3. Pxy − P̂xy =∑∞
i=2

1
i !E
[
x̃
(
Di

x̃ f
)T ]−∑∞

k=1
1

(2k+1)!
1

2(c+λ)

∑2c
i=1x̃(i)

(
D2k+1

x̃(i) f
)T

.

Furthermore, if the distribution of x is symmetric about the mean E(x), then

1. E(y) − ŷ =∑∞
j=2

1
(2 j)!E[D2 j

x̃ f ] − 1
2(c+λ)

∑2c
i=1
∑∞

j=2
1

(2 j)! D2 j
x̃(i) f ;

2. Py − P̂y = E

[
∑

i+ j= even
(i, j)∈A

1
i ! j ! (Di

x̃ f )(D j
x̃ f )T

]

−
[∑

(i, j)∈A
1

(2i !)(2 j !)E(D2i
x̃ f )E(D2 j

x̃ f )T
]

− 1
2(c+λ)

∑2c
i=1

[∑
k+�= even
(k,�)∈A

1
k!�! (Dk

x̃(i) f )(D�
x̃(i) f )T

]

+∑(k,�)∈A

[
1

(2k!)(2�!)
1

4(c+λ)2

∑2c
i=1
∑2c

j=1(D2k
x̃(i) f )(D2�

x̃( j) f )T
]
;

3. Pxy − P̂xy =∑∞
i=1

1
(2i+1)!E

[
x̃
(

D2i+1
x̃ f

)T
]

−∑∞
k=1

1
(2k+1)!

1
2(c+λ)

∑2c
i=1x̃(i)

(
D2k+1

x̃(i) f
)T

.

For the linear approximation scheme defined by (2), we have the following parallel
results:

Lemma 2 Under the same conditions of Lemma 1, the linear approximation based
on the first-order Taylor expansion enjoys the following properties:

1. E(y) − ŷL = 1
2!
∑c

i=1
∑c

j=1 Pi j
∂2

∂xi ∂x j
f (E(x)) +∑∞

j=3
1
j !E[D j

x̃ f ];
2. Py − P̂y,L = − 1

4 E(D2
x̃ f )E(D2

x̃ f )T + E
[∑

(i, j)∈A
1

i ! j ! (Di
x̃ f )(D j

x̃ f )T
]

−
[∑

(i, j)∈B
1

i ! j !E(Di
x̃ f )E(D j

x̃ f )T
]
;

3. Pxy − P̂xy,L =∑∞
i=2

1
i !E
[
x̃
(
Di

x̃ f
)T ]

.

If the distribution of x is, furthermore, symmetric about its mean, then
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On the convergence rate of the unscented transformation 895

1. E(y) − ŷL = 1
2!
∑c

i=1
∑c

j=1 Pi j
∂2

∂xi ∂x j
f (E(x)) +∑∞

j=2
1

(2 j)!E[D2 j
x̃ f ];

2. Py − P̂y,L = − 1
4 E(D2

x̃ f )E(D2
x̃ f )T + E

[∑
i+ j= even(i, j)∈A

1
i ! j ! (Di

x̃ f )(D j
x̃ f )T

]

−
[∑

(i, j)∈A
1

(2i !)(2 j !)E(D2i
x̃ f )E(D2 j

x̃ f )T
]
;

3. Pxy − P̂xy,L =∑∞
i=1

1
(2i+1)!E

[
x̃
(

D2i+1
x̃ f

)T
]

.

Remark 1 These results show that the UT estimator of the mean E(y) = E{ f (x)}
matches the true value correctly up to the second-order terms in the expansion (3)
whereas the estimator from linearization of f (E(x)) only matches the true mean up
to the first-order term. If the distribution of x is symmetric about its mean, the UT
estimator of E(y) matches the true value correctly up to the third-order terms in
the expansion. The UT estimator of the covariance matrix Py matches more terms
than its linear approximation counterpart. For approximating Pxy, the UT estimators
and its linear approximation counterpart provide the same order of approximation.
Nevertheless, in all cases, the UT estimator has other terms to compensate for the
higher-order remainder terms. This compensation appears to be better when x has a
symmetric distribution about its mean. The matching patterns between ŷ (P̂y) and their
population counterparts for the case that x has a symmetric distribution was earlier
noted by Julier and Uhlmann (2004) although they did not provide the exact error
terms and the conditions under which the error rates obtain.

Remark 2 Lemma 1 shows that if λ is close to −c or very large, the bias may be severe
unless the nonlinearity of f is minimal. Choosing an optimal λ is a difficult problem
because it is generally infeasible to calculate the expectations stated in Lemma 1
for a nonlinear f . However, they can be calculated for certain distributions, for exam-
ple, normal distributions. When x is normal, E(xk1

1 . . . xkc
c ) can be expressed as a func-

tion of the components of P, see Isserlis (1918), Holmquist (1988), Triantafyllopoulos
(2003). So we can calculate the mean squared error (MSE) in this case. From Lemma
1, the bias can be approximated as E(y) − ŷ ≈ ∑m

j=2 1/(2 j)!E[D2 j
x̃ f ] − 1/(2c +

2λ)
∑2c

i=1
∑m

j=2 1/(2 j)!D2 j
x̃(i) f for some m, where the first term can be expressed as

a function of the components of P. The corresponding variance can be derived based
on (1). Then, we can minimize the MSE to obtain an optimal λ.

Next, define Dk as follows:

Definition 1

Dk = { f : Ω ⊂ R
c → R

q | f is a polynomial of degree at most k
}
.

Theorem 1 1. If f ∈ D2, then ŷ = E(y). In addition, if the distribution of x is
symmetric about its mean and f ∈ D3, then, ŷ=E(y).

2. If f ∈ D1, i.e., f is linear, then P̂y = Py and P̂xy = Pxy.

Proof This follows from the Taylor series expansions in (3)–(9). ��
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896 K. W. Ahn, K.-S. Chan

The UKF has been applied for estimating a nonlinear state-space model where the
state equation is an ordinary differential equation or a stochastic differential equation
with observations at time t1 . . . tn , where ti+1−ti = h for i = 1 . . . n−1, where, with no
loss of generality, h ≤ 1. To solve these differential equations, one may discretize the
system equation using the Euler method or Runge-Kutta method (Boyce and DiPrima
2004; Milstein and Tretyakov 2004), which results in the case that conditionally x has
a covariance matrix P = hP∗ for some h-free positive definite matrix P∗, see Ahn and
Chan (2011). Thus, it is interesting to compare the error rates of the UT estimators
of E(y) = E{ f (x)}, Py, Pxy and their counterparts from linear approximation when
P = hP∗. We allow that f may depend on h. Then, we can obtain the following
theorem:

Theorem 2 Suppose P = hP∗. Assume

1. there exists a h-free constant M > 0 such that E |x̃ k1
1 . . . x̃ kc

c | ≤ hi/2 Mi/2, for any
non-negative integers k j where

∑c
j=1 k j = i ;

2. for all j, 1 ≤ j ≤ q, and for all 0 < h ≤ 1, there exists some h-free constant
K > 0,

∣∣∣∣∣
∂ i f j (E(x))

∂xk1
1 . . . ∂xkc

c

∣∣∣∣∣ ≤ K i ,

for any non-negative integers k j , 1 ≤ j ≤ c, where i =∑c
j=1 k j .

Then,

E(y) − ŷ = O(h3/2), Py − P̂y = O(h3/2), Pxy − P̂xy = O(h3/2),

E(y) − ŷL = O(h), Py − P̂y,L = O(h3/2), Pxy − P̂xy,L = O(h3/2).

If x has a symmetric distribution about its mean, then

E(y) − ŷ = O(h2), Py − P̂y = O(h2), Pxy − P̂xy = O(h2),

E(y) − ŷL = O(h), Py − P̂y,L = O(h2), Pxy − P̂xy,L = O(h2).

Proof See Appendix B. ��
Remark 3 Condition 1 of Theorem 2 is motivated by the fact that x̃ k1

1 . . . x̃ kc
c =

Op(hi/2) because x̃ j = Op(
√

h). Condition 2 of Theorem 2 is satisfied if the function
f is a polynomial.

Remark 4 Theorem 2 shows that the UT estimator E(y) has a smaller error rate than
the estimator from linear approximation although the estimators of the covariance
matrices Py and Pxy have the same error rate. This suggests that discretization methods
based on the UKF would be more accurate than the EKF. Using Theorem 2, Ahn and
Chan (2011) showed that discretization methods based on the UKF are more accurate
than those based on the EKF.
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On the convergence rate of the unscented transformation 897

4 Simulation study

A simulation study was conducted to compare the three methods, namely, UT, Monte
Carlo, and linear approximation, for estimating the mean and standard deviation of
the random variable

f (x, y) = √
x + 1 cos(y),

where x and y are independent of each other, x ∼ Gamma(2, 2/
√

h) with mean
√

h
and variance h/2, and y ∼ Unif(0, π

√
h). Thus, the covariance matrix of (x, y)T

equals

h

(
1
2 0

0 π2

12

)
.

We conducted 240 scenarios by considering 240 h values: h = 0.1, 0.11, 0.12 . . .

2.5. For each h, we computed the estimates of the mean and standard deviation of
f (x, y), via (i) UT with λ = −0.5, 0, and 0.5, (ii) Monte Carlo with two sample
sizes, n = 100 and n = 1,000, and (iii) linearization. Table 1 shows the results for
h = 0.1, 0.5, 1.5, 2, 2.5. The true means and standard deviations were obtained based

Table 1 Comparison of the moment estimates of f (x, y) for various methods

h True values UT UT UT MC MC Linearization
λ = −0.5 λ = 0 λ = 0.5 (n = 100) (n = 1,000)

0.1

M 0.964 0.964 0.964 0.964 1.003 0.959 1.009

SD 0.176 0.178 0.179 0.181 0.169 0.173 0.179

0.5

M 0.464 0.460 0.462 0.464 0.339 0.455 0.580

SD 0.673 0.685 0.666 0.648 0.716 0.682 0.756

1

M 0.0004 0.000 0.000 0.000 −0.059 −0.053 0.000

SD 1.000 1.035 0.959 0.886 1.002 0.983 1.283

1.5

M −0.247 −0.233 −0.247 −0.260 −0.090 −0.223 −0.516

SD 1.094 1.136 1.025 0.923 1.064 1.101 1.558

2

M −0.332 −0.292 −0.334 −0.375 −0.475 −0.351 −0.941

SD 1.080 1.109 1.038 0.976 1.005 1.081 1.598

2.5

M −0.305 −0.235 −0.321 −0.401 −0.293 −0.324 −1.271

SD 1.064 1.069 1.118 1.141 1.144 1.097 1.435

The rows with heading “M” and “SD” are the estimated mean and standard deviation, respectively
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Fig. 1 Scatter diagram of the ratio of the bias in the UT estimate of the mean (upper diagram) and
SD (lower diagram) of f (x, y) to their linear approximation counterparts versus h. Note that, except for
h = 0.98, 0.99, 1, the ratios of the bias in the mean estimates fall on a straight line approximately, for fixed
α. In addition, except for h ≤ 0.13, the ratios of the bias in SD are well below 1

on Monte Carlo with n = 1,000,000. In general, the UT estimates are close to the
true values and the UT method outperformed the Monte Carlo method with n = 100
and the linear approximation method. The UT estimates of the mean are robust to the
three λ values for h ≤ 1.5, while those of the standard deviation are relatively more
robust to λ, for all h values examined. In general, the UT estimates of the mean and
standard deviation, with λ equal to zero, are generally closer to their true values than
the UT estimates with other λ values, for all h values examined. The upper diagram of
Fig. 1 shows the ratios of the bias in the UT estimate of the mean of f (x, y) to that of
the linear approximation method. The blue dotted, black solid, and red dashed lines
indicate the ratios for λ = −0.5, 0, 0.5, respectively. Except for h = 0.98, 0.99, 1,
these ratios for each λ are approximately a linear function, i.e., of the form c0 × h
for some constant c0, which is consistent with the results in Theorem 2. For h = 1,
it is readily checked that the distribution of f (x, y) is symmetric about 0, in which
case UT and linear approximation estimates coincide with 0. (Note that, for h = 1,
the “true” value obtained from Monte Carlo with n = 1,000,000 is 0.0004.) Theorem
2 implies that the ratio of the biases in mean is asymptotically a linear function of h,
except at h = 0 where the ratio jumps discontinuously to 1. In a simulation study with
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Table 2 Comparison for user
CPU time (in seconds)

UT Monte Carlo Monte Carlo Linearization
(n = 100) (n = 1,000)

User CPU time 0.04 0.05 0.18 0.03

finite simulation size, the ratio of the biases is a continuous function of h since the
simulation is initialized with the same random seed for each h. The approximation may
then be expected to admit large fluctuation around the point of discontinuity, which is
analogous to the Gibbs phenomenon: a finite partial Fourier series approximation to a
piecewise continuous function has large oscillation around any point of discontinuity
of the limit function, regardless of the number of terms included in the approximation.
The Gibbs phenomenon holds in more general situations, see Foster and Richards
(1991), Shim and Park (2005), and the references therein.

The lower diagram of Fig. 1 plots the ratios of the UT estimate of the standard devia-
tion of f (x, y) to that of the linear approximation method, which shows that in general
the bias of the UT estimate is a fraction of that of the linear approximation method, in
terms of magnitude, which, again, is consistent with the results in Theorem 2. Table 2
shows the total user CPU time for each method to compute the estimates for all the
240 scenarios using a computer with Intel Core(TM)2 Duo CPU 2.13 GHz and 6GB
RAM. The UT method is faster than the Monte Carlo method, but slightly slower
than the linear approximation method. Altogether, the UT method gives reasonable
estimates and is more accurate than the linear approximation method and the Monte
Carlo method with n = 100, but faster than the Monte Carlo method with n = 1000.

Ahn and Chan (2011) used the UT to estimate the mean and covariance matrix
of some random vector. They observed that in general the UT induced more bias in
estimating the covariance matrix than estimating the mean. In addition, when h is
large, the UT estimates were more sensitive to the choice of λ in the multivariate case
than the scalar case.

5 Conclusion

We have derived some theoretical properties of the UT and linear approximation, and
conducted a simulation study. The UT makes use of some deterministic sigma points
in contrast with the Monte Carlo method. In addition, it does not require calculating
the Jacobian matrix unlike the method of linear approximation. Derivations based
on Taylor expansions show that the estimated mean and covariance matrix from the
UT match their true values to more higher-order terms than the method of linear
approximation. The simulation study confirms that the UT is fast and outperforms the
linear approximation in terms of accuracy.

Appendix A: Derivation of results for (3)–(9)

For simplicity, assume the pdf of the random vector x is symmetric about its mean with
a known mean E(x) and covariance matrix Px, and y = f (x). Assume f is an analytic
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function. We also assume that Dk
x̃ f is integrable on Ω for any non-negative integer k

and there exists Y with finite absolute moment such that |∑m
i=0 Di

x̃ f/ i !| ≤ Y a.e. on
Ω for all m. Replacing ŷ(i) by its Taylor expansion around E(x), we get

ŷ = W (0)ŷ(0) +
2c∑

i=1

W (i)ŷ(i)

= λ

c + λ
f (E(x)) + 1

2(c + λ)

2c∑
i=1

(
f (E(x)) + Dx̃(i) f + 1

2! D2
x̃(i) f + · · ·

)

= f (E(x)) + 1

2(c + λ)

2c∑
i=1

(
Dx̃(i) f + 1

2! D2
x̃(i) f + · · ·

)
.

Now notice that

2c∑
j=1

D2k+1
x̃( j) f = 0,

because x̃( j) = −x̃(c+ j), j = 1, . . . , c. See Simon (2006) for the details. Therefore,

ŷ = f (E(x)) + 1

2(c + λ)

2c∑
i=1

1

2! D2
x̃(i) f + 1

2(c + λ)

2c∑
i=1

(
1

4! D4
x̃(i) f + 1

6! D6
x̃(i) f · · ·

)
.

In addition, similar to Simon (2006), we can obtain

1

2(c + λ)

2c∑
i=1

1

2! D2
x̃(i) f = 1

2

c∑
k=1

c∑
�=1

Pk�

∂2

∂xk∂x�

f (E(x)), (10)

because x̃(i) = −x̃(c+i). Thus,

ŷ = f (E(x)) + 1

2

c∑
i=1

c∑
j=1

Pi j
∂2

∂xi∂x j
f (E(x))

+ 1

2(c + λ)

2c∑
i=1

(
1

4! D4
x̃(i) f + 1

6! D6
x̃(i) f + · · ·

)
. (11)

Similarly,

E(y) = f (E(x)) + 1

2!E
[

D2
x̃ f
]

+ 1

4!E
[

D4
x̃ f
]

+ · · · .
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It can be easily shown

1

2!E
[

D2
x̃ f
]

= 1

2!
c∑

k=1

c∑
�=1

Pk�

∂2

∂xk∂x�

f (E(x)).

As a result, we have

E(y) = f (E(x)) + 1

2!

⎡
⎣

c∑
i=1

c∑
j=1

Pi j
∂2

∂xi∂x j
f (E(x))

⎤
⎦

+ 1

4!E
[

D4
x̃ f
]

+ · · · . (12)

Next, we turn our attention to the covariance structure:

Py = E[(y − E(y))(y − E(y))T ].

Based on the results obtained so far, we have

ŷ − E(y) =
[

f (E(x)) + Dx̃ f + 1

2! D2
x̃ f + · · ·

]

−
[

f (E(x)) + 1

2!E(D2
x̃ f ) + 1

4!E(D4
x̃ f ) + · · ·

]

=
[

Dx̃ f + 1

2! D2
x̃ f + · · ·

]
−
[

1

2!E(D2
x̃ f ) + 1

4!E(D4
x̃ f ) + · · ·

]
.

Then, using the definition of A = {(a, b)|a, b ∈ N} − {(1, 1)} where N is the set of
natural numbers,

Py = E[(y − E(y))(y − E(y))T ]
= E

[{(
Dx̃ f + 1

2! D2
x̃ f + 1

3! D3
x̃ f + · · ·

)

−
(

1

2!E
(

D2
x̃ f
)

+ 1

4!E
(

D4
x̃ f
)

+ 1

6!E
(

D6
x̃ f
)

+ · · ·
)}

×
{(

Dx̃ f + 1

2! D2
x̃ f + 1

3! D3
x̃ f + · · ·

)

−
(

1

2!E
(

D2
x̃ f
)

+ 1

4!E
(

D4
x̃ f
)

+ 1

6!E
(

D6
x̃ f
)

+ · · ·
)}T

]

= E[(Dx̃ f ) (Dx̃ f )T ] − 1

4
E
(

D2
x̃ f
)

E
(

D2
x̃ f
)T
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+E

⎡
⎢⎢⎣

∑
i+ j= even
(i, j)∈A

1

i ! j !
(

Di
x̃ f
) (

D j
x̃ f
)T

⎤
⎥⎥⎦

−
⎡
⎣ ∑

(i, j)∈A

1

(2i !)(2 j !)E
(

D2i
x̃ f
)

E
(

D2 j
x̃ f
)T

⎤
⎦ , (13)

where all odd-powered terms in the expected value are zero. Here,

E
[
(Dx̃ f )(Dx̃ f )T

]
= E

⎡
⎣
(

c∑
i=1

x̃i
∂ f (E(x))

∂xi

)(
c∑

i=1

x̃i
∂ f (E(x))

∂xi

)T
⎤
⎦

= E

⎡
⎣

c∑
i=1

c∑
j=1

x̃i
∂ f (E(x))

∂xi

∂ f (E(x))T

∂x j
x̃ j

⎤
⎦

=
c∑

i=1

c∑
j=1

Hi E(x̃i x̃ j )HT
j =

c∑
i=1

c∑
j=1

Hi Pi j HT
j = HPHT , (14)

where H is the Jacobian matrix of f (x) and Hi is the i th column of H. Now we
consider the approximate covariance matrix, P̂y, defined as

P̂y =
2c∑

i=0

W (i)(ŷ(i) − ŷ)(ŷ(i) − ŷ)T

= λ

c + λ
(ŷ(0) − ŷ)(ŷ(0) − ŷ)T + 1

2(c + λ)

2c∑
i=1

(ŷ(i) − ŷ)(ŷ(i) − ŷ)T .

Consider λ
c+λ

(y(0) − ŷ)(y(0) − ŷ)T first. By the Taylor expansion, we get

ŷ(0) − ŷ = f (E(x)) −
{

f (E(x)) + 1

2(c + λ)

2c∑
i=1

(
1

2! D2
x̃(i) f + 1

4! D4
x̃(i) f · · ·

)}

= − 1

2(c + λ)

2c∑
i=1

(
1

2! D2
x̃(i) f + 1

4! D4
x̃(i) f · · ·

)
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Thus, we have

λ

c + λ
(ŷ(0) − ŷ)(ŷ(0) − ŷ)T

= λ

c + λ

1

4(c + λ)2

2c∑
i=1

(
1

2! D2
x̃(i) f

) 2c∑
i=1

(
1

2! D2
x̃(i) f

)T

+ λ

c + λ

∑
(k,�)∈A

⎡
⎣ 1

(2k!)(2�!)
1

4(c + λ)2

2c∑
i=1

2c∑
j=1

(D2k
x̃(i) f )(D2�

x̃( j) f )T

⎤
⎦

= λ

c + λ

1

4
E[D2

x̃ f ]E[D2
x̃ f ]T

+ λ

c + λ

∑
(k,�)∈A

⎡
⎣ 1

(2k!)(2�!)
1

4(c + λ)2

2c∑
i=1

2c∑
j=1

(D2k
x̃(i) f )(D2�

x̃( j) f )T

⎤
⎦ .

Next, consider 1
2(c+λ)

∑2c
i=1(y

(i) − ŷ)(y(i) − ŷ)T . Using (10) and the fact that

1

2(c + λ)

2c∑
i=1

[
(Dx̃(i) f )(Dx̃(i) f )T

]

= 1

2(c + λ)

2c∑
i=1

2c∑
k=1

2c∑
�=1

(
x̃ (i)

k
∂ f (E(x))

∂xk

)(
x̃ (i)
�

∂ f (E(x))

∂x�

)T

= 1

c + λ

c∑
i=1

c∑
k=1

c∑
�=1

(
x̃ (i)

k
∂ f (E(x))

∂xk

)(
x̃ (i)
�

∂ f (E(x))

∂x�

)T

(
using x̃ (i)

j = −x̃ (c+i)
j

)

=
c∑

k=1

c∑
�=1

Pk�

(
∂ f (E(x))

∂xk

)(
∂ f (E(x))

∂x�

)T

= HPHT

= E
[
(Dx̃ f )(Dx̃ f )T

]
(By (14)),

we can show

1

2(c + λ)

2c∑
i=1

(ŷ(i) − ŷ)(ŷ(i) − ŷ)T

= 1

2(c + λ)

2c∑
i=1

[{(
Dx̃(i) f + 1

2! D2
x̃(i) f + 1

3! D3
x̃(i) f + · · ·

)

− 1

2(c + λ)

2c∑
j=1

(
1

2! D2
x̃( j) f + 1

4! D4
x̃( j) f + · · ·

)}
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×
{(

Dx̃(i) f + 1

2! D2
x̃(i) f + 1

3! D3
x̃(i) f + · · ·

)

− 1

2(c + λ)

2c∑
j=1

(
1

2! D2
x̃( j) f + 1

4! D4
x̃( j) f + · · ·

)}T ]

= E[(Dx̃ f )(Dx̃ f )T ] −
(

1 + λ

c + λ

)
1

4
E[D2

x̃ f ]E[D2
x̃ f ]T

+ 1

2(c + λ)

2c∑
i=1

⎡
⎢⎢⎣

∑
k+�= even
(k,�)∈A

1

k!�! (Dk
x̃(i) f )(D�

x̃(i) f )T

⎤
⎥⎥⎦

−
∑

(k,�)∈A

[
1

(2k!)(2�!)
1

4(c + λ)2

(
1 + λ

c + λ

)

×
2c∑

i=1

2c∑
j=1

(D2k
x̃(i) f )(D2�

x̃( j) f )T
]
. (15)

Thus, we have

P̂y = λ

c + λ
(ŷ(0) − ŷ)(ŷ(0) − ŷ)T + 1

2(c + λ)

2c∑
i=1

(ŷ(i) − ŷ)(ŷ(i) − ŷ)T

= E[(Dx̃ f )(Dx̃ f )T ] − 1

4
E[D2

x̃ f ]E[D2
x̃ f ]T

+ 1

2(c + λ)

2c∑
i=1

⎡
⎢⎢⎣

∑
k+�= even
(k,�)∈A

1

k!�! (Dk
x̃(i) f )(D�

x̃(i) f )T

⎤
⎥⎥⎦

−
∑

(k,�)∈A

⎡
⎣ 1

(2k!)(2�!)
1

4(c + λ)2

2c∑
i=1

2c∑
j=1

(D2k
x̃(i) f )(D2�

x̃( j) f )T

⎤
⎦ . (16)

Now we consider the covariance matrix Pxy. Then,

Pxy = E[(x − E(x))(y − E(y))T ] = E[(x̃)(y − E(y))T ]

= E
[
x̃ (Dx̃ f )T

]
+

∞∑
i=1

1

(2i + 1)!E

[
x̃
(

D2i+1
x̃ f

)T
]

= PHT +
∞∑

i=1

1

(2i + 1)!E

[
x̃
(

D2i+1
x̃ f

)T
]

. (17)
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Using x(0) = E(x), the approximate covariance matrix, P̂xy, equals

P̂xy = 1

2(c + λ)

2c∑
i=0

(x̂(i) − E(x))(ŷ(i) − ŷ)T

= 1

2(c + λ)

2c∑
i=1

x̃(i) (Dx̃(i) f
)T

+
∞∑

k=1

1

(2k + 1)!
1

2(c + λ)

2c∑
i=1

x̃(i)
(

D2k+1
x̃(i) f

)T

= PHT +
∞∑

k=1

1

(2k + 1)!
1

2(c + λ)

2c∑
i=1

x̃(i)
(

D2k+1
x̃(i) f

)T
. (18)

Appendix B: Derivation of results for Theorem 2

In this section, |A| indicates the absolute value of A, where A may be a scalar, a vector,
or a matrix. When A is a vector (matrix), |A| is a vector (matrix) consisting of the
absolute values of A’s components. In addition, when “≤” is used for a vector (matrix),
it implies that every component of the left vector (matrix) is less than or equal to the
corresponding component of the right vector (matrix). For simplicity, we assume
that the distribution of x is symmetric about its mean. A general case, which does
not assume the symmetric distribution of x about its mean, can be shown similarly.
From the Taylor series in Section A of Appendix and Condition 1 of Theorem 2,
we have

E(y) − ŷ =
⎡
⎣ f (E(x)) + 1

2!
c∑

i=1

c∑
j=1

Pi j
∂2

∂xi∂x j
f (E(x)) + 1

4!E[D4
x̃ f ] + · · ·

⎤
⎦

−
⎡
⎣ f (E(x)) + 1

2

c∑
i=1

c∑
j=1

Pi j
∂2

∂xi∂x j
f (E(x))

+ 1

2(c + λ)

2c∑
j=1

(
1

4! D4
x̃( j) f + 1

6! D6
x̃( j) f · · ·

)⎤
⎦

=
∞∑

i=2

1

(2i)!E[D2i
x̃ f ] −

∞∑
i=2

1

2(c + λ)

2c∑
j=1

1

(2i)! D2i
x̃( j) f

For 1 ≤ � ≤ q, we have

∣∣∣∣
1

(2i)!E[D2i
x̃ f�]

∣∣∣∣ =
1

(2i)!

∣∣∣∣∣∣∣
E

⎛
⎝

c∑
j=1

x̃ j
∂

∂x j

⎞
⎠

2i

f�

∣∣∣∣∣∣∣
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≤ 1

(2i)!
∑

1≤k1,...,kc≤2i

[(
2i

k1, . . . , kc

)(
hi Mi

∣∣∣∣∣
∂2i f�(E(x))

∂xk1
1 . . . ∂xkc

c

∣∣∣∣∣

)]

≡ hi ai,�. (19)

Let ai = (ai,1 . . . ai,q). Similarly,

1

2(c + λ)

2c∑
j=1

1

(2i)! D2i
x̃( j) f

= 1

(c + λ)

c∑
j=1

1

(2i)!

(
c∑

�=1

√
(c + λ)P�j

∂

∂x�

)2i

f

= hi

(2i)!
c∑

j=1

(c + λ)i−1

⎛
⎝ ∑

1≤k1,...,kc≤2i

(
2i

k1, . . . , kc

)

× (
√

P∗
1 j )

k1 . . . (
√

P∗
cj )

kc
∂2i f (E(x))

∂xk1
1 . . . ∂xkn

c

⎞
⎠

≡ hi bi , (20)

where P∗
i j is the (i, j) component of P∗. Since

∑∞
i=1 K i/ i ! is finite, Condition 2 of

Theorem 2 implies that all components of
∑∞

i=1 hi ai and
∑∞

i=1 hi bi defined in (19)
and (20) respectively are finite. Thus, we have

|E(y) − ŷ| ≤
∞∑

i=2

hi (|ai | + |bi |) = h2
∞∑

i=2

hi−2(|ai | + |bi |) = O(h2). (21)

On the other hand, linearization uses ŷL = f (E(x)). It can be similarly shown that

E(y) − ŷL = O(h). (22)

Now, we turn our attention to Py − P̂y. From the results so far, we get

Py − P̂y

= E

⎡
⎢⎢⎣

∑
i+ j= even
(i, j)∈A

1

i ! j ! (Di
x̃ f )(D j

x̃ f )T

⎤
⎥⎥⎦−

⎡
⎣ ∑

(i, j)∈A

1

(2i !)(2 j !)E(D2i
x̃ f )E(D2 j

x̃ f )T

⎤
⎦

− 1

2(c + λ)

2c∑
i=1

⎡
⎢⎢⎣

∑
j+�= even
( j,�)∈A

1

j !�!
(

D j
x̃(i) f

) (
D�

x̃(i) f
)T

⎤
⎥⎥⎦
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+
∑

( j,�)∈A

[
1

(2 j !)(2�!)
1

4(c + λ)2

2c∑
i=1

2c∑
m=1

(
D2 j

x̃(i) f
) (

D2�
x̃(m) f

)T
]

.

First of all, we consider the first term E
[

1
i ! j ! (Di

x̃ f )(D j
x̃ f )T

]
where i + j is even.

Then, we have

E

[
1

i ! j ! (Di
x̃ f )(D j

x̃ f )T
]

= E

⎡
⎣
⎛
⎝ 1

i !
∑

1≤k1,...,kc≤i

(
i

k1, . . . , kc

)
x̃ k1

1 . . . x̃ kc
c

∂ i f (E(x))

∂xk1
1 . . . ∂xkc

c

⎞
⎠

×
⎛
⎝ 1

j !
∑

1≤�1,...�c≤ j

(
j

k1, . . . , kc

)
x̃�1

1 . . . x̃�c
c

∂ j f (E(x))

∂x�1
1 . . . ∂x�c

c

⎞
⎠

T
⎤
⎥⎦ .

Let the i th component of a function f be fi . Then, the (a, b) component of

E
[

1
i ! j ! (Di

x̃ f )(D j
x̃ f )T

]
, E
[

1
i ! j ! (Di

x̃ f )(D j
x̃ f )T

]
ab

satisfies

∣∣∣∣E
[

1

i ! j ! (Di
x̃ f )(D j

x̃ f )T
]

ab

∣∣∣∣

=
∣∣∣∣∣∣
E

⎡
⎣
⎛
⎝ 1

i !
∑

1≤k1,...,kc≤i

(
i

k1, . . . , kc

)
x̃ k1

1 . . . x̃ kc
c

∂ i fa(E(x))

∂xk1
1 . . . ∂xkc

c

⎞
⎠

×
⎛
⎝ 1

j !
∑

1≤�1,...,�c≤ j

(
j

�1, . . . , �c

)
x̃�1

1 . . . x̃�c
c

∂ j fb(E(x))

∂x�1
1 . . . ∂x�c

c

⎞
⎠
⎤
⎦
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
E

⎡
⎢⎢⎣

1

i ! j !
∑

1≤k1,...,kc≤i
1≤�1,...,�c≤ j

(
i

k1, . . . , kc

)(
j

�1, . . . , �c

)
x̃ k1+�1

1 . . . x̃ kc+�c
c

× ∂ i fa(E(x))

∂xk1
1 . . . ∂xkc

c

∂ j fb(E(x))

∂x�1
1 . . . ∂x�c

n

]∣∣∣∣∣

≤ h(i+ j)/2 M (i+ j)/2

i ! j !
∑

1≤k1,...,kc≤i
1≤�1,...,�c≤ j

(
i

k1, . . . , kc

)(
j

�1, . . . , �c

)

×
∣∣∣∣∣

∂ i fa(E(x))

∂xk1
1 . . . ∂xkc

c

∂ j fb(E(x))

∂x�1
1 . . . ∂x�c

c

∣∣∣∣∣
≡ h(i+ j)/2 Ri j

ab. (23)
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Thus,
∣∣∣E
[

1
i ! j ! (Di

x̃ f )(D j
x̃ f )T

]∣∣∣ ≤ h(i+ j)/2Ri j . Then, we obtain

∣∣∣∣∣∣∣∣
E

⎡
⎢⎢⎣

∑
i+ j= even
(i, j)∈A

1

i ! j !
(

Di
x̃ f
) (

D j
x̃ f
)T

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
≤

∑
i+ j= even
(i, j)∈A

h(i+ j)/2Ri j = h2
∑

i+ j= even
(i, j)∈A

h(i+ j)/2−2Ri j . (24)

By (19), the second term satisfies

∑
(i, j)∈A

1

(2i !)(2 j !)
∣∣∣∣E
(

D2i
x̃ f
)

E
(

D2 j
x̃ f
)T
∣∣∣∣

≤
∑

(i, j)∈A

hi ai (h
i a j )

T = h2
∑

(i, j)∈A

hi+ j−2ai (a j )
T . (25)

Next, let us consider the third term 1
2(c+λ)

∑2c
i=1

1
j !�! (D j

x̃(i) f )(D�
x̃(i) f )T where j + �

is even.

1

2(c + λ)

2c∑
i=1

1

j !�! (D j
x̃(i) f )(D�

x̃(i) f )T = 1

c + λ

c∑
i=1

1

j !�! (D j
x̃(i) f )(D�

x̃(i) f )T

= 1

c + λ

c∑
i=1

⎡
⎣ 1

j !

(
c∑

r=1

√
(c+λ)Pri

∂

∂x�

) j

f

⎤
⎦
⎡
⎣ 1

�!

(
c∑

s=1

√
(c+λ)Psi

∂

∂x�

)�

f

⎤
⎦

T

= (c + λ)( j+�)/2

c + λ

c∑
i=1

⎡
⎣ 1

j !
∑

1≤u1,...,uc≤ j

(
j

u1, . . . , uc

)
(
√

P1i )
u1 . . . (

√
Pci )

uc

× ∂ j f (E(x))

∂xu1
1 . . . ∂xuc

c

]

×
⎡
⎣ 1

�!
∑

1≤v1,...,vc≤�

(
�

v1, . . . , vc

)
(
√

P1i )
v1 . . . (

√
Pci )

vc
∂� f (E(x))

∂xv1
1 . . . ∂xvc

c

⎤
⎦

T

.

Similar to E
[

1
i ! j ! (Di

x̃ f )(D j
x̃ f )T

]
ab

, we have

[
1

2(c + λ)

2c∑
i=1

1

j !�! (D j
x̃(i) f )(D�

x̃(i) f )T

]

ab
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= h( j+�)/2
c∑

i=1

[
(c + λ)( j+�)/2−1

j !�!
∑

1≤u1,...,uc≤ j
1≤v1,...,vc≤�

(
j

u1, . . . , uc

)(
�

v1, . . . , vc

)
.

×(
√

P∗
1i )

u1+v1 . . . (
√

P∗
ni )

uc+vc
∂ j fa(E(x))

∂xu1
1 . . . ∂xuc

c

∂� fb(E(x))

∂xv1
1 . . . ∂xvc

c

]

≡ h( j+�)/2T j�
ab .

Thus, we obtain

1

2(c + λ)

2c∑
i=1

⎡
⎢⎢⎣

∑
j+�= even
( j,�)∈A

1

j !�! (D j
x̃(i) f )(D�

x̃(i) f )T

⎤
⎥⎥⎦

=
∑

j+�= even
( j,�)∈A

h(i+ j)/2T j� = h2
∑

j+�= even
( j,�)∈A

h(i+ j)/2−2T j�. (26)

For the last term of Py − P̂y,
∑

( j,�)∈A

[ 1
(2 j !)(2�!)

1
4(c+λ)2

∑2c
i=1
∑2c

m=1(D2 j
x̃(i) f )

(D2�
x̃(m) f )T

]
, by (20), we have

∑
( j,�)∈A

[
1

(2 j !)(2�!)
1

4(c + λ)2

2c∑
i=1

2c∑
m=1

(D2 j
x̃(i) f )(D2�

x̃(m) f )T

]

=
∑

( j,�)∈A

⎡
⎣
(

2c∑
i=1

1

(2 j)!
1

2(c + λ)
D2 j

x̃(i) f

)(
2c∑

m=1

1

(2�)!
1

2(c + λ)
D2�

x̃(m) f

)T
⎤
⎦

=
∑

( j,�)∈A

h j b j (h
�b�)

T = h2
∑

( j,�)∈A

h j+�−2b j (b�)
T . (27)

Combining (24)–(27), we obtain

Py − P̂y = O(h2), (28)

where Condition 2 of Theorem 2 implies that all components of
∑

i+ j= even
(i, j)∈A

h(i+ j)/2

Ri j ,
∑

(i, j)∈A
hi+ j ai (a j )

T ,
∑

j+�= even
( j,�)∈A

h( j+�)/2T j�, and
∑

( j,�)∈A
h j+�−2b j (b�)

T

are finite. By (19), we have

1

4
E
[

D2
x̃ f
]

E
[

D2
x̃ f
]T = h2a1(a1)

T .
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In linearization, P̂y,L = HPxHT . Thus, it can be similarly shown that

Py − P̂y,L = O(h2). (29)

Now, we know

Pxy − P̂xy =
∞∑

i=1

1

(2i + 1)!E

[
x̃
(

D2i+1
x̃ f

)T
]

−
∞∑

i=1

1

(2i + 1)!
1

2(c + λ)

2c∑
j=1

x̃( j)
(

D2i+1
x̃( j) f

)T
.

We consider 1
(2i+1)!E

[
x̃
(

D2i+1
x̃ f

)T
]

first.

1

(2i + 1)!E

[
x̃
(

D2i+1
x̃ f

)T
]

= 1

(2i + 1)!E

⎡
⎢⎣x̃

⎛
⎝ ∑

1≤k1,...,kc≤2i+1

(
2i + 1

k1, . . . , kc

)
x̃ k1

1 . . . x̃ kc
c

∂2i+1 f (E(x))

∂xk1
1 . . . ∂xkc

c

⎞
⎠

T
⎤
⎥⎦ .

As before, we can obtain

1

(2i + 1)!
∣∣∣∣E
[

x̃
(

D2i+1
x̃ f

)T
]

ab

∣∣∣∣

= 1

(2i + 1)!

∣∣∣∣∣∣
E

⎡
⎣x̃a

∑
1≤k1,...,kc≤2i+1

(
2i + 1

k1, . . . , kc

)
x̃k1

1 . . . x̃kc
c

∂2i+1 fb(E(x))

∂xk1
1 . . . ∂xkc

c

⎤
⎦
∣∣∣∣∣∣

= 1

(2i + 1)!

∣∣∣∣∣∣
E

⎡
⎣ ∑

1≤k1,...,kc≤2i+1

(
2i + 1

k1, . . . , kc

)
x̃k1

1 . . . x̃ka+1
a . . . x̃kc

c
∂2i+1 fb(E(x))

∂xk1
1 . . . ∂xkc

c

⎤
⎦
∣∣∣∣∣∣

≤ hi+1 Mi+1

(2i + 1)!
∑

1≤k1,...,kc≤2i+1

[(
2i + 1

k1, . . . , kc

) ∣∣∣∣∣
∂2i+1 fb(E(x))

∂xk1
1 . . . ∂xkc

c

∣∣∣∣∣

]

≡ hi+1Ui,ab.

Thus, we get

∞∑
i=1

1

(2i + 1)!
∣∣∣∣E
[

x̃
(

D2i+1
x̃ f

)T
]∣∣∣∣ ≤

∞∑
i=1

hi+1Ui = h2
∞∑

i=1

hi−1Ui .
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Furthermore,

⎡
⎣ 1

(2i + 1)!
1

2(c + λ)

2c∑
j=1

x̃( j)
(

D2i+1
x̃( j) f

)T

⎤
⎦

ab

= hi+1

(2i + 1)!
(c + λ)i+1

c + λ

c∑
j=1

(
√

P∗
aj )

×
⎛
⎝ ∑

1≤k1,...,kc≤2i+1

(
2i + 1

k1, . . . , kc

)
(
√

P∗
1 j )

k1 . . . (
√

P∗
cj )

kc
∂2i+1 fb(E(x))

∂xk1
1 . . . ∂xkc

c

⎞
⎠

≡ hi+1Vi,ab.

Thus, we have

∞∑
i=1

1

(2i + 1)!
1

2(c + λ)

2c∑
j=1

x̃( j)
(

D2i+1
x̃( j) f

)T =
∞∑

i=1

hi+1Vi = h2
∞∑

i=1

hi−1Vi .

Therefore, we obtain

|Pxy − P̂xy| =
∣∣∣∣∣

∞∑
i=1

1

(2i + 1)!E

[
x̃
(

D2i+1
x̃ f

)T
]

−
∞∑

i=1

1

(2i + 1)!
1

2(c + λ)

2c∑
j=1

x̃( j)
(

D2i+1
x̃( j) f

)T

∣∣∣∣∣∣

≤ h2
∞∑

i=1

hi−1(|Ui | + |Vi |) = O(h2), (30)

where Condition 2 of Theorem 2 implies that all components of
∑∞

i=1 hi+1Ui and∑∞
i=1 hi+1Vi defined in (30) are finite. In linearization, P̂xy,L = PxHT . Thus, it can

be similarly shown that

|Pxy − P̂xy,L | ≤ h2
∞∑

i=1

hi−1|Ui | = O(h2). (31)
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