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Abstract In 2005, Chen et al. introduced a sequential importance sampling (SIS)
procedure to analyze zero-one two-way tables with given fixed marginal sums (row
and column sums) via the conditional Poisson (CP) distribution. They showed that
compared with Monte Carlo Markov chain (MCMC)-based approaches, their impor-
tance sampling method is more efficient in terms of running time and also provides
an easy and accurate estimate of the total number of contingency tables with fixed
marginal sums. In this paper, we extend their result to zero-one multi-way (d-way,
d ≥ 2) contingency tables under the no d-way interaction model, i.e., with fixed d −1
marginal sums. Also, we show by simulations that the SIS procedure with CP distri-
bution to estimate the number of zero-one three-way tables under the no three-way
interaction model given marginal sums works very well even with some rejections.
We also applied our method to Samson’s monks data set.
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764 J. Xi et al.

1 Introduction

Sampling zero-one constrained contingency tables find applications in combinatorics
(Huber 2006), statistics of social networks (Chen 2007; Snijders 1991), and regula-
tory networks Dinwoodie (2008). In 2005, Chen et al. (2005) introduced a sequential
importance sampling (SIS) procedure to analyze zero-one two-way tables with given
fixed marginal sums (row and column sums) via the conditional Poisson (CP) distri-
bution. It proceeds by simply sampling cell entries of the zero-one contingency table
sequentially for each row such that the final distribution approximates the target dis-
tribution. This method will terminate at the last column and sample independently
and identically distributed (iid) tables from the proposal distribution. Thus, the SIS
procedure does not require expensive or prohibitive pre-computations, as is the case of
computing Markov bases for the Monte Carlo Markov Chain (MCMC) approach. Also,
when attempting to sample a single table, if there is no rejection, the SIS procedure
is guaranteed to sample a table from the distribution, whereas in an MCMC approach
the chain may require a long time to run in order to satisfy the independent condition.

For sampling multi-way contingency tables without zero-one constraints using SIS
procedures, i.e., each cell of the table is not bounded by an upper bound, which is equal
to one, much work has been done. Chen et al. (2005) introduced also an SIS procedure
for sampling multi-way contingency tables without zero-one constraints and Chen
et al. (2006) gave an excellent algebraic interpretation of precisely when an interval
will equal the support of the marginal distribution using Markov bases. Dinwoodie
and Chen (2011) used linear programming and sequential normal sampling to develop
a new SIS procedure to sample a multi-way contingency table. However, one cannot
simply apply these methods to sampling zero-one multi-way contingency tables. In
order to apply these methods directly to sampling zero-one multi-way contingency
tables, we have to introduce the “slack” variables in the system of the linear equations
and, if we are forced to do so, we have to double the number of variables so that the
problem can become exponentially harder. For example, to sample one 10 × 10 × 10
zero-one table in Example 19 with s = 2, the original SIS procedure with slack vari-
ables has to solve 2·(9·9·9) many integer programming problems with O(2000) many
variables. Note that solving an integer programming problem is NP-complete if we
vary the number of variables (Garey and Johnson 1979). With our software written in
R (R-Project-Team 2011), we have sampled 1, 000 many tables in about 450 s, while
the original SIS procedure with slack variables (written in C++) sampled one table in
1,994 s (so in order to sample 1,000 tables, it will take about 23 days). This is the reason
why Chen et al. (2005) developed an SIS procedure with the CP specifically for sam-
pling zero-one two-way contingency tables. Therefore, we have to think of the problem
for sampling zero-one multi-way contingency tables separately without applying the
existing methods for sampling contingency tables without zero-one constraints.

Chen (2007) extended their SIS procedure to sample zero-one two-way tables with
given fixed row and column sums with structures, i.e., some cells are constrained to
be zero or one.

In this paper, we also extended the results from (Chen et al. 2005; Chen 2007) to
zero-one multi-way (d-way, d ≥ 2) contingency tables under the no d-way interaction
model, i.e., with fixed d − 1 marginal sums.
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Estimating the number of zero-one multi-way tables 765

This paper is organized as follows: in Sect. 2, we outline basics of the SIS procedure.
In Sect. 3, we focus on the SIS procedure with CP distribution on three-way tables
under no three-way interaction model. This model is particularly important, since if
we are able to count or estimate the number of tables under this model, then this is
equivalent to estimating the number of lattice points in any polytope (De Loera and
Onn 2006). This means that if we can estimate the number of three-way zero-one
tables under this model, then we can estimate the number of any zero-one tables by
using De Loera and Onn’s bijection mapping.

Let X = (Xi jk) of size (m, n, l), where m, n, l ∈ N and N = {1, 2, . . . , }, are a
table of counts whose entries are independent Poisson random variables with canonical
parameters {θi jk}. Here, Xi jk ∈ {0, 1}. Consider the generalized linear model,

θi jk = λ + λM
i + λN

j + λL
k + λM N

i j + λM L
ik + λN L

jk (1)

for i = 1, . . . , m, j = 1, . . . , n, and k = 1, . . . , l where M, N , and L denote the
nominal-scale factors. This model is called the no three-way interaction model.

Notice that the sufficient statistics under the model in (1) are the two-way marginals,
that is:

X+ jk :=
m∑

i=1

Xi jk, ( j = 1, 2, . . . , n, k = 1, 2, . . . , l),

Xi+k :=
n∑

j=1

Xi jk, (i = 1, 2, . . . , m, k = 1, 2, . . . , l), (2)

Xi j+ :=
l∑

k=1

Xi jk, (i = 1, 2, . . . , m, j = 1, 2, . . . , n).

Hence, the conditional distribution of the table counts given the margins is the same
regardless of the values of the parameters in the model.

In Sect. 4, we generalize the SIS procedure on zero-one two-way tables in (Chen
et al. 2005; Chen 2007) to zero-one multi-way (d-way, d ≥ 2) contingency tables
under the no d-way interaction model, i.e., with fixed d −1 marginal sums. In Sects. 5
and 6, we show some simulation results with our software which is available at http://
www.polytopes.net/code/CP. Finally, we end with some discussions.

2 Sequential importance sampling

Let Σ be the set of all tables satisfying marginal conditions. In this paper, we assume
that Σ �= ∅. Let P(X) for any X ∈ Σ be the uniform distribution over Σ , so p(X) =
1/|Σ |. Let q(·) be a trial distribution such that q(X) > 0 for all X ∈ Σ . Then we have

E

[
1

q(X)

]
=

∑

X∈Σ

1

q(X)
q(X) = |Σ |.
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Thus, we can estimate |Σ | by

|̂Σ | = 1

Num

Num∑

i=1

1

q(Xi)
,

where X1, . . . , XNum are tables drawn iid from q(X). Here, this proposed distribution
q(X) is the distribution (approximate) to sample tables via the SIS procedure.

We vectorized the table X = (x1, . . . , xt ) and, by the multiplication rule, we have

q(X = (x1, . . . , xt )) = q(x1)q(x2|x1)q(x3|x2, x1) . . . q(xt |xt−1, . . . , x1).

Since we sample each cell count of a table from an interval, we can easily compute
q(xi |xi−1, . . . , x1) for i = 2, 3, . . . , t .

When we have rejections, this means that we are sampling tables from a big-
ger set Σ∗ such that Σ ⊂ Σ∗. In this case, as long as the conditional probability
q(xi |xi−1, . . . , x1) for i = 2, 3, . . . and q(x1) are normalized, q(X) is normalized
over Σ∗ since

∑

X∈Σ∗
q(X) =

∑

x1,...,xt

q(x1)q(x2|x1)q(x3|x2, x1) · · · q(xt |xt−1, . . . , x1)

=
∑

x1

q(x1)

[
∑

x2

q(x1|x2)

[
· · ·

[
∑

xt

q(xt |xt−1, . . . , x1)

]]]

= 1.

Thus, we have

E

[
IX∈Σ

q(X)

]
=

∑

X∈Σ∗

IX∈Σ

q(X)
q(X) = |Σ |,

where IX∈Σ is an indicator function for the set Σ . By the law of large numbers, |̂Σ |
is unbiased as the sample size gets large (Blitzstein and Diaconis 2010).

3 Sampling from the conditional Poisson distribution

Let

Z = (Z1, . . . , Zl)

be independent Bernoulli trials with probability of successes p = (p1, . . . , pl). Then
the random variable

SZ = Z1 + · · · + Zl

is a Poisson-binomial distribution.

123



Estimating the number of zero-one multi-way tables 767

We say the column of entries for the marginal Xi0, j0,+ of X is the (i0, j0)th column
of X (equivalently, we say (i0, k0)th column for the marginal Xi0+k0 and ( j0, k0)th
column for the marginal X+ j0k0 ). Consider the (i0, j0)th column of the table X for
some i0 ∈ {1, . . . , m}, j0 ∈ {1, . . . , n} with the marginal l0 = Xi0 j0+. Also, we let
rk = Xi0+k and ck = X+ jok . Now let wk = pk/(1 − pk) where pk ∈ (0, 1). Then,

P(Z1 = z1, . . . , Zl = zl |SZ = l0) ∝
l∏

k=1

w
zk
k . (3)

Thus, for sampling a zero-one table with fixed marginals X+ jk, Xi+k for
i = 1, 2, . . . , m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l, for Xi0 j0+ for each i0 ∈
{1, . . . , m} and j0 ∈ {1, . . . , n}, (or one can do each Xi0+k0 or X+ j0k0 instead by sim-
ilar way), one decides which entries are ones (basically, there are

( l
l0

)
many choices)

using the conditional Poisson distribution above. We sample these cell entries with
ones (say l0 many entries with ones) in the (i0, j0)th column for the L factor with the
following probability. Let Ak , for k = 1, . . . , l0, be the set of selected entries. Thus
A0 = ∅, and Al0 is the final sample that we obtain. At the kth step of the drafting
sampling (k = 1, . . . , l0), a unit j ∈ Ac

k−1 is selected into the sample with probability

P( j, Ac
k−1) = w j R(l0 − k, Ac

k−1 − j)

(l0 − k + 1)R(l0 − k + 1, Ac
k−1)

,

where

R(s, A) =
∑

B⊂A,|B|=s

(
∏

i∈B

wi

)
.

For sampling a zero-one three-way table X with given two-way marginals,
Xi j+, Xi+k , and X+ jk for i = 1, 2, . . . , m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l,
we sample for the (i0, j0)th column of the table X for each i0 ∈ {1, . . . , m},
j0 ∈ {1, . . . , n}. We set

pk = rk · ck

rk · ck + (n − rk)(m − ck)
. (4)

Thus we have

wk = rk · ck

(n − rk)(m − ck)
. (5)

Remark 1 We assume that we do not have the trivial cases, namely, 1 ≤ rk ≤ n − 1
and 1 ≤ ck ≤ m − 1.
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Fig. 1 An example of a
3 × 3 × 3 table

JI

K

Theorem 2 For the uniform distribution over all m ×n × l zero-one tables with given
marginals rk = Xi0+k, ck = X+ j0k for k = 1, 2, . . . , l, and a fixed marginal for the
factor L , l0 (Fig. 1), the marginal distribution of the fixed marginal l0 is the same as
the conditional distribution of Z defined by (3) given SZ = l0 with

pk = rk · ck

rk · ck + (n − rk)(m − ck)
.

Proof We start by giving an algorithm for generating tables uniformly from all m×n×l
zero-one tables with given marginals rk, ck for k = 1, 2, . . . , l, and a fixed marginal
for the factor L , l0.

1. For k = 1, . . . , l consider the kth layer of m × n tables. We randomly choose rk

positions in the (i0, k)th column and ck positions in the ( j0, k)th column, and put
1s in those positions. The choices of positions are independent across different
layers.

2. Accept those tables with given column sum l0.

It is easy to see that tables generated by this algorithm are uniformly distributed over
all m × n × l zero-one tables with given marginals rk, ck for k = 1, 2, . . . , l, and a
fixed marginal for the factor L , l0 for the (i0, j0)th column of the table X. We can
derive the marginal distribution of the (i0, j0)th column of X based on this algorithm.
In Step 1, we choose the cell at position (i0, j0, 1) to put 1 in with the probability:

( n−1
r1−1

)(m−1
c1−1

)

( n−1
r1−1

)(m−1
c1−1

) + (n−1
r1

)(m−1
c1

) = r1 · c1

r1 · c1 + (n − r1)(m − c1)
.

Because the choices of positions are independent across different layers, after Step 1
the marginal distribution of the (i0, j0)th column is the same as the distribution of Z
defined by (3) with

pk =
( n−1

rk−1

)(m−1
ck−1

)

( n−1
rk−1

)(m−1
ck−1

) + (n−1
rk

)(m−1
ck

) = rk · ck

rk · ck + (n − rk)(m − ck)
.
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Estimating the number of zero-one multi-way tables 769

Step 2 rejects the tables whose (i0, j0)th column sum is not l0. This implies that after
Step 2, the marginal distribution of the (i0, j0)th column is the same as the conditional
distribution of Z defined by (3) with

pk = rk · ck

rk · ck + (n − rk)(m − ck)
.


�
Remark 3 The sequential importance sampling via CP for sampling a two-way zero-
one table defined in (Chen et al. 2005) is a special case of our SIS procedure. We can
induce pk defined in (4) and the weights defined in (5) to the weights for two-way
zero-one contingency tables defined in (Chen et al. 2005). Note that when we consider
two-way zero-one contingency tables, we have ck = 1 for all k = 1, . . . , l and for all
j0 = 1, . . . , n (or rk = 1 for all k = 1, . . . , l and for all i0 = 1, . . . , m), and m = 2
(or n = 2, respectively). Therefore, when we consider the two-way zero-one tables,
we get

pk = rk

n
, wk = rk

n − rk
,

or respectively

pk = ck

m
, wk = ck

m − ck
.

During the intermediary steps of our SIS procedure via CP on a three-way zero-one
table, there will be some columns for the L factor with trivial cases. In that case, we
have to treat them as structural zeros in the kth slice for some k ∈ {1, . . . , l}. In that
case, we have to use the probabilities for the distribution in (3) as follows:

pk = rk · ck

rk · ck + (n − rk − gr0
k )(m − ck − gc0

k )
, (6)

where gr0
k is the number of structural zeros in the (r0, k)th column and gc0

k is the
number of structural zeros in the (c0, k)th column. Thus, we have weights:

wk = rk · ck

(n − rk − gr0
k )(m − ck − gc0

k )
. (7)

Theorem 4 For the uniform distribution over all m × n × l zero-one tables with
structural zeros with given marginals rk = Xi0+k, ck = X+ j0k for k = 1, 2, . . . , l,
and a fixed marginal for the factor L , l0, the marginal distribution of the fixed marginal
l0 is the same as the conditional distribution of Z defined by (3) given SZ = l0 with

pk = rk · ck

rk · ck + (n − rk − gr0
k )(m − ck − gc0

k )
,
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770 J. Xi et al.

where gr0
k is the number of structural zeros in the (r0, k)th column and gc0

k is the
number of structural zeros in the (c0, k)th column.

Proof The proof is similar to the proof for Theorem 2; we replace the probability pk

with

pk =
(n−1−g

r0
k

rk−1

)(m−1−g
c0
k

ck−1

)

(n−1−g
r0
k

rk−1

)(m−1−g
c0
k

ck−1

) + (n−1−g
r0
k

rk

)(m−1−g
c0
k

ck

)

= rk · ck

rk · ck + (n − rk − gr0
k )(m − ck − gc0

k )
.


�
Remark 5 The sequential importance sampling via CP for sampling a two-way zero-
one table with structural zeros defined in Theorem 1 in (Chen 2007) is a special case of
our SIS. We can induce pk defined in (6) and the weights defined in (7) to the weights
for two-way zero-one contingency tables defined in (Chen 2007). Note that when we
consider two-way zero-one contingency tables, we have ck = 1 for all k = 1, . . . , l
and for all j0 = 1, . . . , n (or rk = 1 for all k = 1, . . . , l and for all i0 = 1, . . . , m),
m = 2 (or n = 2, respectively), and gc0

k = 0 (or gr0
k , respectively). Therefore, when

we consider the two-way zero-one tables we get

pk = rk

n − gr0
k

, wk = rk

n − rk − gr0
k

,

or respectively

pk = ck

m − gc0
k

, wk = ck

m − ck − gc0
k

.

Algorithm 6 (Store structures in the zero-one table) This algorithm stores the struc-
tures, including zeros and ones, in the observed table x0. The output will be used to
avoid trivial cases in sampling. The output A and B matrices both have the same dimen-
sion with x0, so the cell value in A will be 1 if the position is structured and 0 if not.
The matrix B is only for structure 1s. We consider sampling a table without structure
1s, that is, a table with new marginals: X∗

i j+ = Xi j+ − ∑l
k=1 Bi jk = Xi j+ − Bi j+,

X∗
i+k = Xi+k − ∑n

j=1 Bi jk = Xi+k − Bi+k , and X∗+ jk = X+ jk − ∑m
i=1 Bi jk =

X+ jk − B+ jk for i = 1, 2, . . . , m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l.

Input The observed marginals Xi j+, Xi+k , and X+ jk for i = 1, 2, . . . , m,

j = 1, 2, . . . , n, and k = 1, 2, . . . , l.
Output Matrix A and B, new marginals X∗

i j+, X∗
i+k , and X∗+ jk for

i = 1, 2, . . . , m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l.
Algorithm
1. Check all marginals in direction I . For i = 1, 2, . . . , m:

If X+ jk = 0, Ai ′ jk = 1, for all i ′ = 1, 2, . . . , m and Ai ′ jk = 0;
If X+ jk = 1, Ai ′ jk = 1 and Bi ′ jk = 1, for all i ′ = 1, 2, . . . , m and Ai ′ jk = 0.
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Estimating the number of zero-one multi-way tables 771

2. Check all marginals in direction J . For j = 1, 2, . . . , n:
If Xi+k = 0, Ai j ′k = 1, for all j ′ = 1, 2, . . . , n and Ai j ′k = 0;
If Xi+k = 1, Ai j ′k = 1 and Bi j ′k = 1, for all j ′ = 1, 2, . . . , n and Ai j ′k = 0.

3. Check all marginals in direction K . For k = 1, 2, . . . , l:
If Xi j+ = 0, Ai jk′ = 1, for all k′ = 1, 2, . . . , l and Ai jk′ = 0;
If Xi j+ = 1, Ai jk′ = 1 and Bi jk′ = 1, for all k′ = 1, 2, . . . , l and Ai jk′ = 0.

4. If any changes made in step (1), (2) or (3), then come back to (1), else stop.
5. Compute new marginals:

X∗
i j+ = Xi j+ − Bi j+, X∗

i+k = Xi+k − Bi+k , and X∗+ jk = X+ jk − B+ jk for
i = 1, 2, . . . , m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l.

Algorithm 7 (Generate a two-way table with the given marginals) This algorithm is
used to generate a layer (fixed i) of the three-way table, with the probability of the
sampled layer.

Input Row sums r∗
j and column sums c∗

k , j = 1, 2, . . . , n, and k = 1, 2, . . . , l;
structures A; marginals on direction I : X+ jk for i = 1, 2, . . . , m.
Output A sampled table and its probability. Return 0 if the process fails.
Algorithm
1. Order all columns with decreasing sums.
2. Generate the column (along the direction K ) with the largest sum, and the

weights used in CP are shown in Eq. (7). Notice that k relates to each specific
cell in the column, rk and ck which are the row sums in the direction J and
I , respectively. gr0

k and gc0
k are the number of structures in the rows of the

direction J and I , respectively. The probability of the generated column will
be returned if the process succeeds, while 0 may be returned in this step if it
does not exist.

3. Delete the generated column in (2), and for the remaining subtable, do the
following:
(a) If only one column is left, fill it with fixed marginals and go to (4).
(b) If (a) is not true, check all marginals to see if there are any new structures

caused by step (2). We need to avoid trivial cases by doing this. Go back
to (1) with new marginals and structures.

4. Return generated matrix as the new layer and its CP probability. If failed, return
0.

Algorithm 8 (SIS with CP for sampling a three-way zero-one table) We describe an
algorithm to sample a three-way zero-one table X with given marginals Xi j+, Xi+k ,
and X+ jk for i = 1, 2, . . . , m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l via SIS with CP.

Input The observed table x0.
Output The sampled table x.
Algorithm
1. Compute the marginals Xi j+, Xi+k , and X+ jk for i = 1, 2, . . . , m,

j = 1, 2, . . . , n, and k = 1, 2, . . . , l.
2. Use Algorithm 6 to compute the structure tables A and B. Consider the new

marginals in the output as the sampling marginals.
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772 J. Xi et al.

3. For the sampling marginals, do SIS:

(a) Delete the layers filled by structures; consider the leftover subtable.
(b) Consider the layers in direction I (i varies). Sum within all layers and

order them from the largest to smallest.
(c) Consider the layer with the largest sum and plug in the structure table A

from Algorithm 7 to generate a sample for this layer. The algorithm may
return 0 if the sampling fails.

(d) Delete the generated layer in (c), and for the remaining subtable, do the
following:

(i) If only one layer is left, fill it with fixed marginals and go to (e).
(ii) else, go back to (2) with new marginals.

(e) Add the sampled table with table B (the structure 1s table).

4. Return the table in (e) and the same probability with the sampled table. Return
0 if failed.

4 Four or higher dimensional zero-one tables

In this section, we consider a d-way zero-one table under the no d-way interaction
model for d ∈ N and d > 3. Let X = (Xi1...id ) be a zero-one contingency table of
size (n1 × · · · × nd), where ni ∈ N for i = 1, . . . , d. The sufficient statistics under
the no d-way interaction model are

X+i2...id , Xi1+i3...id , . . . , Xi1...id−1+,

for i1 = 1, . . . , n1, i2 = 1, . . . , n2, . . . , id = 1, . . . , nd .
(8)

For each i0
1 ∈ {1, . . . , n1}, . . . , i0

d−1 ∈ {1, . . . , nd}, we say the column of the entries
for a marginal Xi1...i j−1+i j+1...id the (i0, . . . , i j−1, i j+1, . . . , id)th column of X. For
each i0

1 ∈ {1, . . . , n1}, . . . , i0
d−1 ∈ {1, . . . , nd−1}, we consider the (i0

1 , . . . , i0
d−1)th

column for the dth factor. Let l0 = Xi0
1 ,...,i0

d−1+. Let r j
k = Xi0

1 ...i0
j−1+i0

j+1...i
0
d−1k for

fixed k ∈ {1, . . . , nd}. For sampling a zero-one d-way table X, we set

pk =
∏d−1

j=1 r j
k

∏d−1
j=1 r j

k + ∏d−1
j=1(n j − r j

k )
. (9)

Remark 9 We assume that we do not have trivial cases, namely, 1 ≤ r j
k ≤ n j − 1 for

j = 1, . . . , d.

Theorem 10 For the uniform distribution over all d-way zero-one contingency tables
X = (Xi1,...,id ) of size (n1 × · · · × nd), where ni ∈ N for i = 1, . . . , d with marginals

l0 = Xi0
1 ,...,i0

d−1+, and r j
k = Xi0

1 ...i0
j−1+i0

j+1...i
0
d−1k for k ∈ {1, . . . , nd}, the marginal

distribution of the fixed marginal l0 is the same as the conditional distribution of Z
defined by (3) given SZ = l0 with
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Estimating the number of zero-one multi-way tables 773

pk =
∏d−1

j=1 r j
k

∏d−1
j=1 r j

k + ∏d−1
j=1(n j − r j

k )
.

Proof The proof is similar to the proof for Theorem 2; we extend the same argument
to a d-way zero-one table under the no d-way interaction model with the probability

pk =
∏d−1

j=1

(n j −1

r j
k −1

)

∏d−1
j=1

(n j −1

r j
k −1

) + ∏d−1
j=1

(n j −1

r j
k

) =
∏d−1

j=1 r j
k

∏d−1
j=1 r j

k + ∏d−1
j=1(n j − r j

k )
.


�

During the intermediary steps of our SIS procedure via CP on a three-way zero-one
table, there will be some columns for the dth factor with trivial cases. In that case, we
have to treat them as structural zeros in the kth slice for some k ∈ {1, . . . , l}. In that
case, we have to use the probabilities for the distribution in (3) as follows:

pk =
∏d−1

j=1 r j
k

∏d−1
j=1 r j

k + ∏d−1
j=1(n j − r j

k − g j
k )

. (10)

where g j
k is the number of structural zeros in the (i0

1 , . . . , i0
j−1, i0

j+1, . . . , i0
d−1k)th

column of X. Thus, we have weights:

wk =
∏d−1

j=1 r j
k

∏d−1
j=1(n j − r j

k − g j
k )

. (11)

Theorem 11 For the uniform distribution over all d-way zero-one contingency tables
X = (Xi1,...,id ) of size (n1 × · · · × nd), where ni ∈ N for i = 1, . . . , d with marginals

l0 = Xi0
1 ,...,i0

d−1+, and r j
k = Xi0

1 ...i0
j−1+i0

j+1...i
0
d−1k for k ∈ {1, . . . , nd}, the marginal

distribution of the fixed marginal l0 is the same as the conditional distribution of Z
defined by (3) given SZ = l0 with

pk =
∏d−1

j=1 r j
k

∏d−1
j=1 r j

k + ∏d−1
j=1(n j − r j

k − g j
k )

where g j
k is the number of structural zeros in the (i0

1 , . . . , i0
j−1, i0

j+1, . . . , i0
d−1k)th

column of X.
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Proof The proof is similar to the proof for Theorem 4; we extend the same argument
to a d-way zero-one table under the no d-way interaction model with the probability

pk =
∏d−1

j=1

(n j −1−g j
k

r j
k −1

)

∏d−1
j=1

(n j −1−g j
k

r j
k −1

) + ∏d−1
j=1

(n j −1−g j
k

r j
k

) =
∏d−1

j=1 r j
k

∏d−1
j=1 r j

k + ∏d−1
j=1(n j − r j

k − g j
k )

.


�

5 Computational examples

For our simulation study, we used the software package R (R-Project-Team 2011).
We count the exact numbers of tables via the software LattE (De Loera et al. 2005)
for small examples in this section. When the contingency tables are large and/or the
models are complicated, it is very difficult to obtain the exact number of tables. Thus,
we need a good measurement of accuracy in the estimated number of tables. In Chen
et al. (2005), the coefficient of variation (cv2) was used:

cv2 = varq{p(X)/q(X)}
E2

q{p(X)/q(X)}

which is equal to varq{1/q(X)}/E
2
q{1/q(X)} for the problem of estimating the number

of tables. The value of cv2 is simply the chi-square distance between the two distrib-
utions p′ and q, which means the smaller it is, the closer the two distributions are. In
Chen et al. (2005), cv2 was estimated by:

cv2 ≈
∑N

i=1{1/q(Xi) −
[∑N

j=1 1/q(Xj)
]
/N }2/(N − 1)

{[∑N
j=1 1/q(Xj)

]
/N

}2 ,

where X1, . . . , XN are tables drawn iid from q(X). When we have rejections, we
compute the variance using only accepted tables. In this paper, we also investigated
relations with the exact numbers of tables and cv2 when we have rejections.

In this section, we define the three two-way marginal matrices as follows: Suppose
we have an observed table x = (xi jk)m×n×l , i = 1, 2, . . . , m, j = 1, 2, . . . , n, and
k = 1, 2, . . . , l;

Define: si = (X+ jk)n×l , s j = (Xi+k)m×l , and sk = (Xi j+)m×n .

Example 12 (The three-dimensional semimagic cube) Suppose si, s j , and sk are all
3 × 3 matrices with all 1s inside, that is:
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The real number of tables is 12. We took 114.7 s to run 10,000 samples in the SIS
procedure; the estimator was 12 and acceptance rate was 100 %. Actually, we found
that if the acceptance rate was 100 %, then sample size did not matter in the estimation.

We used R to produce more examples. Examples below are constructed with the
same code, but with different values for parameters. We used the R package “Rlab”
for the following code.

Here, prob is the probability of getting 1 for every Bernoulli variable, and N is
the sample size (the total number of tables sampled, including both acceptances and
rejections). Notice that cv2 is defined as Var

Mean2 .

Example 13 (seed = 6; m = 3; n = 3; l = 4; prob = 0.8) Suppose si, s j , and sk are
as following, respectively:

The real number of tables is 3. The estimator was 3.00762 with cv2 = 0.0708. The
whole process took 13.216 s (in R) with a 100 % acceptance rate.

Example 14 (seed = 60; m = 3; n = 4; l = 4; prob = 0.5) Suppose si, s j , and sk are
as follows, respectively:

The real number of tables is 5. The estimator was 4.991026 with cv2 = 0.1335. The
whole process took 17.016 s (in R) with a 100 % acceptance rate.

Example 15 (seed = 240; m = 4; n = 4; l = 4; prob = 0.5) Suppose si, s j , and sk
are as follows, respectively:

The real number of tables is 8. The estimator was 8.039938 with cv2 = 0.2857. The
whole process took 23.612 s (in R) with a 100 % acceptance rate.

Example 16 (seed = 5,440; m = 4; n = 4; l = 4; prob = 0.5) Suppose si, s j , and sk
are as follows, respectively:
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Table 1 Summary of computational results on m × n × l tables for m = n = l = 4, . . . , 10. All marginal
sums are equal to one in this example. We counted the exact number for m × m × m semimagic cube with
marginal sums equal to one using the number of all Latin squares of size m

Dimension m # Tables N CPU time (s) Estimation cv2 Acceptance rate (%)

4 576 1,000 32.44 568.944 0.26 100

10,000 324.18 571.1472 0.27 100

5 161,280 1,000 60.39 161,603.5 0.18 99

10,000 605.45 161,439.3 0.18 99.2

6 812,851,200 1,000 102.66 801,634,023 0.58 98.3

10,000 1,038.46 819,177,227 0.45 98.8

7 6.14794e+13 1,000 158.55 6.08928e+13 0.60 97

10,000 1,590.84 6.146227e+13 0.64 97.7

8 1.08776e+20 1,000 234.53 1.080208e+20 1.07 95.6

10,000 2,300.91 1.099627e+20 1.00 96.5

9 5.52475e+27 1,000 329.17 5.845308e+27 1.46 94

10,000 3,238.1 5.684428e+27 1.59 95.3

10 9.98244e+36 1,000 451.24 9.648942e+36 1.44 93.3

10,000 4,425.12 9.73486e+36 1.73 93.3

The real number of tables is 9. The estimator was 8.882672 with cv2 = 0.7701368.
The whole process took 30.171 s (in R) with a 100 % acceptance rate. Another result
for the same sample size is: an estimator is 8.521734, cv2 = 0.6695902. You can find
that the latter has a slightly better cv2, but a slightly worse estimator. We will discuss
more in Sect. 7.

Example 17 (seed = 222; m = 4; n = 4; l = 5; prob = 0.2) Suppose si, s j , and sk
are as follows, respectively:

The real number of tables is 2. The estimator was 2 with cv2 = 0. The whole process
took 19.064 s (in R) with a 100 % acceptance rate.

Example 18 (High-dimension semimagic cubes) In this example, we consider m×n×l
tables for m = n = l = 4, . . . , 10 such that each marginal sum equals to 1. The results
are summarized in Table 1.
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Table 2 Summary of computational results on m × n × l tables for m = n = l = 4, . . . , 10. All marginal
sums are equal to s in this example. The sample N = 1, 000 in this example

Dimension m s CPU time (s) Estimation cv2 Acceptance rate (%)

4 2 27.1 51,810.36 0.66 97.7

5 2 58.1 25,196,288,574 1.69 97.5

6 2 97.1 6.339628e+18 2.56 94.8

3 99.3 1.269398e+22 2.83 96.5

7 2 150.85 1.437412e+30 4.76 93.1

3 166.68 2.365389e+38 25.33 96.7

8 2 229.85 5.369437e+44 6.68 89.8

3 256.70 3.236556e+59 7.05 94.5

4 328.52 2.448923e+64 11.98 94.3

9 2 319.32 4.416787e+62 8.93 85.7

3 376.67 7.871387e+85 15.23 91.6

4 549.73 2.422237e+97 14.00 93.4

10 2 429.19 2.166449e+84 10.46 83.3

3 527.14 6.861123e+117 26.62 90

4 883.34 3.652694e+137 33.33 93.8

5 1439.50 1.315069e+144 46.2 91.3

Example 19 (High-dimension semimagic cubes continues) In this example, we con-
sider m × n × l tables for m = n = l = 4, . . . , 10 such that each marginal sum equals
to s. The results are summarized in Table 2. In this example, we set the sample size
as N = 1, 000.

Example 20 (Bootstrap t confidence interval of semimagic cubes) As we can see in
Table 2, generally cv2 is larger when the number of tables is larger, and in this case,
the estimator we get via the SIS procedure might vary greatly in different iterations.
Therefore, we propose computing a (1 − α)100 % confidence interval for each esti-
mator via a nonparametric bootstrap method (see Appendix 8) for a pseudo code
for a nonparametric bootstrap method to get the (1 − α)100 % confidence interval
for |Σ |). See Table 3 for some results of bootstrap t 4 95 % confidence intervals
(α = 0.05).

6 Experiment with Sampson’s data set

Sampson recorded the social interactions among a group of monks while he visited as
an experimenter on vision. He collected numerous sociometric rankings (Breiger et al.
1975; Sampson 1969). The data are organized as a 18×18×10 table and one can find
the full data sets at http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/UciData.htm#
sampson. Each layer of 18×18 table represents a social relation between 18 monks at
some time point. Most of the present data are retrospective, collected after the breakup
occurred. They concern a period during which a new cohort entered the monastery near
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the end of the study but before the major conflict began. The exceptions are “liking”
data gathered at three times: SAMPLK1 to SAMPLK3 that reflect changes in group
sentiment over time (SAMPLK3 was collected in the same way as the data described
below). In the data set, four relations are coded, with separate matrices for positive
and negative ties on the ten relations: esteem (SAMPES) and disesteem (SAMPDES);
liking (SAMPLK which are SAMPLK1 to SAMPLK3) and disliking (SAMPDLK);
positive influence (SAMPIN) and negative influence (SAMPNIN); praise (SAMPPR)
and blame (SAMPNPR). In the original data set, they listed the top three choices and
recorded as ranks. However, we set these ranks as an indicator (i.e., if they are in the
top three choices, then we set one, or else zero).

We ran the SIS procedure with N = 100, 000 and a bootstrap sample size
B = 50, 000. The estimator was 1.704774e+117 with its 95 % confidence interval,
[1.119321e+117 2.681264e+119] and cv2 = 621.4 with its 95 % confidence interval,
[324.29, 2,959.65]. The CPU time was 70,442 s. The acceptance rate was 3 %.

7 Discussion

In this paper, we do not have a sufficient and necessary condition for the existence of
the three-way zero-one table, so we cannot avoid rejection. However, since the SIS
procedure gives an unbiased estimator, we may only need a small sample size as long
as it converges. Also, note that the acceptance rate does not depend on the sample size.
Thus, it would be interesting to investigate the convergence rate of the SIS procedure
with CP for zero-one three-way tables.

It seems that the convergence rate is slower when we have a “large” table (here
“large” means in terms of |Σ | rather than its dimension, i.e., the number of cells).
A large estimator |̂Σ | usually corresponds to a larger cv2, and this often comes with
large variations of |̂Σ | and cv2. This means that if we have a large |Σ |, more likely
we get extremely larger |̂Σ | and cv2 and different iterations can give very different
results. For example, we ran three iterations for the 8 × 8 × 8 semimagic cube with
all marginals equal to 3 and we got the following results: estimator =3.236556e+59
with cv2 = 7.049114; estimator =2.902294e+59 with cv2 = 9.047914; and estimator
=3.880133e+59 with cv2 = 55.59179. Fortunately, though we have a large |Σ |, our
acceptance rate is still high and a computational time seems to still be attractive. Thus,
when one finds a large estimation or a large cv2, we recommend applying several
iterations and picking the result with the smallest cv2. We should always compare cv2

in a large scale. However, a small improvement does not necessarily mean a better
estimator (see Example 16).

For calculating the bootstrap t confidence intervals, we often have a larger confi-
dence interval when we have a larger cv2, and this confidence interval might be less
informative and less reliable. Therefore, we suggest using the result with the smallest
cv2 for bootstraping procedure. In Table 3, we showed only confidence intervals for
semimagic cubes with m = n = l = 7, . . . , 10 in Example 20 because of the follow-
ing reason: when cv2 is very small, computing bootstrap t confidence interval does
not make much sense, since the estimation has already converged.
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For the experiment with Sampson’s data set, we observed a very low acceptance
rate compared with experimental studies on simulated data sets. We investigated why
this happened and how to increase the acceptance rates. By simulations, we found
two possible reasons: first, it seems that our sampling works better when the values of
marginals are balanced (for example, consider a case that every cell in the table has a
similar or the same probability to be 1 and one of extreme cases is a semimagic cube
where all marginals are the same); second, a higher dimension may be unfavorable for
acceptance rate. Simulations show that the acceptance rates can be very small when
we have both cases: a simulation of a 10 × 10 × 10 table with unbalanced marginals
has only 40 % acceptance rate and decreases to only 1 % for a 18 × 18 × 10 table. On
the other hand, the large cv2 also causes problem. It seems that we have a large cv2

for Sampson’s data set, because there are very few sampled tables which have very
small probabilities. These “outliers” can make our result very unstable (see Table 4 in
Appendix for results with and without seven “outliers”). A problem is that the values
we took off are not theoretical “outliers”; hence, whether it is reasonable to delete
them and which one is more reliable become issues. This is one of the open problems
we need to deal with.

In Chen et al. 2005, the Gale–Ryser Theorem was used to obtain an SIS procedure
without rejection for two-way zero-one tables. However, for three-way table cases, it
seems very difficult because we naturally have structural zeros and trivial cases on a
process of sampling one table. In (Chen 2007) Chen showed a version of Gale–Ryser
Theorem for structural zero for two-way zero-one tables, but it assumes that there is
at most one structural zero in each row and column. In general, there are usually more
than one in each row and column.

In this paper, the target distribution is the uniform distribution. We sample a table
from the set of all zero-one tables satisfying the given marginals as close and uniformly
via the SIS procedure with CP.

8 Appendix: Nonparametric bootstrap method

In this section, we explain how to use a nonparametric bootstrap method to get the
(1 − α)100 % confidence interval for |Σ |. Notice that the bootstrap sample size is
fixed as B, and notations here are consistent with Sect. 2.

(1) Drawing pseudo data set
Concept In an SIS procedure with sample size N , we get a sequence of random tables

X1, . . . , XN. Define Yi = IXi∈Σ

q(Xi)
, i = 1, . . . , N where q(X) is the trial distribution,

then Y1, . . . , YN is a sequence of iid random variables. This means that it makes sense
to consider the empirical distribution of Yi, which is nonparametric maximum likeli-
hood estimator of the real distribution of Yi (actually, as Yi can only take finitely many
values, the empirical distribution becomes the maximum likelihood estimator of the
real distribution). Draw a pseudo sample Y∗

1, . . . , Y∗
N from the empirical distribution.

Algorithm Use the SIS procedure to get Yi = IXi∈Σ

q(Xi)
, i = 1, . . . , N , which should be

just a sequence of numbers. Draw N elements from this sequence with replacement.
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(2) One Bootstrap replication
Concept Consider the pseudo sample Y∗

1, . . . , Y∗
N as a ”new” sample from the

empirical distribution, then the cumulative distribution function (CDF) of θ̂∗ =
T (Y∗

1, . . . , Y∗
N) is a consistent estimator of the CDF of θ̂ = T (Y1, . . . , YN). Here,

we can consider our estimator of |Σ |:

|̂Σ | = θ̂1 = T1(Y1, . . . , YN) = 1

N

N∑

i=1

Yi

The cv2:

ĉv2 = θ̂2 = T2(Y1, . . . , YN) =
∑N

i=1

{
Yi −

[∑N
j=1 Yj

]
/N

}2
/(N − 1)

{[∑N
j=1 Yj

]
/N

}2

Algorithm Treat the pseudo sample as a sample from the SIS and compute the statistics
based on it. That means, this bootstrap replication can be obtained by:

|̂Σ |∗1 = 1

N

N∑

i=1

Y∗
i ; ĉv2∗1 = cv2 of (Y∗

1, . . . , Y∗
N)

(3) Bootstrap t confidence interval
Concept Repeat the previous two steps until we get B Bootstrap replications:
θ̂i

∗1
, . . . , θ̂i

∗B
, i = 1, 2. The empirical distribution of θ̂i

∗
is the nonparametric max-

imum likelihood estimator of CDF of θ̂i
∗
, and the latter is a consistent estimator of

the CDF of θ̂i . So, we can use (α
2 )100th and (1 − α

2 )100th percentiles of the empirical
distribution as our confidence interval.
Algorithm Repeat the previous two steps B times. For {|̂Σ |∗1

, . . . , |̂Σ |∗B}, define
|̂Σ |∗(a) as the 100ath percentile of the list of values. Then bootstrap-t (1 − α)100 %

confidence interval of |̂Σ | is [|̂Σ |∗(α/2), |̂Σ |∗(1−α/2)]. Similarly, we can get confidence

interval for ĉv2.

Acknowledgments The authors would like to thank Drs. Stephen Fienberg and Yuguo Chen for useful
conversations.

References

Blitzstein, J., Diaconis, P. (2010). A sequential importance sampling algorithm for generating random
graphs with prescribed degrees. Internet Mathematics, 6(4), 489–522.

Breiger, R., Boorman, S., Arabie, P. (1975). An algorithm for clustering relational data with applications
to social network analysis and comparison with multidimensional scaling. Journal of Mathematical
Psychology, 12, 328–383.

Chen, Y. (2007). Conditional inference on tables with structural zeros. Journal of Computational and
Graphical Statistics, 16(2), 445–467.

123



Estimating the number of zero-one multi-way tables 783

Chen, Y., Diaconis, P., Holmes, S., Liu, J. S. (2005). Sequential monte carlo methods for statistical analysis
of tables. Journal of the American Statistical Association, 100, 109–120.

Chen, Y., Dinwoodie, I., Sullivant, S. (2006). Sequential importance sampling for multiway tables. The
Annals of Statistics, 34(1), 523–545.

De Loera, J., Haws, D., Hemmecke, R., Huggins, P., Tauzer, J., Yoshida, R. (2005). LattE, version 1.2.
http://www.math.ucdavis.edu/~latte/.

De Loera, J., Onn, S. (2006). All linear and integer programs are slim 3-way transportation programs. SIAM
Journal on Optimization, 17, 806–821.

Dinwoodie, I. H. (2008). Polynomials for classification trees and applications. Statistical and Applied
Mathematical Sciences Institute Technical, Report 2008-7.

Dinwoodie, I. H., Chen, Y. (2011). Sampling large tables with constraints. Statistica Sinica, 21,
1591–1609.

Garey, M. R., Johnson, D. S. (1979). Computers and intractabihty, a guide to the theory of NP-completeness.
San Francisco: Freeman & Co.

Huber, M. (2006). Fast perfect sampling from linear extensions. Discrete Mathematics, 306, 420–428.
R-Project-Team. (2011). R project. GNU software. http://www.r-project.org/.
Sampson, S. (1969). Crisis in a cloister. Doctoral dissertation (unpublished).
Snijders, T. A. B. (1991). Enumeration and simulation methods for 0 − 1 matriceswith given marginals.

Psychometrika, 56, 397–417.

123

http://www.math.ucdavis.edu/~latte/
http://www.r-project.org/

	Estimating the number of zero-one multi-way tables  via sequential importance sampling
	Abstract
	1 Introduction
	2 Sequential importance sampling
	3 Sampling from the conditional Poisson distribution
	4 Four or higher dimensional zero-one tables
	5 Computational examples
	6 Experiment with Sampson's data set
	7 Discussion
	8 Appendix: Nonparametric bootstrap method
	Acknowledgments
	References


