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Abstract High-dimensional feature selection has become increasingly crucial for
seeking parsimonious models in estimation. For selection consistency, we derive
one necessary and sufficient condition formulated on the notion of degree of sepa-
ration. The minimal degree of separation is necessary for any method to be selec-
tion consistent. At a level slightly higher than the minimal degree of separation,
selection consistency is achieved by a constrained L0-method and its computational
surrogate—the constrained truncated L1-method. This permits up to exponentially
many features in the sample size. In other words, these methods are optimal in feature
selection against any selection method. In contrast, their regularization counterparts—
the L0-regularization and truncated L1-regularization methods enable so under slightly
stronger assumptions. More importantly, sharper parameter estimation/prediction is
realized through such selection, leading to minimax parameter estimation. This, oth-
erwise, is impossible in the absence of a good selection method for high-dimensional
analysis.
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808 X. Shen et al.

1 Introduction

Feature selection is one effective means for sparse modeling in knowledge discovery.
Despite the progress in low-dimensional analysis, there remain many important issues.
One such issue is to what extent informative features can be reconstructed given a
limited amount of data at hand. Towards high-dimensional feature selection, we derive
one necessary condition for feature selection, which is attainable by the constrained
method and is nearly attained by the method of regularization. On this basis, we further
explore these methods for parameter estimation as a result of such a selection.

Consider feature selection based on a random sample (Yi , xi )
n
i=1 from:

Yi = μi + εi ; μi = xT
i β0; εi ∼ N (0, σ 2); i = 1, . . . , n, (1)

where β0 = (β0
1 , . . . , β0

p) = (β A0
, 0A0c )

T and xi = (xi1, . . . , xip)
T are

p-dimensional vectors of regression coefficients and features (predictors), and
xi is independent of random error εi . In (1), feature selection estimates A0 =
{ j : β0

j �= 0} of informative features, together with estimation of true coefficients

β0 = (β A0
, 0Ac

0
)T , where 0Ac

0
denotes a vector of 0s over its complement Ac

0 of A0,

and representation μ = βT x is generic, encompassing, for instance, linear regres-
sion and basis pursuit (Chen et al. 2001). Of particular interest is a high-dimensional
situation in which p can be much larger than n, and A0 may depend on (p, n) with
p0 = |A0|, where |A| denotes the size of set A. This describes parametric and non-
parametric cases, with A0 corresponding to a true model as in the parametric case
when A0 is independent of (p, n), and a best approximation of a true model as in basis
pursuit otherwise.

Recently, considerable effort has been devoted to selection consistency under (1)
to push feature selection into an ultra-high dimensional situation. In a situation as
such, little is known about selection consistency for many methods in terms of
(p, n)-asymptotics as n, p → ∞, although some methods such as adaptive Lasso
(Zou 2006; Zou and Li 2008) have been examined for fixed p-asymptotics as n → ∞.
For (p, n)-asymptotics, Bayesian information criterion (BIC; Schwarz 1978), which is
derived under a fixed p-asymptotic approximation of the posterior model probability,
needs to be modified to accommodate a higher dimension. In Chen and Chen (2008), it
is showed that a modified BIC is selection consistent when p is of order of nκ for some
κ > 0; Liu and Yang (2010) proved that another modified BIC allows p to be an order
of exp(cp0n) for some c > 0. It appears that exponentially many features are pos-
sible for some methods. For L1-regularization, Tibshirani (1996), Meinshausen and
Buhlmann (2006), Zhao and Yu (2006) and Wainwright (2009) proved that the Lasso
is sign consistent and thus selection consistent, under a strong irrepresentable assump-
tion that is nearly necessary. As pointed by Zhang (2010), this assumption is restrictive
because of nonadaptiveness of the Lasso. For the smoothly clipped absolute deviation
(SCAD; Fan and Li 2001) regularization, Kim et al. (2008) and Lv and Fan (2009)
showed that some consistent local minimizers exist for SCAD. More recently, Zhang
(2010) proved that the minimum concavity penalty (MCP) is selection consistent under
a sparse Riesz condition and an information requirement, where the sparse Riesz con-
dition is weaker than the irrepresentable assumption;
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On constrained and regularized high-dimensional regression 809

Shen et al. (2012) showed that a global minimizer of the constrained L0-method is
selection consistent, under a “degree-of-separation” condition under the Hellinger
distance. To understand how a method performs in a high-dimensional situation, it is
imperative that we study necessary and sufficient conditions for selection consistency
for feature selection, which is a nonconvex problem itself.

This paper establishes results with selection consistency. First, we characterize
consistent feature selection for any method through one simple necessary condi-
tion in the L2-metric, which is sufficient up to a constant factor. Now define a
measure of the level of difficulty for feature selection: Cmin = Cmin(β

0, X) ≡
min{βA:A �=A0,|A|≤p0} 1

n max(|A0\A|,1)
‖X A0β

0
A0

− X Aβ A‖2, X A and β A are the design
matrix for subset A of predictors and the regression coefficient vector over A, and ‖ ·‖
is the usual Euclidean norm in Rn . The measure Cmin defines the degree of separation
between A0 and a least favorable candidate model for feature selection in the L2-norm,
which occurs among candidate models of sizes p0 or less. As indicated in Theorem 1,
roughly, a requirement for selection consistency is

Cmin(β
0, X) ≥ d1σ

2 log p

n
, (2)

for some positive constant d1 ≤ 1/4 that may depend on X. In short, the minimal degree
of separation is required for correct identification of informative features, translating
to an upper bound on p that is in an order of exp(n Cmin

d1σ 2 ), for any method and (β0, X).
This further sharpens the result of Shen et al. (2012) in (1). In view of (2), the Lasso
does not achieve feature selection under (2), and it remains unknown if either the
SCAD or MCP does.

This paper addresses an attainment issue of the necessary condition (2) with regard
to (p0, p, n). Specifically, we prove, in Theorems 2 and 3, selection consistency is
achieved under (2) by global minimizers of the constrained L0-method and its com-
putational surrogate—the truncated L1-method for some d1 > 0, respectively defined
in (8) and (13). Most importantly, as showed in Theorems 4 and 5, its regulariza-
tion counterparts defined in (9) and (16) yield selection consistency under a stronger
version of (2):

C∗
min ≥ d1σ

2 log p

n
, if α > 1, C∗

min ≥ d1σ
2

p0 max
(

log p
p0

, 1
)

n
, if α = 1, (3)

for some d1 > 0, where C∗
min ≡ min{βA:A �=A0,|A|≤αp0} 1

n max(|A0\A|,1)
‖X A0β

0
A0

−
X Aβ A‖2. This says that the L0-regularization and truncated L1-regularization meth-
ods are optimal when p0 is independent of (p, n), as in the parametric case, but may
be suboptimal when p0 depends on (p, n). In this sense, the constrained method is
more preferable because of its theoretical merits. Note that these two methods are
not equivalent for a nonconvex problem, which is unlike an L1 problem. Moreover,
for these methods, selection consistency holds uniformly over B0(u, l) = {β : p0 =∑p

j=1 I (β j �= 0) ≤ u, Cmin(β, X) ≥ l} with l = d1σ
2 log p

n and constant d1 > 0,
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810 X. Shen et al.

which is called an L0-band with upper and lower radii u and l (u > l > 0), and is a
subset of an L0-ball that is most relevant to feature selection.

This paper also addresses another issue—parameter estimation involving feature
selection. In a low-dimensional situation, it is known that Akaike’s information cri-
terion (Akaike 1973) is optimal in parameter estimation/prediction even if it can be
inconsistent in feature selection, c.f., Yang and Barron (1998). In other words, optimal
parameter estimation can be achieved without feature selection. In a high-dimensional
situation, it is no longer the case. In (1), the minimax rate of convergence in the L2-

norm over an L0-ball B0(u, 0) is
√

u log(p/u)
n (Raskutti et al. 2009), which is optimal

for parameter estimation without feature selection. As to be seen, sharper accuracy of
parameter estimation can be achieved through removal of noninformative features by
a good selection method. In particular, as showed in Theorems 2–6, a minimax rate√

u
n in the L2-risk over an L0-band B0(u, l) with some u > l > 0 is achieved by the

constrained L0-method as well as its regularization counterpart. Note that excluding
a neighborhood of the origin for an L0-band B0(u, l) is necessary to assure existence
of a good selection method, as suggested in (2). Moreover, the corresponding estima-
tors defined by these methods are asymptotic minimax over B0(u, l), recovering the
optimal risk of the oracle estimator, defined as the least squares estimator given A0. In
short, sharper optimal parameter estimation is achieved by the constrained L0-method
and L0-regularization method. This is impossible without removal of noninformative
features (Raskutti et al. 2009). To our knowledge, it remains largely unknown if this
property is shared by other methods.

Finally, for constrained truncated L1-regression, we derive a constrained differ-
ence convex (DC) algorithm that is showed to be equivalent to its unconstrained DC
algorithm of Shen et al. (2012) with respect to their solutions, although constrained
L0-regression and L0-regularization methods are not generally equivalent with regard
to their global minimizers. Importantly, we show that a local minimizer of the reg-
ularization criterion does share the desirable properties as a global minimizer under
stronger assumptions, c.f., Theorem 6.

The paper is organized in five sections. Section 2 derives the necessary condition
(2) for selection consistency. Section 3 constructs an optimal constrained method to
address the attainment issue, in addition to optimal parameter estimation. Section 4
derives parallel results for its regularization counterpart. Section 5 establishes equiv-
alence between a constrained DC algorithm and its unconstrained counterpart with
regard to their solutions. The appendix contains technical proofs.

2 Necessary conditions

This section establishes the necessary condition (2) by estimating the minimal degree
of separation required for selection consistency.

Selection consistency requires that P( Â �= A0) → 0 as n, p → ∞ under the
true probability P , for an estimate Â = { j : β̂ j �= 0; j = 1, . . . , p} of A0 = { j :
β0

j �= 0; j = 1, . . . , p}. To derive a lower bound requirement for Cmin(β
0, X), we

construct an approximate least favorable situation under P , over an L0-band B0(u, l),
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On constrained and regularized high-dimensional regression 811

as defined in Sect. 1, to avoid superefficiency (Ibragimov and Has’minskii 1981). Then
we estimate the smallest possible value of l > 0 under which selection consistency
holds for Â over β0 ∈ B0(u, l), that is,

sup
{β0∈B0(u,l)}

P( Â �= A0) → 0, as n, p → 0.

Let r(p0, X) = max1≤ j≤p n−1‖x( j)‖2

min
β0 :|β0

j |≥1; j∈A0,|A0 |≤p0
Cmin(β0,X)

, where A0 = { j : β0
j �= 0} and

x( j) = (x1 j , . . . , xnj )
T . Theorem 1 below gives a good estimate of l.

Theorem 1 (Necessity for selection consistency) For any Â and (u, l) with u > l > 0,
we have

sup
β0∈B0(u,l)

P( Â �= A0) → 0, as n, p → ∞, (4)

implying that l > 1
4r(u,X)

σ 2 log p
n . Moreover, if r(u, X) ≤ 1

4d1
, where d1 > 0 is a

constant independent of (n, p), then l > d1σ
2 log p

n with d1 ≤ 1/4.

Theorem 1 says that (2) is necessary to achieve selection consistency indeed for
any method, as characterized by (4), where the smallest possible l is 1

2r(u,X)
σ 2 log p

n ,
depending on a design matrix X through r(u, X). Given X, an upper bound
of r(u, X) may be computed. A loose bound, for instance, can be r(u, X) ≤

max1≤ j≤p n−1‖x( j)‖2

min|B|≤2p0,A0⊆B cmin(n−1XT
B X B )

by Lemma 1, where cmin(·) denotes the minimum eigen-

value of a matrix. Sufficiently, r(u, X) is upper bounded by a constant independent
of (u, n, p) when x( j); j = 1, . . . , p, are standardized, and min|B|≤2p0,A0⊆B cmin
(n−1XT

BX B) is bounded away from zero.
Lemma 1 below gives a connection between Cmin and the true signal’s resolution

level γmin = γmin(β
0) ≡ min{|β0

k | : k ∈ A0}.
Lemma 1

Cmin = min
A1 �=A0,|A1|≤p0

n−1‖(I − PA1)XA0β
0
A0

‖2

≥ min|A1|≤p0
cmin(n

−1XT
A0∩Ac

1
(I − PA1)XA0∩Ac

1
)γ 2

min

≥ min|B|≤2p0,A0⊆B
cmin(n

−1XT
BXB)γ 2

min ≥ 0, (5)

where PA1 is the projection matrix for XA1 with A1 ⊂ {1, . . . , p0}. In addition,

Cmin ≤ max
j∈A0

n−1‖x( j)‖2γ 2
min ≤ cmax(n

−1XT
A0

XA0)γ
2
min, (6)

where x( j) = (x1 j , . . . , xnj )
T , cmax(·) denotes the maximum eigenvalue of a matrix.
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For verification of (2), it can be checked using a stronger but simpler condition
according to Lemma 1. That is,

γ 2
min min|B|≤2p0,A0⊆B

cmin(n
−1XT

BX B) ≥ d1σ
2 log p

n
. (7)

One major difference between (7) and (2) is that (7) involves eigenvalues of XT
BX B

with |B| ≤ 2p0 instead of those of X B with |B| ≤ p0 in (2). As a result, (7) may
not be tight in that (7) is not satisfied but (2) is. This occurs, for instance, when
min|B|≤2p0,A0⊆B cmin(n−1XT

BX B) = 0 but Cmin > 0. This is so when any p0 features
are linearly independent but a set of d features are linearly dependent for d > p0.

Concerning necessary conditions for selection consistency in the literature, The-
orem 1 requires less regularity conditions, which are attainable up to a factor d1 as
showed in Theorems 2 and 3. To our knowledge, the best available lower bound is
roughly γ 2

min ≥ C0
log(p−u)

n in Theorem 3 of Zhang (2010), under the sparse Riesz
condition with a dimension restriction M2u + 1 ≤ d∗ ≤ p for some M2 ≥ 16, and
γ 2

min ≥ C0
log(p−u)

n . In particular, under the assumptions there, Cmin ≥ d∗
1 σ 2 log(p−u)

n
by Lemma 1, for some constant d∗

1 > 0. Moreover, the assumptions of Theorem 1
may hold even when those of Theorem 3 of Zhang (2010) are not met, which occurs,
for instance, in the presence of more than p0 linearly independent noninformative
features.

3 Constrained method

This section addresses the issue of attainment under the necessary condition (2).
Specifically, we aim at reconstruction of the oracle estimator—the least squares esti-

mate β̂
ol = (β̂

ol
A0

, 0Ac
0
)T given A0 by the constrained method, ultimately leading to

reconstruction of A0.

3.1 Constrained L0-method

Consider constrained least squares regression with the L0-constraint
∑p

j=1 I (β j �= 0).
The constrained least squares criterion is

S(β) = 1

2

n∑
i=1

(yi − βT xi )
2 subject to

p∑
j=1

I (β j �= 0) ≤ K , (8)

where K > 0 is an integer-valued tuning parameter. Note that (8) is not equivalent to
its unconstrained nonconvex counterpart—the L0-regularization:

1

2

n∑
i=1

(yi − βT xi )
2 + λ

p∑
j=1

I (|β j | �= 0), (9)
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On constrained and regularized high-dimensional regression 813

where λ > 0 is a regularization parameter corresponding to K in (8).
Moreover, tuning involves a discrete parameter K in (8), which is easier than that

for (9) with a continuous parameter λ > 0. This phenomenon has been also observed
in Gu (1998) for spline estimation.

The next theorem says that a global minimizer of (8) β̂
L0 = (β̂

L0

ÂL0 , 0) consistently
reconstructs the oracle estimator at a degree of separation level that is slightly higher
than the minimal in (2). Without loss of generality, assume that a global minimizer of
(8) exists.

Theorem 2 (Error bound for a global minimizer of (8)) Under (1), when K = p0,
we have, for any (p0, p, n)

P(β̂
L0 �= β̂

ol
) ≤ e + 1

e − 1
exp

(
n

18σ 2

(
Cmin − 36

log p

n
σ 2

))
. (10)

Assume that u < min(p, n) and constant d1 > 36. Let l = d1σ
2 log p

n . As n, p → ∞,
the following results hold:

(A) Under (2), β̂
L0

consistently reconstructs β̂
ol

, implying selection consistency of
ÂL0 for A0. Moreover,

sup
β0∈B0(u,l)

P( ÂL0 �= A0) ≤ sup
β0∈B0(u,l)

P(β̂
L0 �= β̂

ol
) → 0, (11)

which agrees with the lower bound (4) in (p0, p, n) asymptotically, where
B0(u, l) = {β : p0 = ∑p

j=1 I (β j �= 0) ≤ u, Cmin(β, X) ≥ l}.
(B) Under (2), n−1 E‖X(β̂

L0 −β0)‖2 = (1 + o(1))n−1 E‖X(β̂
ol −β0)‖2 = σ 2 p0

n . In

addition, β̂
L0

is risk-minimax in that

sup
β0∈B0(u,l)

n−1 E‖X(β̂
L0 − β0)‖2 = (1 + o(1))n−1 E‖X(β̂

ol − β0)‖2 = σ 2 u

n

= inf
Tn

sup
β∈B0(u,l)

n−1 E‖X(Tn − β0)‖2. (12)

Theorem 2 says that β̂
L0

consistently reconstructs the oracle estimator β̂
ol

, which
suffices to establish the attainment of (2) and its uniform version (4) for selection
consistency by ÂL0 in (p0, p, n) except a factor d1 > 0. This permits exponentially

many candidate predictors p ≤ p0 exp(n Cmin
d1σ 2 ) for reconstruction. Moreover, β̂

L0
is

risk-minimax optimal for parameter estimation. This is achieved through tuning K
over integers ranging from 0 to min(n, p).

3.2 Constrained truncated L1-method

We now examine an L0 surrogate (the truncated L1-constraint), which was suggested
for the method of regularization (Shen et al. 2012). Here the surrogate function J (|z|)
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814 X. Shen et al.

is min(|z|, τ ), approximating the L0-function as τ → 0. With this surrogate function,
the corresponding constrained least squares criterion in (8) becomes:

S(β) = 1

2

n∑
i=1

(yi − βT xi )
2 subject to

1

τ

p∑
j=1

min(|β j |, τ ) ≤ K , (13)

where K and τ are non-negative tuning parameters.

The next theorem presents a parallel result for a global minimizer of (13) β̂
T =

(β̂
T
ÂT , 0) as in Theorem 2.

Theorem 3 (Error bound for a global minimizer of (13)) Under (1), if K = p0 and

0 < τ ≤ σ
√

6
(n+2)pcmax(XT X)

, then

P(β̂
T �= β̂

ol
) ≤ e + 1

e − 1
exp

(
− n

20 σ 2

(
Cmin − 40 σ 2 log p

n

))
. (14)

All the results for β̂
L0

in Theorem 2 continue to hold for β̂
T

when d1 > 40.

For parameter estimation in (B), it is known that the minimax rate of convergence

in the L2-norm is
√

u log(p/u)
n over B0(u, 0), c.f. Raskutti et al. (2009). Nevertheless,

a sharper rate of
√

p0
n is achieved by the L0-penalty and its computational surro-

gate under “degree-of-separation” condition, which can be made uniformly over an
L0-band B0(u, l) with l > 0. In other words, these methods are optimal with regard to
parameter estimation, because they recover the optimal L2-risk of the oracle estimator
are asymptotic minimax.

4 Regularization nearly necessary condition

4.1 L0-regularization

Now consider (9), where we assume, without loss of generality, that a global minimizer
exists, because the cost function (9) is bounded by zero almost surely. Denote by

β̂
l0 = (β̂

l0
Âl0 , 0) a global minimizer of (9).

Theorem 4 (Error bound for a global minimizer of (9)) Under (1) and α > 1,

P(β̂
l0 �= β̂

ol
) ≤ 4 exp

(
−

(
nC∗

min

18σ 2 − (α + 1) log(p + 1) − λ

2σ 2

))

+4 exp

(
−

(
(α − 1)λ

3ασ 2 −
(

1 + 1

α

)
log(p + 1) − 2

3

))
. (15)

Moreover, if supβ0∈B0(u,l)
1
n ‖Xβ0‖2 ≤ c1exp(c2 p0) for some constant c j ; j = 1, 2,

then all the results in Theorems 2 continue to hold under (3) with Cmin replaced
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by C∗
min, when d1 >

9(α2+3α+2)
α−1 , and λ

n ∈ (
3(α+1) log(p+1)σ 2

2(α−1)n , 1
9 C∗

min). Similarly, for
α = 1, all the above results hold under (3) with C∗

min replaced by Cmin, when d1 > 225,

and λ
n ∈ (18σ 2 p0 max(log p

p0
,1)

n , 1
9 Cmin).

Theorem 4 derives parallel results of the constrained method under a condition
that is slightly stronger. This may be attributed to non-equivalence between these two
methods in tuning. Note that the case of α = 1 is suboptimal as compared to that of
α > 1. This is in contrast of the results in Theorems 2 and 3.

4.2 Truncated L1-regularization

Next consider a global minimizer β̂
tl = (β̂

tl
Âtl , 0) of the computational surrogate of

the L0-regularization:

1

2

n∑
i=1

(yi − βT xi )
2 + λ

τ

p∑
j=1

min(|β j |, τ ). (16)

For (16), we describe its global minimizer in a simple case to provide an insight
into the truncated L1 function as a computational surrogate of the L0-function.

Proposition 1 In the orthogonal design case, the truncated L1 penalty (TLP) esti-
mate defined by (16) becomes β̂ol

j I (|β̂ol
j | ≥ √

2λ) when τ ≤ √
λ/2, which reduces

to the thresholding rule defined by a global minimizer of the cost function of
L0-regularization (9), and is

{
β̂ol

j if |β̂ol
j | ≥ λ

2τ
+ τ ;

(|β̂ol
j | − λ

τ
)+sign(β̂ol

j ) if |β̂ol
j | ≤ λ

2τ
+ τ

when τ >
√

λ/2; j = 1, . . . , p. Here β̂ol
j is the ordinary least squares estimate for

β j . Note that there are two distinct global minimizers if |β̂ol
j | = λ

2τ
+ τ .

Proposition 1 suggests that the TLP function yields the thresholding rule of the
L0-regularization when the value of τ is small enough in that τ ≤ √

λ/2.

Theorem 5 (Error bound for a global minimizer of (16)) Under (1), if 0 < τ ≤√
2λ

(n+1)cmax(XT X)
and α > 1, then P(β̂

tl �= β̂
ol

) is upper bounded by

min

( √
2|A0|n1/2τ

σ
√

πc−1/2
min ( 1

n XT
A0

XA0)
exp

(
− n (γmin − τ)2

2σ 2c−1
min(

1
n XT

A0
XA0)

)
,

|A0|�
(

− n1/2 (γmin − τ)

σc−1/2
min ( 1

n XT
A0

XA0)

))
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816 X. Shen et al.

+4 exp

(
−

(
nC∗

min

20σ 2 − (α + 1) log(p + 1) − λ

2σ 2

))

+4 exp

(
−

(
(α − 1)λ

3ασ 2 −
(

1 + 1

α

)
(log(p + 1) − 5

3
)

))
, (17)

where �(·) is the cumulative distribution function of N (0, 1). If supβ0∈B0(u,l)
1
n ‖Xβ0‖2 ≤ c1 exp(c2 p0) for some constant c j ; j = 1, 2, then all the results in Theo-

rem 2 continue to hold under (3) with C∗
min replaced by Cmin, when d1 >

10(α2+3α+2)
α−1 ,

and λ
n ∈ (

3(α+1) log(p+1)σ 2

2(α−1)n , 1
10 C∗

min) and τ ≤
√

2λ

(n+1)cmax(XT X)
. Similarly, if α = 1,

Then all the results continue to hold under (3) with Cmin replaced by C∗
min, when

d1 > 225, and λ
n ∈ (18σ 2 p0 max(log p

p0
,1)

n , 1
10 Cmin).

Theorem 5 says that the computational surrogate shares the desired statistical prop-
erties of the L0-regularization. This occurs when τ is chosen to be sufficiently small,

or τ ≤
√

2λ

(n+1)cmax(XT X)
. This result suggests that tuning should be concentrated more

on λ whereas τ does not need a refined search. In practice, τ should not be too small.

5 Nonconvex minimization

To solve (16), we derive a constrained DC method by approximating the constraint
function in (16) by a sequence of nonincreasing approximating functions through DC
programming. This is a so-called prime approach for unconstrained regularization that
is a dual problem of (16), namely,

1

2

n∑
i=1

(yi − βT xi )
2 + λ

τ

p∑
j=1

min(|β j |, τ ), (18)

where λ ≥ 0 is a regularizer or Lagrange multiplier for (16).
To proceed, we first decompose the nonconvex constraint in (16) into a difference

to two convex functions:

1

τ

p∑
j=1

min(|β j |, τ ) = S1(β) − S2(β), (19)

where S1(β) = 1
τ

∑p
j=1 |β j | and S2(β) = 1

τ

∑p
j=1 max(|β j | − τ, 0). Given (19),

a sequence of upper approximations of the constraint function is constructed by suc-
cessively replacing S2(β) by its minorization at iteration m:

S1(β) − (S2(β̂
(m−1)

) + (|β| − |β̂(m−1)|)T ∇S2(|β̂(m−1)|)), (20)

where ∇S2 = 1
τ

I (|β̂(m−1)| > τ) is a subgradient of S2 in |β|, and | · | is used
for vectors, taking the absolute value in each component. At iteration m, the mth
subproblem becomes
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min
β

S(β), subject to
1

τ

p∑
j=1

|β j |I (|β̂(m−1)
j | ≤ τ) ≤ K −

p∑
j=1

I (|β̂(m−1)
j | > τ).

(21)

Minimizing (21) in β yields its minimizer β̂
(m)

. The process continues until termina-
tion.

A constrained DC algorithm is summarized as follows:

Algorithm 1

Step 1. (Initialization) Supply a good initial estimate β̂
(0)

, say the Lasso estimate.

Step 2. (Iteration) At iteration m, compute β̂
(m)

by solving (21). This can be done
through the constrained Lasso algorithm of Osborne et al. (2000), which is imple-
mented in Lasso2 in the R-package.

Step 3. (Stopping rule) Terminate when S(β̂
(m−1)

)− S(β̂
(m)

) ≤ 0. Then the estimate

β̂T = β̂
(m∗−1)

, where m∗ is the smallest index satisfying the termination criterion.

There is a connection between the prime approach and its dual approach in Shen
et al. (2012), although nonconvex problems (16) and (18) are not equivalent, where
(18) is solved through DC programming by approximating the cost function in (18)
to minimize

S(β) + λ

τ

p∑
j=1

|β j |I (|β̂(m−1)
j | ≤ τ) (22)

iteratively with respect to m. As to be shown in Lemma 2, the prime DC approach
as implemented by Algorithm 1 is equivalent to the dual DC approach implemented
through Algorithm 1 of Shen et al. (2012). The equivalence is established for their
solutions, regardless of the modes of implementation, because a coordinate decent
method breaks down for (16) but works for (18). Given the equivalence, no improve-
ment of Algorithm 1 is expected over Algorithm 1 of Shen et al. (2012). We refer
to Shen et al. (2012) for simulation comparisons of various methods with regard to
accuracy of selection and predictive accuracy.

Lemma 2 (Equivalence) The DC solution for (16), computed through (21) in Algo-
rithm 1 is equivalent to that for (18), computed using Algorithm 1 of Shen et al. (2012).
Specifically, given any λ, 0 ≤ λ < ∞, and initial value of Algorithm 1 for (18), there
exist a K and an initial value of Algorithm 1 of Shen et al. (2012) for (21) such that
the DC solution of (22) is also a DC solution of (21), and vice versa. Moreover,

Algorithm 1 has the finite termination property and S(β̂
(m)

) nonincreases in m, as its
unconstrained counterpart.

Now consider a local minimizer of (16) β̂
lo = (β̂

lo
Âlo , 0) satisfying a local optimality

condition of (16):

− (x( j))T (Y − Xβ) + λ

τ
b j = 0, j = 1, . . . , p (23)
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818 X. Shen et al.

where b j = sign(β j ) if 0 < |β j | < τ ; b j ∈ [−1, 1] if β j = 0; b j = 0 if |β j | >

τ ; b j = ∅ if |β j | = τ , is the regular subdifferential of JT,τ (|β j |) at β j , and ∅ is the
empty set. The reader may consult Rockafellar and Wets (2003) for optimal conditions
of continuous but nondifferentiable functions.

Theorem 6 (Error bound for a local minimizer of (16)) Under (1), for β̂
lo

satis-
fying (23), including the solution from Algorithm 1 of Shen et al. (2012), if τ 2 ≥

4
√

2K ∗λ
n min|B|≤2K∗,A0⊆B cmin(n−1XT

B XB )
then,

P(β̂
lo �= β̂

ol
) ≤ min

( √
2|A0|n1/2(3τ/2)√

πσc−1/2
min ( 1

n XT
A0

XA0)
exp

(
− n(γmin − 3τ/2)2

2σ 2c−1
min(

1
n XT

A0
XA0)

)
,

|A0|�
(

− n1/2(γmin − 3τ/2)

σc−1/2
min ( 1

n XT
A0

XA0)

))
+ (p − |A0|)�

(
− λ/τ

σ max1≤ j≤p ‖x( j)‖
)

, (24)

where K � is the upper bound of the maximum number of non-zero predictors, with

p0 ≤ K � ≤ min{n/2, p}. If cmax(
XT X

n )p2τ 2 ≤ c1 exp(c2 p0) for some constant

c1 > 0, then all the results in Theorem 4 and 5 continue to hold if τ ≤ γmin
2 ,

log p0
n ≤

cmin(n−1XA0 XA0 )γ 2
min

5σ 2 ,
log p

n ≤ λ2

2τ 2σ 2n max1≤ j≤p ‖x( j)‖2 , sufficiently,

log p

n
<

(min|B|≤2K �,A0⊆B cmin(n−1XBXB))2γ 2
min

256K �σ 2

n

max j∈A0 ‖x ( j)‖2
,

where B0(u, l) is replaced by

⎧
⎨
⎩β ∈ Rp :

p∑
j=1

I (β j �= 0) ≤ u, γ 2
min(β) min|B|≤2K ∗,A0⊆B

cmin(n
−1XBXB) ≥ l

⎫
⎬
⎭ ,

with l = 256σ 2 K ∗ log p
n

max j∈A0 ‖x( j)‖2

n .

Theorem 6 says that a local minimizer of (16) achieves the objectives of a global
minimizer of (16) under stronger assumptions.

Lemma 3 Results in Theorems 1–6 continue to hold for fixed p with n → ∞ with (2)
replaced by limn→∞ nCmin = ∞.

6 Appendix

Proof of Theorem 1 Our proof constructs an approximated least favorable situation
for feature selection and uses Fano’s Lemma. According to Fano’s Lemma (Ibrag-
imov and Has’minskii 1981), for any mapping T = T (Y1, . . . , Yn) taking values

in {1, . . . , s}, s−1 ∑s
j=1 Pj (T (Y1, . . . , Yn) = j) ≤ ∑

1≤ j,k≤s n
K (q j ,qk )+log 2

s2 log(s−1)
, where
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On constrained and regularized high-dimensional regression 819

K (q j , qk) = ∫
q j log(q j/qk) is the Kullback–Leibler information for densities q j

versus qk corresponding Pj and Pk .
Let S = {β j }p

j=0 be a collection of parameters with components equal to γmin

or 0 satisfying that for any 1 ≤ j, j ′ ≤ p + 1, ‖β j ′ − β j‖2 ≤ 4γ 2
min. For example,

we may choose β0 = ∑p0−1
k=1 γminδk , β j = β0 − γminδ j ; j = 1, . . . , p0 − 1 and

β j = β0 + γmine j ; j = p0, . . . , p, where δk is a vector of length p with its kth
element being 1 and 0 otherwise. Let q j is the corresponding probability density
defined by β j , j = 0, . . . , p.

Then we have, for any β j ,β j ′ ∈ S, K (q j , q j ′) = 1
2σ 2n

‖X(β j − β j ′)‖2 ≤
2 max1≤ j≤p ‖x( j)‖2γ 2

min
nσ 2 ≤ 2r(p0,X)Cmin(β0,X)

σ 2 by Lemma 1. It follows from Fano’s lemma

with S and s = p +1 that s−1 ∑
j∈S Pj (T = j) ≤ 2nr(p0,X)Cmin(β0,X)+σ 2 log 2

σ 2 log p
, imply-

ing that

sup
{(β,X):Cmin(β0,X)≤R∗(p0,X)}

P( Â �= A0) ≥ 1 − 2nr(p0, X)Cmin(β
0, X) + σ 2 log 2

σ 2 log p
,

(25)

which is bounded below by a constant c∗ > 0 with R∗(p0, X) = σ 2(1−c∗) log p
2nr(p0,X)

. For

(4), if supβ0∈B0(u,l) P( Â �= A0) → 0, then it follows from (25) that B0(u, l) cannot

interact with a L0-ball B0(R∗(u, X), 0), thus l ≥ R∗(u, X) with l = 1
4r(u,X)

σ 2 log p
n ,

and d0 = 1
4r(u,X)

, for any β0 ∈ B0(u, l). By (6), r(u, X) ≥ 1. Hence, d1 ≤ 1/4. This
completes the proof. ��
Proof of Lemma 1 The first inequality follows from Lemma 3 of Shen et al. (2012).
For the second, note that

Cmin = n−1 min
A �=A0,|A|≤p0

1

max(|A0 \ A|, 1)
‖(I − PA)X A0β

0
A0

‖2

≤ min
j∈A0

n−1‖(I − PA0\{ j})X A0β
0
A0

‖2 ≤ min
j∈A0

(
n−1‖x( j)‖2β2

j

)

≤ γ 2
min max

j∈A0
n−1‖x( j)‖2.

This together with max j∈A0 n−1‖x( j)‖2 ≤ cmax(n−1XT
A0

X A0) implies that the desired
result. This completes the proof. ��

Next we present a technical lemma to be used below.

Lemma 4 Let PA and PB be two projection matrices onto the column space of XA

and XB, respectively. For any integer r ≥ 2,

Tr((PA − PB)r ) ≤ Tr((PA − PB)2) ≤ |A| + |B| − 2|A ∩ B|, (26)

where Tr denotes the trace of a matrix.
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820 X. Shen et al.

Proof Before proceeding, we prove that 0 ≤ λmax((PA −PB)2) ≤ 1. Note that (PA −
PB)2 is non-negative definite. Then, for any x, 0 ≤ ((PA − PB)x)T ((PA − PB)x) =
xT (PA − PB)2x, implying that λmax((PA − PB)2) = supx�=0

xT (PA−PB )2x
‖x‖2 ≥ 0, where

|A| denotes size of set A, and ‖ · ‖ is the usual L2-norm. Moreover, xT (PA −PB)2x =
((I − PA)x)T (PBx) + ((I − PB)x)T (PAx). By inequality that 2ab ≤ a2 + b2 for
any real numbers a, b, and the fact that (I − PA)2 = (I − PA) and P2

B = PB ,
((I − PA)x)T (PBx) ≤ 1

2 (xT (I − PA)2x + xT P2
Bx) = 1

2 (xT (I − PA)x + xT PBx).
Thus, xT (PA −PB)2x ≤ 1

2 (xT (I −PA)x+xT PBx+xT (I −PB)x+xT PAx) = ‖x‖2.
Hence, λmax((PA − PB)2) ≤ 1.

For the first inequality in (26), first consider the case of even r . In this case, (PA −
PB)r is non-negative definite. By Lemma 6.5 of Zhou et al. (1998), Tr((PA −PB)r ) ≤
Tr((PA−PB)2)(λmax(PA−PB)2)r/2−1 ≤ Tr((PA−PB)2), for any integer r ≥ 3. Next
consider the case of odd valued r . Now Tr((PA − PB)r ) ≤ Tr(PA(PA − PB)r−1) ≤
Tr((PA − PB)r−1), which reduces to the case of even valued r .

To prove the second inequality in (26), note that Tr((PA − PB)2) = |A| + |B| −
2T r(PAPB). If A ∩ B = ∅, Tr(PAPB) ≥ Tr(PA)λmin(PB) = 0 by Lemma 6.5
of Zhou et al. (1998), implying the second inequality in (26). If A ∩ B �= ∅,
we write, without loss of generality, X A = (x1, . . . , x|A|−s, . . . , x|A|) and X B =
(x|A|−s+1, . . . , x|A|, . . . , x|A|+|B|−s) with s ≤ |A| ≤ |B| and s = |A ∩ B|. Now we
construct an orthonormal basis for the column space of X A∩B : e|A|−s+1, . . . , e|A|, fol-
lowed by two orthonormal bases that are orthogonal to it through the Gram–Schmidt
orthogonalization. These are e1, . . . , e|A|−s and e|A|+1, . . . , e|A|+|B|−s , in the column

spaces of X A and X B , respectively. As a result of the construction, PA = ∑|A|
i=1 ei eT

i

and PB = ∑|A|+|B|−s
j=|A|−s+1 e j eT

j . Consequently,

Tr(PAPB) =
|A|∑
i=1

|A|+|B|−s∑
j=|A|−s+1

Tr(ei eT
i e j eT

j ) =
|A|∑
i=1

|A|+|B|−s∑
j=|A|−s+1

(eT
i e j )

2

=
|A|∑

j=|A|−s+1

(eT
j e j )

2 +
|A|−s∑
i=1

|A|+|B|−s∑
j=|A|+1

(eT
i e j )

2 ≥
|A|∑

j=|A|−s+1

1 = s,

yielding the second inequality in (26). This completes the proof. ��
Proof of Theorem 2 We bound the reconstruction error directly. Note that | ÂL0 | ≤ p0

when K = p0. If ÂL0 = A0 then β̂
L0 = β̂

ol
. Let S(β) ≡ 1

2‖Y − X Aβ A‖2. Note that
A ⊂ {1, . . . , p} can be partitioned into (A\ A0) ∪ (A0 ∩ A). Then

I ≡ P(β̂
L0 �= β̂

ol
) ≤

∑
A⊂{1,...,p},A �=A0,|A|≤p0

P(S(β̂
L0

ÂL0 ) − S(β̂
ol
A0

) ≤ 0, ÂL0 = A)

≤
p0−1∑
k=0

p0−k∑
j=0

(
p − p0

j

)(
p0

k

)
P(S(β̂

L0
) − S(β̂

ol
) ≤ 0, Bkj ), (27)
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where Bkj = { ÂL0 = A, |A0 ∩ A| = k, |A \ A0| = j}, and
(n

k

)
is the binomial

coefficient indexed by n and k. On event Bkj , ‖Y − X Aβ̂
L0‖2 ≥ ‖(I − PA)Y‖2.

Hence,

2(S(β̂
L0

) − S(β̂
ol

)) ≥ ‖(I − PA)(X A0β
0
A0

+ ε)‖2 − ‖(I − PA0)ε‖2

= 2εT (I − PA)X A0β A0
+ ‖(I − PA)X A0β A0

‖2 − εT (
PA − PA0

)
ε.

For any δ with 0 < δ < 1, and any A with |A0 ∩ A| = k and |A\ A0| = j; k =
0, . . . , p0 − 1, j = 1, . . . , p0 − k, P(S(β̂

L0

A ) − S(β̂
ol
A0

) ≤ 0, Bkj ) is upper bounded
by

P(δ‖(I − PA)X A0β A0
‖2 + 2εT (I − PA)X A0β A0

≤ 0)

+P((1 − δ)‖(I − PA)X A0β A0
‖2 − εT (PA − PA0)ε ≤ 0) ≡ I1(Bkj ) + I2(Bkj ).

Let L1(A) ≡ −2εT (I − PA)X A0β A0
and L2(A) ≡ εT (PA − PA0)ε, which fol-

low N (0, 4σ 2‖(I − PA)X A0β A0
‖2) and a weighted χ2-distribution, respectively. Let

b(A) = ‖(I − PA)X A0β A0
‖2. An application of Markov’s inequality with the normal

moment generating function yields that

I1(Bkj ) ≤ E exp

(
t1L1(A)

σ 2

)
exp

(
−δt1b(A)

σ 2

)
≤ exp

(
2t2

1 − δt1
σ 2 niCmin

)
,

for any 0 < t1 < 1/2, where i ≡ p0 − k, and nCmin ≤ b(A)
max(|A0\A|,1)

= b(A)
i

has been used in the last inequality with |A0 \ A| = p0 − |A0 ∩ A| = p0 − k.
For I2(Bkj ), it follows from Lemma 4 that the moment generating function M(t) of
εT (PA − PA0)ε/σ

2 satisfies: log M(t) = ∑∞
r=1(2

r−1tr/r)Tr(PA − PA0)
r ≤ t (|A| −

|A0|)+Tr(PA−PA0)
2 ∑∞

r=2(2
r−1tr/r) ≤ t (|A|−|A0|)+t2/(1−2t)Tr(PA−PA0)

2 ≤
t (|A| − |A0| + |A| + |A0| − 2|A ∩ A0|) = 2t |A \ A0|, for 0 < t < 1/2. Similarly, for
any 0 < t1 < 1/2,

I2(Bkj ) ≤ E exp

(
t1L2(A)

σ 2

)
exp

(
−b(A)(1 − δ)t1

σ 2

)

≤ exp

(
− (1 − δ)t2niCmin

σ 2 + 2t1 j

)
.

Consequently, from (27) and bounds for I1(Bkj ) and I2(Bkj ),

I ≤
p0−1∑
k=0

p0−k∑
j=0

(I1(Bkj ) + I2(Bkj )) ≤
p0∑

i=1

i∑
j=0

(
p − p0

j

)(
p0

p0 − i

)

(
exp

(
2t2

1 − δt1
σ 2 niCmin

)
+ exp

(
− (1 − δ)t2

σ 2 niCmin + 2t2 j

))
.
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For simplification, choose t1 = 1
3 and δ = 2t1+1

2 = 5
6 such that δt1 − 2t2

1 =
(1−δ)t1 = 1

18 . Note that
(a

b

) ≤ ab and log(p− p0)+ log p0 ≤ log(
p2

4 ) ≤ 2 log p−1.
Then

I ≤ 2
p0∑

i=1

i∑
j=0

(p − p0)
j pi

0 exp

(
− i

18σ 2 nCmin + 2

3
j

)

= 2
p0∑

i=1

exp

(
−i

(
nCmin

18σ 2 − log p0

)) i∑
j=0

exp

(
j

(
2

3
+ log(p − p0)

))

≤ 2

1 − e−1 R

(
exp

(
− n

18σ 2

(
Cmin − 36

log p

n
σ 2

)))
,

where R(x) = x/(1−x) is the exponentiated logit function. Using the fact that I ≤ 1,
we obtain that I ≤ ( 2

1−e−1 +1) exp(− n
18σ 2 (Cmin−36 log p

n σ 2)), leading to (10). Finally

an application of the pointwise bound in (10) to β0 ∈ B0(u, l) yields (11), implying

consistency by P( ÂL0 �= A0) ≤ P(β̂
L0 �= β̂

ol
). The result in (A) is established.

For (B), we note that n−1 E‖X(β̂
ol − β0)‖2 = p0

2n . Let D = 25σ 2 and

G = { 1
n ‖Xβ̂ − Xβ0‖2 ≥ D}. Then

1

n
E‖X(β̂

L0 − β0)‖2 = 1

n
E‖X(β̂

L0 − β0)‖2(I (G) + I (Gc)) ≡ T1 + T2.

For T1, note that 1
4n ‖X(β̂

L0 − β0)‖2 − 1
2n ‖ε‖2 ≤ 1

2n ‖Y − Xβ̂
L0‖2 ≤ 1

2n ‖ε‖2, and

T1 = D P( 1
n ‖X(β̂

L0 − β0)‖2 ≥ D) + ∫ ∞
D P( 1

n ‖X(β̂
L0 − β0)‖2 ≥ x) dx . For any

x > 0, by Markov’s inequality with t = 1
3 ,

∫ ∞

D
P

(
1

n
‖X(β̂

L0 − β0)‖2 ≥ x

)
dx

≤
∫ ∞

D
P

(
1

n
‖ε‖2 ≥ x

4

)
dx ≤

∫ ∞

D
E exp

(
t‖ε‖2

σ 2

)
exp

(
−nt

x

4σ 2

)
dx

≤
∫ ∞

D
exp

(
− nt

12σ 2 (x − 24σ 2)

)
dx = 12σ 2

nt
exp

(
− n

12

)
= o

( p0

2n

)
.

Similarly, D P( 1
n ‖X(β̂

L0 − β0)‖2 ≥ D) ≤ 25σ 2 exp(− nt
12σ 2 (D − 24σ 2)) = o(

p0
2n ).

Hence, T1 = o(
p0
2n ). For T2, note that

T2 ≤ D P(β̂
L0 �= β̂

ol
) + 1

n
E‖Xβ̂

ol − Xβ0‖2

= 25σ 2 P(β̂
L0 �= β̂

ol
) + p0

2n
= (o(1) + 1)

p0

2n
,

implying the risk result.
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For minimaxity, note that

inf
β̂

sup
β0∈B0(u,l)

n−1 E‖X(β̂ − β0)‖2 ≥ inf
β̂ A0

sup
β0

A0
∈B

n−1 E‖X A0(β̂ A0
− β0

A0
)‖2,

where B = {β A0
: |A0| = u, n−1‖X A0β A0

−X A0β
0
A0

‖2 ≥ l}. The result follows from
the same argument as that for the least squares estimate to be minimax, c.f., Judge and
Bock (1978). This completes the proof. ��
Proof of Theorem 3 Our strategy is similar to that in the Proof of Theorem 2. Let

S(β̂
T
) ≡ 1

2‖Y − X A1 β̂
T
A1

− X A2 β̂
T
A2

‖2, A = A1 ∪ A2, A1 = { j ∈ A : |β̂T
j | > τ },

A2 = { j ∈ A : |β̂T
j | ≤ τ } and ‖X A2 β̂

T
A2

‖2 ≤ cmax(XT X)τ
∑

j∈A2
|β̂T

j |. Note that

|A1| + 1
τ

∑
j∈|A2| |β̂T

j | ≤ p0. Thus, if A1 = A0 then β̂T
j = 0 for all j ∈ A2, implying

that β̂
T = β̂

ol
. Therefore, we only consider the case of A1 �= A0.

Similarly, let Bkj = { Â = A : |A0 ∩ A1| = k, |A1 \ A0| = j}, then I ≡
P(β̂

T
Â �= β̂

ol
A0

) ≤ ∑p0−1
k=0

∑p0−k
j=0 P(S(β̂

T
A) − S(β̂

ol
A0

) ≤ 0, Bkj ). On Bkj , we simplify

S(β̂
T
A)− S(β̂

ol
A0

). An application of inequality ‖U − V‖2 ≥ a−1
a ‖U‖2 − (a − 1)‖V‖2

for U, V ∈ R
p and some a > 1, together with the fact that ‖Y − X A1 β̂

T
A1

‖2 ≥
‖Y − X A1 β̂

ol
A1

‖2 yields that

S(β̂
T
) ≥ a − 1

2a
‖Y − X A1 β̂

T
A1

‖2 − a − 1

2
‖X A2 β̂

T
A2

‖2

≥ a − 1

2a
‖(I − PA1)X A0β A0

+ (I − PA1)ε‖2 − a − 1

2
pcmax(XT X)τ 2

≥ a − 1

a
εT (I − PA1)X A0β A0

+ a − 1

2a
‖(I − PA1)X A0β A0

‖2

+a − 1

2a
‖(I − PA1)ε‖2 − a − 1

2
pcmax(XT X)τ 2.

Let λ = a−1
2 pcmax(XT X)τ 2. Then

2(S(β̂
T
) − S(β̂

ol
)) ≥ 2(S(β̂

T
) − 1

2
‖(I − PA0)ε‖2)

= 2((a − 1)/a)εT (I − PA1)X A0β A0
+ ((a − 1)/a)‖(I − PA1)X A0β A0

‖2

−εT (I + (a − 1)PA1 − aPA0)ε/a − 2λ

= −1

a
(ε − (a − 1)(I − PA1)X A0β A0

)T (I − PA1)(ε − (a − 1)(I − PA1)X A0β A0
)

+(a − 1)‖(I − PA1)X A0β A0
‖2 − εT (PA1 − PA0)ε − 2λ

For any 0 < δ < 1, let b1(A1) = (a − 1 − δ)‖(I − PA1)X A0β A0
‖2, b2(A1) =

δ‖(I − PA1)X A0β A0
‖2 − 2λ, L1(A1) = 1

a (ε − (a − 1)(I − PA1)X A0β A0
)T (I − PA1)

123



824 X. Shen et al.

(ε − (a − 1)(I − PA1)X A0β A0
), L2(A1) = εT g(PA1 − PA0)ε. Note that aL1(A1)

follows σ 2χ2
k , where the non-central χ2

k distribution has degrees of freedom n −
min(r(A1), n) with r(A1) ≤ |A1| being the rank of A1, and a non-central parameter
(a − 1)2σ−2‖(I − PA1)X A0β A0

‖2. Hence,

P(S(β̂
T
A) − S(β̂

ol
A0

) ≤ 0, Bkj )

≤ P(L1(A1) ≥ b1(A1)) + P(L2(A1) ≥ b2(A1)) ≡ I1(Bkj ) + I2(Bkj ),

where

I1(Bkj ) ≤ E exp

(
t1
σ 2 L1(A1)

)
exp

(
− t1

σ 2 b1(A1)

)

= 1

(1 − 2t1/a)
n−r(A1)

2

exp

(
− t1(1 − 2t1 − δ)

σ 2(1 + (1 − 2t1)/(a − 1))
niCmin

)

I2(Bkj ) ≤ E exp

(
t1
σ 2 L2(A1)

)
exp

(
− t1

σ 2 b2(A1)

)

≤ exp

(
−δt1

σ 2 niCmin + 2t1 j + 2t1λ/σ 2
)

,

for any 0 < t1 < 1/2, where the last inequality uses nCmin ≤ b(A)
|A0\A| with |A0 \ A| =

p0 − |A0 ∩ A| = p0 − k ≡ i . Consequently,

I ≤
p0∑

i=1

i∑
j=0

(
p − p0

j

)(
p0

p0 − i

)(
exp

(
−δt1

σ 2 niCmin + 2t1 j + t1λ/σ 2
)

+ 1

(1 − 2t1/a)
n−r(A1)

2

exp

(
− t1(1 − 2t1 − δ)

σ 2(1 + (1 − 2t1)/(a − 1))
niCmin

))
.

To simplify this bound, choose t1 = 1
3 , δ = 1

6 , a = n + 1 and λ ≤ σ 2. Similarly,

I ≤ 2
p0∑

i=1

i∑
j=0

(p − p0)
j pi

0 exp

(
− i

20σ 2 nCmin + 2

3
j + 1

3

)

= 2
p0∑

i=1

exp

(
−i

(
nCmin

20σ 2 − log p0

)) i∑
j=0

exp( j (1 + log(p − p0)))

≤
(

2

e − 1
+ 1

)
R

(
exp

(
− n

20σ 2

(
Cmin − 40

log p

n
σ 2

)))
,

yielding (14). The rest of the results follow similarly as in the Proof of Theorem 2.
This completes the proof. ��

123



On constrained and regularized high-dimensional regression 825

Proof of Lemma 2 The finite termination property of Algorithm 1 follows from non-

increasingness of S(m)(β̂
(m)

) in m, as in the Proof of Theorem 1 of Shen et al. (2012).

Now consider the DC solution of (22) β̂
(m)

at iteration m for given K > 0. Let
the termination index be m∗. Then Karush–Kuhn–Tucker conditions imply that there

exists a Lagrange multiplier λ ≥ 0 such that the DC solution of (22) β̂
(m∗)

minimizes
the Lagrange function L(β, λ) = S(β) − λ(K − ∑p

j=1 |β j |I (β̂
(m∗−1)
j | > τ)), or

equivalently. S̄(β) = S(β) + λ
∑p

j=1 |β j |I (β̂
(m∗−1)
j | > τ), with respect to β. By

Theorem 1 of Shen et al. (2012), β̂
(m∗) = β̂

(m∗−1)
at termination. Consequently,

S̄(β̂
(m∗)

) = S̄(β̂
(m∗−1)

). This means that if Algorithm 1 of Shen et al. (2012) is

initialized with β̂
(m∗)

then β̂
(m∗)

is also a DC solution of (21) with respect to λ.
Conversely, for the solution of (22), the case of λ = 0 is trivial and is thus omit-

ted. Now for given λ > 0 and a DC solution of (22) β̂
(m0)

at iteration m, define
K (m0) = 1

τ

∑p
j=1 |β̂(m0)

j |I (|β̂(m0−1)
j | ≤ τ), where m0 is the termination index of the

unconstrained Algorithm 1 of Shen et al. (2012), which is assured by Theorem 1 of

Shen et al. (2012). Hence, a DC solution β̂
(m0)

of (22) is also a solution of (21) by
checking Karush–Kuhn–Tucker conditions for the constrained problem with K (m0).

Similarly, if Algorithm 1 is initialized by β̂
(m0)

, then β̂
(m0)

is also a DC solution of

(21). This is because β̂
(m) = β̂

(m0)
for m ≥ m0. This completes the proof.

Proof of Proposition 1 It suffices to minimize componentwisely: β̂ j = arg minβ j

f j (β j ), with f (β j ) = 1
2 (β j − β̂ol

j )2 + λ min(
|β j |
τ

, 1); j = 1, . . . , p. If |β j | ≤ τ ,

β̂ j = (|β̂ol
j | − λ

τ
)+sign(β̂ol

j ), otherwise, min|β j |>τ f (β j ) = λ if β j = β̂ol
j . Moreover,

min{β j :|β j |≤τ } f (β j ) is

⎧⎪⎨
⎪⎩

f (0) = 1
2 (β̂ol

j )2 when |β̂ol
j | ≤ λ

τ
;

f (sign(β̂ol
j )τ ) = 1

2 (τ − |β̂ol
j |)2 + λ when |β̂ol

j | ≥ λ
τ

+ τ ;
f
(
(|β̂ol

j | − λ
τ
)sign(β̂ol

j )
)

= λ
τ
|β̂ol

j | − λ2

2τ 2 when λ
τ

< |β̂ol
j | < λ

τ
+ τ ;

Then comparing f at 0, τ, (|β̂ol
j | − λ

τ
)+sign(β̂ol

j ) against f at λ, the TLP estimate is

⎧⎪⎨
⎪⎩

β̂ol
j if |β̂ol

j | ≥ max( λ
2τ

+ τ, λ
τ
), or λ

τ
≥ |β̂ol

j | ≥ max(
√

2λ, τ);
(|β̂ol

j | − λ
τ
)sign(β̂ol

j ) if λ
2τ

+ τ ≥ |β̂ol
j | ≥ max( λ

τ
, τ ), or τ ≥ |β̂ol

j | ≥ λ
τ
;

0 if min( λ
τ
, τ ) ≥ |β̂ol

j |, or min(
√

2λ, λ
τ
) ≥ |β̂ol

j | ≥ τ ;

j = 1, . . . , p, leading to the desired result. This completes the proof. ��
Proof of Theorem 5 We only present the proof for the case where α > 1. The proof for
the case α = 1 is similar, thus omitted. Write Âtl = Â1 ∪ Â2, Â1 = { j ∈ Âtl : |β̂ tl

j | >

τ } and Â2 = { j ∈ Âtl : |β̂ tl
j | ≤ τ }. Then P(β̂

tl �= β̂
ol

) ≤ I1 + I2 + P(β̂
ol

is not a
solution of (23)), where the last term in this inequality is bounded by I6 in the Proof of
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826 X. Shen et al.

Theorem 4. Thus, it suffices to bound I1 = P(∪A1⊆{1,...,p}:A1 �=A0(S(β̂
tl
) − S(β̃

ol
) ≤

0, Â1 = A1)); I2 = P( Â1 = A0, β̂
tl �= β̂

ol
, β̂

ol
is a solution of (23)).

For I1, on Â1 = A1 with A1 �= A0, write S(β̂
tl
) as 1

2‖Y − X A1 β̂
tl
A1

− X Â2
β̂

tl
A2

‖2 +
λ
τ

∑
j∈ Â2

|β̂ tl
j |+λ|A1|. Note that ‖Y−X A1 β̂

tl
A1

‖2 ≥ ‖(I−PA1)Y‖2, and ‖X Â2
β̂

tl
Â2

‖2 ≤
cmax(XT X)τ

∑
j∈ Â2

|β̂ tl
j |, and λ

τ
− a

2 cmax(XT X)τ ≥ 0 (by assumption) with real a > 1

to be chosen. Using ‖U −V ‖2 ≥ a−1
a ‖U‖2−(a−1)‖V ‖2 for any vectors U, V ∈ Rn ,

S(β̂
tl
) − λ|A1| ≥ a − 1

2a
‖Y − X A1 β̂

tl
A1

‖2 − a − 1

2
‖X Â2

β̂
tl
Â2

‖2 + λ

τ

∑

j∈ Â2

|β̂ tl
j |

≥
(

a − 1

2a
‖(I − PA1)Y‖2

)
+

(
λ

τ
− a − 1

2
cmax(XT X)τ

) ∑

j∈ Â2

|β̂ tl
j |

≥
(

a − 1

2a
‖(I − PA1)X A0β

0
A0

+ (I − PA1)ε‖2
)

.

So 2(S(β̂
tl
)−S(β̂

ol
)) ≥ − 1

a (ε−(a−1)(I−PA1)X A0β A0
)T (I−PA1)(ε−(a−1)(I−

PA1)X A0β A0
) + (a − 1)‖(I − PA1)X A0β A0

‖2 − εT (PA1 − PA0)ε + 2λ(|A1| − p0).

Note that I1 ≤ ∑p0−1
k=0

∑p−k
j=0

(p0
k

)(p−p0
j

)
P(S(β̂

tl
) − S(β̂

ol
) ≤ 0, Bkj ), where

Bkj = { Â1 = A1 �= A0 : |A1 \ A0| = j, |A1 ∩ A0| = k}. For any 0 < δ < 1, let
b1

A1
= (a−1−δ)‖(I−PA1)X A0β A0

‖2+λ(|A1|− p0), b2
A1

= δ‖(I−PA1)X A0β A0
‖2+

λ(|A1| − p0), L1
A1

= 1
a (ε − (a − 1)(I − PA1)X A0β A0

)T (I − PA1)(ε − (a − 1)(I −
PA1)X A0β A0

), L2
A1

= εT (PA1 −PA0)ε. Note that aL1
A1

follows σ 2χ2
k , where the non-

central χ2
k distribution has degrees of freedom n − min(r(A1), n) with r(A1) ≤ |A1|

being the rank of A1, and a non-central parameter (a − 1)2σ−2‖(I − PA1)X A0β A0
‖2.

For L2
A1

, it follows from Lemma 4 that the moment generating function M(t) of L2
A1

satisfies: log M(t) = ∑∞
r=1(2

r−1tr/r)Tr(PA1 − PA0)
r ≤ t (|A1| − |A0|) + Tr(PA1 −

PA0)
2 ∑∞

r=2(2
r−1tr/r) ≤ t (|A1|−|A0|)+t2/(1−2t)Tr(PA1−PA0)

2 ≤ t (|A|−|A0|+
|A1| + |A0| − 2|A1 ∩ A0|) = 2t |A1 \ A0|, for 0 < t < 1/2. Let I 1

k j = P(L1
A1

≥ b1
A1

)

and I 2
k j = P(L2

A1
≥ b2

A1
). Hence, P(S(β̂

tl
) − S(β̂

ol
) ≤ 0, Bkj ) ≤ I 1

k j + I 2
k j .

For I l
k j ; l = 1, 2, note that ‖(I−PA1)X A0β

0
A0

‖2 ≥ niCmin if j ≤ [αi] ≡ α(p0 −k)

by definition of Cmin or if |A1 \ A0| ≤ α|A0 \ A1|(|A1| + (α − 1)|A1 ∩ A0| ≤
αp0) with |A0 \ A1| = p0 − |A0 ∩ A1| = i ; or 0 if [αi] < j ≤ p. By Markov’s
inequality,

I 1
k j ≤ E exp

(
t1
σ 2 L1(A1)

)
exp

(
− t1

σ 2 b1(A1)

)

= 1

(1−2t1/a)
n−r(A1)

2

exp

(
− t1(1−2t1−δ)

σ 2(1 + (1−2t1)/(a − 1))
niCmin + t1λ(i − j)/σ 2

)
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I 2
k j ≤ E exp

(
t1
σ 2 L2(A1)

)
exp

(
− t1

σ 2 b2(A1)

)

≤ exp

(
−δt1

σ 2 niCmin + 2t1 j + t1λ(i − j)/σ 2
)

,

for any 0 < t1 < 1/2. Therefore, I1 ≤ ∑p0−1
k=0

∑p−k
j=0

(p−p0
j

)(p0
k

)
(I 1

k j + I 2
k j ), which is

bounded by

p0∑
i=1

[αi]∑
j=0

(
p − p0

j

)(
p0

p0 − i

) (
exp

(
−δt1

σ 2 niCmin + 2t1 j + t1λ(i − j)/σ 2
)

+ 1

(1−2t1/a)
n−r(A1)

2

exp

(
− t1(1−2t1−δ)

σ 2(1+(1−2t1)/(a − 1))
niCmin + t1λ(i − j)/σ 2

))

+
p0∑

i=1

p∑
j=[αi]+1

(
p − p0

j

)(
p0

p0 − i

) (
exp

(
2t1 j + t1λ(i − j)/σ 2

)

+ 1

(1 − 2t1/a)
n−r(A1)

2

exp
(

t1λ(i − j)/σ 2
))

.

To simplify this bound, choose t1 = 1
3 , δ = 1

6 , a = n + 1. Note that
∑b

j=0

(a
j

) ≤
(a + 1)b, and

(a
b

) ≤ ab, for any integers a, b > 0. Then

I1 ≤ 2
p0∑

i=1

pi
0

[αi]∑
j=0

(
p − p0

j

)
exp

(
− inCmin

20σ 2 + 2 j

3
+ (i − j)λ

2σ 2

)

+ 2
p∑

j=[αi]+1

(p − p0)
j exp

(−(α − 1) jλ

3ασ 2 + 2 j

3

) [ j/α]∑
i=0

(
p0

i

)

≤ 2
p0∑

i=1

exp

(
−i

(
nCmin

20σ 2 − log p0 − α log(p − p0 + 1) − λ

2σ 2

))

+ 2
p∑

j=[αi]+1

exp

(
− j

(
(α − 1)λ

3ασ 2 − log(p − p0) − 1

α
log(p0 + 1) − 2

3

))
.

Using the fact that I1 ≤ 1, log p0 +α log(p− p0 +1) ≤ (α+1)(log(p+1)− log(α+
1)+ α

α+1 log α) and 1
α

log(p0 +1)+ log(p− p0) ≤ (1+ 1
α
)(log(p+1)− 1

α+1 log(α+
1) − α

α+1 log(1 + 1
α
)), we obtain the second and third terms in the bound of (17).

For I2, let E = {min j∈A0 |β̂ol
j | > τ }. As in the Proof of Theorem 6, P(Ec) ≤

|A0|(�(− n1/2(γmin−τ)

σc−1/2
min ( 1

n XT
A0

X A0 )
) − �(− n1/2(γmin+τ)

σc−1/2
min ( 1

n XT
A0

X A0 )
)). On event E , β̂

ol
A and β̂

tl
A must

be local minimizers of minβ A
1
2‖Y −X Aβ A‖2 + λ

τ

∑
j∈ Â2

|β j |. Note that for any local

solution β̂ A satisfying |β̂ Ā0
| > τ with A0 ⊂ Ā0 ⊂ A and |β̂ A2

| ≤ τ with A2 = A\ Ā0,
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the local optimality condition for β tl
Ā0

is (x( j))T (Y − X Ā0
β̂

tl
Ā0

− X A2 β̂
tl
A2

) = 0 for

j ∈ Ā0, implying β̂
tl
Ā0

= (XT
Ā0

X Ā0
)−1XT

Ā0
(Y − X A2 β̂

tl
A2

). This together with that for

β A2
: −(x( j))T (Y − X Ā0

β̂
tl
Ā0

− X A2 β̂
tl
A2

) + λ
τ

sign(β̂ tl
j ) = 0 for j ∈ A2, implies that

−XT
A2

(I − P Ā0
)(Y − X A2 β̂

tl
A2

)+ λ
τ

sign(β̂
tl
A2

) = 0 that is the local optimality for (28).

Hence, both β̂
ol
A2

and β̂
tl
A2

are local minimizers of

min
βA2

1

2
‖(I − P Ā0

)Y − (I − P Ā0
)X A2β A2

‖2 + λ

τ

∑
j∈A2

|β j |. (28)

By Rainaldo (2007), (I−P Ā0
)X A2 β̂

tl
A2

= (I−P Ā0
)X A2 β̂

ol
A2

and ‖β̂ tl
A2

‖1 = ‖β̂ol
A2

‖1 =
0. Thus, β̂

tl = β̂
ol

on E , implying that I2 ≤ P(Ec). Combining the above bounds
yields (17).

For (B), let D = 2Cmin + 4σ 2 and G = { 1
n ‖Xβ̂

tl − Xβ0‖2 ≥ D}. Then

1

n
E‖Xβ̂

tl − Xβ0‖2 = 1

n
E‖Xβ̂

tl − Xβ0‖2(I (G) + I (Gc)) ≡ T1 + T2.

For T1, note that 1
4n ‖Xβ̂

tl − Xβ0‖2 − 1
2n ‖ε‖2 ≤ 1

2n ‖Y − Xβ̂
tl‖2 ≤ 1

2n ‖ε‖2 + λ
n p0.

Then for any x > 0, { 1
n ‖Xβ̂

tl − Xβ0‖2 ≥ x} ⊆ { x
4 − λ

n p0 ≤ 1
n ‖ε‖2} ⊆ { x

4 − Cmin
8 ≤

1
n ‖ε‖2}. By Markov’s inequality with t = 1

3 , T1 = D P( 1
n ‖Xβ̂

tl − Xβ0‖2 ≥ D) +∫ ∞
D P( 1

n ‖Xβ̂
tl − Xβ0‖2 ≥ x) dx . Note that the second term is upper bounded by

∫ ∞

D
P

(
1

n
‖ε‖2 ≥ x

4
− Cmin

8

)
dx ≤

∫ ∞

D
E exp

(
t‖ε‖2

σ 2

)
exp

(
−nt

(x − 2Cmin)

8σ 2

)
dx

≤
∫ ∞

D
exp

(
− nt

σ 2 (x − 2Cmin − σ 2

1 − 2t
)

)
dx = o(

p0

n
σ 2),

so is D P( 1
n ‖Xβ̂

tl − Xβ0‖2 ≥ D), implying that T1 = o(
p0
n σ 2). For T2, note that

Cmin ≤ 1
n ‖X A0β

0
A0

‖2. Then T2 ≤ D P(β̂
tl �= β̂

ol
) + 1

n E‖Xβ̂
ol − Xβ0‖2.

=
(

2

n
‖X A0β

0
A0

‖2 + 4σ 2
)

P(β̂
tl �= β̂

ol
) + p0

n
σ 2 = (o(1) + 1)

p0

n
σ 2.

The desired result follows from the assumption on 1
n ‖X A0β

0
A0

‖2, (17) and (3).
For minimaxity, note that

inf
β̂

sup
β0∈B0(u,l)

n−1 E‖X(β̂ − β0)‖2 ≥ inf
β̂ A0

sup
β0

A0
∈B

n−1 E‖X A0(β̂ A0
− β0

A0
)‖2,
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where B = {β A0
: |A0| = u, n−1‖X A0β A0

−X A0β
0
A0

‖2 ≥ l}. The result follows from
the same argument as that for the least squares estimate to be minimax, c.f., Judge and
Bock (1978). The proof for the case when α = 1 is similar, thus omitted. ��
Proof of Theorem 4 The proof is similar to that of Theorem 5 with some minor mod-
ifications. In the present case, no decomposition of Â is necessary.

Note that S(β̂
l0
) − λ|A| ≥ εT (I − PA)X A0β

0
A0

+ 1
2‖(I − PA)X A0β

0
A0

‖2 + 1
2‖(I −

PA)ε‖2. So 2(S(β̂
l0
) − S(β̂

ol
)) ≥ 2εT (I − PA)X A0β

0
A0

+ ‖(I − PA)X A0β
0
A0

‖2 −
εT (PA1 − PA0)ε + 2λ(|A| − p0). Let b1

A = δ‖(I − PA)X A0β A0
‖2 − λ(|A| − p0),

b2
A = (1 − δ)‖(I − PA)X A0β A0

‖2 − λ(|A| − p0), L1
A = −2εT (I − PA)X A0β A0

and
L2

A = εT (PA − PA0)ε. Note that L1
A follows N (0, 4σ 2‖(I − PA)X A0β A0

‖2). Hence,
for any δ with 0 < δ < 1,

P(S(β̂
l0
) − S(β̂

ol
) ≤ 0, Bkj )

≤ P(δ‖(I − PA)X A0β A0
‖2 + 2εT (I − PA)X A0β A0

+ λ(|A| − p0) ≤ 0)

+P((1 − δ)‖(I − PA)X A0β A0
‖2 − εT (PA − PA0)ε + λ(|A|− p0)≤0)≡ I 1

k j + I 2
k j ,

where I l
k j ≤ E exp(

tl
σ 2 Ll

A) exp(− tl
σ 2 bl

A); 0 < tl < 1/2, l = 1, 2. Note that ‖(I −
PA1)X A0β

0
A0

‖2 ≥ niCmin if j ≤ 2i ≡ 2(p0 − k) by definition of Cmin or if |A1| +
|A1 ∩ A0| ≤ 2p0 with |A0 \ A1| = p0 − |A0 ∩ A1| = i ; or ≥ 0 if αi < j ≤ p.
Then

I1 ≤
p0∑

i=1

[αi]∑
j=0

(
p − p0

j

)(
p0

p0 − i

) (
exp

(
2t2

1 − δt1
σ 2 niCmin + t1

σ 2 λ(i − j)

)

+ exp

(
− (1 − δ)t2

σ 2 niCmin + t2
σ 2 λ(i − j) + 2t2 j

))

+
p0∑

i=1

p∑
j=[αi]+1

(
p − p0

j

)(
p0

p0 − i

) (
exp

(
t2λ

σ 2 (i − j)

)
+ exp

(
t4λ

σ 2 (i − j)

))
.

To simplify this bound, choose t1 = 1
3 and δ = 2t1+1

2 = 5
6 such that δt1 −

2t2
1 = (1 − δ)t1 = 1

18 . Note that
(a

b

) ≤ ab and log(p − p0) + log p0 ≤ log(
p2

4 ) ≤
2 log p − 1. Note that

∑b
j=0

(a
j

) ≤ (a + 1)b, and
(a

b

) ≤ ab, for any integers a, b > 0.
Then

I1 ≤ 2
p0∑

i=1

pi
0

[αi]∑
j=0

(
p − p0

j

)
exp

(
− inCmin

28σ 2 + 2 j

3
+ (i − j)λ

2σ 2

)

+ 2
p∑

j=[αi]+1

(p − p0)
j exp

(−(α − 1) jλ

3ασ 2 + 2 j

3

) [ j/α]∑
i=0

(
p0

i

)

123



830 X. Shen et al.

≤ 2
p0∑

i=1

exp

(
−i

(
nCmin

18σ 2 − log p0 − α log(p − p0 + 1) − λ

2σ 2

))

+ 2
p∑

j=|αi |+1

exp

(
− j

(
(α − 1)λ

3ασ 2 − log(p − p0) − 1

α
log(p0 + 1) − 2

3

))
.

This, together with the fact that I1 ≤ 1, log p0 +α log(p− p0 +1) ≤ (α+1)(log(p+
1) − log(α + 1) + α

α+1 log α) and 1
α

log(p0 + 1) + log(p − p0) ≤ (1 + 1
α
)(log(p +

1)− 1
α+1 log(α +1)− α

α+1 log(1+ 1
α
)), leads to (15). The risk and minimaxity results

follow similarly as in the Proof of Theorem 5. This completes the proof. ��
Proof of Theorem 6 Let H = {min j∈A0 |β̂ol

j | > 3τ/2} ∩ {max j /∈A0 |(x( j))T (Y −
Xβ̂

ol
)| ≤ λ

τ
}. Rewrite (23), for any subset A of non-zero coefficients and β,

{−(x( j))T (Y − Xβ) + λ
τ

sign(β j )I (|β j | < τ) = 0, j ∈ A,

|(x( j))T (Y − Xβ)| ≤ λ
τ
, j /∈ A.

(29)

Next we prove that β̂
ol

satisfies (29) on H . Note that the first event in H implies

that ∇ j S2(β̂
ol

)− λ
τ

sign(β̂ol
j ) = 0; j = 1, . . . , p0. This, together with the property that

(x( j))T (Y − Xβ̂
ol

) = 0; j = 1, . . . , p0 yields the first equation of (29). The second

event in H implies the second equation of (29) by β̂
ol

.

For a unique minimum of (29) on H , suppose β̂
lo
Â �= β̂

ol
A0

. Let A∗ = Â∪ A0. Define
g(β A∗) = S(β), where β = (β A∗, 0A∗c ) and β A∗ = (β1, . . . , β|A∗|)T . Then

∣∣∣∣∣
(

∂

∂β A∗
g(β̂

lo
A∗) − ∂

∂β A∗
g(β̂

ol
A∗)

)T
(β̂

lo
A∗ − β̂

ol
A∗)

‖β̂lo
A∗ − β̂

ol
A∗‖

∣∣∣∣∣ =
∣∣∣
(

X T
A∗ X A∗(β̂

lo
A∗ − β̂

ol
A∗)

+ λ

τ
sign(β̂

lo
A∗)I (|β̂lo

A∗| ≤ τ) − λ

τ
sign(β̂

ol
A∗)I (|β̂ol

A∗| ≤ τ)

)T
(β̂

lo
A∗ − β̂

ol
A∗)

‖β̂lo
A∗ − β̂

ol
A∗‖

∣∣∣∣∣ ,

where β̂
ol
A∗ and β̂

lo
A∗ cannot attain at nondifferentiable concave points of the penalty

by Lemma 1. Without loss of generality, assume that ‖β̂lo
A∗ − β̂

ol
A∗‖ ≥ τ/2.

Otherwise, for any j ∈ A0|β̂lo
j | > τ , and for j ∈ Ac

0 ∩ A ∗ |β̂lo
j | ≤ τ , imply-

ing β̂
lo
A∗ = β̂

ol
A∗ on H , as shown from (28), which is impossible by assump-

tion that β̂
lo
A∗ �= β̂

ol
A∗. By the Cauchy–Schwarz inequality |( λ

τ
sign(β̂

lo
A∗)I (|β̂lo

A∗| ≤
τ)− λ

τ
sign(β̂

ol
A∗)I (|β̂ol

A∗| ≤ τ))T (β̂
lo
A∗−β̂

ol
A∗)| ≤ 2λ

τ

√
K ∗‖β̂lo

A∗−β̂
ol
A∗‖ that is bounded

below by min|B|≤2K ∗,A0⊆B ncmin(n−1XT
BX B) τ

2 − 2λ
τ

√
K ∗ > 0, contradicting to the

fact that 0 ∈ ( ∂
∂β A∗ g(β̂

lo
A∗) − ∂

∂βlo
A∗

g(β̂
ol
A∗))T (β̂

lo
A∗−β̂

ol
A∗)

‖β̂lo
A∗−β̂

ol
A∗‖

on H if β̂
lo �= β̂

ol
is a local
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minimizer of S(·) thus g(·). Hence, g(βlo
A∗) has a unique local minimizer on H , imply-

ing β̂
ol = β̂

lo
.

Note that (x( j))T (Y − XT β̂
ol

) ∼ N (0, σ 2‖(I − PA0)x
( j)‖2), ‖(I − PA0)x

( j)‖2 ≤
‖x( j)‖2, β̂ol

j ∼ N (β0
j , V ar(β̂ol

j )), and V ar(β̂ol
j ) ≥ c−1

min(n
−1XT

A0
X A0)σ

2/n. Then

P(β̂
lo
Âlo �= β̂

ol
A0

) ≤ P(Hc) ≤ ∑
j∈A0

P(|β̂ol
j | ≤ 3τ/2) + ∑

j /∈A0
P(|(x( j))T (Y −

XT β̂
ol

)| > λ
τ
) ≡ I6 + I7, where I6 ≤ |A0|(�(− n1/2(γmin−3τ/2)

σc−1/2
min ( 1

n XT
A0

X A0 )
) −

�(− n1/2(γmin+3τ/2)

σc−1/2
min ( 1

n XT
A0

X A0 )
)), and I7 ≤ (p − |A0|)�(− λ/τ

σ max1≤ j≤p ‖x( j)‖ ). This yields (24).

For the risk property, let Â = { j : |β̂lo
j | ≥ τ }. By (29), β̂

lo
Â = (XT

Â
X Â)−1XT

Â
(Y −

X Âc β̂ Âc ). As in the Proof of Theorem 5 for the global minimizer, we rewrite the

risk as the sum of T1 and T2. For T1 = ∫ ∞
C P( 1

n ‖Xβ̂
lo − Xβ0‖2 ≥ x) dx , by the

triangular inequality, ‖Xβ̂
lo − Xβ0‖2 = ‖(I − P Â)(X Âc β̂

lo
Âc + Xβ0) + P Âε‖2 ≤

4(cmax(XT X)p2τ 2 +‖Xβ0‖2)+2‖ε‖2. Let C = 7σ 2 +2cmax(
XT X

n )p2τ 2 + 4
n ‖Xβ0‖2

and t = 1/3. By Markov’s inequality,

T1 ≤
∫ ∞

C
P

(
‖ε‖2 ≥ xn

2
− 2cmax(XT X)p2τ 2 − 2‖Xβ0‖2

)
dx

≤
∫ ∞

C
E(exp(t‖ε‖2/σ 2)) exp

⎛
⎝−nt

x − 2cmax

(
XT X

n

)
p2τ 2 − 4

n ‖Xβ0‖2

2σ 2

⎞
⎠ dx

≤
∫ ∞

C
exp

⎛
⎝−nt

x − 6σ 2 − 2cmax

(
XT X

n

)
p2τ 2− 4

n ‖Xβ0‖2

2σ 2

⎞
⎠ dx = o

( p0

n
σ 2

)
.

For T2, by the probability error bound, T2 ≤ C P(β̂
lo �= β̂

ol
)+ 1

n E‖Xβ̂
ol −Xβ0‖2 =

(1 + o(1))
p0
n σ 2, leading to the desired result.

Finally, it remains to show that β̂
lo

satisfies (23). Note that the local optimality (21)

is satisfied by β = β̂
(m)

: −(x( j))T (Y − Xβ) + λ
τ

sign(β j )I (|β(m−1)| < τ) = 0 j =
1, . . . , p. By construction, β̂

(m)
j = β̂

(m∗−1)
j �= ±τ ; for m ≥ m∗ and j = 1, . . . , p,

implying (23). This completes the proof. ��
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