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Abstract This paper considers partially linear varying coefficient models when the
response variable is missing at random. The paper uses imputation techniques to
develop an omnibus specification test. The test is based on a simple modification
of a Cramer von Mises functional that overcomes the curse of dimensionality often
associated with the standard Cramer von Mises functional. The paper also considers
estimation of the mean functional under the missing at random assumption. The pro-
posed estimator lies in between a fully nonparametric and a parametric one and can be
used, for example, to obtain a novel estimator for the average treatment effect parame-
ter. Monte Carlo simulations show that the proposed estimator and test statistic have
good finite sample properties. An empirical application illustrates the applicability of
the results of the paper.

Keywords Bootstrap · Imputation · Inverse probability weighting ·
Missing at random

1 Introduction

Partially linear varying coefficient models are useful extensions of the popular par-
tially linear model considered for example by Engle et al. (1986), Robinson (1988)
and Speckman (1988). These models offer additional flexibility compared to partially
linear models because they allow interactions between a vector of covariates and a
vector of unknown functions depending on another covariate, while avoiding the curse
of dimensionality typically associated with partial linear models. Partially linear vary-
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722 F. Bravo

ing coefficient models are important examples of varying coefficient models (see e.g.
Hastie and Tibshirani 1993) which arise in many situations of practical relevance in
economics, finance and statistics, and have been used in the context of generalized
linear models and quasi-likelihood estimation (Cai et al. 2000a), time series (Cai et
al. 2000b), longitudinal data (Fan and Wu 2008), survival analysis (Cai et al. 2008) to
name just a few applications-see Fan and Zhang (2008) for a recent review contain-
ing further applications and a number of examples. Compared to varying coefficient
models, partially linear varying coefficient models contain the additional information
that some of the coefficient are in fact constant and this information should be incor-
porated in the estimation to obtain more efficient estimates. Ahmad et al. (2005) and
Fan and Huang (2005) suggest two general estimation techniques based, respectively,
on nonparametric series and profile least square estimation. Both procedures result in
efficient estimators under the additional assumption of conditional homoskedasticity
of the unobservable errors.

In this paper we consider varying coefficient partially linear models when the
response variable is not directly observed, but it is assumed to be missing at random
(MAR henceforth). MAR is commonly assumed in many statistical models with miss-
ing data—see Little and Rubin (2002) for a comprehensive review—and it specifies
that the probability of missing depends on variables that are always observed. When
the responses are MAR a natural approach to follow is to impute a value for the miss-
ing responses and then estimate the parameters of interest as if the imputed responses
were the true parameters. Paik (1997) showed that imputation by regression methods
can improve the efficiency of estimators for generalized estimating equations mod-
els; Chen and Cui (2006) and Wang et al. (2004) considered, respectively, imputation
methods with local quasi-likelihood estimators and in the context of partially linear
regression. Wang and Rao (2002) and Wang and Chen (2009) combined nonparametric
imputation and empirical likelihood to obtain inferences in models with MAR data.

In this paper we consider two problems: first testing for the correct specification of
partially linear varying coefficient models; second estimating the mean of a response
variable assuming a partially linear varying coefficient specification. The specifica-
tion test we consider is based on a Cramer von Mises type of functional of a marked
empirical process. This type of statistic has been used for checking the correct specifi-
cation of a number of statistical models including: parametric regressions (Stute 1997;
Escanciano 2006), generalized linear models (Stute and Zhu 2002), quantile regres-
sions (He and Zhu 2003; Escanciano and Velasco 2010), partially linear regressions
(Zhu and Ng 2003), single index (Stute and Zhu 2005; Xia et al. 2004), conditional
moments (Whang 2001). Bravo (2012) proposes some general results for semipara-
metric conditional moments models, which incorporate as special cases all of above
mentioned models. One important characteristic of the test statistic we propose is that
it is based on the same dimension reduction approach as that proposed by Escanciano
(2006). This approach yields test statistics that do not suffer from the main problem
associated with the standard marked empirical process approach, namely the curse
of dimensionality related to the potentially high dimension of the conditioning set of
covariates. The imputation estimator for the mean functional is similar in spirit to that
proposed by Wang et al. (2004) and complement the nonparametric imputation esti-
mator of Cheng (1994), and the fully parametric imputation estimator of Scharfstein
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Partially linear varying coefficient models with MAR 723

et al. (1999). The resulting estimator is rather general and can be used, for example,
to construct a novel estimator of the average treatment effect parameter that is central
to many causal inference models, see for example Little and Rubin (2002).

In this paper we make the following contributions: first we consider partially lin-
ear varying coefficient models with two imputation methods: a standard one based
on regression and an alternative one based on inverse probability weighting. Both
approaches are based on a complete version of the profile kernel estimator originally
suggested by Fan and Huang (2005) when the responses are always observable. It is
important however to note that other nonparametric estimators could be used, such
as the nonparametric series estimator suggested by Ahmad et al. (2005). We derive
the asymptotic distribution of the complete version profile kernel estimator and of
the specification tests under the null and both global and local alternative hypotheses.
These results extend and/or complement results obtained by Wang et al. (2004), Fan
and Huang (2005), Escanciano (2006), Sun et al. (2009) and Koul et al. (2012) among
others.

Second we consider two bootstrap procedures that can be used to consistently
approximate the critical values of the unknown distributions of the test statistic. The
first bootstrap procedure is the wild bootstrap (see e.g. Wu 1986 and Hardle and
Mammen 1993), and has been used in the context of the type of specification tests
considered in this paper by Stute et al. (1998), Whang (2000), Escanciano (2006) and
others. The second one is motivated by the so-called random symmetrization technique
(see e.g. Pollard 1984) and by the multiplier central limit theorems (see e.g. Van der
Vaart and Wellner 1996), and it has been used by Su and Wei (1991), Delgado et al.
(2003), Zhu and Ng (2003) and others.

Third we derive the asymptotic distributions of imputation estimators for a MAR
mean functional assuming a partially linear varying coefficient specification, and
derive a new semiparametric efficiency bound for this model under the assumption of
normality. We also propose a new estimator of the average treatment effect parameter
under Rosenbaum and Rubin (1983)’s strong ignorability assumption. These results
complement those of Cheng (1994), Hahn (1998), Hirano et al. (2003), Wang et al.
(2004) and Muller (2009) among others.

Fourth we use simulations to assess the finite sample properties of the proposed
estimators and test statistics. As a by-product of these simulations we are able to
compare the relative performances of the two bootstrap procedures. This comparison
is, as far as we are aware of, new in the context of specification testing.

Finally we illustrate the practical usefulness of the methods proposed in this paper
by investigating the important policy-related question of whether membership to the
World Trade Organization (WTO) can have negative effects on the environment.

The remaining part of the paper is structured as follows: next section introduces
the model and the estimator. Sect. 3 introduces the Cramer von Mises statistic to test
the correct specification of the model and shows the consistency of both bootstrap
procedures. Section 4 contains the results on the estimation of the mean functional
and the novel semiparametric estimator of the average treatment parameter. Section 5
presents and discusses the results of the Monte Carlo simulations. Section 6 contains
the empirical application. Section 7 contains some concluding remarks. An Appendix
contains all the proofs.
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The following notation is used throughout the paper: “a.a.”, “a.s.” stand for “almost

all” and “almost surely” ⇒,
d→ denote weak convergence in l∞ (·)—the space of all

real-valued functions that are uniformly bounded in · (see Pollard 1984 for a definition),
and convergence in distribution, respectively. Finally ‖·‖ is the Euclidean norm, “′”
denotes transpose and for any vector v v⊗2 = vv′.

2 The model and the estimator

The model we consider is

Y = X ′α0 (U ) + W ′β0 + ε, (1)

where α0 (·) is a p-dimensional vector of unknown functions, U is an observable ran-
dom variable, β0 is a k-dimensional vector of unknown parameters and the unobserv-
able error ε is such that E (ε|U, X, W )= 0 a.s. and E

(
ε2|U, X, W

)=σ 2 (U, X, W )

a.s.
We assume that some of the Y values in a sample of size n may be MAR whereas

the X , U and W values are completely observed, that is the probability of missing,
also called propensity score in the causal inference literature, see e.g. Rosenbaum and
Rubin (1983), is given by

Pr (δ|Y, U, X, W ) = Pr (δ|U, X, W ) := π (U, X, W ) > 0 a.s., (2)

where δ = {0, 1} is a binary indicator of missingness. Let (Yi , Ui , Xi , Wi )
n
i=1 denote

an i.i.d. incomplete sample from (Y, U, X, W ), and δi = 0 indicates that Yi is missing.
To deal with the MAR responses we follow the same approach as that suggested by
Wang et al. (2004) and Sun et al. (2009) and propose the following complete case
estimators for α0 (·) and β0

β̂ =
[

n∑

i=1

δi
(
Wi −α̂X W (Ui )

′ Xi
)⊗2

]−1 n∑

i=1

δi
(
Wi −α̂X W (Ui )

′ Xi
) (

Yi − X ′
i α̂XY (Ui )

)
(3)

and

α̂ (u) = α̂XY (u) − α̂X W (u) β̂, (4)

where

α̂X W (u) =
[

n∑

i=1

δi X⊗2
i Kh (Ui − u)

]−1 n∑

i=1

δi Xi W ′
i Kh (Ui − u),

α̂XY (u) =
[

n∑

i=1

δi X⊗2
i Kh (Ui − u)

]−1 n∑

i=1

δi Xi Y
′
i Kh (Ui − u)

and Kh (·) := K (·/h) /h is a kernel function and h =: h (n) is the bandwidth.
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Partially linear varying coefficient models with MAR 725

Note that (3) and (4) are like the profile kernel estimators proposed by Fan and
Huang (2005) except that they are based on the complete case and conditional het-
eroskedasticity is allowed. Alternatively we can use nonparametric series estimation
and obtain the complete case series based estimator β̂S

β̂S =
[

n∑

i=1

δi (Wi − Wi P (Xi , Ui ))
⊗2

]− n∑

i=1

δi (Wi − Wi P (Xi , Ui )) (Yi − P (Xi , Ui ) Yi )

and

α̂ (u)S = P (Xi , u)
(
Yi − Wi β̂S

)
,

where

P (Xi , u) = p (Xi , u)′
(

n∑

i=1

p (Xi , u) p (Xi , u)′
)−

p (Xi , u),

p (Xi , u) =
[

X1i pq1
1 (u)′ , ..., X pi p

qp
p (u)′

]′
,

“−” denotes generalized inverse and p
q j
j (u) = [

p j1 (x) , ..., p jq j (u)
]′ is a q j × 1

vector of base functions. Under the same regularity conditions of Ahmad et al. (2005)
it is possible to show that β̂S has the same distribution as that of the profile kernel
estimator β̂ given in the following theorem:

Theorem 1 Under A1(i), A2–A6(i), A7(i) and A8 listed in the Appendix

n1/2 (β̂ − β0
) d→ N

(
0, �−1

0 	0�
−1
0

)

where

�0 = E
[
π (U, X, W )

(
W − α0X W (U )′ X

)⊗2
]
,

	0 = E
[
π (U, X, W ) σ 2 (U, X, W )

(
W − α0X W (U )′ X

)⊗2
]
.

Furthermore, under the additional assumption that ε ∼ N
(
0, σ 2

)
,

n1/2 (β̂ − β0
) d→ N

(
0, σ 2�−1

0

)
, (5)

and σ 2�−1
0 is the semiparametric efficiency bound of Bickel et al. (1993).

The efficiency result (5) of Theorem 1 is consistent with that of Koul et al. (2012),
who derive the efficiency bound for a partially linear model with MAR responses
assuming a location density for the error with finite Fisher information. Under the
assumption of normality Koul et al. (2012)’s efficiency bound coincides with the one
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726 F. Bravo

of this paper, and vice-versa under the assumption of a location density (5) can be
modified to encompass theirs. It is also interesting to note that (5) is consistent with
the results of Kim and Ma (2012) on the semiparametric efficiency of the extended
nonlinear least squares estimator of Wang and LeBlanc (2008), under the assumption
of homoskedasticity and that the errors have a symmetric density.

Let

Ŷ1i = δi Yi + (1 − δi )
(
X ′

i α̂ (Ui ) + Wi β̂
)
,

Ŷ2i = δi

π̂ (Ui , Xi , Wi )
Yi +

(

1 − δi

π̂
(
Ui , Xi,Wi

)

)
(
X ′

i α̂ (Ui ) + Wi β̂
)

(6)

denote, respectively, the regression and inverse probability weighted imputed values,
where π̂ (·) is a nonparametric estimator of the propensity score (2) given by

π̂ (u, x, w) =
∑n

i=1 δi Lb (Ui − u, Xi − x, Wi − w)
∑n

i=1 Lb (Ui − u, Xi − x, Wi − w)
, (7)

where Lb (·) := L (·/b) /b is a kernel function and b =: b (n) is another bandwidth.
Note that Ŷ2i is motivated by the so-called double robustness property, that in the
context of estimation with missing data means consistency of the estimator when
either the model for the missingness mechanism or the model for the distribution of the
complete data is correctly specified (see e.g. Robins et al. 1994; Scharfstein et al. 1999
and Bang and Robins 2005). As noted by Sun et al. (2009), this property is desirable
for estimation but not for testing (especially for the correct specification) because it
reduces the sensitivity of the test to departures from the null hypothesis. A second
potential problem with Ŷ2i is that it might suffer from the curse of dimensionality
associated with a possibly high dimensional set of covariates X and W . Of course a
natural remedy for this problem would be to consider a fully parametric specification of
π (Ui , Xi , Wi ), such as that of a probit or logit. However the resulting estimator would
be characterized by a different asymptotic behaviour and could still be doubly-robust.
For these reasons we consider an alternative inverse probability weighting based on
Pr (δ = 1|U ), which we call the partial propensity score. This specification avoids the
curse of dimensionality because the covariate U is assumed to be a random variable.
Let

π̂ (u) =
∑n

i=1 δi Lb (Ui − u)
∑n

i=1 Lb (Ui − u)
(8)

denote the nonparametric estimator, and

Ŷ3i = δi

π̂ (Ui )
Yi +

(
1 − δi

π̂ (Ui )

) (
X ′

i α̂ (Ui ) + Wi β̂
)

(9)

denote the resulting inverse probability weighting imputed values. Note that the same
type of inverse probability weighting (9) has been considered by Wang et al. (2004)
and Sun et al. (2009).
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3 Specification analysis

The null hypothesis that (1) is correctly specified is

H0 : E (ε|U, X, W ) = E
(
Y − X ′α0 (U ) − W ′β0|U, X, W

) = 0 a.s., (10)

or equivalently

H0 : E [ε
 (U, X, W ; u, x, w)] = 0 a.a. u, x, w ∈ [−∞,∞]1+k+p (11)

provided the linear span of the function 
 (·) is dense in the space of bounded mea-
surable functions on the support of U, X, W (Bierens 1982). In this paper we specify

 (·) to be the indicator function

I
([

U, X ′, W ′] ≤ [
u, x ′, w′])

= I (U ≤ u)

p∏

j=1

I
(

X ( j) ≤ x ( j)
) k∏

j=1

I
(

W ( j) ≤ w( j)
)

, (12)

but we follow the same projection approach proposed by Escanciano (2006), which
avoids the potential practical problem of having a high dimensional set of covariates.
To be specific we consider

E
[
ε I

(
U ≤ u, θ ′ [X ′, W ′]′ ≤ s

)]
= 0 a.a. u, s, θ ∈ �, (13)

where � = [−∞,∞]2 × S
k+p and by Lemma 1 in Escanciano (2006) S

k+p is the
unit sphere in R

k+p.
The advantage of specifying 
 (U, X, W ; u, x, w) as in (13) over the standard

indicator function (12) is apparent in its dimension reduction character, which implies
that potentially high dimensional covariates X, W are not a problem as they would be
with (12), i.e. too many zeroes negatively affecting both size and power properties of
any test statistic based on it. A more detailed discussion of the merits of (13), including
also a comparison with the related approach of Stute and Zhu (2002) in the context of
generalized linear models, can be found in Escanciano (2006).

Given (13) a test statistic for the null hypothesis (10) can be constructed by consid-
ering a functional of the so-called projected marked empirical process

n1/2v̂ j (u, s, θ) = 1

n1/2

n∑

i=1

ε̂ j i I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

j = 1 or 3

where

ε̂ j i = Ŷ j i − X ′
i α̂ (Ui ) + W ′

i β̂ j = 1 or 3

and α̂ (·) and β̂ are the complete case estimators as defined in 4 and 3, respectively.
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728 F. Bravo

3.1 Asymptotic null distributions

Theorem 2 Under A1(i), A2–A6(i), A7(i) and A8 listed in the Appendix

n1/2v̂ j (u, s, θ) �⇒ v j (u, s, θ) in l∞ (�) , j = 1 or 3,

where the v j (u, s, θ)s are two centred Gaussian processes with covariance function

E
[
σ j (u1, s1, θ1) σ j (u2, s2, θ2)

]
, (14)

σ1 (u, s, θ)

= δε I
(

U ≤ u, θ ′ [X ′, W ′]′ ≤ s
)

− D (u, s, θ) �−1
0 δ

(
W − α0W X (U )′ X

)
ε

−G (s, θ, u)
[

E
(
δX⊗2|U

)]−1
δXε I (U ≤ u),

σ3 (u, s, θ)

= δε

π (U )
I
(

U ≤ u, θ ′ [X ′, W ′]′ ≤ s
)

− D (u, s, θ, π) �−1
0 δ

(
W − αW X (U )′ X

)
ε

−G (s, θ, u)
[

E
(
δX⊗2|U

)]−1 δ

π (U )
Xε I (U ≤ u),

and

D (u, s, θ) = E
[
δ
(
W ′ − X ′α0X W

)
I
(

U ≤ u, θ ′ [X ′, W ′]′ ≤ s
)]

,

D (u, s, θ, π) = E

[
δ

π (U )

(
W ′ − X ′α0X W

)
I
(

U ≤ u, θ ′ [X ′, W ′]′ ≤ s
)]

,

G (s, θ, u) = E
[
δX ′ I

(
θ ′ [X ′, W ′]′ ≤ s

)
|U = u

]
.

Let Fθ (u, s) and F̂θ (u, s) denote, respectively, the distribution and empirical dis-
tribution of U and θ ′ [X ′, W ′]′, and let dθ denote the uniform distribution on the
sphere S

k+p. Note that the uniform distribution is chosen for computational conve-
nience since the resulting integral admits a simple closed form expression—see (29);
other distributions could be used. Given the result of Theorem 2 we can use a Cramer
von Mises type of functional to construct a test statistic for the null hypothesis H0
that is

C M j = n
∫

�

ν̂ j (u, s, θ)2 d F̂θ (u, s) dθ j = 1 or 3. (15)

A straightforward application of the continuous mapping theorem gives the following:
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Partially linear varying coefficient models with MAR 729

Corollary 3 Under A1(i), A2–A6(i), A7(i) and A8-A9 in the Appendix and under the
null hypothesis (10)

C M j
d→
∫

�

v j (u, s, θ)2 d Fθ (u, s) dθ j = 1 or 3. (16)

As it is typically the case with this type of approach to specification testing the
asymptotic null distributions of the proposed test statistics are not asymptotically
distribution free (ADF) since they depend in a complicated way on the influence func-
tions σ j ( j = 1, 3) given in (14). It is also important to note that the C M j ( j = 1, 3)

statistics need not to be scaled by a normalizing constant— typically given by a con-
sistent estimator of (14). This is important for two reasons: first because the presence
of such normalizing constant can have a negative effect on the power properties of
the statistics themselves depending on the type of estimator used. Secondly because
the estimation of the normalizing constant is further complicated by the presence
of the unknown conditional variance σ 2 (U, X, W ). In this case one possible esti-
mator that can be used is the same k-nearest neighbourhood-based estimator, say
σ̂ 2

nn (Ui , Xi , Wi ), as that used by Robinson (1987). Note also that we could take the
conditional heteroskedasticy directly into account in the estimation of α̂ (Ui ) and β̂

by scaling the unobservable error εi by σ̂nn (Ui , Xi , Wi ), and/or consider a weighted
version of the projected marked empirical processes n1/2v̂ j (u, s, θ). However in both
cases the resulting test would still not be ADF, giving therefore no practical advantage
to the scaled test statistic over the original one. In the next subsection we present two
resampling techniques that can be used to consistently estimate the null distributions
of the C M j statistics.

3.2 Bootstrap approximation

As mentioned in the Introduction we consider two bootstrap approaches to approxi-
mate the distributions of the C M j statistics. The first one is based on the wild bootstrap
(WB henceforth) and the second one is based on the multiplier bootstrap (MB hence-
forth). Each methods has its own advantage compared to the other: WB is easier
to compute as the required multidimensional integration over S

k+p admits a simple
closed form expression-see (29) below; at the same time it is rather computationally
intensive because of the actual re-estimation involved, especially for the nonparamet-
ric component. MB is more complicated to compute because it is directly based on
the empirical analog of (14)-see (17) below- but it is less computationally intensive
because the model is not actually resampled.

In the context of specification testing with marked empirical processes WB is con-
sidered by Stute (1997) and by Escanciano (2006) for linear regressions and paramet-
ric regression models, respectively. When the responses are MAR Gonzalez-Manteiga
and Perez-Gonzalez (2006) show how to modify the WB for testing the correct spec-
ification of regression models using kernel smoothing. In this paper we follow their
approach to obtain appropriate bootstrap samples that preserve the MAR assumption.
To be specific let ε̂i denote the ith residual when δi = 1 and let {ηi }n

i=1 denote a
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730 F. Bravo

random sample from the distribution of the bounded random variable η with zero
mean and unit variance that is independent from U , X and W. Let ε∗

i = ε̂iηi and note
that E∗ (ε∗

i

) = 0 and V ∗ (ε∗
i

) = ε̂2
i , where E∗ (·) and V ∗ (·) denote the expectation

and variance operator with respect to the original sample. Let

Y ∗
i = X ′

i α̂ (Ui ) + W ′
i β̂ + ε∗

i if δi = 1,

Y ∗
i = 0 ifδi = 0

denote the bootstrap response so that
(
Y ∗

i , Ui , Xi , Wi
)n

i=1 represent a bootstrap sam-
ple. Let

β̂∗ =
[

n∑

i=1

δi
(
Wi − α̂W X (Ui )

′ Xi
)⊗2

]−1 n∑

i=1

δi
(
Wi − α̂X W (Ui )

′ Xi
) (

Y ∗
i − X ′

i α̂XY ∗ (Ui )
)
,

and

α̂ (u) = α̂XY ∗ (u) − α̂X W (u) β̂∗

denote the bootstrap estimators, and let

n1/2v̂∗
j (u, s, θ) = 1

n1/2

n∑

i=1

ε̂∗
j i I

(
Ui ≤ u, θ ′ [X ′

i , W ′
i

]′ ≤ s
)

j = 1 or 3

denote the bootstrap marked empirical process, where

ε̂∗
j i = Ŷ ∗

j i − X ′
i α̂

∗ (Ui ) + W ′
i β̂

∗,

and

Ŷ ∗
1i = δi Y

∗
i + (1 − δi )

(
X ′

i α̂
∗ (Ui ) + Wi β̂

∗)

Ŷ ∗
3i = δi

π̂ (Ui )
Y ∗

i +
(

1 − δi

π̂ (Ui )

)
(
X ′

i α̂
∗ (Ui ) + Wi β̂

∗).

Let C M∗(W B)
j denote the WB version of (15) and let Pr ∗ denote the bootstrap prob-

ability; the following theorem shows that WB consistently estimates the distribution
of (15).

Theorem 4 Under A1(i), A2–A6(i), A7(i) and A8–A9 listed in the Appendix

sup
c∈R+

∣∣∣Pr ∗ (C M∗(W B)
j ≥ c

)
− Pr

(
C M j ≥ c

)∣∣∣
p→ 0 j = 1 or 3,

where C M j has the asymptotic distribution as given in (16).

Multiplier bootstrap is similar to WB in that an auxiliary sequence of zero mean
and unit variance random variables independent from the original sample is used in
the simulation.However as opposed to WB the original model is not resampled, nor
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re-estimated. MB is considered for example by Su and Wei (1991) in the context of
specification tests for generalized linear models and by Zhu and Ng (2003) for partial
linear models.

Let

n1/2σ̂ ∗
j (u, s, θ) = 1

n1/2

n∑

i=1

σ̂ j i (u, s, θ) ηi j = 1 or 3 (17)

denote the empirical randomized influence function, where

σ̂1i (u, s, θ)

= δi ε̂i ω̂i I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

− D̂ (u, s, θ) �̂−1δi
(
W ′

i − α̂W X (Ui )
′ Xi

)
ε̂i

−Ĝ (s, θ, u)

⎡

⎣1

n

n∑

j=1

δ j X⊗2
j Kh

(
U j − Ui

)
⎤

⎦

−1

δi Xi ε̂i I (Ui ≤ u),

D̂ (u, s, θ) = 1

n

n∑

i=1

[
δi
(
W ′

i − X ′
i α̂X W (Ui )

)
I
(

Ui ≤ u, θ ′ [X ′, W ′]′ ≤ s
)]

,

Ĝ (s, θ, u) = 1

n

n∑

i=1

[
δi X ′

i I
(
θ ′ [X ′

i , W ′
i

]′ ≤ s
)

Kh (Ui − u)
]
,

where α̂X W (Ui ) and π̂ (Ui ) are defined in Sect. 2, σ̂3i (u, s, θ) is defined similarly to
σ̂1i (u, s, θ) and {ηi }n

i=1 is a random sample from the random variable η with the same
characteristics as those used in WB. Let

C M∗(M B)
j =

∫

�

σ̂ ∗
j (u, s, θ)2 d F̂θ (u, s) dθ

denote the MB version of (15).
The following theorem shows that MB consistently estimates the distribution

of (15).

Theorem 5 Under A1(i), A2–A6(i), A7(i) and A8–A9 listed in the Appendix

sup
c∈R+

∣∣∣Pr ∗ (C M∗(M B)
j ≥ c

)
− Pr

(
C M j ≥ c

)∣∣∣
p→ 0 j = 1 or 3,

where C M j has the asymptotic distribution as given in (16).
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3.3 Power properties

We now investigate the power properties of the test statistics C M j . We first consider
global alternatives of the form

H1g : Pr
(
E
(
Y − X ′α (U ) − W ′β|U, X, W

) �= 0
)

> 0 ∀β, α (U ). (18)

Theorem 6 Under A1(i), A2–A6(i), A7(i), A8–A9 listed in the Appendix and under
the alternative global hypothesis (18)

C M1

n
d→
∫

�

E
{
δ
[(

E (Y |U, X, W ) − X ′α† (U ) − W ′β†
)]

×I
(

U ≤ u, θ ′ [X ′, W ′]′ ≤ s
)}2

d Fθ (u, s) dθ > 0,

C M3

n
d→
∫

�

E

{
δ

π (U )

[(
E (Y |U, X, W ) − X ′α† (U ) − W ′β†

)]

×I
(

U ≤ u, θ ′ [X ′, W ′]′ ≤ s
)}2

d Fθ (u, s) dθ > 0,

where
∥
∥β̂ − β0

∥
∥ = β† + op (1), ‖α̂ (U ) − α0 (U )‖ = α† (U ) + op (1), and β† �= 0,

α† (U ) �= 0 a.s.

Next we consider local alternatives of the form

H1l : E (ε|U, X, W ) = γ (U, X, W )

n1/2 a.s. (19)

for some known bounded real-valued function γ (·).
Theorem 7 Under A1(i), A2–A6(i), A7(i), A8–A10 listed in the Appendix and the
alternative local hypothesis (19)

C M j
d→
∫

�

[
v j (u, s, θ) + s j (u, v, θ)

]2
d Fθ (u, s) dθ j = 1 or 3,

where

s1 (u, v, θ) = E
[
δγ (U, X, W ) I

(
U ≤ u, θ ′ [X ′, W ′]′ ≤ s

)]

−E
[
δ
(
W ′ − X ′αX W (U )

)
I
(

U ≤ u, θ ′ [X ′, W ′]′ ≤ s
)]

×�−1
0 E

{
π (U, X, W ) (W − XαX W (U ))

×
[
γ (U, X, W ) − X ′ [E

(
X⊗2|U

)]−1
E (δXγ (U, X, W ) |U )

]}
,

and s3 (u, v, θ) is as s1 (u, v, θ) with δ replaced by δ/π (U ).
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Theorems 6 and 7 show that the tests (15) are consistent and can detect local
alternatives converging to the null hypothesis at the fastest possible rate.

4 Estimation of the mean functional

We now consider the problem of estimating the population mean μ0 (or any other
linear square integrable functional) of the response variable Y using the same i.i.d.
incomplete sample (Yi , Ui , Xi , Wi )

n
i=1 as that defined in Sect. 2 and the same three

different imputed responses Ŷ j i ( j = 1, 2, 3) defined in (6) and (9). Let

μ̂ j = 1

n

n∑

i=1

Ŷ j i j = 1, 2, 3

denote the resulting imputation estimators. Recall that μ̂2-the inverse probability
weighting estimator with estimated full propensity score (7)-enjoys the double robust-
ness property, whereas μ̂3 - the inverse probability weighting estimator with estimated
partial propensity score (8)- does not (unless π (U, X, W ) = π (U ) a.s.). It is also
important to note that an estimator similar to μ̂3 is also considered by Wang et al.
(2004), who showed that under the assumption of a partially linear specification, μ̂3
is in general more efficient than the corresponding fully nonparametric one of Cheng
(1994).

Theorem 8 Under A1(i), A2–A6(i), A7(i) and A8 listed in the Appendix

n1/2 (μ̂ j − μ0
) d→ N

(
0, σ 2

j + var
(
X ′α0 (U ) + W ′β0

))
j = 1 or 3,

where

σ 2
j = E

[
σ 2 (U, X, W ) π (U, X, W )

(
	0 j (U ) + �0 j�

−1
0

(
W − α0X W (U )′ X

))2
]

,

and

	01 (U ) = [E (X |U ) − E (δX |U )]′
[

E
(
δX⊗2|U

)]−1
X + 1,

	03 (U ) =
[

E (X |U ) − E (δX |U )

π (U )

]′ [
E
(
δX⊗2|U

)]−1
X + 1

π (U )
,

�01 = E
[
(1 − δ)

(
W ′ − X ′α0X W (U )

)]
,

�03 = E

[(
1 − δ

π (U )

) (
W ′ − X ′α0X W (U )

)]
.

(20)

Under A1(ii), A2–A3, A4(ii), A5, A6(ii), A7(ii) and A8 listed in the Appendix

n1/2 (μ̂2 − μ0)
d→ N

(
0,

σ 2 (U, X, W )

π (U, X, W )
+ var

(
X ′α0 (U ) + W ′β0

)
)

. (21)
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The results of Theorem 8 complement those obtained by Cheng (1994) and
Wang et al. (2004) and show that the inverse probability weighting estimator with
full nonparametric propensity score μ̂2 (21) is asymptotically equivalent to the esti-
mator proposed by Cheng (1994), which is known to be semiparametric efficient Hahn
(1998), whereas neither of the two other imputation estimators achieve this bound. It
is also interesting to investigate the efficiency of the proposed estimators under the
assumption that a partially linear varying coefficient specification holds, that is

E (Y |U, X, W ) = X ′α0 (U ) + W ′β0 a.s. (22)

The following theorem derives the semiparametric efficiency bound under (22) and
the assumption of normality of the errors.

Theorem 9 Under A1(i), A2–A6(i), A7(i) and A8 listed in the Appendix, (22) and
ε ∼ N

(
0, σ 2

)
, the semiparametric efficiency bound of Bickel et al. (1993) for the

mean functional is

σ 2
e f f = σ 2 E

[
E (X |U )′ E

(
δX⊗2|U

)−1
E (X |U )

]

+E
[
π (U, X, W )

(
W − α0X W (U )′ X

)′
�−1

0

×E
(
W − α0X W (U )′ X

)]2 + var
(
X ′α0 (U ) + W ′β0

)
. (23)

The efficiency bound (23) is an important generalization of that derived by Wang
et al. (2004). This result complements that of Muller (2009), who considered effi-
cient estimation of the mean functional under MAR assuming a nonlinear regression
structure. The following proposition shows that none of the proposed estimators μ̂ j

( j = 1, 2, 3) achieve this bound, and thus they are not semiparametric efficient under
(22) and normality. Let σ 2

j(ho) denote the variances σ 2
j of Theorem 8 under conditional

homoskedasticity.

Proposition 10 Under the assumptions of Theorem 9

σ 2
j(ho) − σ 2

e f f = V1 j − V2 j ≥ 0 j = 1, 2, 3,

where the Vkj s (k = 1, 2) are given in the Appendix.

Proposition 10 shows that the difference between the variances of the proposed
estimators with that of the efficient one consists of two terms: V1 j and V2 j . The former
represents the variance reduction that results from imposing the additional information
(22), whereas the latter represents the effect of estimating the additional information.
In practice the more precise the estimation is (i.e. the smaller V2 j ), the larger the
efficiency loss of using any of the imputation estimators is. An immediate consequence
of Proposition 10 is that the efficiency result of Wang et al. (2004, Theorem 3.4) does
not generalize to more complex semiparametric models with a partial linear structure.
It is also important to note that Proposition 10 is consistent with the result of Muller
(2009), who showed that imputation estimators do not achieve the semiparametric
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efficiency bound under the additional assumption of a nonlinear regression structure
for a MAR mean functional. Indeed to achieve the bound Muller (2009) suggested
an alternative weighted estimator with weights based on (profile) empirical likelihood
estimation of the additional information. A similar approach could be used for the (22)
specification, but its full asymptotic analysis is beyond the scope of this paper.

4.1 Average treatment effect estimation

The results of Theorem 8 can be used in the context of causal inference models
to obtain an estimator of the average treatment effect parameter under the so-called
strong ignorability condition Rosenbaum and Rubin (1983). To be specific let δ denote
a binary indicator of treatment and let Y (δ) denote the potential outcome. Given a
sample (Yi , Ui , Xi , Wi )

n
i=1 where

Yi = δi Y
(1)
i + (1 − δi ) Y (0)

i ,

is the realised outcome, the average treatment effect parameter is

τ0 = E
[
Y (1) − Y (0)

]
. (24)

The central problem of the treatment literature is that either Y (1)
i or Y (0)

i is observed
but never both. Thus without further restrictions, the average treatment effect τ0 is
not identified and hence cannot be consistently estimated. To solve the identification
problem, we assume the following strong ignorability condition

Pr
(
δ|Y (δ), U, X, W

)
= Pr (δ|U, X, W ) := π (U, X, W ) > 0 a.s., (25)

which is effectively the MAR assumption in (7). Hahn (1998) and Hirano et al. (2003)
consider nonparametric estimation of (24); fully parametric estimation is considered
for example by Little and Rubin (2002).

We consider two estimators, one based on imputation and the other based on inverse
probability weighting, and assume a varying coefficient partially linear specification,
that is

τ̂1 = 1

n

n∑

i=1

[
δi Y

(1)
i + (1 − δi )

(
X ′

i α̂
(1) (Ui ) + Wi β̂

(1)
)

− (1 − δi ) Y (0)
i − δi

(
X ′

i α̂
(0) (Ui ) + Wi β̂

(0)
)]

,

τ̂2 = δi

π̂ (Ui , Xi , Wi )

(
X ′

i α̂
(1) (Ui ) + Wi β̂

(1)
)

+
(

1 − δi

π̂ (Ui , Xi , Wi )

)(
X ′

i α̂
(0) (Ui ) + Wi β̂

(0)
)

. (26)
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The following theorem establishes the asymptotic distribution of the two average
treatment parameter estimators τ̂ j j = 1, 2. Let

σ
(1)2
1 = E

[
σ (1)2 (U, X, W ) π (U, X, W )

(
	

(1)
01 (U ) + �

(1)
0 �

(1)−1
0

(
W − α

(1)
0X W (U )′ X

))2
]

,

σ
(0)2
1 = E

[
σ (0)2 (U, X, W ) (1 − π (U, X, W ))

(
	

(0)
01 (U ) + �

(0)
0 �

(1)−1
0

(
W − α

(0)
0X W (U )′ X

))2
]

,

where 	
(1)
01 (U ), �

(1)
0 are as in (20) and 	

(0)
01 (U ), �

(0)
0 are

	
(0)
01 (u) = E (δX |U )′

[
E
(
(1 − δ) X⊗2|U

)]−1
X + 1, �

(0)
0

= E
[
δ
(
W ′ − X ′α0X W (U )

)]
,

�
(0)
0 = E

[
(1 − π (U, X, W ))

(
W − α

(0)
0X W (U )′ X

)⊗2
]

.

Also let

σ
(1)2
2 = E

[
σ (1)2 (U, X, W ) π (U, X, W )

(
	

(1)
02 (U ) + �

(1)
02 �

(1)−1
0

(
W − α

(1)
0X W (U )′ X

))2
]

,

σ
(0)2
2 = E

[
σ (0)2 (U, X, W ) (1 − π (U, X, W ))

(
	

(0)
02 (U ) + �

(0)
02 �

(1)−1
0

(
W − α

(0)
0X W (U )′ X

))2
]

,

where

	
(1)
02 (u) = E (X |U )

π (U, X, W )

′ [
E
(
δX⊗2|U

)]−1
X,

	
(0)
02 (u) = E (X |U )

π (U, X, W )

′ [
E
(
(1 − δ) X⊗2|U

)]−1
X.

Theorem 11 Under A1(ii), A2, A3, A4(ii), A5, A6(ii), A7(ii) and A8 listed in the
Appendix

n1/2 (̂τ1 − τ0)

d→ N
(

0, σ
(1)2
1 + σ

(0)2
1 + var

(
X ′ [α(1)

0 (U ) − α
(0)
0 (U )

]
+ W ′ [β(1)

0 − β
(0)
0

]))
,

n1/2 (̂τ2 − τ0)

d→ N
(

0, σ
(1)2
2 + σ

(0)2
2 + var

(
X ′ [α(1)

0 (U ) − α
(0)
0 (U )

]
+ W ′ [β(1)

0 − β
(0)
0

]))
.

5 Monte Carlo evidence

In this section we use simulations to assess the finite sample properties of the proposed
estimators and test statistics. We consider two models: a varying coefficient and a
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partially linear varying coefficient that are given, respectively, by

Yi = Ui + X1i cos (2πUi ) + X2iU
2
i + γ X2

2i + εi , (27)

and

Yi = X1i sin (2πUi )+X2i sin (6πUi )+.5W1i + 2W2i + W3i +γ (X1i +W2i )
2+εi ,

(28)

where U is uniformly distributed on [0, 1], X ji are independent standard normal, W ji

( j = 1, 2) are jointly normally distributed with mean 0, variance 1 and correlation
2/3, W3i is a Bernoulli random variable taking the value 1 with probability 0.4, εi is
a normal random variable with mean 0 and variance 0.2 and γ = 0 under the null
hypothesis of correct specification. The two missing probability mechanisms are:

π(1) (U = u, X = x, W = w) = 0.7 + 0.25 (|x1 − 1| + |w2 − 1| + |u − 1|)
if |x1 − 1| + |w2 − 1| + |u − 1| ≤ 1/5 or 0.9 otherwise

π(2) (U = u, X = x, W = w) = 0.6for all u, x, w,

which imply that the mean probability of missing is approximately 0.1 and 0.4, respec-
tively.

We first compare the finite sample performance of the two test statistics C M j (15)
using bootstrapped critical values; for WB the critical values are based on 500 repli-
cations, whereas for MB they are based on 1000 replications. Note that the actual
computation of the integral over S

k+p in C M∗(W B)
j is based on the following expres-

sion

C M j = 1

n2

n∑

i=1

n∑

k=1

n∑

l=1

ε̂i j ε̂k j I (Ui ≤ Ul) I (Uk ≤ Ul)

×
∫

S
I
(
θ ′ [X ′

i , W ′
i

]′ ≤ θ ′ [X ′
l , W ′

l

]′)
I
(
θ ′ [X ′

k, W ′
k

]′ ≤ θ ′ [X ′
l , W ′

l

]′)
dθ

= 1

n2

n∑

i=1

n∑

k=1

n∑

l=1

ε̂i j ε̂k j I (Ui ≤ Ul) I (Uk ≤ Ul) Sikl , (29)

where the integral Sikl is proportional to the volume of a spherical wedge and can be
computed as

Sikl =
∣∣∣
∣∣
π − arccos

([
(Xi − Xl)

′ , (Wi − Wl)
′] [(Xk − Xl)

′ , (Wk − Wl)
′]′

‖Xi − Xl‖ ‖Xk − Xl‖ ‖Wi − Wl‖ ‖Wk − Wl‖

)∣∣∣
∣∣

π
k+p

2 −1

�
(

k+p
2 +1

)

and � (·) is the gamma function; see Escanciano (2006) for further details.
One important practical aspect of the results of this paper concerns the choice of

the bandwidth, since as pointed out for example by Zhu and Ng (2003), no optimal
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Table 1 Finite sample sizes of omnibus tests C M1 and C M3 for model 27

n bcv 2bcv 4bcv

WB

π(1) 50 CM1 0.0905 0.0425 0.0899 0.0420 0.0897 0.0420

C M3 0.0968 0.0433 0.0965 0.0435 0.0967 0.0436

100 C M1 0.0924 0.0454 0.0922 0.0453 0.0921 0.0456

C M3 0.0976 0.0461 0.0973 0.0462 0.0975 0.0460

400 C M1 0.0953 0.0475 0.0949 0.0470 0.0951 0.0479

C M3 0.0990 0.0489 0.0990 0.0486 0.0991 0.0485

π(2) 50 C M1 0.0893 0.0398 0.0895 0.0394 0.0895 0.0397

C M3 0.0950 0.0425 0.0952 0.0425 0.0957 0.0428

100 C M1 0.0925 0.0440 0.0921 0.0442 0.0921 0.0441

C M3 0.0965 0.0456 0.0969 0.0456 0.0963 0.0450

400 C M1 0.0940 0.0471 0.0931 0.0471 0.0935 0.0470

C M3 0.0980 0.0476 0.0982 0.0477 0.0981 0.0478

MB

π(1) 50 C M1 0.0888 0.0403 0.0890 0.0400 0.0887 0.0401

C M3 0.0943 0.0426 0.0940 0.0425 0.0938 0.0427

100 C M1 0.0910 0.0427 0.0906 0.0426 0.0906 0.0430

C M3 0.0949 0.0437 0.0948 0.0438 0.0945 0.0433

400 C M1 0.0939 0.0446 0.0938 0.0455 0.0957 0.0447

C M3 0.0978 0.0482 0.0973 0.0480 0.0975 0.0479

π(2) 50 C M1 0.0883 0.0386 0.0883 0.0389 0.0885 0.0389

C M3 0.0925 0.0418 0.0921 0.0420 0.0924 0.0419

100 C M1 0.0900 0.0420 0.0902 0.0421 0.0892 0.0419

C M1 0.0925 0.0427 0.0926 0.0427 0.0928 0.0422

400 C M1 0.0950 0.0441 0.0952 0.0435 0.0954 0.0435

C M3 0.0978 0.0469 0.0979 0.0467 0.0978 0.0469

bandwidth selection theory is available in the context of testing. To investigate this
problem we consider bandwidths chosen by standard cross-validation (bcv) and then
two bandwidths chosen using a fixed grid based on 2bcv and 4bcv (that is twice and
fourth times the bandwidth chosen by cross-validation). For the three sample sizes
considered the average bcv for model (27) is [0.084, 0.065, 0.059], and for (28) is
[0.058, 0.047, 0.042].

Tables 1, 2 report the finite sample size of C M1 and C M3 corresponding to a
nominal level of 10 and 5 per cent for models (27) and ( 28) using 1000 replications
and a second-order Epanechnikov kernel for both the varying coefficient parameter
α (U ) and the missing probability mechanisms π( j) (U, X, W ) ( j = 1, 2).

Both tables indicate that the tests are slightly undersized especially for n = 50
but they approach the correct nominal size as n increases. Not surprisingly the degree
of the size distortion is related to the percentage of missingness, which is higher
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Table 2 Finite sample sizes of omnibus tests C M1 and C M3 for model 28

π n bcv 2bcv 4bcv+0.9

WB

π(1) 50 C M1 0.0923 0.0445 0.0920 0.0448 0.0921 0.0449

C M3 0.0956 0.0459 0.0958 0.0454 0.0954 0.0457

100 C M1 0.0942 0.0465 0.0941 0.0468 0.0943 0.0465

C M3 0.0980 0.0470 0.0977 0.0471 0.0980 0.0468

400 C M1 0.0983 0.0480 0.0979 0.0479 0.0980 0.0479

C M3 0.0991 0.0491 0.0989 0.0491 0.0988 0.0492

50 C M1 0.0917 0.0434 0.0918 0.0436 0.0915 0.0435

C M3 0.0929 0.0448 0.0928 0.0449 0.0930 0.0445

π(2) 100 C M1 0.0938 0.0455 0.0935 0.0455 0.0935 0.0456

C M3 0.0950 0.0462 0.0949 0.0460 0.0951 0.0460

400 C M1 0.0967 0.0475 0.0966 0.0474 0.0967 0.0475

C M3 0.0976 0.0481 0.0975 0.0480 0.0974 0.0480

MB

π(1) 50 C M1 0.0915 0.0435 0.0916 0.0435 0.0914 0.0433

C M3 0.0947 0.0448 0.0946 0.0447 0.0947 0.0445

100 C M1 0.0935 0.0457 0.0939 0.0455 0.0937 0.0458

C M3 0.0954 0.0465 0.0950 0.0463 0.0951 0.0462

400 C M1 0.0966 0.0468 0.0964 0.0465 0.0967 0.0465

C M3 0.0981 0.0483 0.0978 0.0481 0.0983 0.0482

π(2) 50 C M1 0.0915 0.0425 0.0913 0.0429 0.0913 0.0424

C M3 0.0938 0.0441 0.0939 0.0440 0.0940 0.0442

100 C M1 0.0932 0.0436 0.0938 0.0434 0.0931 0.0438

C M3 0.0945 0.0459 0.0943 0.0458 0.0945 0.0456

400 C M1 0.0960 0.0463 0.0960 0.0462 0.0961 0.0462

C M3 0.0971 0.0475 0.0972 0.0474 0.0970 0.0477

for the second specification π(2) (U, X, W ). In both tables it appears that WB typ-
ically provides a more accurate approximation to the distribution of the test statis-
tics. Finally we note that the bandwidth choice has little effect on the finite sample
size.

Figures 1 and 2 illustrate the finite sample power properties of C M1 and C M3 for the
nominal size 0.05. The power is computed at 12 values of γ in the range γ = [0.7, 3.5]
for (27), and in the range γ = [0.4, 2.8] for (28) using 1000 replications for a sample
size of n = 100 with the π(2) (U, X, W ) specification and the same cross-validated
bandwidths bcv as those used in Tables 1a and 1b. Results for n = 50 and 400 are
qualitatively similar to the ones presented here and hence are omitted.

In each figure the left and centre panel show the power of, respectively, the C M1
and C M3 statistics with WB (solid line) and MB (dashed line) approximation. In each
cases it is evident that the WB approximation yields a test statistic with higher power.
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Fig. 1 Finite sample power of omnibus tests C M1 and C M3 for model (27) using both WB and MB for
n = 100
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Fig. 2 Finite sample power of omnibus tests C M1 and C M3 for model (28) using both WB and MB for
n = 100
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The two right panels compare the relative powers of C M1 and C M3 and show that for
both models the power of C M3 is higher than that of C M1.

Next we consider the three imputed estimators μ̂ j for the mean μ0 and compare
them with the same estimator estimator proposed by Horvitz and Thompson (1952)
(see also Hirano et al. 2003) that is given by

μ̂HIR = 1

n

n∑

i=1

Yiδi .

π̂ (Ui , Xi , Wi )
,

which is asymptotically equivalent to μ̂2. We also consider the complete case estimator
μ̂C = ∑n

i=1 δi Yi/
∑n

i=1 δi .

Tables 3, 4 report the biases and standard deviations for the four estimators based
on 5000 replications for sample sizes of n = 50, n = 100 and n = 400 for (27) and
(28) respectively, with bandwidth chosen using least squares cross-validation.

Table 3 indicates that μ̂3 is characterized by the smallest finite sample bias across
both designs and both missing probability specifications; the bias of μ̂HIR is always
in between that of μ̂1 and those of μ̂2 and μ̂3. Note also that for n = 400 and
π(1) (U, X, W ) the biases of μ̂2 and μ̂3 are almost identical. Table 3 also indicates
that all of the proposed estimators represent an improvement in terms of bias over
the complete case estimator μ̂C . Table 4 reports the standard deviations of the five
estimators. The theoretical values of the standard deviation of the response variable
without MAR (i.e. the true unobservable one) are obtained by simulations and are
1.215 and 2.741 for models (27) and (28), respectively. All of the four imputation
estimators have a standard deviation that is closer to that of the unobservable response
compared to that of the complete case estimator. Thus, bearing in mind that according

Table 3 Bias for imputation estimators for the mean functional

π n μ̂1 μ̂2 μ̂3 μ̂H I R μ̂C

Model M1

π(1) 50 −0.00104 −0.00081 −0.00858 −0.00090 −0.00125

100 −0.00093 −0.00074 −0.00680 −0.00081 −0.00105

400 −0.00046 −0.00014 −0.00147 −0.00029 −0.00056

π(2) 50 −0.00283 −0.00159 −0.001508 −0.00187 −0.00299

100 −0.00143 −0.00113 −0.00105 −0.00126 −0.00164

400 −0.00078 −0.00059 −0.00058 −0.00068 −0.00088

Model M2

π(1) 50 0.00642 0.00328 0.00327 0.00513 0.00751

100 0.00542 0.00244 0.00223 0.00371 0.00599

400 0.00322 0.00133 0.00144 0.00222 0.00381

π(2) 50 0.00758 0.00514 0.00452 0.00557 0.00833

100 0.00572 0.00384 0.00352 0.00466 0.00633

400 0.00399 0.00201 0.00192 0.00249 0.00413
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742 F. Bravo

Table 4 Standard error for imputation estimators for the mean functional

π n μ̂1 μ̂2 μ̂3 μ̂HIR μ̂C

Model 27a

π(1) 50 1.1163 1.1299 1.1324 1.1401 1.0913

100 1.1203 1.1428 1.1483 1.1479 1.0971

400 1.1415 1.1541 1.1755 1.1512 1.1164

π(2) 50 0.99562 1.0041 1.0091 1.0240 0.94937

100 1.0329 1.0412 1.0954 1.0866 0.96524

400 1.0645 1.0787 1.0883 1.0893 0.98776

Model 28b

π(1) 50 2.5870 2.6083 2.6110 2.5935 2.4421

100 2.6099 2.6240 2.6280 2.6059 2.5559

400 2.6122 2.6304 2.6475 2.6290 2.6004

π(2) 50 2.1748 2.2219 2.2344 2.2027 2.0993

100 2.1959 2.2704 2.2877 2.2657 2.1089

400 2.2379 2.3073 2.3322 2.3002 2.1413
a The simulated standard deviation of unobservable response is 1.215
b The simulated standard deviation of unobservable response is 2.741

to Proposition 10 none of the proposed estimators is fully efficient under (27) and
(28), we see that the proposed imputation methods provide some improvements on
the precision of the resulting estimators. We also note that among the four imputation
estimators the one based on inverse probability weighting with partial propensity score
(8) has an edge over the others (except for the case of n = 50 in model (27) where the
Hirano et al. (2003)’s estimator is closer to the standard deviation of the unobservable
response).

Taken together the results of Tables 1, 2, 3, 4 and Figures 1 and 2 indicate that
the proposed imputation estimators and test statistics are characterized by good finite
sample properties which compare favourably with those based on competing estima-
tors and test statistics. The results seem to suggest that WB delivers test statistics that
have slightly better finite sample size and power than those based on MB, and that the
inverse probability weighted estimators and test statistics based on the partial propen-
sity score (8) are characterized by better finite sample properties than those based on
the complete case analogue. These results combined with those of Sect. 4 suggest that,
from a practical point of view, partial propensity score inverse probability weighting
can be a useful estimation technique with MAR responses, in particular when the
dimension of the covariates is high so that the estimation of the full propensity score
is subjected to the curse of dimensionality.

6 Empirical application

In this section we illustrate the methods of this paper by considering the question of
whether the WTO can have negative effects on the environment. This question has been
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Partially linear varying coefficient models with MAR 743

at the centre of a long standing debate between environmentalists and the trade agree-
ment supporters; see for example Copeland and Taylor (2004) for a review of various
theories and some empirical evidence between trade, growth and the environment.

Millimet and Tchernis (2009) and Bravo and Jacho-Chavez (2011) use country-level
data from Frankel and Rose (2005) (available at http://faculty.haas.berkeley.edu/arose)
to investigate the possible negative causal relationship between trade and environment,
by specifying the treatment variable as the GATT/WTO membership and considering
fiver different measures of environmental quality: Per capita dioxide (CO2) emis-
sions, the average annual deforestation rate from 1990–1996, energy depletion, rural
access to clean water and urban access to clean water. Both Millimet and Tchernis
(2009) and Bravo and Jacho-Chavez (2011) use inverse probability weighed estimators
for the average treatment effect with propensity scores estimated, respectively, with
parametric and non parametric methods. We use the same data and the same variables
as those used by Millimet and Tchernis (2009) and Bravo and Jacho-Chavez (2011),
but as opposed to these authors we use a partially linear varying coefficient speci-
fication with the same three covariates (log-real per capita GDP (Log − rgdppc),
a measure of the democratic structure of the government (Demo − Str ) and land
area (Land). We consider only four of the five environmental variables, namely the
dioxide emissions (CO2 pc), the annual deforestation (Def or ), rural access (Rural)
and urban access (Urban). This choice is suggested by some preliminary graphical
analysis suggesting that for each of these four variables there is evidence of some
nonlinear relationship with one of the covariates, as illustrated in Fig. 3.
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Fig. 3 Scatter plots for the four enviromental variables with local linear regression line
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We use the results of this paper in two different ways: first to test whether a given
partially linear varying coefficient specification is supported by the data; second to
estimate the average treatment effect parameter using the corresponding specification.
In the estimation we use the same second-order Epanechnikov kernel with cross-
validated bandwidth as that used in the previous section. For the specification tests
we consider the C M1 statistic and use bootstrap p-values (p∗) obtained from 500
replications of C M∗(W B)

1 .
The four specifications are

Co2pc(1)
i = 0.0302Landi

p=0.145

(1) + Demo − Str (1)
i α̂(1) (Log − rgdppci ), (30)

R2 = 0.82, p∗ = 0.562,

Co2pc(0)
i = −0.0232Landi

p=0.138

(0) + Demo − Str (0)
i α̂(0) (Log − rgdppci ),

R2 = 0.11, p∗ = 0.881,

Def or (1)
i = −0.003Land(1)

i
p=0.021

+ 0.056Demo − Str (0)
i

p=0.001
+ α̂(1) (Log − rgdppci ),

R2 = 0.19, p∗ = 0.384,

Def or (0)
i = −0.0004Land(1)

i
p=0.321

+ 0.003Demo − Str (0)
i

p=0.451
+ α̂(0) (Log − rgdppci ),

R2 = 0.069, p∗ = 0.185,

Rural(1)
i = 0.0036Log − rgdppc(1)

i
p=0.000

+ Land(1)
i α̂(1) (Demo − Stri ),

R2 = 0.42, p∗ = 0.673,

Rural(0)
i = −0.0006Log − rgdppc(0)

i
p=0.122

+ Land(0)
i α̂(0) (Demo − Stri ),

R2 = 0.32, p∗ = 0.432,

Urban(1)
i = 0.0026Log − rgdppc(1)

i
p=0.000

+ Demo − Stri
(1)α̂(1) (Landi ),

R2 = 0.323, p∗ = 0.303,

Urban(0)
i = −0.0007Log − rgdppc(1)

i
p=0.165

+ Demo − Stri
(1)α̂(1) (Landi ),

R2 = 0.123, p∗ = 0.405,

that is we have three partially linear varying coefficient models and one partially
linear model (for the deforestation variable). The latter is chosen over a partially
linear varying coefficient because of a higher R2 and lower residual standard error.

Table 5 reports the point estimates of the treatment variable GATT/WTO mem-
bership, together with the 0.95 confidence interval (C.I.) and the p value (p) of the
associated t statistic for the null hypothesis of no treatment effect H0 : τ = 0, using
two estimators: τ̂1 as defined in (26) with the specifications of (30), and the inverse
probability weighting method of Hirano et al. (2003). Note that as in Bravo and Jacho-
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Table 5 Average treatment effect

τ1 τHIR

τ̂1 C.I. p τ̂HIR C.I. p

co2pc 0.79 0.34, 1.24 0.00 0.33 −0.61, 1.28 0.484

de f or 0.72 0.47, 0.97 0.00 0.38 −0.25, 1.01 0.233

rural 21.44 15.08, 27.39 0.00 8.57 −10.21, 27.37 0.367

urban 28.06 18.89, 37.24 0.00 11.78 −17.26, 40.82 0.422

Chavez (2011) we exclude observations in the averages with an estimated propensity
score outside the interval [0.05,0.95] in both sets of estimators.

The results of Table 5 seem to suggest that the WTO might have negative effect
on the environment once we take into consideration the three covariates. Interestingly
the inverse probability weighted estimator of Hirano et al. (2003) suggests that the
environmental effects are statistically insignificant, and the explanation for this seems
to stem from the large variability associated with this estimator, as the 0.95 confidence
intervals clearly indicate. To assess the sensitivity of the results of Table 5 we have
considered a different choice of bandwidth, namely that based on Silverman’s rule of
thumb, and we have also estimated the average treatment effect using the doubly-robust
estimator τ̂2. In both cases the point estimates of the treatment parameters varied, but
crucially all of them remained statistically significant.

7 Conclusions

In this paper we consider partially linear varying coefficient models with responses
missing at random. We consider imputation and inverse probability weighting and
propose an omnibus test for the correct specification based on a Cramer von Mises type
of statistic. We also consider the problem of estimating the mean of a response variable
assumed to be related to a set of covariates via a partially linear varying coefficient
specification. As a by-product of this estimator we propose a novel estimator for
the average treatment effect parameter that is key for causal inference models. We
investigate the finite sample properties of the proposed estimators and test statistics
with simulations. The results of the simulations are encouraging and suggest that all
of the proposed estimators and test statistics and especially those based on inverse
probability weighting with a partial score are characterized by good finite sample
properties that compare favourably with those of existing alternatives. We also apply
the results of this paper to investigate whether the WTO can have negative effects on
the environment, and suggest that this might be the case.

8 Appendix

Throughout this appendix we use the following abbreviations: “CLT”, “CMT” and
“LNN” denote, respectively, central limit theorem, continuous mapping theorem and
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746 F. Bravo

(possibly uniform in the sets U orZ defined below) law of large numbers. Let Z =[
U, X ′, W ′]′.

8.1 Assumptions

A1 (i) The random variable U has bounded support U and its density fU (·) is
Lipschitz continuous and bounded away from 0 in U or (ii) the random vector
Z has a compact set support Z ⊆ R

l+k+1 and its density fZ (·) is Lipschitz
continuous and bounded away from 0 in Z ,

A2 The p × p matrix E
(
δX X ′|U)

is nonsingular for each U , and E
(
δW X ′|U)

,
E
(
δX X ′|U)

have Lipschitz continuous second derivatives in U ∈ U , and

E
(
δX X ′|U)−1 is Lipschitz continuous,

A3 E
(‖X‖4) < ∞, E

(‖W‖4) < ∞, E
(
ε4
)

< ∞,

A4 E
[
π (Z)

(
W − αW X (U )′ X

)⊗2
]

is positive definite,

A5 The functions α j (U ) have Lipschitz continuous second derivatives in U ∈ U ,

A6 (i) infu∈U π (U ) > 0, the function π (U ) has Lipschitz continuous second deriv-
atives in U ∈ U or (ii) inf z∈Z π (Z) > 0, the function π (Z) has Lipschitz
continuous second derivatives in Z ∈ Z ,

A7 As n → ∞ (i) n1/2h4 → 0 and nh3/ ln (n) → ∞ or (ii) n1/2b2l → 0 and
nhk+p+3/ ln (n) → ∞ for l > k + p + 1,

A8 The kernel functions K (·) and L (·) are symmetric densities with compact sup-
port,

A9 The product measure Fn,θ (u, s) dθ is absolutely continuous with respect to the
Lebesgue measure in �,

A10 The function E
[
γ (Z) |U]

is Lipschitz continuous and E
[
γ (Z)

] = 0.

8.2 Proofs of the theorems

Proof of Theorem 1 Let α0X W (u) = [
E
(
δX⊗2|U = u

)]−1
E
[
δX W ′|U = u

]
and

α0XY (u) = [
E
(
δX⊗2|U = u

)]−1
E [δXY |U = u]; by results of Fan and Huang

(2005) and CMT

‖α̂XY (u) − α0XY (u)‖ = op (1) ,

‖α̂X W (u) − α0X W (u)‖ = op (1)

uniformly in U , so that by LLN and CMT

∥∥∥∥∥∥

{
n∑

i=1

[
δi
(
Wi − α0X W (Ui )

′ Xi
)]⊗2

/n

}−1

− �−1
0

∥∥∥∥∥∥
= op (1);
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hence

n1/2 (β̂ − β0
) = �−1

0
1

n1/2

n∑

i=1

δi
(
Wi − α0X W (Ui )

′ Xi
)
εi + op (1), (31)

and the result follows by CLT and CMT. Let Q denote the semiparametric model and
let Qχ denote the parametric submodel for the log-density of (Y, δ, U, X, W ) that is

ln fχ (Y, δ, U, X, W )=C− δ

2
ln σ 2 − δ

2σ 2

(
Y − X ′αλ (U ) − W ′β

)2+δ ln π (Z , υ1)

+ (1 − δ) ln [1 − π (Z , υ1)] + ln h (Z , υ2),

where h (·) is the density of the covariates Z and χ = [
α′

λ, β
′, σ 2, υ ′

1, υ
′
2

]′
is

the finite dimensional parameter. The score functions are Sβ = δWεσ−2, Sλ =
δ∂αλ/∂λXεσ−2, Sσ = δ

(
ε2 − σ 2

)
σ−3, Sυ1 = (

δ − πυ1

)
∂πυ1/∂υ1π

−1
υ1

(
1 − πυ1

)−1

where πυ1 := πυ1 (Z , υ1), and Sυ2 = h (Z , υ2)
−1 ∂h (Z , υ2) /∂υ2. The tangent space

(see e.g. Bickel et al. 1993) is

Tχ =
[
δWε, δ∂αλ/∂λXε, δ

(
ε2 − σ 2

)
σ−3,

(
δ − πυ1

)
a (Z) , b (Z)

]
(32)

where a (·) is such that E ‖a (Z)‖2 < ∞ and b (Z) is such that E [b (Z)] = 0.
Then the efficient score function S∗

β for β0 is the projection -Proj(|)- of Sβ into the
orthogonal complement of the direct sum Sλ + Sσ + Sυ1 + Sυ2 and since Sλ, Sσ , Sυ1 ,
Sυ2 are orthogonal to each other and Sβ and Sσ are orthogonal to

(
δ − πυ1

)
a (Z),

b (Z) and E
[
Sβ Sσ

] = 0 by normality, it follows that S∗
β = Sβ−Proj

(
Sβ |Sλ

)
.

Simple algebra shows that such projection amounts to finding a vector of the
form δ∂αλ/∂λX such that E

∥
∥Sβ − Sλ

∥
∥2 is minimised, and that such vector is

E
(
δW X ′|U)

E
(
δX⊗2|U)−1

δXε/σ 2. ��
Proof of Theorem 2 Note that

n1/2v̂1 (u, s, θ) = 1

n1/2

n∑

i=1

δiεi I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

+ 1

n1/2

n∑

i=1

δi
[
X ′

i (̂αXY (Ui ) − α0XY (Ui )) + X ′
i (̂αX W (Ui ) − α0X W (Ui )) β0

]

×I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

− 1

n1/2

n∑

i=1

δi
(
W ′

i − X ′
iαX W

) (
β̂ − β0

)
I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)
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= 1

n1/2

n∑

i=1

δi X ′
i (̂αX W (Ui ) − α0X W (Ui ))

(
β̂ − β0

)

×I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

=:
4∑

j=1

T1 j .

By standard kernel calculations

T12 = 1

n1/2

n∑

i=1

δi X ′
i

⎧
⎨

⎩

[
n∑

l=1

δi X⊗2
i Kh (Ul − Ui )

]−1

×
n∑

j=1

δ j X j

[
Y j − X ′

jα0
(
U j

) − W ′
i β0

]
Kh

(
U j − Ui

)
⎫
⎬

⎭

= 1

n1/2

n∑

i=1

[E (X |Ui ) − E (δX |Ui )]
′ [E

(
δX⊗2|Ui

)]−1
δi Xiεi + op (1);

furthermore by LLN

T13 = 1

n1/2

n∑

i=1

δi X ′
i I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
) [

E
(
δX⊗2|Ui

)
f (Ui )

]−1

×1

n

n∑

j=1

δ j X jε j Kh
(
U j − Ui

) + op (1)

= 1

n1/2

n∑

i=1

G (s, θ, Ui )
[

E
(
δX⊗2|Ui

)]−1
δi Xiεi + op (1),

where G (s, θ, u) = E
[
δX ′ I

(
θ ′ [X ′, W ′]′ ≤ s

)
|U = u

]
. By LLN and as in the

proof of Theorem 1

|T14| ≤ sup
u∈U

‖α̂X W (u) − α0X W (u)‖
∥∥∥∥
∥

1

n

n∑

i=1

Xi I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)
∥∥∥∥
∥

×n1/2
∥∥β̂ − β0

∥∥ = op (1),

and
∥∥∥T32 − D (u, s, θ) n1/2 (β̂ − β0

)
s
∥∥∥ = op (1),

where

D (u, s, θ) = E
[
δ
(
W ′ − X ′α0XY

)
ωI

(
U ≤ u, θ ′ [X ′, W ′]′ ≤ s

)]
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since the class of function
{
(r, q, t) → (r − d (q) t) ω (r, q) I

(
r ≤ u, θ ′t ≤ s

)
, u, s,

θ ∈ �} is Vapnik-Chervonenkis. Thus

n1/2v̂1 (u, s, θ)

= 1

n1/2

n∑

i=1

δiεi I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

−D (u, s, θ) �−1
0

1

n1/2

n∑

i=1

δi
(
Wi − α0W X (Ui )

′ Xi
)
εi

− 1

n1/2

n∑

i=1

G (s, θ, Ui )
[

E
(
δX⊗2|Ui

)]−1
δi Xiεi I (Ui ≤ u) + op (1). (33)

The finite dimensional convergence of (33) follows by CLT, whereas the asymptotic
equicontinuity follows by a direct application of Theorem 2.5.2 of Van der Vaart and
Wellner (1996), which implies the weak convergence of (33) to v1 (u, s, θ).

For n1/2v̂3 (u, s, θ), (38), CMT and the same arguments as those used to obtain
(33) can be used to show

n1/2v̂3 (u, s, θ) = 1

n1/2

n∑

i=1

δiεi

π (Ui )
I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

+ 1

n1/2

n∑

i=1

δi

π (Ui )

(
W ′

i − X ′
iαXY

) (
β̂ − β0

)
I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

+ 1

n1/2

n∑

i=1

G (s, θ, Ui )

π (Ui )

[
E
(
δX⊗2|Ui

)]−1
δi Xiεi I (Ui ≤ u) + op (1),

and the rest of the proof follows by the same arguments as those used to prove the
weak convergence of n1/2v̂1 (u, s, θ). ��
Proof of Theorem 4 Note that as in the proof of Theorem 1 by the bootstrap LLN (see
e.g. Bickel and Freedman (1981))

n1/2 (β̂∗ − β̂
) = �−1

0
1

n1/2

n∑

i=1

δi
(
Wi − αX W (Ui )

′ Xi
)
ε∗

i + op∗ (1),

and

n1/2v̂∗
1 (u, s, θ) = 1

n1/2

n∑

i=1

δiε
∗
i I

(
Ui ≤ u, θ ′ [X ′

i , W ′
i

]′ ≤ s
)

−D̂ (u, s, θ) �−1
0

1

n1/2

n∑

i=1

δi
(
Wi − αW X (Ui )

′ Xi
)
ε∗

i
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− 1

n1/2

n∑

i=1

Ĝ (s, θ, Ui )

⎡

⎣1

n

n∑

j=1

δ j X⊗2
j Kh

(
U j − Ui

)
⎤

⎦

−1

×δi Xiε
∗
i I (Ui ≤ u) + op∗ (1), (34)

except if the original incomplete sample (Yi , Ui , Xi , Wi )
n
i=1 is on a set with probability

converging to 0 as n → ∞. As in Stute et al. (1998)

Cov∗ (n1/2v̂∗
1 (u1, s1, θ) , n1/2v̂∗

1 (u2, s2, θ)
)

= 1

n

n∑

i=1

δ2
i ε̂2

i I
(

Ui ≤ u1 ∧ u2, θ
′ [X ′

i , W ′
i

]′ ≤ s1 ∧ s2

)

−D̂ (u1, s1, θ) �̂−1 1

n

n∑

i=1

(
Wi − α0X W (Ui )

′ Xi
)2

δ2
i ε̂2

i I

×
(

Ui ≤ u2, θ
′ [X ′

i , W ′
i

]′ ≤ s2

)

−D̂ (u2, s2, θ) �̂−1 1

n

n∑

i=1

(
Wi − α0X W (Ui )

′ Xi
)2

δ2
i ε̂2

i I

×
(

Ui ≤ u1, θ
′ [X ′

i , W ′
i

]′ ≤ s1

)

−1

n

n∑

i=1

Ĝ (s1, θ, Ui )

⎡

⎣1

n

n∑

j=1

δ j X⊗2
j Kh

(
U j − Ui

)
⎤

⎦

−1

Xiδ
2
i ε̂2

i I

×
(

Ui ≤ u2, θ
′ [X ′

i , W ′
i

]′ ≤ s2

)

−1

n

n∑

i=1

Ĝ (s2, θ, Ui )

⎡

⎣1

n

n∑

j=1

δ j X⊗2
j Kh

(
U j − Ui

)
⎤

⎦

−1

Xiδ
2
i ε̂2

i I

×
(

Ui ≤ u1, θ
′ [X ′

i , W ′
i

]′ ≤ s1

)

+D̂ (u1, s1, θ) �−1
0

1

n

n∑

i=1

(
Wi − α0X W (Ui )

′ Xi
)2

δ2
i ε̂2

i �−1
0 D̂ (u2, s2, θ)′

−D̂ (u1, s1, θ) �−1
0

1

n

n∑

i=1

(
Wi − α0X W (Ui )

′ Xi
)
δ2

i ε̂2
i X ′

i

×
⎡

⎣1

n

n∑

j=1

δ j X⊗2
j Kh

(
U j − Ui

)
⎤

⎦

−1

× Ĝ (s, θ, Ui )
′ I (Ui ≤ u2) − D̂ (u2, s2, θ) �−1

0
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× 1

n

n∑

i=1

(
Wi − α0X W (Ui )

′ Xi
)
δ2

i ε̂2
i X ′

i

×
⎡

⎣1

n

n∑

j=1

δ j X⊗2
j Kh

(
U j − Ui

)
⎤

⎦

−1

Ĝ (s, θ, Ui )
′ I (Ui ≤ u1)

+1

n

n∑

i=1

Ĝ (s1, θ, Ui )

⎡

⎣1

n

n∑

j=1

δ j X⊗2
j Kh

(
U j − Ui

)
⎤

⎦

−1

×Xi X ′
i

⎡

⎣1

n

n∑

j=1

δ j X⊗2
j Kh

(
U j − Ui

)
⎤

⎦

−1

Ĝ (s1, θ, Ui )
′ δ2

i ε̂2
i I (Ui ≤ u1 ∧ u2)

and by LLN

∣∣∣Cov∗ (n1/2v̂∗
1 (u1, s1, θ) , n1/2v̂∗

1 (u2, s2, θ)
)

−Cov
(

n1/2v̂1 (u1, s1, θ) , n1/2v̂1 (u2, s2, θ)
)∣∣
∣ = op (1).

Similarly for n1/2v̂∗
3 (u, s, θ)

∣∣∣Cov∗ (n1/2v̂∗
3 (u1, s1, θ) , n1/2v̂∗

3 (u2, s2, θ)
)

−Cov
(

n1/2v̂3 (u1, s1, θ) , n1/2v̂3 (u2, s2, θ)
)∣∣∣ = op (1).

By LLN

n1/2v̂∗
j (u, s, θ) =

n∑

i=1

ξiδiε j i/n1/2 + op (1) j = 1 or 3,

where

ξi = I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

− D (u, s, θ) �−1
0 δi

(
Wi − αW X (Ui )

′ Xi
)

−G (s, θ, Ui ) E
[
δX⊗2|Ui

]
Xi I (Ui ≤ u),

hence, given the conditional independence of ε∗
i from ξi , the finite dimensional con-

vergence of n1/2v̂∗
j (u, s, θ) follows by Lindeberg’s CLT since by A3 and LLN for

each d > 0
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lim sup
n

1

n

n∑

i=1

∫
∣
∣∣ξi ε

∗
j i

∣
∣∣≥dn1/2

δi

(
ξiε

∗
j i

)2
d Pr ∗

≤ lim sup
n

1

n

n∑

i=1

δi
(
ξiε j i

)2
I
(∣∣ξiε j i ≥ C

∣∣) → 0

as C → ∞. Finally the asymptotic equicontinuity follows by the same argument as
that used in the proof of Theorem 2 hence under H0

n1/2v̂∗
j (u, s, θ) �⇒ v j (u, s, θ) in l∞ (�) j = 1 or 3

in probability. The conclusion follows by CMT. ��
Proof of Theorem 5 Note that by the definition of n1/2σ̂ ∗

j (u, s, θ) it follows that
∣∣
∣Cov∗ (n1/2σ̂ ∗

j (u1, s1, θ) , n1/2σ̂ ∗
j (u2, s2, θ)

)

−Cov
(

n1/2σ̂ j (u1, s1, θ) , n1/2σ̂ j (u2, s2, θ)
)∣∣∣ = op (1),

where σ̂ j i (u, s, θ) are the sample analogues of σ j i (u, s, θ) given in (14), and the
same arguments as those used in the proof of Theorem 5 show the finite dimensional
convergence and asymptotic equicontinuity of n1/2σ̂ ∗

j (u, s, θ). Thus the conclusion
follows by CMT. ��
Proof of Theorem 6 Let β† := p lim

(
β̂
)

and α† (U ) := p lim (̂α (U )). As in the
proof of Theorem 2 some calculations show that

v̂1 (u, s, θ) = 1

n

n∑

i=1

δiεi I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

+1

n

n∑

i=1

δi W ′
i β

† I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

+1

n

n∑

i=1

δi X ′
iα

† (Ui ) I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

+1

n

n∑

i=1

δi E (Yi |Ui , Xi , Wi ) I
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

+ op (1),

and the result follows by LLN and CMT. The result for n1/2v̂3 (u, s, θ) follows simi-
larly hence is omitted. ��
Proof of Theorem 7 Note that under (19)

Yi − X ′
iα0XY (Ui ) − (

W ′
i − X ′

iα0X W (Ui )
)
β0 = εi + 1

n1/2

{
γ (Zi )

− X ′
i

[
E
(
δi X⊗2

i |Ui

)]−1
E (δi Xiγ (Zi ) |Ui )

}
.
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Similarly to (31) by LLN and iterated expectations

n1/2 (β̂ − β0
) = �−1

0
1

n1/2

n∑

i=1

δi
(
Wi − α0W X (Ui )

′ Xi
)
εi

+�−1
0 E

{
π (Z)

(
W ′ − α0X W (U )′ X

) [
γ (Z)

− X ′ [E
(
δX⊗2|U

)]−1
E (δXγ (Z) |U )

]
+ op (1)

= �−1
0

1

n1/2

n∑

i=1

δi
(
Wi − α0W X (Ui )

′ Xi
)
εi + S (Z) + op (1).

By the same arguments as those used in the proof of Theorem 2 expanding
n1/2v̂1 (u, s, θ) under the local alternative hypothesis (19), say n1/2v̂

(l)
1 (u, s, θ), we

have

n1/2v̂
(l)
1 (u, s, θ) = n1/2v̂1 (u, s, θ) + 1

n

n∑

i=1

δiγ (Zi ) I
(

U ≤ u, θ ′ [X ′, W ′]′ ≤ s
)

−1

n

n∑

i=1

δi
(
W ′

i − X ′
iα0XY

)
S (U, X, W ) I

×
(

Ui ≤ u, θ ′ [X ′
i , W ′

i

]′ ≤ s
)

+ op (1),

and by LLN

n1/2v̂
(l)
1 (u, s, θ) = n1/2v̂1n (u, s, θ) + s1 (u, v, θ) + op (1),

where

s1 (u, v, θ) = E
[
δγ (Z) I

(
U ≤ u, θ ′ [X ′, W ′]′ ≤ s

)]

−E
[
δ
(
W ′ − X ′αX W (U )

)
I
(

U ≤ u, θ ′ [X ′, W ′]′ ≤ s
)]

×�−1
0 E

{
π (Z) (W − XαX W (U ))

×
[
γ (Z) − X ′ [E

(
X⊗2|U

)]−1
E (δXγ (Z) |U )

]}
.

The result follows using the same arguments as those used in the proof of Theorem 2
and CMT. The same arguments can be applied to n1/2v̂

(l)
3 (u, s, θ) to obtain the second

conclusion. ��
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Proof of Theorem 8 Note that

n1/2 (μ̂1 − μ0) = 1

n1/2

n∑

i=1

(
X ′

iα0 (Ui ) + W ′
i β0 − μ0

) + 1

n1/2

n∑

i=1

δiεi

+ 1

n1/2

n∑

i=1

(1 − δi )
[
X ′

i (̂α (Ui ) − α0 (Ui )) + W ′
i

(
β̂ − β0

)]
, (35)

and that

X ′
i (̂α (Ui ) − α0 (Ui ))

= X ′
i α̂X X (Ui )

−1

⎡

⎣
n∑

j=1

X jδ j

(
Y j − X ′

j (α0XY (Ui ) − α0X W (Ui ) β0) − W ′
jβ0

)
⎤

⎦

×Kh
(
U j − Ui

) + X ′
iα0X W

(
β̂ − β0

)
, (36)

where α̂X X (u) = ∑n
i=1 δi X⊗2

i Kh (Ui − u) /n, hence by (36), LLN and standard
kernel calculations

1

n1/2

n∑

i=1

(1 − δi )
[
X ′

i (̂α (Ui ) − α0 (Ui )) + W ′
i

(
β̂ − β0

)]

= 1

n1/2

n∑

i=1

[E (X |Ui ) − E (δX |Ui )]
′ [E

(
δX⊗2|Ui

)]−1
δi Xiεi

+E
[
(1 − δ)

(
W ′ − X ′α0X W (U )

)]
n1/2 (β̂ − β0

) + op (1). (37)

Therefore by (31)

n1/2 (μ̂1 − μ0)

= 1

n1/2

n∑

i=1

(
X ′

iα0 (Ui ) + Wiβ0 − μ0
) + 1

n1/2

n∑

i=1

	01 (Ui ) δiεi

+�01�
−1
0

1

n1/2

n∑

i=1

δi
(
Wi − α0X W (Ui )

′ Xi
)
εi + op (1),

and the result follows by CLT and CMT. For the second result note that for v either u
or z and V either U or Z

sup
v∈V

∣∣∣∣
π (v)

π̂ (v)
− 1

∣∣∣∣ = op (1) (38)
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by Masry (1996), and

n1/2 (μ̂3 − μ0) = 1

n1/2

n∑

i=1

(
X ′

iα0 (Ui ) + Wiβ0 − μ0
) + 1

n1/2

n∑

i=1

δiεi

π (Ui )

+ 1

n1/2

n∑

i=1

(
1− δi

π (Ui )

) [
X ′

i (̂α (Ui )−α0 (Ui ))+W ′
i

(
β̂ − β0

)]

+ 1

n1/2

n∑

i=1

(
π̂ (Ui ) − π (Ui )

π (Ui )

)
δiεi + op (1), (39)

and

1

n1/2

n∑

j=1

(
δ j −π

(
U j

)) 1

n

n∑

i=1

δ jεi

π (Ui ) fU (Ui )
Kh

(
U j −Ui

) + op (1)=op (1),

hence the result follows by CLT and CMT. The last result follows in a sim-
ilar manner using (38) and (39) with π (Ui ) replaced by π (Zi ), noting that
E [E (X |U ) − E (δX |U ) /π (Z)] = 0. ��
Proof of Theorem 9 To obtain the bound we calculate the efficient influence function
for an estimator of μ0. To do so we follow, as in the proof of Theorem 1, the approach of
Bickel et al. (1993) and show that the parameter of interest is pathwise differentiable.
The efficient influence function is then the projection of this derivative on the tangent
space. Let

μ =
∫

Y fε
(
Y − X ′αλ (U ) − W ′β|Z) f (Z;υ) dY d Z

denote parametric (marginal) submodel for the parameter of interest and note that by
the implicit function theorem and the normality assumption

∂μ/∂χ

=
[
−E (W )′ ,−E (∂αλ (U ) /∂λ)′ , 0, E

[(
X ′αλ (U ) + W ′β

) ∂ f (Z;υ)

∂v

1

f (Z;υ)

]′]
.

To show the pathwise differentiability of μ we require an Fμ (Y, U, X, W ) such that
∂μ/∂χ |χ=χ0 = E

[
Fμ (Y, U, X, W ) sχ

] |χ=χ0 , where sχ is the score function gen-
erating the tangent space Tχ defined in ( 32). It can be verified that the function
Fμ (Y, U, X, W ) = δε/π (Z) − X ′αλ (U ) − W ′β − μ satisfies this condition, and
thus μ is pathwise differentiable. Next we show that the function

S∗
μ = E (X |U )′

[
E
(
δX⊗2|U

)]−1
δXε

+E
(
W − α0W X (U )′ X

)′
�−1

0

(
W − α0X W (U )′ X

)
δε

+(W + α0 (U )′ X − μ) (40)
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lies in Tχ , and is the required projection. Note that by the efficiency result of Theorem
1 Tχ is equivalent to T ′

χ = [
Cδ

(
W − α0X W (U )′ X

)
ε, δg (U ) Xε, ...

]
where g (·)

is an arbitrary function of U and the other terms are as those given in (32). Then
with C = E

(
W − α0X W (U )′ X

)′
�−1

0 , g (U ) = E (X |U )′
[
E
(
δX⊗2|U)]−1 − C

α0X W (U ), a zero for Sσ and Sv1 , and the last summand in (40) as b (Z), it follows
that S∗

μ lies T ′
χ . To verify that S∗

μ is the required projection we show that

E
[(

Fμ (Y, U, X, W ) − S∗
μ

)
t ′χ
]

= 0 ∀t ′χ ∈ T ′
χ . (41)

Note that

Fμ (Y, U, X, W ) − S∗
μ = δε

π (Z)
−
[

E (X |U )′
[

E
(
δX⊗2|U

)]−1
X

+E
(
W − α0X W (U )′ X

)′
�−1

0 × (
W − α0X W (U )′ X

) ]
δε,

and that

E

[
δCε2

(
W − α0X W (U )′ X

)

π (Z)
− E (X |U )′

[
E
(
δX⊗2|U

)]−1

×X
(
W − α0X W (U )′ X

)′
C ′δε2

−E
(
W − α0X W (U )′ X

)′
�−1

0

(
W − α0X W (U )′ X

)⊗2
C ′δε2 + δg (U ) Xε2

π (Z)

−E (X |U )′
[

E
(
δX⊗2|U

)]−1
X X ′g (U )′ δε2

−E
(
W − α0X W (U )′ X

)′
�−1

0

(
W − α0X W (U )′ X

)
X ′g (U )′ δε2

]

= 0

since

σ 2 E

[
δC

(
W − α0X W (U )′ X

)

π (Z)
− E

(
W − α0X W (U )′ X

)′
�−1

0

(
W − α0X W (U )′ X

)⊗2
C ′δ

]

= 0,

σ 2 E

[
E (X |U )′

[
E
(
δX⊗2|U

)]−1
X
(
W − α0X W (U )′ X

)′
C ′δ

]
= 0,

σ 2 E

[
δg (U ) Xε2

π (Z)
− E (X |U )′

[
E
(
δX⊗2|U

)]−1
Xg (U ) Xδ

]

= σ 2 E

[
E (X |U )′

{[
E
(
δX⊗2|U

)]−1
E (X |U ) − α0X W (U )′ C ′

}
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− E (X |U )′
{[

E
(
δX⊗2|U

)]−1
E (X |U ) − α0X W (U )′ C ′

}]
= 0,

σ 2 E
[

E
(
W − α0X W (U )′ X

)′
�−1

0

(
W − α0X W (U )′ X

)
X ′g (U )′ δ

]
= 0

by the MAR assumption and iterated expectations. It is easy to show the orthogonality
of Fμ (Y, U, X, W )−S∗

μ with respect to the other components of T ′
χ , which implies that

( 41) is verified so that S∗
μ is the efficient score and the conclusion follows immediately.

��
Proof of Theorem 10 We first show the result for σ 2

2(ho). Note that

σ 2
2(ho) − σ 2

e f f = σ 2 E

(
δ

π (Z)
− E (X |U )′ E

(
δX⊗2|U

)−1
E (X |U )

− δ
(
W − α0X W (U )′ X

)′
�−1

0 E
(
W − α0X W (U )′ X

))
, (42)

and

Cov

(
δε

π (Z)
− E (X |U )′ E

(
δX⊗2|U

)−1
Xδε,

(
W − α0X W (U )′ X

)
δε

)

= σ 2 E
(
W − α0X W (U )′ X

)
,

so that (42) is equivalent to

Var

(
δ

π (Z)
− E (X |U )′ E

(
δX⊗2|U

)−1
E (X |U )

)

− σ 2 E
[(

W − α0X W (U )′ X
)]′

�−1
0 × E

(
W − α0X W (U )′ X

) := V12 − V22 ≥ 0.

Similarly for σ 2
1(ho) we have

σ 2
1(ho) − σ 2

e f f = σ 2 E

(
δ − E (X |U )′ E

(
δX⊗2|U

)−1
E (X |U )

− δ
(
W − α0X W (U )′ X

)′
�−1

0 E
(
W − α0X W (U )′ X

))
, (43)

and

Cov

(
δε − E (X |U )′ E

(
δX⊗2|U

)−1
Xδε,

(
W − α0X W (U )′ X

)
δε

)

= σ 2 E
[
δ
(
W − α0X W (U )′ X

)]

so that (43) is equivalent to

Var

(
δ − E (X |U )′ E

(
δX⊗2|U

)−1
E (X |U )

)
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−σ 2 E
[
δ
(
W − α0X W (U )′ X

)]′ (
�−1

δ0

)
× E

[
δ
(
W − α0X W (U )′ X

)]

:= V11 − V21 ≥ 0,

where �δ0 = E
[
δ
(
W − αα0X W (U )′ X

)⊗2
]
. Finally for σ 2

3(ho)

σ 2
3(ho) − σ 2

e f f = σ 2 E

(
δ

π (U )
− E (X |U )

π (U )

′
E
(
δX⊗2|U

)−1
E (X |U )

− δ

π (U )

(
W − α0X W (U )′ X

)′
�−1

0 E
(
W − α0X W (U )′ X

))
,

and by the same argument as the one used for ( 42) and (43) we have that

σ 2
3(ho) − σ 2

e f f = Var

(
δ

π (U )
− E (X |U )

π (U )

′
E
(
δX⊗2|U

)−1
E (X |U )

)

−σ 2 E

[
δ

π (U )2

(
W − α0X W (U )′ X

)
]′ (

�−1
π20

)

×E

[
δ

π (U )2

(
W − α0X W (U )′ X

)] := V13 − V23 ≥ 0,

where �π20 = E
[
δ
(
W − α0X W (U )′ X

)⊗2
/π2 (U )

]
. ��

Proof of Theorem 11 Similar to the proof of Theorem 8

n1/2 (̂τ1 − τ0)

= 1

n1/2

n∑

i=1

(
X ′

i

[
α

(1)
0 (Ui ) − α

(0)
0 (Ui )

]
+ W ′

i

[
β

(1)
0 − β

(0)
0

]
− τ0

)

+ 1

n1/2

n∑

i=1

{
δiε

(1)
i + (1 − δi )

[
X ′

i

(
α̂(1) (Ui ) − α

(1)
0 (Ui )

)
+ W ′

i

(
β̂(1) − β

(1)
0

)]}

− 1

n1/2

n∑

i=1

{
(1 − δi ) ε

(0)
i − δi

[
X ′

i

(
α̂(0) (Ui ) − α

(0)
0 (Ui )

)
+ W ′

i

(
β̂(0) − β

(0)
0

)]}

:=
3∑

j=1

T2 j ,

and as in (37)

T22 = 1

n1/2

n∑

i=1

[
	

(1)
01 (Ui ) + �

(1)
01 �

(1)−1
0

(
Wi − α

(1)
0X W (Ui )

′ Xi

)]
δiε

(1)
i + op (1) ,

T23 = 1

n1/2

n∑

i=1

[
	

(0)
01 (Ui )+�

(0)
01 �

(1)−1
0

(
Wi −α

(0)
0X W (Ui )

′ Xi

)]
(1−δi ) ε

(0)
i +op (1) ,
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and the first conclusion follows by CLT noting that Cov
(
T21, T2 j

) = 0 for j = 2, 3
and Cov (T22, T23) = 0. For the second result note that

n1/2 (̂τ2 − τ0) = 1

n1/2

n∑

i=1

[
X ′

i

(
α

(1)
0 (Ui ) − α

(0)
0 (Ui )

)
+ W ′

i

(
β

(1)
0 − β

(0)
0

)
− τ0

]

+ 1

n1/2

n∑

i=1

{
δi
(
X ′

i α̂
(1) (Ui ) + W ′

i β̂
(1)
)

π̂ (Zi )
−
(

X ′
iα

(1)
0 (Ui ) + W ′

i β
(1)
0

)}

+ 1

n1/2

∑n

i=1

{
(1 − δi )

(
X ′

i α̂
(0) (Ui ) + W ′

i β̂
(0)
)

1 − π̂ (Zi )
−
(

X ′
iα

(0)
0 (Ui ) + W ′

i β
(0)
0

)}

:=
3∑

j=1

T3 j .

The second term can be written as

T32 = 1

n1/2

n∑

i=1

(
δi

π (Zi )
− 1

)(
X ′

iα
(0)
0 (Ui ) + W ′

i β
(0)
0

)

+ 1

n1/2

n∑

i=1

(
δi

π̂ (Zi )
− δi

π (Zi )

)
x

×
[

X ′
i

(
α̂(1) (Ui ) − α

(1)
0 (Ui )

)
+ W ′

i

(
β̂(1) − β

(1)
0

)]

+ 1

n1/2

n∑

i=1

δi

[
X ′

i

(
α̂(1) (Ui ) − α

(1)
0 (Ui )

)
+ W ′

i

(
β̂(1) − β

(1)
0

)]

π (Zi )

+ 1

n1/2

n∑

i=1

(
δi

π̂ (Zi )
− δi

π (Zi )

)(
X ′

iα
(1)
0 (Ui ) + W ′

i β
(1)
0

)

:=
4∑

j=1

T32 j ,

and note that by (38), (36) and standard kernel calculations

T322 = 1

n3/2

n∑

i=1

δi
∑n

j=1

[
π (Zi ) − δ j

]
Kh

(
Z j − Zi

)

π (Zi )
2 f (Zi )

×
[

E (X |Ui )
′ [E

(
δX⊗2|Ui

)]−1
δi Xiε

(1)
i +(

W ′
i +X ′

iα0X W (Ui )
) (

β̂(1) − β
(1)
0

)]

+ op (1).
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By iterated expectation E (T322) = 0 and

E |T322|2

≤ 2

n3h2(k+p+1)

⎛

⎜
⎝

n∑

i=1

n∑

j=1

E

⎧
⎨

⎩

δ2
i

[
E (X |Ui )

′ [E
(
δX⊗2|Ui

)]−1
δi Xiε

(1)
i

]

π (Zi )
2 f (Zi )

⎫
⎬

⎭

2

+ 1

n

n∑

i=1

n∑

j=1

E

⎧
⎨

⎩

(
W ′

i +X ′
iα0X W (Ui )

) ∥∥∥n1/2
(
β̂(1)−β

(1)
0

)∥∥∥

π (Zi )
2 f (Zi )

⎫
⎬

⎭

⎞

⎠

2

K 2 (Z j −Zi
)

= C

nhk+p+1 + o (1),

and hence |T322| = op (1). Similarly for T324

T324 = 1

n3/2

n∑

i=1

δi

(
X ′

iα
(1)
0 (Ui ) + W ′

i β
(1)
0

)∑n
j=1

[
π (Zi ) − δ j

]
Kh

(
Z j − Zi

)

π (Zi )
2 f (Zi )

+op (1)

= 1

n

n∑

i=1

δi

(
X ′

iα
(1)
0 (Ui ) + W ′

i β
(1)
0

)
Kh

(
Z j − Zi

)

π (Zi ) f (Zi )

1

n1/2

n∑

j=1

π (Zi ) − δi

π (Zi )

= −T321 + op (1),

hence

T32 = 1

n1/2

n∑

i=1

δi

[
X ′

i

(
α̂(1) (Ui ) − α

(1)
0 (Ui )

)
+ W ′

i

(
β̂(1) − β

(1)
0

)]

π (Zi )
+ op (1).

The same arguments show that

T33n = 1

n1/2

n∑

i=1

(1−δi )
[

X ′
i

(
α̂(0) (Ui )−α

(0)
0 (Ui )

)
+W ′

i

(
β̂(0)−β

(0)
0

)]

1−π (Zi )

+op (1),

hence the second conclusion follows using (39) and CLT. ��
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