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Abstract For analysis of time-to-event data with incomplete information beyond
right-censoring, many generalizations of the inference of the distribution and regres-
sion model have been proposed. However, the development of martingale approaches
in this area has not progressed greatly, while for right-censored data such an approach
has spread widely to study the asymptotic properties of estimators and to derive regres-
sion diagnosis methods. In this paper, focusing on doubly censored data, we discuss
a martingale approach for inference of the nonparametric maximum likelihood esti-
mator (NPMLE). We formulate a martingale structure of the NPMLE using a score
function of the semiparametric profile likelihood. Finally, an expression of the asymp-
totic distribution of the NPMLE is derived more conveniently without depending on
an infinite matrix expression as in previous research. A further useful point is that a
variance-covariance formula of the NPMLE computable in a larger sample is obtained
as an empirical version of the limit form presented here.
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860 T. Sugimoto

1 Introduction

In statistical analysis for right-censored data, the Kaplan–Meier estimate and Cox
regression are typical tools. A large sample study of their estimators and several meth-
ods of regression diagnosis are elegantly constructed by the counting processes and the
corresponding martingale theories (Andersen and Gill 1982; Fleming and Harrington
1991; Andersen et al. 1993; Therneau and Grambsch 2000). Many researchers predict
that the counting processes and their associated martingales will certainly continue
to play an important role in this area (see, e.g., Oakes 2000). For analysis of time-
to-event data with incomplete information beyond right-censoring, such as doubly or
interval censored data, generalizations of inference procedures of the nonparametric
distribution estimators (e.g., Turnbull 1974, 1976; Chang 1990; Gu and Zhang 1993;
Gentleman and Geyer 1994; Mykland and Ren 1996; Wellner and Zhang 1997) and
the Cox regression model (e.g., Kim 2003; Cai and Cheng 2004) have been proposed
by many authors. However, in cases with such incomplete data, it remains uncertain
whether to characterize the properties of their estimators using a martingale approach;
in right-censored data, by contrast, the approach has become widespread as a main tool
for such a purpose. Our interest here is how such an approach can be developed in the
case of double-censoring, which consists of complete, right-censored or left-censored
observations.

We discuss a martingale approach for inference of the nonparametric maximum
likelihood estimator (NPMLE) in doubly censored data. First, as a natural request, it
is necessary to consider both forward and backward aspects of the counting processes
to record doubly censored data, since the processes and the corresponding martingales
play central roles in right- and left-censored-only data, respectively. Therefore, as
fundamental results, we provide martingale properties for the forward and backward
counting processes and then formulate the correlation structure of their martingales.
The analogy of right-censoring case will often work for such studies. As a study
concerned in the topics, Patilea and Rolin (2006) proposes latent variable models
related to doubly censored data, where a backward martingale approach is implied
to derive the product-limit estimators of survival function. On the other hand, the
NPMLE is a solution of an integral equation, termed the self-consistent equation,
which cannot be expressed by a closed form in doubly or interval censored data. For
such a reason, the asymptotic properties of the NPMLE have been studied using some
infinite matrix or operator expression taken from the self-consistent equations (Tsai
and Crowley 1985; Chang and Yang 1987; Gu and Zhang 1993; Yu and Li 2001).
Similarly, even if the martingale properties presented here are incorporated into the
self-consistent equations, it is difficult to discuss the asymptotic distribution of the
NPMLE without some infinite matrix expression in doubly censored data. Hence,
such a manner does not lead to an elegant expansion of a martingale approach as in
right- or left-censored-only data.

In this paper, to overcome this difficulty, we characterize the martingale structure
of the NPMLE using a score function of the log profile likelihood (Murphy and van
der Vaart 1997). The asymptotic distribution of the NPMLE is discussed based on the
martingale structure in such an expansion. Finally, we show that the limit distribution
of the NPMLE converges weakly to a Gaussian process freed from some infinite
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Martingales in double-censoring 861

matrix or operator expression. A further useful point of this result is that the variance-
covariance formula of the NPMLE proposed by Turnbull (1974), which is worked out
computationally and theoretically by Sugimoto (2011), can be captured as a natural
estimate (empirical version) of the limit form of the variance-covariance derived here.
This variance-covariance formula is iteration-free and computable in a larger sample
and reduces to the Greenwood formula in right-censored data.

In Sect. 2 we briefly review the semiparametric profile likelihood inference and
its structure of derivatives in doubly censored data. In Sect. 3 we formulate forward
and backward martingale properties for the counting processes and their correlation
structure. In Sect. 4 we derive a martingale structure of the NPMLE using a score
function of the profile likelihood; we then show that the asymptotic distribution of the
NPMLE is a superposition of two Gaussian martingale processes, as more convenient
expression without depending on an infinite matrix expression as in previous research
(Chang and Yang 1987; Gu and Zhang 1993).

2 Preliminary

2.1 Empirical likelihood and the NPMLE

In a doubly censored sample (Gehan 1965; Turnbull 1974) of size n, the i th observation
Ti and censoring indicator �i (i = 1, . . . , n) are available as

Ti = max[min(T ∗i , C R
i ), C L

i ] = min[max(T ∗i , C L
i ), C R

i ],

�i =
⎧
⎨

⎩

1 if C L
i < T ∗i ≤ C R

i (no censoring)

2 if C R
i < T ∗i (right-censoring)

3 if T ∗i ≤ C L
i (left-censoring)

.
(1)

Here T ∗1 , . . . , T ∗n are independent and identically distributed (i.i.d.) random variables
following a true distribution function F∗(t) = 1−S∗(t), and (C L

1 , C R
1 ), . . ., (C L

n , C R
n )

are i.i.d. vectors of left- and right-censoring times independent of T ∗i ’s with C L
i ≤ C R

i .
Let F L(t) = 1 − SL(t) and F R(t) = 1 − SR(t) denote true marginal distribution
functions of C L

i and C R
i , respectively. For the sake of simplicity, we assume throughout

this paper that F∗, F L and F R are continuous functions.

Example Consider a study of the age-of-onset distributions for a disease. Some per-
sons had already suffered from the disease at the time of registration to this study, so
their ages were left-censored observations. The others were followed-up and received
periodical medical examination. The ages of onset for some of persons are observed
exactly during the time-span of the study. The ages of the rest persons who had not
yet suffered from the disease until the end of the study are treated as right-censored
observations.

Let F(t) (0 ≤ t) be a discretized parameter function to estimate the unknown
F∗(·) nonparametrically, where F(·) is equivalently parameterized by the individual
vector expression F = (F[1], F[2], . . . , F[n−1], F[n]) such that F[i] = F(T(i)) for the
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862 T. Sugimoto

order statistics T(1) < T(2) < · · · < T(n) of Ti ’s. The NPMLE F̂(t) (0 ≤ t) of F∗(t)
maximizes the log empirical likelihood

ln(F) = ln(F[1], . . . , F[n])

= log
∏n

i=1
(F[i] − F[i−1])1(�(i)=1)(1− F[i])1(�(i)=2)F

1(�(i)=3)

[i]

with the constraint condition

0 = F0 ≤ F[1] ≤ F[2] ≤ · · · ≤ F[n−1] ≤ F[n] = 1,

F[i−1] < F[i] if �(i) = 1 for i = 1, . . . , n, (2)

where 1(·) is the indicator function. The necessary and sufficient condition to find
the NPMLE has been formulated in several ways (e.g., Turnbull 1974; Mykland
and Ren 1996; Wellner and Zhang 1997, etc.), but here we introduce the condi-
tion based on the score functions to discuss derivatives between parameters later.
To identify F[i] and F[i−1] as the same parameter if F[i] = F[i−1], let [i] be an
index number j satisfying Fj = F[i] of F such that distinct F[i]’s are denoted by
F1 < F2 < · · · < F[n]−1 < F[n]. Similarly, denote the individual vector expression of
F̂(·) by F̂ = (F̂[1], F̂[2], . . . , F̂[n−1], F̂[n]), so that we can represent the distinct
F̂[i]’s as F̂1 < F̂2 < · · · < F̂[n]−1 < F̂[n] = 1. Let u j (F) denote the first deriv-
ative of ln(F) w.r.t. Fj ,

u j (F) = u j (Fj−1, Fj , Fj+1) = α j

Fj − Fj−1
− α j+1

Fj+1 − Fj
− β j

1− Fj
+ γ j

Fj
,

where α j , β j and γ j are

α j =
∑n

i=1
1(Ti = J j ,�i = 1), β j =

∑n

i=1
1(Ti ∈ [J j , J j+1),�i = 2),

γ j =
∑n

i=1
1(Ti ∈ [J j , J j+1),�i = 3),

and J j is the j th time point at which F(·) jumps. Note that F(t) = Fj if t ∈ [J j , J j+1)

in a time and F[i] = Fj if T(i) ∈ [J j , J j+1) for the (i)th individual. Let J be the
collection of all possible J = (J1, . . . , J[n])’s considered under (2) and let Ĵ be J
accompanied by the NPMLE. The NPMLE F̂ satisfies

u j (F̂) = u j (F)
∣
∣
F=F̂ = 0, j = 1, . . . , [n] − 1 for Ĵ (3)

and the dimension [n] of Ĵ is the largest among every J ∈ J for which F satisfies
u j (F̂) = 0, j = 1, . . . , [n] − 1. For details, see Sugimoto (2011, Lemma 1). A linear
transformation of (3) leads to the self-consistent equations (see Turnbull 1974, Lemma
A1 and Sugimoto 2011, Lemma 2).
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2.2 Profile likelihood and its derivatives

Further analysis such as test or confidence interval about a particular F∗(t) is based
on the log profile likelihood for θt = F(t) constructed as

pln(θt ) = max
0≤F[1]≤···≤F[i]≤θt≤F[i+1]≤···≤F[n]≤1

ln(F) for T(i) ≤ t < T(i+1) (4)

To compute pln(θt ), Chen and Zhou (2003) provided a self-consistent algorithm,
while Sugimoto (2011) proposed a Newton–Raphson algorithm. The analysis based
on the semiparametric profile likelihood ratio performs better; however, the com-
putation potentially requires a heavy load. Therefore, in a larger sample it will be
desirable to replace it with the Wald- or score-type if possible. In the following, we
review results of Sugimoto (2011) required for this paper. Let Un(θt ) = ∂pln(θt )/∂θt

and In(θt ) = −∂2 pln(θt )/∂θ2
t be the first and minus the second derivatives of

the log profile likelihood, respectively. To express Un(θt ) and In(θt ) definitely, let
F̂(θt ) = (F̂[1](θt ), F̂[2](θt ), . . . , F̂[n−1](θt ), F̂[n](θt )) denote the restricted NPMLE of
F∗ under a given value θt of F(t) (i.e., the solution for the maximization in (4) such
that pln(θt ) = ln(F)|F=F̂(θt )

), which satisfies

{
0 = F̂0(θt ) < F̂1(θt ) < · · · < F̂mt−1(θt ) < F̂mt (θt ) = θt

θt < F̂mt+1(θt ) < · · · < F̂[n]−1(θt ) < F̂[n](θt ) = 1
,

where mt is the interval number including t as Jmt ≤ t < Jmt+1. To avoid confusion,
we simply call F̂(θt ) the profile estimator (under the constraint F(t) = θt ) in this
paper. Also, let Ĵθt be J accompanied by F̂(θt ), because J j ’s, mt and [n] led by F̂(θt )

are determined depending on θt . Note that the condition to obtain the profile estimator
F̂(θt ) is

u j (F̂(θt )) = 0, j = 1, . . . , mt − 1, mt + 1, . . . , [n] − 1 for Ĵθt , (5)

excluding the case of j = mt in (3). Based on these notations and the rule of derivatives,
we obtain the following result for expressions of Un(θt ) and In(θt ):

Proposition 1 In doubly censored data (1), the score and Fisher functions of the log
profile likelihood pln(θt ) are expressed as

Un(θt ) = αmt

θt − F̂mt−1(θt )
− αmt+1

F̂mt+1(θt )− θt
− βmt

1− θt
+ γmt

θt
,

In(θt ) =
[n]∑

j=1

α j

(F̂j (θt )− F̂j−1(θt ))2

{
∂ F̂j (θt )

∂θt
− ∂ F̂j−1(θt )

∂θt

}2

+
[n]−1∑

j=1

β j

(1− F̂j (θt ))2

{
∂ F̂j (θt )

∂θt

}2

+
[n]−1∑

j=1

γ j

F̂ j (θt )2

{
∂ F̂j (θt )

∂θt

}2

. (6)
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See Appendix A.1 for the details of Proposition 1. The derivative ∂ F̂j (θt )/∂θt included
in (6) is usually obtained by solving linear equations derived by differentiating both
sides of the equations (5) w.r.t. θt . However, in doubly censored data, we can compute
∂ F̂j (θt )/∂θt without such an inverse matrix expression (for further details, see Sugi-
moto 2011). To explain this, let i j,l(F) be minus the second derivative of ln(F) w.r.t.
Fj and Fl . If j ≤ mt − 1, we progressively have

∂ F̂j (θt )

∂ F̂j+1(θt )
= −i j, j+1(F̂(θt ))

/{

i j, j (F̂(θt ))+ i j−1, j (F̂(θt ))
∂ F̂j−1(θt )

∂ F̂j (θt )

}

(7)

by starting from ∂ F̂0(θt )/∂ F̂1(θt ) = 0. While, if mt + 1 ≤ j , we regressively obtain

∂ F̂j (θt )

∂ F̂j−1(θt )
= −i j, j−1(F̂(θt ))

/{

i j, j (F̂(θt ))+ i j+1, j (F̂(θt ))
∂ F̂j+1(θt )

∂ F̂j (θt )

}

(8)

from ∂ F̂[n](θt )/∂ F̂[n]−1(θt ) = 0. By the chain rule of differentiations, ∂ F̂j (θt )/∂θt is
computed as

∂ F̂j (θt )

∂θt
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ F̂j (θt )

∂ F̂j+1(θt )

∂ F̂j+1(θt )

∂ F̂j+2(θt )
· · · ∂ F̂mt−1(θt )

∂θt
if j ≤ mt − 1

∂ F̂j (θt )

∂ F̂j−1(θt )

∂ F̂j−1(θt )

∂ F̂j−2(θt )
· · · ∂ F̂mt+1(θt )

∂θt
if j ≥ mt + 1

. (9)

The quantity 1/In(θt ) evaluated at θt = F̂(t) is an appropriate variance formula
of the NPMLE F̂(t) for doubly censored data, which always gives the same result
as Turnbull’s determinant-based formula (Sugimoto 2011). That is, 1/In(F̂(t)) is the
same as the mt th diagonal elements of the inverse of the full Fisher matrix of ln(F̂)

(composed of all i j,l(F̂)), similar to classical profile likelihood theory. In addition,
1/In(F̂(t)) yields a limit identical to Chang (1990, Theorem 4.2) asymptotic vari-
ance formula under some regular conditions (e.g., as seen in Murphy and van der
Vaart 1997, Theorem 2.1). Further, in right-censored data, 1/In(F̂(t)) reduces to
Greenwood’s variance formula (Sugimoto 2011, Lemma 5). Therefore, the form of
In(F̂(t)) provides us with a hint of how to consider martingale properties included in
the difference F̂ − F∗ or provides evidence that a martingale approach is valid.

3 Counting processes and their martingales

In the section below, we formulate martingale properties of the counting processes
included in doubly censored data. Hereafter, assume the following condition:

Condition 1 F∗, F L and F R are continuous functions and the supports of F∗(t),
F L(t) and F R(t) are included in [0, 1].
To derive forward and backward martingale properties simply, the distributions are
supported by the unit interval under the continuity. One goal of this section is to
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Martingales in double-censoring 865

prepare the properties needed to investigate the asymptotic distribution of the NPMLE
in Sect. 4.

3.1 Forward properties

Here we will consider forward counting processes and their martingales. Let �f(1)(t),
�f(2)(t) and �f(3)(t) be the true cumulative hazard functions for T ∗, C R

i and

C L
i , respectively. For example, if F∗ is differentiable, �f(1)(t) is

∫

(0,t] λ
f(1)(s)

→
ds

with λf(1)(t) = limdt↓0 Pr(t ≤ T ∗i < t + dt |t ≤ T ∗i )/dt , where we denote
→
dg(t) = g(t) − g(t−) for a function g and a time t− just prior to t . We define
the forward counting processes and at-risk processes as

N f(j)
i (t) = 1(Ti ≤ t,�i = j) for j = 1, 2, 3 and Y f

i (t) = 1(t ≤ Ti ),

i = 1, . . . , n. Let F f
t be a forward filtration formulated by

F f
t = σ {N f(1)

i (s), N f(2)
i (s), N f(3)

i (s), i = 1, . . . , n : 0 ≤ s ≤ t},

where σ {B} is the smallest σ -algebra generated by B. In Lemma 1, we formulate
forward martingale properties of the counting processes N f(1)

i , N f(2)
i and N f(3)

i to
detect the uncensored, right- and left-censored observations, respectively.

Lemma 1 Suppose that Condition 1 is satisfied. Let

Af(j)
i (t) = ∫

(0,t] Y
f
i (s)ωf(j)(s)

→
d�f(j)(s), j = 1, 2, 3,

where ωf(1)(t) = (SR(t)− SL(t))S∗(t)/Qf(t), ωf(2)(t) = S∗(t)SR(t)/Qf(t),
ωf(3)(t) = (1 − S∗(t)) SL(t)/Qf(t) and Qf(t) = Pr(Ti > t) = SR(t)S∗(t) +
SL(t)(1− S∗(t)). Then, in the double-censoring model (1), the processes

M f(j)
i (t) = N f(j)

i (t)− Af(j)
i (t), j = 1, 2, 3, i = 1, . . . , n

are square-integrable F f
t -martingales. Let 〈M f(ı)

i , M f(j)
j 〉f , i, j = 1, . . . , n, ı,

j = 1, 2, 3 be F f
t -predictable covariation processes of M f(ı)

i and M f(j)
j ; then

〈M f(ı)
i , M f(j)

j 〉f(t) =
{

Af(j)
i (t), if i = j and ı = j,

0, otherwise,
(0 ≤ t).

Lemma 1 is proved in Appendix A.2. By Lemma 1, for locally bounded F f
t -predicable

processes H f
1 (t) and H f

2 (t),
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866 T. Sugimoto

〈∫

(0,t] H f
1 (x)

→
d M f(ı)

i (x),
∫

(0,s] H f
2 (y)

→
d M f(j)

j (y)
〉f

= ∫
(0,t∧s] H f

1 (x)H f
2 (x)

→
d
〈
M f(ı)

i , M f(j)
j

〉f
(x)

is easily shown, where t ∧ s = min(t, s).

3.2 Backward properties

Here we discuss backward martingale properties opposite to those in Sect. 3.1. Let
�b(1)(t), �b(2)(t) and �b(3)(t) be the true cumulative reversed-hazard functions of
T ∗, C R

i and C L
i , respectively. Similar to �f(1), when F∗ is differentiable, �b(1)(t) is

∫

[t,1)
λb(1)(s)

←
ds with λb(1)(t) = limdt↓0 Pr(t − dt < T ∗i ≤ t |T ∗i ≤ t)/dt , where we

denote
←
dg(t) = g(t) − g(t+) for a function g and a time t+ just after t . Define the

backward counting processes and at-risk processes as

N b(j)
i (t) = 1(t ≤ Ti ,�i = j) for j = 1, 2, 3 and Y b

i (t) = 1(Ti ≤ t),

i = 1, . . . , n and let F b
t be a backward filtration such that

F b
t = σ

{
N b(1)

i (s), N b(2)
i (s), N b(3)

i (s), i = 1, . . . , n : t ≤ s ≤ 1
}
.

As a reversed version of Lemma 1, we formulate backward martingale properties of the
counting processes N b(j)

i , j = 1, 2, 3. Note that N b(j)
i , j = 1, 2, 3 are left-continuous

with right-hand limits.

Lemma 2 Suppose that Condition 1 is satisfied. Let

Ab(j)
i (t) = ∫[t,1)

Y b
i (s)ωb(j)(s)

←
d�b(j)(s), j = 1, 2, 3,

where ωb(1)(t)= (F R(t)−F L(t))F∗(t)
/

Qb(t), ωb(2)(t)= (1−F∗(t))F R(t)
/

Qb(t),
ωb(3)(t) = F∗(t)F L(t)

/
Qb(t) and Qb(t) = Pr(Ti ≤ t) = F L(t)F∗(t) +

F R(t)(1− F∗(t)). Then, in the double-censoring model (1), the processes

Mb(j)
i (t) = N b(j)

i (t)− Ab(j)
i (t), j = 1, 2, 3, i = 1, . . . , n

are square-integrable F b
t -martingales. Let 〈Mb(ı)

i , Mb(j)
j 〉b, i, j = 1, . . . , n, ı,

j = 1, 2, 3 be F b
t -predictable covariation processes of Mb(ı)

i and Mb(j)
j ; then

〈
Mb(ı)

i , Mb(j)
j

〉b
(t) =

{
Ab(j)

i (t), if i = j and ı = j,

0, otherwise,
(t ≤ 1).
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The proof of Lemma 2 is a simple reversed version of Lemma 1. By Lemma 2, for
locally bounded F b

t -predicable processes Hb
1 (t) and Hb

2 (t), we have
〈∫

[t,1)
Hb

1 (x)
←
d Mb(ı)

i (x),
∫

[s,1)
Hb

2 (y)
←
d Mb(j)

j (y)
〉b

= ∫[t∨s,1)
Hb

1 (x)Hb
2 (x)

←
d
〈
Mb(ı)

i , Mb(j)
j

〉b
(x),

where t ∨ s = max(t, s).
The specific cases of Lemmas 1 and 2 correspond to fundamental martingale proper-

ties usually used in right- and left-censored-only data, respectively. In doubly censored
data, as a natural request, it is necessary to consider both forward and backward aspects.
However, note that even in right-censored data there is a backward aspect as a special
case of Lemma 2 (although it may not be particularly useful if used separately). See
Patilea and Rolin (2006) for a study related to this characterization using backward
counting processes.

3.3 Correlation structure between forward and backward martingales

To obtain the covariance form with the NPMLE, we need to clarify the correlation
structure between forward and backward martingales. For this purpose, consider the
product M f(ı)

i (t)Mb(j)
j (s). If i 
= j , the product holds a martingale structure based

on either the filtration F f
t or F b

s on all s, t ∈ [0, 1], because of the independence

between M f(ı)
i (t) and Mb(j)

j (s), ı, j = 1, 2, 3. If i = j and ı = j , for the same
purpose, consider

M f(j)
i (t)Mb(j)

i (r(t)) = ∫
(0,t] Mb(j)

i (r(x−))
→
d M f(j)

i (x)

+ ∫[r(t),1)
M f(j)

i (r(x+))
←
d Mb(j)

i (x)+ 1(r(t) ≤ t)
∫

[r(t),t]
→
d N f(j)

i (x), (10)

where r(·) is a strictly monotone decreasing function on [0, 1] with r(0) = 1 and
r(1) = 0, such as r(t) = 1 − t , which reverses the forward time-direction, and r(t)
is the inverse function of r(t). The derivation of (10) is based on integration by parts
for the Stieltjes integration (see Fleming and Harrington 1991, pp. 74–75) and

∑
0<s≤t

→
d M f(j)

i (s)
←
d Mb(j)

i (r(s)) =∑0<s≤t
→
d N f(j)

i (s)
←
d N b(j)

i (r(s)).

Put s = r(t) in (10). The two martingales M f(j)
i (t) and Mb(j)

i (s) are not always
uncorrelated. If s ≤ t , a correlation occurs certainly in the third term of (10). However,
considering the first and second terms of (10) together, whether s ≤ t or not, the
structure of (10) may appear to be complicated as long as we persist with either F f

t or
F b

s alone. We will avoid the insistence along single time lines and begin by considering
a superposition of the forward and backward filtrations.

Let F 

t = F f

t ∨F b
r(t) be the smallest σ -algebra containing all events of F f

t and

F b
r(t), and let N 
(j)

i (t) = N f(j)
i (t)+N b(j)

i (r(t)), j = 1, 2, 3. Using the inverse r(t) of

r(t), N 
(j)
i (r(t)) = N f(j)

i (r(t))+N b(j)
i (t). We formulate the F 


t -martingale property

of N 
(j)
i as follows:
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Lemma 3 Suppose that Condition 1 is satisfied. Let A
(j)
i (t) = A
f(j)

i (t)

+ A
b(j)
i (r(t)) and

{
A
f(j)

i (t) = ∫
(0,t] Y

f
i (x)Y b

i (r(x))υf(j)(x)
→
d�f(j)(x)+ δ

f(j)
i (t)

A
b(j)
i (t) = ∫[t,1)

Y f
i (r(x))Y b

i (x)υb(j)(x)
←
d�b(j)(x)+ δ

b(j)
i (t)

for j = 1, 2, 3 and i = 1, . . . , n, where υf(j) and υb(j) are provided as

υf(1)(t) = (SL(t)− SR(t))S∗(t)
Qf(t)− Qf(r(t)+)

, υb(1)(t) = (F R(t)− F L(t))F∗(t)
Qb(r(t))− Qb(t−)

,

υf(2)(t) = S∗(t)SR(t)

Qf(t)− Qf(r(t)+)
, υb(2)(t) = (1− F∗(t))F R(t)

Qb(r(t))− Qb(t−)
,

υf(3)(t) = (1− S∗(t))SL(t)

Qf(t)− Qf(r(t)+)
, υb(3)(t) = F∗(t)F L(t)

Qb(r(t))− Qb(t−)

on t < r(t) (and set as zeros on t ≥ r(t)), and δ
f(j)
i (t) and δ

b(j)
i (r(t)) are F 


t -
predictable processes such that

δ
f(j)
i (t) = 1(r(t) ≤ t)

∫

[r(t),t]
→
d N f(j)

i (x) and

δ
b(j)
i (r(t)) = 1(r(t) ≤ t)

∫

[t,r(t)]
←
d N b(j)

i (x).

Then, for j = 1, 2, 3, i = 1, . . . , n, in the double-censoring model (1), the processes

M
(j)
i (t) = N 
(j)

i (t)− A
(j)
i (t) and

{
M
f(j)

i (t) = N f(j)
i (t)− A
f(j)

i (t)

M
b(j)
i (r(t)) = N b(j)

i (r(t))− A
b(j)
i (r(t))

are square-integrable F 

t -martingales (0 ≤ t), where M
(j)

i (t) = M
f(j)
i (t)

+ M
b(j)
i (r(t)). Further, the F 


t -predictable covariation processes 〈M
(ı)
i , M
(j)

j 〉

satisfy 〈M
(ı)

i , M
(j)
j 〉
(t) = 0 whenever at least one of three conditions i 
= j , ı 
= j

or t < r(t) is satisfied.

See Appendix A.2 for the proof of Lemma 3. Lemma 3 includes a useful tool to show
that the expectations of the first and second terms of (10) are zeros. It will brought
by adding the identity Mξ(j)

i (t) + Aξ(j)
i (t) = M
ξ(j)

i (t) + A
ξ(j)
i (t) (= N ξ(j)

i (t)),
ξ = f, b. Then, the result for the product of forward and backward martingales is
obtained as follows:

Lemma 4 Suppose that Condition 1 is satisfied. Then, in the double-censoring model
(1), E[M
f(ı)

i (t)M
b(j)
j (s)] = 0 and

E[M f(ı)
i (t)Mb(j)

j (s)] = 1(s ≤ t, i = j, ı = j)E

[
∫

[s,t]
→
d N f(j)

i (x)

]

for i, j = 1, . . . , n, ı, j = 1, 2, 3.

123



Martingales in double-censoring 869

The proof of Lemma 4 is also provided in Appendix A.2. Lemma 4 is easily extended

to a multivariate version with the martingale transformation. We define N
ξ(j)

(t)
=∑n

i=1 N ξ(j)
i (t),

A
ξ(j)

(t) =∑n
i=1 Aξ(j)

i (t) and M
ξ(j)

(t) =∑n
i=1 Mξ(j)

i (t)

for ξ = f, b, j = 1, 2, 3. Let Gf(j)(t) and Gb(j)(t) be, respectively, bounded F f
t -

and F b
t -predicable processes, which are also F 


t -predictable because

Gf(j)(t) = E[Gf(j)(t) | F f
t−] = E[E[Gf(j)(t) | F b

r(t−)] | F f
t−] = E[Gf(j)(t) | F 


t−].

Further, let M
f(j)

G (t) = ∫

(0,t] G
f(j)(s)

→
d M

f(j)
(s) and M

b(j)

G (t) = ∫

[t,1)
Gb(j)(s)

←
d M

b(j)
(s), j = 1, 2, 3. Then, by reasons similar to those for Lemma 4, these products

satisfy

E[M f(ı)
G (t)M

b(j)

G (s)] = 1(s ≤ t, ı = j)E
[∫

[s,t] G
f(j)(x)Gb(j)(x)

→
d N

f(j)
(x)
]

= 1(s ≤ t, ı = j)E
[∫

[s,t] G
f(j)(x)Gb(j)(x)

→
d A

f(j)
(x)
]
.

(11)

This result (11) will be used in Sect. 4.2.1.

4 Weak convergence based on a martingale approach

This section is organized in two parts (Sects. 4.1 and 4.2). In Sect. 4.1, we discuss a
linearization of the NPMLE and conduct useful decompositions of the profile score
function to apply the martingale technique developed in Sect. 3 to the NPMLE, without
any discussions of asymptotic approximation. In Sect. 4.2, as our main result, we
discuss the asymptotic distribution of the NPMLE based on the linearization developed
in Sect. 4.1 and martingale properties provided in Sect. 3.

4.1 Linearization of the NPMLE

We here formulate a linearization convenient for investigating statistical properties of
the NPMLE. For this purpose, it is essential to clarify a structure immanent in the profile
score function, which is summarized in Propositions 2 and 3. Based on Proposition
4, the martingale properties on the profile score function are summarized in Lemma
5. This yields a main result (15) for the linearization of the NPMLE. Proposition
3 is obtained by reconstructing the intensity components of Lemma 5 in terms of
Proposition 2, which is used in the proof of Theorem 1 (in particular, Lemma 7).

Introducing the notation θ∗t = F∗(t) into the argument of the profile estimator to
avoid double use of parentheses, similar to θt = F(t), the first-order Taylor expansion
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of Un(θ
∗
t ) around the NPMLE θt = F̂(t) is written as

Un(θ
∗
t ) = In(θ̃t )(F̂(t)− F∗(t)), (12)

where θ̃t is on the line segment between F̂(t) and F∗(t). This expansion is a foundation
of our discussion. To derive the martingale properties of F̂(t), we will investigate
several structures which Un(θ∗t ) and In(θ̃t ) possess. Thereafter, in our discussion
based on (12), the parametrization of F can be limited to the case of J = Ĵθ∗t .

Denote Ĵθ∗t = ( Ĵ1, . . . , Ĵ[n]) and let
−→
J j and

←−
J j be the intervals [ Ĵ j , Ĵ j+1) and

( Ĵ j−1, Ĵ j ], respectively. Let Fd∗(·) and F∗ = (F∗1 , . . . , F∗[n]) be a discretized step

function of F∗(·) and its vector expression, respectively, that is, Fd∗ satisfies Fd∗(s)
= F∗j for s ∈ −→J j , j = 1, . . . , [n], where F∗j = F∗( Ĵ j ), j = 1, . . . , [n]. Note that

Fd∗(·) is often preferred to F∗(·) in investigating the structure of Un(θ
∗
t ) in (12),

since Fd∗(s) = θ∗t always holds on s ∈ [ Ĵmt , Ĵmt+1). See Appendix A.3.1 for another
definition and viewpoint of Fd∗(·) and F∗ needed in Sect. 4.2.2. We set F∗0 = 0 and
F∗[n]+1 = 1 for some discussions including F∗.

On expressions of the score function. To discuss the structure of Un(θ∗t ) in (12), from
Proposition 1, recall that

Un(θ∗t ) = umt (F̂(θ∗t )) = αmt

θ∗t − F̂mt−1(θ
∗
t )
− αmt+1

F̂mt+1(θ
∗
t )− θ∗t

− βmt

1− θ∗t
+ γmt

θ∗t
.

However, this expression is not convenient for obtaining a martingale structure of
Un(θ∗t ), and we should find some useful alternative expression. A key to obtain such
a finding is to supplement a gap between the form of In(θt ) (see Proposition 1) and
a conjecture E[Un(θ

∗
t )2] ≈ E[In(θ

∗
t )] conveyed from the information identity. This

work is first realized in the following result:

Proposition 2 In doubly censored data (1), Un(θ∗t ) is expressed as

Un(θ∗t ) =∑[n]−1
j=1 u j (F∗)F̃θ∗t ( Ĵ j ), (13)

where u j (F∗) means u j (F∗j−1, F∗j , F∗j+1), and the definition of F̃θ∗t (·) is provided in
(24) of Appendix A.4. The counting process expression of (13) is

Un(θ∗t ) =∑3
j=1 sj

∫ 1
0 H̃ (j)

t (s)
→
d N

f(j)
(s), (14)

where s1 = 1, s2 = −1, s3 = 1, H̃ (j)
t (s), j = 1, 2, 3 are

H̃ (1)
t (s) =

→
d F̃θ∗t (s)
→
d Fd∗(s)

, H̃ (2)
t (s) = F̃θ∗t (s)

Sd∗(s)
and H̃ (3)

t (s) = F̃θ∗t (s)

Fd∗(s)

and Sd∗(·) = 1− Fd∗(·).
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See Appendix A.4 for the proof of Proposition 2.

Remark on Proposition 2 We observe
→
d F̃θ∗t (s) = 0 if

→
d Fd∗(s) = 0, because of

→
d Fd∗(s) = Fd∗(s)− Fd∗(s−) and

→
d F̃θ∗t (s) = F̃θ∗t (s)− F̃θ∗t (s−). So, although there

may be some manners to define H̃ (1)
t (s) on all s ∈ [0, 1], we adopt the rule that

H̃ (1)
t (s) = H̃ (1)

t ( Ĵms ) if
→
d Fd∗(s) = 0.

The form of F̃θ∗t (·) defined in (24) may seem to be complicated. However, the
readers can go on to read the following contents even without fully understanding the
structure of F̃θ∗t (·). That is, a knowledge that F̃θ∗t (s) has a structure similar to F̂θ∗t (s; θ∗t )

will be sufficient to read hereafter, where F̂θt (s; θt ) is the function expression for the
derivatives ∂ F̂1(θt )/∂θt , . . . , ∂ F̂[n]−1(θt )/∂θt of the profile estimator F̂(θt ) discussed
in Sect. 2.2. See Appendix 5 for detailed definition of F̂θt (s; θt ).

From (14), we have a fundamental expression of Un(θ∗t ) for a martingale approach
as follows:

Lemma 5 In doubly censored data (1), Un(θ∗t ) is decomposed into the processes such
that

Un(θ∗t ) = U M
n (t; H̃t )+U A

n (t; H̃t ) and

{
U M

n (t; H̃t ) = U Mf
n (t; H̃t )+U Mb

n (t; H̃t )

U A
n (t; H̃t ) = U Af

n (t; H̃t )+U Ab
n (t; H̃t ),

where the four components are

U Mf
n (t; H̃t ) =∑3

j=1 sj

∫

(0,t] H̃ (j)
t (s)

→
d M

f(j)
(s),

U Mb
n (t; H̃t ) =∑3

j=1 sj

∫

(t,1)
H̃ (j)

t (s)
←
d M

b(j)
(s),

U Af
n (t; H̃t ) =∑3

j=1 sj

∫

(0,t] H̃ (j)
t (s)

→
d A

f(j)
(s)

and U Ab
n (t; H̃t ) =∑3

j=1 sj

∫

(t,1)
H̃ (j)

t (s)
←
d A

b(j)
(s).

Lemma 5 is shown easily by (14) and the Doob–Meyer decomposition based on
Lemmas 1 and 2. By Lemma 5, (12) can be re-expressed as

n−1/2U M
n (t; H̃t )+ n−1/2U A

n (t; H̃t ) = n−1In(θ̃t )
√

n(F̂(t)− F∗(t)), (15)

which provides a useful viewpoint to study properties of the NPMLE.
The asymptotic properties of the NPMLE and n−1/2U M

n (t; H̃t ) will be discussed
using (15) and Lemma 5. However, the expression of Lemma 5 is slightly difficult
in order to show that n−1/2U A

n (t; H̃t ) converges in probability to zero. We therefore
prepare another expression of U A

n (t; H̃t ) obtained from Proposition 2 following an
idea from Lemma 5.

Proposition 3 In doubly censored data (1), U A
n (t; H̃t ) is expressed as

U A
n (t; H̃t ) =

mt−1∑

j=1

u Af
j (F∗)F̃θ∗t ( Ĵ j )+ u Afb

mt
(F∗)+

[n]−1∑

j=mt+1

u Ab
j (F∗)F̃θ∗t ( Ĵ j ),

123



872 T. Sugimoto

where u Af
j and u Afb

mt
are written as

u Af
j (F∗) = ∫←J j

→
d A

f(1)
(s)/p∗j −

∫
←
J j+1

→
d A

f(1)
(s)/p∗j+1

− ∫→J j

→
d A

f(2)
(s)/S∗j +

∫
→
J j

→
d A

f(3)
(s)/F∗j ,

u Afb
mt

(F∗) = ∫←Jmt

→
d A

f(1)
(s)/p∗j −

∫
←
Jmt+1

←
d A

b(1)
(s)/p∗j+1

− ∫→Jmt

→
d A

f(2)
(s)/S∗j +

∫
→
Jmt

→
d A

f(3)
(s)/F∗j ,

p∗j = F∗j − F∗j−1, S∗j = 1 − F∗j , and u Ab
j is u Af

j in which the notations f and
→
d are

replaced by b and
←
d, respectively.

Proposition 3 is proved in Appendix A.4.

4.2 Distribution convergence results

First, we prepare the standard conditions required for study of the asymptotic distrib-
ution of the NPMLE as follows:

Condition 2 F∗, F L and F R satisfy Condition 1 with

inf{t : 0 < F∗(t)} = 0, sup{t : F∗(t) < 1} = 1, F L(1) = 1 and F R(0) = 0.

F L(t)− F R(t) is positive on t ∈ (0, 1).

This condition covers that of Chang and Yang (1987) and is equivalent to that of
Murphy and van der Vaart (1997, Theorem 2.1), except for the form of the support
[0, 1] specified explicitly for simplicity. Condition 2 is standard in the theoretical study
for doubly censored data, while there are some works under weaker or more practical
conditions, such as Gu and Zhang (1993) and Yu and Li (2001). Condition 2 is assumed
throughout this section and Appendix A.5.

We now discuss how the limit distribution of the left side of (15) converges weakly
to a distribution using a martingale approach. We show that n−1/2U M

n (t; H̃t ) con-
verges weakly to a Gaussian process in Sect. 4.2.1, and n−1/2U A

n (t; H̃t ) converges in
probability to zero in Sect. 4.2.2. Finally, the asymptotic distribution of the NPMLE
can be derived as Theorem 1. For the limit forms included in Theorem 1, let us prepare
the notations

I(t,s)(a, b) =
∫

[a,b]
H∗(1)

t (x)H∗(1)
s (x)

→
d A∗(1)(x)

+
∫

[a,b)

H∗(2)
t (x)H∗(2)

s (x)
→
d A∗(2)(x)+

∫

(a,b]
H∗(3)

t (x)H∗(3)
s (x)

→
d A∗(3)(x),
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→
d A∗(j)(s) = Qf(s)wf(j)(s)

→
d�f(j)(s), j = 1, 2, 3,

H∗(1)
t (s) =

→
d F∗

θ∗t
(s)

→
d F∗(s)

, H∗(2)
t (s) =

F∗
θ∗t

(s)

S∗(s)
, H∗(3)

t (s) =
F∗

θ∗t
(s)

F∗(s)
,

and F∗
θ∗t

(·) of the true derivative function is a limit of F̂θ∗t (·; θ∗t ). See Appendix A.5

for further details of F∗
θ∗t

(·).
Theorem 1 Suppose that Condition 2 is satisfied and that τ0 and τ1 are arbitrary
values such that 0 < τ0 ≤ τ1 < 1. Then, as n → ∞,

√
n(F̂(t) − F∗(t)) converges

weakly to the Gaussian process {Gf
t (t) + G

b
t (t+)}/I(t,t)(0, 1) on t ∈ [τ0, τe] with

zero mean and covariance function of

Cov

(
G

f
t (t)+G

b
t (t+)

I(t,t)(0, 1)
,

G
f
s(s)+G

b
s (s+)

I(s,s)(0, 1)

)

= I(t,s)(0, 1)

I(t,t)(0, 1)I(s,s)(0, 1)
,

where G
f
t (·) and G

b
t (·) are Gaussian forward and backward martingale processes

(indexed by a given t) with zero means, respectively, such that

Cov(Gf
t (s), G

f
t (u)) = I(t,t)(0, s ∧ u), Cov(Gb

t (s), G
b
t (u)) = I(t,t)(s ∨ u, 1)

and Cov(Gf
t (t), G

b
s (s+)) = 1(s < t)I(t,s)(s+, t).

The proof of Theorem 1 is performed following Sects. 4.2.1 and 4.2.2 and is
summarized in Sect. 4.2.3. From the form of the asymptotic covariance function
I(t,s)(0, 1)/I(t,t)(0, 1)I(s,s)(0, 1), we can know that a natural estimate (empirical
version) of Cov(F̂(t), F̂(s)) is Jn(F̂mt , F̂ms )/In(F̂mt )In(F̂ms ), which gives the same
value as Turnbull’s formula (see Sugimoto 2012a, Theorem 1, Lemma 1), where

Jn(F̂mt , F̂ms ) =
[n]∑

j=1

α j

(F̂j − F̂j−1)2

(
∂ F̂j

∂ F̂mt

− ∂ F̂j−1

∂ F̂mt

)(
∂ F̂j

∂ F̂ms

− ∂ F̂j−1

∂ F̂ms

)

+
[n]−1∑

j=1

β j

(1− F̂j )2

(
∂ F̂j

∂ F̂mt

)(
∂ F̂j

∂ F̂ms

)

+
[n]−1∑

j=1

γ j

F̂2
j

(
∂ F̂j

∂ F̂mt

)(
∂ F̂j

∂ F̂ms

)

.

In right-censored data, Jn(F̂mt , F̂ms )/In(F̂mt )In(F̂ms ) reduces to a Greenwood-type
covariance formula

(1− F̂mt )(1− F̂ms )

∫ t∧s

0

→
d N

f(1)
(u)

∑n
i=1 Y f

i (u){∑n
i=1 Y f

i (u)− →d N
f(1)

(u)}
(see Sugimoto 2012a, Corollary 1).

4.2.1 Asymptotic distribution of martingale components

Lemma 6 Suppose the conditions of Theorem 1 are satisfied. Then, n−1/2U M
n (t; H̃t )

converges weakly to the Gaussian process G
f
t (t) + G

b
t (t+) on t ∈ [τ0, τe] with zero
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mean and covariance function such that

Cov
(
G

f
t (t)+G

b
t (t+), G

f
s(s)+G

b
s (s+)

)
= I(t,s)(0, 1).

Proof of Lemma 6 Given t ∈ [τ0, τ1], H∗(j)
t (s), j = 1, 2, 3 are bounded uniformly

on s ∈ [0, 1]. Because F̃θ∗t (s) included in U Mξ
n (t; H̃t ) is F ξ

t -predictable but not

F ξ
s -predictable, ξ = f, b, we consider the processes of U Mξ

n (s; H̃t ) weighted by
H∗(j)

t /H̃ (j)
t such that

U
Mf
n,t (s) =

∑3
j=1 sj

∫

(0,s] H∗(j)
t (u)

→
d M

f(j)
(u),

U
Mb
n,t (s) =∑3

j=1 sj

∫

(s,1)
H∗(j)

t (u)
←
d M

b(j)
(u).

Since H∗(j)
t (u) is F ξ

u -predictable, U
Mξ

n,t (s)’s are F ξ
s -martingale processes by Lemmas

1 and 2. Referring to Sects. 3.1 and 3.2 for F ξ
s -predictable variation processes, we

obtain

〈
n−1/2U

Mf
n,t , n−1/2U

Mf
n,t

〉f
(s) = ∑3

j=1 sj

∫

(0,s] H∗(j)
t (u)2n−1→d A

f(j)
(u)

→p
∑3

j=1 sj

∫

(0,s] H∗(j)
t (u)2→d A∗(j)(u) as n→∞

and a similar result for 〈n−1/2U
Mb
n,t , n−1/2U

Mb
n,t 〉b, where→p denotes the convergence

in probability. In addition, n−1/2U
Mξ

n,t , ξ = f, b satisfy the Lindeberg condition because

H∗(j)
t (s) is bounded uniformly on s ∈ [0, 1] under t ∈ [τ0, τ1]. By Rebolledo’s central

limit theorem (Andersen and Gill 1982), as n→∞, we show that

n−1/2U
Mf
n,t (s)→D G

f
t (s) and n−1/2U

Mb
n,t (s)→D G

b
t (s+),

where→D denotes the convergence in distribution. Hence, applying Slutsky’s lemma

for the above results and (29), we conclude that n−1/2U M
n (t; H̃t ) and n−1/2{U Mf

n,t (t)

+U
Mb
n,t (t)} have the same limit distribution. That is, we have

n−1/2{U Mf
n (t; H̃t )+U Mb

n (t; H̃t )} →D G
f
t (t)+G

b
t (t+) on t ∈ [τ0, τe] (16)

for the uncorrelated relation between the two quantities. This limit distribution G
f
t (t)

+G
b
t (t+) is a Gaussian process again due to the sum of Gaussian. Therefore, the weak

convergence result in this lemma is shown.
Next, we discuss the result on covariance. The covariance function of the limit

distribution in (16) consists of

Cov(Gf
t (t), G

f
s(s)) + Cov(Gf

t (t), G
b
s (s+))

+ Cov(Gb
t (t+), G

f
s(s))+ Cov(Gb

t (t+), G
b
s (s+)).
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By properties of martingale processes, we have Cov(Gf
t (t), G

f
s(s)) = I(t,s)(0, s ∧ t)

and Cov(Gb
t (t+), G

b
s (s+)) = I(t,s)(s+ ∨ t+, 1). To investigate Cov(Gf

t (t), G
b
s (s+)),

we use (11). Then, since we can write U
Mf
n,t (t) =

∑3
j=1 M

f(j)

Gt
(t) and U

Mb
n,s (s)

= ∑3
j=1 M

b(j)

Gs
(s+) putting Gf(j)

t (x) = H∗(j)
t (x) and Gb(j)

s (x) = H∗(j)
s (x), it is

obtained that

E[n−1/2U
Mf
n,t (t)n

−1/2U
Mb
n,s (s)]

= 1(s < t)
∑3

j=1 E
[∫

(s,t] G
f(j)
t (u)Gb(j)

s (u)n−1→d A
f(j)

(u)
]

= 1(s < t)
∑3

j=1

∫

(s,t] H∗(j)
t (u)H∗(j)

s (u)
→
d A∗(j)(u),

which is identical to Cov(Gf
t (t), G

b
s (s+)) = 1(s < t)I(t,s)(s+, t). Therefore, the

asymptotic covariance of (16) can be gathered together as

I(t,s)(0, s ∧ t)+I(t,s)(s+ ∧ t+, s ∨ t)+I(t,s)(s+ ∨ t+, 1) = I(t,s)(0, 1).

��
4.2.2 Convergence of intensity components

Lemma 7 Suppose the conditions of Theorem 1 are satisfied. Then, supt∈[τ0,τe]
|n−1/2U A

n (t; H̃t )| converges in probability to zero.

Proof of Lemma 7 Let U A
� (t; H̃t ) = ∑[n]−1

j=1 u∗j (F∗)F̃θ∗t ( Ĵ j ), where the definition of

u∗j (F∗) is given in Appendix A.3.1. Note the equality U A
� (t; H̃t ) = 0 holds since

u∗j (F∗) = 0 for all j’s from (19). To consider U A
n (t; H̃t ) − U A

� (t; H̃t ), we use the

expression of U A
n (t; H̃t ) in Proposition 3. The differences n−1(u Aξ

j (F∗) −u∗j (F∗)),
ξ = f, fb, b are written as

∫
←
J j

M f
Q(s)

→
d Af(1)(s)/p∗j −

∫
←
J j+1

M f
Q(s)

→
d Af(1)(s)/p∗j+1

− ∫→J j
M f

Q(s)
→
d Af(2)(s)/S∗j +

∫
→
J j

M f
Q(s)

→
d Af(3)(s)/F∗j

in the case of u Af
j (F∗), where Mξ

Q(s) = (Q̂ξ (s) − Qξ (s))/Qξ (s), ξ = f,b and

Q̂f(s) = n−1Y
f
(s) and Q̂b(s) = n−1Y

b
(s) are the empirical estimates of Qf(s)

and Qb(s). Then, by applying the mean-value theorem in each of u Aξ
j (F∗)− u∗j (F∗),

ξ = f, fb, b, there are some Mξ(1)
Q j ∈ (inf←J j

Mξ
Q(s), sup←J j

Mξ
Q(s)) and Mξ(2)

Q j , Mξ(3)
Q j ∈

(inf→J j
Mξ

Q(s), sup→J j
Mξ

Q(s)), so that we have
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u Aξ
j (F∗) = nMξ(1)

Q j

[

n−1α∗j /p∗j − {Mξ(1)
Q j+1/Mξ(1)

Q j }n−1α∗j+1/p∗j+1

−{Mξ(2)
Q j /Mξ(1)

Q j }n−1β∗j /S∗j − {Mξ(3)
Q j /Mξ(1)

Q j }n−1γ ∗j /F∗j
]

, ξ = f, b

and the similar expression about u Afb
mt

(F∗), where the notations of α∗j , β∗j and γ ∗j
are given in Appendix A.3.1. By the Glivenko–Cantelli theorem and the continu-
ity of the distributions, Mξ

Q(sξ(1)
j+1)/Mξ

Q(sξ(1)
j ) and Mξ

Q(sξ(2)
j )/Mξ

Q(sξ(1)
j ) converge

almost surely to ones uniformly. Similarly, by adding the relation Q̂b(t) − Qb(t)
= −{Q̂f(t+) − Qf(t+)} further, Mb

Q(sb(1)
mt+1)/M f

Q(sf(1)
mt ) converges almost surely to

one uniformly. Also, we have

n−1α∗j /p∗j =
∫
←
J j

(F L(t)− F R(t))
→
d F∗(t)/p∗j ≈ F L( Ĵ j )− F R( Ĵ j ),

n−1β∗j /S∗j =
∫
→
J j

S∗(t)
→
d F R(t)/S∗j ≈ F R( Ĵ j+1)− F R( Ĵ j ),

n−1γ ∗j /F∗j =
∫
→
J j

F∗(t)
→
d F L(t)/F∗j ≈ F L( Ĵ j+1)− F L( Ĵ j )

approximately, which become exact with probability 1 for a sufficiently large n using
Proposition 4. Thus, we find u Aξ

j (F∗)/nMξ(1)
Q j ≤ op(1) uniformly on all j’s for ξ =

f, b. Because F̃θ∗t ( Ĵ j )→p F∗
θ∗t

( Ĵ j ) ≤ 1 uniformly for every j from (29), as n→∞,
we can conclude

sup
t
|n−1/2U A

n (t; H̃t )| ≤ sup
t

n−1/2

⎧
⎨

⎩

mt−1∑

j=1

|M f(1)
Q j | +

[n]−1∑

j=mt

|Mb(1)
Q j |

⎫
⎬

⎭
op(1)

≤ n−1

⎡

⎣
[n]−1∑

j=1

{√
n|M f(1)

Q j | +
√

n|Mb(1)
Q j |

}
⎤

⎦ op(1)→p 0.

In fact, for either ξ = f or b, because Mξ
Q(·) is a martingale process such that

M f
Q(t)=−

∫

(0,t]
n−1→d M

f(0)
(s)/Qf(s) or Mb

Q(t)=−
∫

[t,1)

n−1←d M
b(0)

(s)/Qb(s),

with M
ξ(0)

(s) =∑n
i=1

∑3
j=1 Mξ(j)

i (s) using the Duhamel equation,
√

nMξ
Q(s) con-

verges weakly to a Gaussian martingale process by the martingale central limit theo-
rem or the Donsker theorem. The limits of

√
nM f

Q(s) for s ∈ [0, t] and
√

nMb
Q(s) for

s ∈ [t, 1] are Gaussian processes with some finite variances on t ∈ [τ0, τ1], so that we
can show that n−1∑

j
√

n|Mξ(1)
Q j | converges in probability to a bounded quantity, as

n→∞. ��
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4.2.3 Summary and further considerations

Proof of Theorem 1 This is completed by applying the results of Lemmas 6 and 7 and
(30) obtained under t ∈ [τ0, τ1] to (15). ��
The result of Theorem 1 is extended to [0, 1] if

limτ1→1(1− F R(τ1−))/
→
d F∗(τ1) = ∞ and limτ0→0 F L(τ0)/

→
d F∗(τ0+) = ∞

(17)

are described definitely in Condition 2. In fact, I(t,t)(0, 1) holds the uniform continuity
on t ∈ [τ0, τ1] and we observe 1/I(t,t)(0, 1)→ 0 as t = τ0 → 0+ or t = τe → 1−
under (17) by reasoning similar to Sugimoto (2011, Theorem 2), so that this means that√

n(F̂(t) − F∗(t)) converges weakly to zero near the extreme points of t . Although
(17) may resemble inf{t : 0 < F L(t)} < inf{t : 0 < F∗(t)} and sup{t : F∗(t) <

1} < sup{t : F R(t) < 1}, this expression is avoided for the support [0, 1] of Condition
1. A finer alternative expression will be obtained by analogy of the behaviour of the
transformed Kaplan–Meier process (Gill 1983).

Based on Theorem 1 we can construct the methods for overall tests and simultane-
ous confidence intervals at several times. In addition, the covariance function of the
NPMLE can be easily estimated by Jn(F̂mt , F̂ms )/In(F̂mt )In(F̂ms ). It is useful as a
substitution for that based on the profile likelihood ratio (Chen and Zhou 2003) in a
larger sample, because this method is computationally fast. In particular, Sugimoto
(2012a, Theorem 1, Lemma 1) developed an inverse formula of general tridiagonal
matrix based on this discussion, which provides one expansion of this study in math-
ematical sciences.

5 Discussion

In doubly censored data, we formulated the martingale characterizations for the for-
ward and backward counting processes and their correlation structure. Unlike right-
or left-censoring only, the intensity processes explicitly include the true distribution
functions (F∗, F L , F R). In doubly or interval censored data, generally it is difficult
to provide the asymptotic distribution of the NPMLE or the SCEs without the infinite
matrix or operator expression if we only incorporate martingale properties into the
self-consistent equations. In this paper, using an expansion of the score function of
the semiparametric profile likelihood, we derived a structure of the NPMLE focusing
on doubly censored data. The score function was then expressed as an approximate
form of the efficient score using the derivatives between the profile estimators. Based
on such an expression of the score function, we showed that the NPMLE possesses
a structure of a superposition of the forward and backward martingales with a bias
in intensities which converges in probability to zero. Thus, while avoiding the infi-
nite matrix or operator expression, we demonstrated that the asymptotic distribution
of the NPMLE is a Gaussian process via martingale properties. This is summarized
as Theorem 1, which forms the basis for overall tests and simultaneous confidence
intervals at several times. The correlation structure between forward and backward
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martingales was used to obtain the asymptotic covariance function of the NPMLE. In
future work, we are interested in determining how the martingale approach presented
here can be extended, for example, under more practical conditions than Condition 2,
to some regression models or to interval-censored data.

Appendix A

A.1 On derivatives of profile likelihood

Proof of Proposition 1 If the differential rule only is used, Un(θt ) and In(θt ) may be

Un(θt ) =
[n]∑

j=1

u j (F̂(θt ))
∂ F̂j (θt )

∂θt
and

In(θt ) =
[n]∑

j=1

[n]∑

l=1

i j,l(F̂(θt ))
∂ F̂j (θt )

∂θt

∂ F̂l(θt )

∂θt
−
[n]∑

j=1

u j (F̂(θt ))
∂2 F̂j (θt )

∂θ2
t

,

where the derivative notation is suitable for d rather than ∂ , but the latter is used to
avoid a confusion with the infinitesimal on time t , such as d F(t). These forms can
be reduced further following the condition (5): that is, the score function satisfies
Un(θt ) = umt (F̂(θt )). Also, the Fisher function In(θt ) is obtained as (6) using (5),
∂ F̂mt (θt )/∂θt = 1 and ∂2 F̂mt (θt )/∂θ2

t = 0 because of F̂mt (θt ) = θt . ��

A.2 Proofs for fundamental martingale properties

Proof of Lemma 1 Unlike right-censored-only data, the information on Y f
i (t) does

not lead a martingale property so directly for N f(1)
i (t). We therefore set an ideal at-

risk process, which we cannot always observe completely, Y f∗
i (t) = 1(C L

i < t ≤
min(T ∗i , C R

i )), so that we can see

E[→d N f(1)
i (t)|Y f∗

i (t) = 1]
= Pr(t ≤ T ∗i < t + dt, C L

i < T ∗i ≤ C R
i |C L

i < t ≤ min(T ∗i , C R
i ))

= →d�f(1)(t).

To obtain the F f
t -intensity of

→
d N f(1)

i (t), using Y f∗
i (t), we can lead the relationship

E[→d N f(1)
i (t)|F f

t−] = Y f
i (t) Pr(

→
d N f(1)

i (t) = 1, Y f∗
i (t) = 1|F f

t−)

= Y f
i (t) Pr(Y f∗

i (t) = 1|F f
t−)E[→d N f(1)

i (t)|F f
t−, Y f∗

i (t) = 1].

Given Y f
i (t) = 1, the information on the i th individual extracted from F f

t− is
equivalent to {Y f

i (t) = 1}. Therefore, given Y f
i (t) = 1, we can easily obtain

E[→d N f(1)
i (t)|F f

t−, Y f∗
i (t) = 1] = →d�f(1)(t) because of {Y f∗

i (t) = 1} ⊆ {Y f
i (t) = 1}.
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Second, given Y f
i (t) = 1, we can obtain

Pr(Y f∗
i (t) = 1|F f

t−) = Pr(C L
i < t ≤ min(T ∗i , C R

i ))

Pr(Y f
i (t) = 1)

= Pr(C L
i < t ≤ C R

i )S∗(t−)

Pr(Y f
i (t) = 1)

,

where Pr(C L
i < t ≤ C R

i ) is obtained as 1− Pr(t ≤ C L
i )− Pr(t > C R

i ) = SR(t−)−
SL(t−). The event patterns included in {Y f

i (t) = 1} consist of {t ≤ T ∗i , C L
i < T ∗i ≤

C R
i }, {t ≤ C R

i , C R
i < T ∗i } or {t ≤ C L

i , T ∗i ≤ C L
i }. For example, the probability of

the second event is−(1− F∗(s−))F R(s−)+ ∫[t,1] F R(s−)
→
d F∗(s) using the Stieltjes

integration by the right continuity of F∗(t) and F R(t). By summing up the three
probabilities, we have

Qf(t) = Pr(Y f
i (t) = 1) = SR(t−)S∗(t−)+ SL(t−)(1− S∗(t−)).

Therefore, these provide E[→d N f(1)
i (t)|F f

t−] = Y f
i (t)wf(1)

0 (t)
→
d�f(1)(t) = →

d Af(1)
i (t)

and then M f(1)
i (t) is an F f

t -martingale and square-integrable, because it is clear that

N f(1)
i is adapted to {F f

t : t ≥ 0} and E|N f(1)
i (t)| ≤ 1 < ∞ and E[Af(1)

i (t)] ≤ 1 for

all t . Results for M f(2)
i (t) and M f(3)

i (t) are similar to M f(1)
i (t).

For the latter part of this lemma, note that
→
d N f(2)

i (t) and
→
d N f(3)

i (t) never jump at
the same time t because of (1) even if C L

i and C R
i are not mutually independent. Hence,

〈M f(2)
i , M f(3)

i 〉f(t) = 0 is shown, for example, using Fleming and Harrington (1991,

Lemma 2.6.1). The other martingales M f(ı)
i and M f(j)

j are mutually independent unless

i = j and ı = j . So, it is shown as usual that 〈M f(ı)
i , M f(j)

j 〉f(t) = 1(i = j, ı =
j)Af(j)

i (t). ��
Proof of Lemma 2 This lemma is the time-reversed result of Lemma 1 and can be
shown by approaches similar to Lemma 1. ��
Proof of Lemma 3 By the definitions F 


t = F f
t ∨F b

r(t) and N 
(j)
i (t) = N f(j)

i (t) +
N b(j)

i (r(t)), if {N f(j)
i (t) = 1} ⊂ F f

t , N b(j)
i (r(t)) is F 


t -predictable and N 
(j)
i (t) too.

In fact, if we already observe
→
d N f(j)

i (x) = 1 at a time x before a current time t (x < t),

we can know that the present N b(j)
i (r(t)) will jump surely at the future time x (<

r(t) < r(x)). Inversely, if {N b(j)
i (r(t)) = 1} ⊂ F b

r(t), N f(j)
i (t) and N 
(j)

i (t) are F 

t -

predictable. For these reasons, after Y b
i (r(t)) = 0 or Y f

i (t) = 0 occurs (under r(t) ≤
t), δ

f(j)
i (t) and δ

b(j)
i (r(t)) are added in F 


t -predictable components of N f(j)
i (t) and

N b(j)
i (r(t)), respectively. Hence, N 
(j)

i (t) is at risk with the intensity controlled by the

conditional probability when Y f
i (t)Y b

i (r(t)) = 1. So, we have E[→d N 
(j)
i (t)|F 


t−] =
E[→d N f(j)

i (t)|F 

t−] + E[←d N b(j)

i (r(t))|F 

t−] and their components are expressed as

E[→d N f(j)
i (t)|F 


t−] = Y f
i (t)Y b

i (r(t))E[→d N f(j)
i (t)|Y f

i (t)Y b
i (r(t)) = 1] + →dδ

f(j)
i (t),

E[→d N b(j)
i (r(t))|F 


t−]=Y f
i (t)Y b

i (r(t))E[→d N 
(j)
i (r(t))|Y f

i (t)Y b
i (r(t)) = 1]+←dδ

b(j)
i (r(t)).
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Here note that N 
(j)
i (t) = ∫

(0,t]
→
d N f(j)

i (x)+ ∫[r(t),1)

←
d N b(j)

i (x) and
←
d N b(j)

i (r(t)) =
N b(j)

i (r(t))− N b(j)
i (r(t−)) with N b(j)

i (r(t−)) = N b(j)
i (r(t)+). Then, because

E[→d N f(j)
i (t)|Y f

i (t)Y b
i (r(t)) = 1] = Pr(

→
d N f(j)

i (t) = 1|Y f
i (t)Y b

i (r(t)) = 1)

and E[←d N b(j)
i (t)|Y f

i (t)Y b
i (r(t)) = 1] = Pr(

→
d N b(j)

i (r(t)) = 1|Y f
i (t)Y b

i (r(t)) = 1),

the above conditional expectations are vf(j)(t)
→
d�f(j)(t) and vb(j)(r(t))

→
d�b(j)(r(t)),

respectively. In fact, the denominator is Pr(Y f
i (t)Y b

i (r(t)) = 1) = Qf(t) −
Qf(r(t)+) = Qb(r(t)) − Qb(t−) because of Y f

i (t)Y b
i (r(t)) = 1(t ≤ Ti ≤ r(t)),

while the numerators are obtained similarly to the derivation in Lemma 1. Therefore,
M
f(j)

i (t), M
b(j)
i (r(t)) and M
(j)

i (t) are F 

t -martingales, j = 1, 2, 3, ξ = f, b and

they are square-integrable because E[A
ξ(j)
i (t)] = E[Aξ(j)

i (t)] ≤ 1 for all t . ��

Proof of Lemma 4 If i 
= j , we have E[M
f(ı)
i (t)M
b(j)

j (s)] = 0 and E[M f(ı)
i (t)Mb(j)

j

(s)] = 0, as already described in Sect. 3.3. Here we first show E[M
f(j)
i (t)M
b(j)

i

(r(t))] = 0. Note that M
f(j)
i (t) and M
b(j)

i (r(t)), j = 1, 2, 3 are right-continuous

with M
f(j)
i (0) = M
b(j)

i (r(0)) = 0, and
∑

0<s≤t
→
d M
f(j)

i (s)
←
d M
b(j)

i (r(s)) = 0.
Similarly to the derivation of (10), we have

M
f(j)
i (t)M
b(j)

i (r(t)) = ∫
(0,t] M
b(j)

i (r(x−))
→
d M
f(j)

i (x)

+ ∫[r(t),1)
M
f(j)

i (r(x+))
←
d M
b(j)

i (x).

The right-side of the above equation is obviously an F 

t -martingale by Lemma 3,

so that the expectation is zero. Next, we show E[M f(j)
i (t)Mb(j)

i (r(t))] = 1(r(t) ≤
t)E[∫[r(t),t]

→
d N f(j)

i (x)]. Using the relationship M
ξ(j)

(t) = M

ξ(j)

(t) + (A

ξ(j)

(t) −
A

ξ(j)
(t)), the first and second terms of (10) are

∫

(0,t] Mb(j)
i (r(x−))

→
d M
f(j)

i (x)+ ∫[r(t),1)
M f(j)

i (r(x+))
←
d M
b(j)

i (x)

+ ∫
(0,t] Mb(j)

i (r(x−))
→
d(A
f(j)

i (x)− Af(j)
i (x))

+ ∫[r(t),1)
M f(j)

i (r(x+))
←
d(A
b(j)

i (x)− Ab(j)
i (x)). (18)

Since M f(j)
i (x−) and Mb(j)

i (r(x−)) are F 

x -predictable because F f

x ,F b
r(x) ⊂ F 


x ,

the first and second terms of (18) are F 

t -martingales. For the third term of (18), we

observe
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E[Mb(j)
i (r(x−))

→
d A
f(j)

i (x)] = E
[

Mb(j)
i (r(x−))E[→d N f(j)

i (x)|F 

x−]
]

E[Mb(j)
i (r(x−))

→
d Af(j)

i (x)] = E[Mb(j)
i (r(x−))E[→d N f(j)

i (x)|F f
x−]]

= E
[
E
[

Mb(j)
i (r(x−))E[→d N f(j)

i (x)|F f
x−]|F b

r(x−)

]]

= E
[

Mb(j)
i (r(x−))E[→d N f(j)

i (x)|F 

x−]
]
,

so that we have
∫

(0,t] E[Mb(j)
i (r(x−))

→
d(A
f(j)

i (x)− Af(j)
i (x))] = 0. Similar relation

and result are also observed about the fourth term of (18). Thus, putting s = r(t), we
have

E[M f(j)
i (t)Mb(j)

i (s)] = 1(s ≤ t)E
[∫

[s,t]
→
d N f(j)

i (x)
]
.

All results for this lemma are shown. ��

A.3 Preliminary for the linearization of the NPMLE

A.3.1 Discrete-true function

We provide another definition and viewpoint of the step function Fd∗ and its vector
expression F∗ introduced in Sect. 4.1. In particular, the equation (19) shown below is
used in Sect. 4.2.2.

Note that
→
d A∗(j)(s), j = 1, 2, 3 defined in Sect. 4.2 are used for limit

expressions, because
→
d A∗(j)(s) is equivalent to the quantity such as

←
d A∗(j)(s) =

Qb(s)wb(j)(s)
←
d�b(j)(s) under Condition 1 (continuous model). By Lemmas 1 and

2, we can set the “pseudo-true” data as

α∗j =
∫
←
J j

n
→
d A∗(1)(s), β∗j =

∫
→
J j

n
→
d A∗(2)(s) and γ ∗j =

∫
→
J j

n
→
d A∗(3)(s),

j = 0, 1, . . . , [n] + 1 with rules that Ĵ[n]+1 = 1 and γ ∗1 and β∗[n] are substituted by

γ ∗1 + γ ∗0 and β∗[n] + β∗[n]+1 for convenience. This results in
∑[n]+1

j=1 α∗j +
∑[n]

j=0 β∗j +
∑[n]+1

j=1 γ ∗j = n. Let l∗n (F) be ln(F) in which α j , β j and γ j are replaced by α∗j , β∗j
and γ ∗j in the case of J = Ĵθ∗t . We can then define F∗ and equivalently Fd∗(·) as the
NPMLE for such pseudo-true data, that is, F∗ = argmax{F1,...,F[n]}l

∗
n (F). So, letting

u∗j (F) = ∂l∗n (F)/∂ Fj , then F∗ satisfies

u∗j (F∗) =
∫
←
J j

n
→
d A∗(1)(s)/p∗j −

∫
←
J j+1

n
→
d A∗(1)(s)/p∗j+1

− ∫→J j
n
→
d A∗(2)(s)/S∗j +

∫
→
J j

n
→
d A∗(3)(s)/F∗j = 0 (19)
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for j = 1, . . . , [n]. Further, by a linear transformation such as Sugimoto (2011, Lemma
2), Fd∗ (= 1− Sd∗) satisfies the self-consistent equations

Fd∗(t) =
3∑

j=1

A∗(j)(t)−
∫

(0,t]
Sd∗(t)
Sd∗(s)

→
d A∗(2)(s)+

∫

(t,1)

Fd∗(t)
Fd∗(s)

→
d A∗(3)(s)

for the discrete times t = 0, Ĵ1, . . . , Ĵ[n]+1. The above equations extended to all t are
identical to the self-consistent equations which the true function F∗(t) should satisfy.

A.3.2 Function expressions for the profile estimators and their derivatives.

As introduced in Sect. 4.1, denote F̂(s; θt ) = F̂j (θt ) and F̂θt (s; θt ) = ∂ F̂j (θt )/∂θt if
s ∈ [ Ĵ j , Ĵ j+1) as function expressions of the profile estimators and their derivatives
given in Sect. 2.2. Then, F̂θt (s; θt ) of (9) has a structure of the product integral and is
written as

F̂θt (s; θt ) =
⎧
⎨

⎩

πs≤u<t

(
1− →d K̂ (u; θt )

)
if s ≤ t

πt<u≤s

(
1− ←d K̂ (u; θt )

)
if s > t

,

where

→
d K̂ (s; θt ) = 1− ∂ F̂(s; θt )

∂ F̂(s+; θt )
=
→
d F̂θt (s+; θt )

F̂θt (s+; θt )

and
←
d K̂ (s; θt ) = 1− ∂ F̂(s; θt )

∂ F̂(s−; θt )
=
←
d F̂θt (s−; θt )

F̂θt (s−; θt )
.

Further, following (7) and (8), d K̂ (s; θt ) satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1− →d K̂ (s; θt ) = α j+1/ p̂ j+1(θt )
2

→
d K̂ ( Ĵ j−1;θt )

α j
p̂ j (θt )2

+ α j+1
p̂ j+1(θt )2

+ β j
Ŝ j (θt )2

+ γ j
F̂ j (θt )2

1− ←d K̂ (s; θt ) = α j / p̂ j (θt )
2

←
d K̂ ( Ĵ j+1;θt )

α j+1
p̂ j+1(θt )2

+ α j
p̂ j (θt )2

+ β j
Ŝ j (θt )2

+ γ j
F̂ j (θt )2

at s = Ĵ j and is zero if s 
= Ĵ j , where
→
d K̂ ( Ĵ0; θt ) = 1 and

←
d K̂ ( Ĵ[n]; θt ) = 1,

Ŝ j (θt ) = 1 − F̂j (θt ) and p̂ j (θt ) = F̂j (θt ) − F̂j−1(θt ). This type of expression of
F̂θt (s; θt ) is helpful to understand the contents as discussed in Sects. 4.1 and 4.2 and
Appendix A.4.
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A.4 Proofs for expressions of the score function

Proof of Proposition 2 To derive the equation (13) of Proposition 2, we consider two
types of Taylor expansions. The first of the expansions is

α j

F∗j − F̂j−1(F∗j )
= α j

F∗j − F∗j−1
− i j−1, j (F̃∗(0)

j−1 , F∗j )
(

F̂j−1(F∗j )− F∗j−1

)
, (20)

α j+1

F̂∗j+1(F∗j )− F∗j
= α j+1

F∗j+1 − F∗j
+ i j+1, j (F∗j , F̃∗(0)

j+1 )
(

F̂j+1(F∗j )− F∗j+1

)
, (21)

where F̃∗(0)
j−1 and F̃∗(0)

j+1 are inner points on the line segments between F∗j−1 and

F̂j−1(F∗j ) and F∗j+1 and F̂j+1(F∗j ), respectively. The second of the expansions is
based on the Taylor approximations of

u j−1(F̂j−2(F∗j ), F̂j−1(F∗j ), F∗j )− u j−1(F̂j−2(F∗j−1), F∗j−1, F∗j )

in F̂j−1(F∗j ) around F∗j−1 and

u j+1(F∗j , F̂j+1(F∗j ), F̂j+2(F∗j ))− u j+1(F∗j , F∗j+1, F̂j+2(F∗j+1))

in F̂j+1(F∗j ) around F∗j+1. Then, since F̂j−2(F∗j ) = F̂j−2(F̂j−1(F∗j )) and

F̂j+2(F∗j ) = F̂j+2(F̂j+1(F∗j )) are satisfied, note that we can treat F̂j−2(F∗j )
and F̂j+2(F∗j ) as the functions of F̂j−1(F∗j ) and F̂j+1(F∗j ), respectively. Because

u j−1(F̂j−2(F∗j ), F̂j−1(F∗j ), F∗j ) = 0 and u j+1(F∗j , F̂j+1(F∗j ), F̂j+2(F∗j )) = 0, by
such Taylor approximations, we have

u j−1(F∗j−2, F∗j−1, F∗j )+
{
α j−1/

(
F∗j−1 − F̂j−2(F∗j−1)

)
− α j−1/

(
F∗j−1 − F∗j−2

)}

= ĩ f(F̃∗(2)
j−2 , F̃∗(1)

j−1 , F∗j )
(

F̂j−1(F∗j )− F∗j−1

)
, (22)

u j+1(F∗j , F∗j+1, F∗j+2)+
{
α j+2/

(
F̂j+2(F∗j+1)− F∗j+1

)
− α j+2/

(
F∗j+2 − F∗j+1

)}

= ĩb(F∗j , F̃∗(1)
j+1 , F̃∗(2)

j+2 )
(

F̂j+1(F∗j )− F∗j+1

)
, (23)

where F̃∗(1)
j−1 and F̃∗(1)

j+1 are another inner points on the line segments between F∗j−1 and

F̂j−1(F∗j ) and F∗j+1 and F̂j+1(F∗j ), respectively, F̃∗(2)
j±2 mean F̃∗(2)

j−2 = F̂j−2(F̃∗(1)
j−1 )
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and F̃∗(2)
j+2 = F̂j+2(F̃∗(1)

j+1 ), and

ĩ f(F̃∗(2)
j−2 , F̃∗(1)

j−1 , F∗j ) = i j−1, j−1(F̃∗(2)
j−2 , F̃∗(1)

j−1 , F∗j )

+i j−2, j−1(F̃∗(2)
j−2 , F̃∗(1)

j−1 )
∂ F̂j−2(F̃∗(1)

j−1 )

∂ F̃∗(1)
j−1

,

ĩb(F∗j , F̃∗(1)
j+1 , F̃∗(2)

j+2 ) = i j+1, j+1(F∗j , F̃∗(1)
j+1 , F̃∗(2)

j+2 )

+i j+2, j+1(F̃∗(1)
j+1 , F̃∗(2)

j+2 )
∂ F̂j+2(F̃∗(1)

j+1 )

∂ F̃∗(1)
j+1

.

The expression of umt (F̂(θ∗t )) from Proposition 1 is transformed by repeatedly using
(20) and (22) to cancel F̂j−1(F∗j ) − F∗j−1 until getting j = 1 if j ≤ mt , and using

(21) and (23) to cancel F̂j+1(F∗j )− F∗j+1 until j = [n]− 1 if j ≥ mt , so that we have

Un(θ∗t ) =∑[n]−1
j=1 u j (F∗j−1, F∗j , F∗j+1)F̃θ∗t ( Ĵ j ),

where

F̃θ∗t (s) =
⎧
⎨

⎩

∏mt−1
j=ms

{
−i j, j+1(F̃∗(0)

j , F∗j+1)
/

ĩ f(F̃∗(2)
j−1 , F̃∗(1)

j , F∗j+1)
}

if s ≤ t,
∏ms

j=mt+1

{
−i j, j−1(F∗j−1, F̃∗(0)

j )
/

ĩb(F∗j−1, F̃∗(1)
j , F̃∗(2)

j+1 )
}

if s > t.

(24)

The above expression provides (13) of this proposition.
Similarly to F̂θt (s; θt ), F̃θ∗t (s) satisfies a product integral structure such that

F̃θ∗t (s) = πs≤u<t (1 − →d K̃ (u; t)) if s ≤ t and F̃θ∗t (s) = πt<u≤s(1 − ←d K̃ (u; t))
otherwise, where

→
d K̃ (s; t) is

1− →d K̃ (s; t) = α j+1/( p̃∗(0)
j+1)

2

(

1− ∂ F̂ j−1(F̃∗(1)
j )

∂ F̃∗(1)
j

)
α j

( p̃∗(2)
j )2

+ α j+1

( p̃∗(1)
j+1)

2
+ β j

(S̃∗(1)
j )2

+ γ j

(F̃∗(1)
j )2

at s = Ĵ j and is zero otherwise,
←
d K̃ (s; t) is a reversed version of

→
d K̃ (s; t), as

similar to the relation between
→
d K̂ (s; θt ) and

←
d K̂ (s; θt ), and p̃∗(0)

j = F∗j − F̃∗(0)
j−1 ,

p̃∗(1)
j = F∗j − F̃∗(1)

j−1 , p̃∗(2)
j = F∗(1)

j − F̃∗(2)
j−1 and S̃∗(1)

j = 1− F̃∗(1)
j .

Finally, using

α j =
∫
←
J j

→
d N

f(1)
(s), β j =

∫
→
J j

→
d N

f(2)
(s) and γ j =

∫
→
J j

→
d N

f(3)
(s),

we can easily see that (13) is transformed to the Eq. (14) in terms of the counting
processes. ��
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Proof of Proposition 3 To obtain a further expression of Un(θ∗t ) in Proposition 2, let

U f
n(θ∗t ) =∑mt

j=1 u j (F∗)F̃θ∗t ( Ĵ j )+ αmt+1/p∗mt+1

and U b
n (θ∗t ) =∑[n]−1

j=mt+1 u j (F∗)F̃θ∗t ( Ĵ j )− αmt+1/p∗mt+1 (25)

such that Un(θ
∗
t ) = U f

n(θ∗t )+U b
n (θ∗t ). Then, we decompose α j , β j and γ j included in

u j (F∗) as α j =
∫
←
J j
{→d A

f(1)
(s)+→d M

f(1)
(s)}, β j =

∫
→
J j
{→d A

f(2)
(s)+→d M

f(2)
(s)} and

γ j =
∫
→
J j
{→d A

f(3)
(s)+→d M

f(3)
(s)} by Lemma 1 if j ≤ mt . On the other hand, if j ≥

mt+1,α j ,β j andγ j are, respectively, decomposed as
∫
←
J j
{←d A

b(1)
(s)+←d M

b(1)
(s)} and

∫
→
J j
{←d A

b(j)
(s)+←d M

b(j)
(s)}, j = 2, 3 by Lemma 2. Hence, we obtain an expression

of Un as follows:

Un(θ∗t ) =∑mt−1
j=1

{
u Af

j (F∗)+ uMf
j (F∗)

}
F̃θ∗t ( Ĵ j )+ {u Afb

mt
(F∗)+ uMfb

mt
(F∗)}

+∑[n]−1
j=mt+1

{
u Ab

j (F∗)+ uMb
j (F∗)

}
F̃θ∗t ( Ĵ j ), (26)

where u Af
j and u Afb

mt
are already provided as in Proposition 3, u Ab

j is

u Ab
j (F∗) =

∫

←
J j

←
d A

b(1)
(s)

p∗j
−
∫

←
J j+1

←
d A

b(1)
(s)

p∗j+1
−
∫

→
J j

←
d A

b(2)
(s)

S∗j
+
∫

→
J j

←
d A

b(3)
(s)

F∗j
,

and obviously uMf
j , uMfb

j and uMb
j are u Af

j , u Afb
j and u Ab

j in which the intensity

components A
ξ(j)

are replaced by the corresponding martingale components M
ξ(j)

(j = 1, 2, 3, ξ = f, b), respectively. By arranging (26), we have the expression of
U A

n (t; H̃t ) as in Proposition 3. ��

A.5 On consistency results

There are several ways of showing that the NPMLE F̂ or the SCEs (self-consistent
estimators) are asymptotically consistent to F∗. Discussions in many other studies
are based on the self-consistent equations (see, e.g., Tsai and Crowley 1985; Chang
and Yang 1987; Gu and Zhang 1993). We briefly describe only the consistency results
needed to derive the asymptotic distribution of the NPMLE below, since most of these
detailed proofs are provided by Sugimoto (2012b).

If Condition 2 is satisfied, we have

supt∈[0,1] |F̂(t)−F∗(t)|→p 0 and sups,t∈[0,1] |F̂(s; θ∗t )−F∗(s)|→p 0 as n→∞
(27)

(see Chang and Yang 1987; Murphy and van der Vaart 1997 and Sugimoto 2012b,
Theorem 1). Based on Proposition 4, it is shown that sups∈[0,1] |Fd∗(s) −F∗(s)| =
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sup j |F∗( Ĵ j ) − F∗( Ĵ j−1)| is bounded by O(log n/n) in probability. Using this fact,
we have

sups∈[0,1]
√

n|Fd∗(s)− F∗(s)| →p 0 as n→∞. (28)

Given Condition 2 and t ∈ [τ0, τ1] for 0 < τ0 ≤ τ1 < 1, by a uniform continuity
of F̃θ∗t (s) on K̃ (s; t), (27) and (28), we can show that H∗(j)

t (s), j = 1, 2, 3 defined in
Sect. 4.2 are bounded uniformly on s ∈ [0, 1] and

supt∈[τ0,τ1],s∈[0,1] |H̃ (j)
t (s)− H∗(j)

t (s)| →p 0, j = 1, 2, 3 as n→∞ (29)

(for further details, see Sugimoto 2012b, Theorem 4, Corollary 3, Section 5), where
the true derivative F∗

θ∗t
(·) included in H∗(j)

t (·) is

F∗
θ∗t

(s) =πs≤u<t (1− →d K ∗(u; t)) if s < t and

F∗
θ∗t

(s) =πt<u≤s(1− ←d K ∗(u; t)) if t < s

with

1− →d K ∗(u; t)
=

→
d A∗(1)(u+)/

→
d F∗(u+)2

→
d K ∗(u−)

→
d A∗(1)(u)→
d F∗(u)2

+
→
d A∗(1)(u+)→
d F∗(u+)2

+ ∫ u
u−

→
d A∗(2)(u)

S∗(u)2 +
∫ u

u−

→
d A∗(3)(u)

F∗(u)2

,

1− ←d K ∗(u; t)
=

→
d A∗(1)(u)/

→
d F∗(u)2

←
d K ∗(u+; t)

→
d A∗(1)(u+)→
d F∗(u+)2

+
→
d A∗(1)(u)→
d F∗(u)2

+ ∫ u
u−

→
d A∗(2)(u)

S∗(u)2 +
∫ u

u−

→
d A∗(3)(u)

F∗(u)2

(if F∗ is not strictly increasing, u+ and u− mean times just after and prior to inf{x :
F∗(x)− F∗(u) > 0} and sup{x : F∗(u)− F∗(x) > 0}, respectively). Hence, by (27),
(28) and (29), we have

supt∈[τ0,τ1] |1/n−1In(θ̃t )− 1/I(t,t)(0, 1)| →p 0 as n→∞ (30)

(Sugimoto 2012b, Theorem 5).

A.6 Auxiliary result

Proposition 4 Suppose that F∗ is continuous function and F L(t)− F R(t) is positive
on the support of F∗. Then, sup j n−1α∗j and sup j |F∗( Ĵ j )− F∗( Ĵ j−1)| are bounded
by O(log n/n) in probability.
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Proof of Proposition 4 Note that A∗(1)( Ĵ j ) =
∫

(0, Ĵ j ](F L(s) − F R(s))
→
d F∗(s), j =

1, . . . , k are i.i.d. uniform random variables on [0, A∗(1)(1)], where jump points
Ĵ j at censoring points are excluded but do not occur with probability tending
to 1 as n → ∞. Because of n−1α∗j = A∗(1)( Ĵ j ) − A∗(1)( Ĵ j−1), we have

sup j n−1α∗j ≤ Op(log n/n) by the result on the maximal spacing (Slud 1978),

which also leads |F∗( Ĵ j ) − F∗( Ĵ j−1)| ≤ Op(log n/n) using a relation n−1α∗j ≥
(F∗( Ĵ j )− F∗( Ĵ j−1)) infs(F L(s)− F R(s)). ��
Acknowledgments The author is grateful to the Editors and two anonymous referees for their constructive
comments and helpful suggestions that led to an improvement of this paper.
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