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Abstract We prove the large deviation principle for the posterior distributions on
the (unknown) parameter of a multivariate autoregressive process with i.i.d. Normal
innovations. As a particular case, we recover a previous result for univariate first-order
autoregressive processes. We also show that the rate function can be expressed in terms
of the divergence between two spectral densities.

Keywords Large deviation principle · Spectral density · Divergence · Relative
entropy

1 Introduction

There is a wide literature in the topic of large deviations, namely, the asymptotic
computation of small probabilities on an exponential scale. Some references concern
posterior distributions in Bayesian Statistics: an old reference is Fu and Kass (1988);
more recent references with large deviation principles for posterior distributions are
Ganesh and O’Connell (1999, 2000), Paschalidis and Vassilaras (2001), Macci
(2010a,b, 2011); other references with finite mixtures of conjugate prior distributions

CM gratefully acknowledges the financial support of the Research Grant PRIN 2008 Probability and
Finance.

C. Macci (B) · S. Trapani
Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica,
00133 Rome, Italy
e-mail: macci@mat.uniroma2.it

S. Trapani
e-mail: trapani@mat.uniroma2.it

123



704 C. Macci, S. Trapani

are Macci and Petrella (2006, 2009, 2010); finally, we cite Eichelsbacher and Ganesh
(2002a,b) with moderate deviation results.

In this paper, we consider a m-dimensional AR(p) process with i.i.d. Normal inno-
vations, and the autoregressive parameters θ1, . . . , θp are assumed to be unknown (a
more rigorous definition can be found below). The aim is to prove the large deviation
principle for the posterior distributions on the vector of autoregressive parameters. In
particular, by setting m = p = 1, we recover Proposition 3.2 in Macci (2010b) for
the univariate first-order autoregressive processes (see Remark 2 below). For com-
pleteness, we recall that one can find large and moderate deviation results for infinite-
dimensional autoregressive processes in Mas and Menneteau (2003), but those results
do not concern the Bayesian setting.

The divergence I ( f ; g) of a spectral density f with respect to another one g (see
Eq. (6) below for a precise definition) is an important tool in the asymptotic the-
ory of stationary processes; for instance, as pointed out in several parts of Chap-
ter 7 in Taniguchi and Kakizawa (2000), it plays a crucial role in the discriminant
analysis. In this paper, we also show that the large deviation rate function can be
expressed in terms of the function I ( f ; g), where the spectral densities f and g concern
m-dimensional AR(p) processes. This is not surprising if we take into account the
relationship between I ( f ; g) and the concept of relative entropy (see, e.g., section 2.3
in Cover and Thomas (1991); it is also known as the Kullback Leibler divergence)
because, as illustrated for the examples presented in Varadhan (2003), large devia-
tion rate functions are commonly expressed in terms of a relative entropy. Actually,
this relationship is illustrated by the following limit for normalized relative entropies:
under suitable hypotheses, by Eq. (7.6.6) in Theorem 7.6.5 in Taniguchi and Kakizawa
(2000), we have

lim
n→∞

1

n
EPn( f )

[
log

(
Pn( f )

Pn(g)

)]
= I ( f ; g),

where Pn( f ) (respectively Pn(g)) is the joint density of n random variables of a m-
dimensional stationary process with spectral density f (respectively g) and EPn( f )[·]
is the expected value under the law with density Pn( f ).

The outline of the paper is the following. In Sect. 2, we recall some preliminaries.
In Sect. 3, we prove the large deviation principle. In Sect. 4, we show that the rate
function can be expressed in terms of the divergence between two spectral densities.
The Appendix at the end of the paper gives the proofs of some properties of the set Θ

defined by (2).
We conclude by recalling some notation used throughout the paper. We denote the

open unit disc centered at the origin in the complex plane by D, i.e., D := {z ∈ C :
|z| < 1}. As far as the matrices are concerned, the families of real and complex square
matrices of order m are denoted by M(m, R) and M(m, C), respectively; moreover,
Im is the identity matrix of order m and 0m is the square null matrix of order m;
finally, given a matrix T = (t jh) j,h∈{1,...,m} ∈ M(m, C), we denote its trace by tr(T ),
its transpose by T t , its transpose and complex conjugate by T ∗, and finally, we set

‖T ‖ :=
√∑m

j,h=1 |t jh |2. Throughout this paper, we always consider column vectors.
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Large deviations for posterior distributions 705

2 Preliminaries

2.1 Large deviations

We recall some basic definitions in Dembo and Zeitouni (1998). Let Z be a Hausdorff
topological space with Borel σ -algebra BZ. A lower semi-continuous function I :
Z → [0,∞] is called rate function. A sequence of probability measures {νn : n ≥ 1}
on (Z,BZ) satisfies the large deviation principle (LDP for short), as n → ∞, with
rate function I if

lim sup
n→∞

1

n
log νn(F) ≤ − inf

z∈F
I (z) for all closed sets F

and

lim inf
n→∞

1

n
log νn(G) ≥ − inf

z∈G
I (z) for all open sets G.

A rate function I is said to be good if all the level sets {{z ∈ Z : I (z) ≤ γ } : γ ≥ 0}
are compact. In what follows, we use condition (b) with equation (1.2.8) in Dembo
and Zeitouni (1998), which is equivalent to the lower bound for open sets:

lim inf
n→∞

1

n
log νn(G) ≥ −I (z)

for all z ∈ Z such that I (z) < ∞ and
for all open sets G such that z ∈ G.

(1)

2.2 Multivariate autoregressive processes with i.i.d. Normal innovations

Let us consider m, p ≥ 1 and θ1, . . . , θp ∈ M(m, R). Furthermore, we consider the
matrix

θ̃ (z) := Im −
p∑

j=1

θ j z
j

for each fixed z ∈ C, and the set

Θ := {θ = (θ1, . . . , θp)
t ∈ (M(m, R))p : det θ̃ (z) 	= 0 for all z ∈ D}; (2)

thus, θ = (θ1, . . . , θp)
t ∈ Θ if and only if we have equation (1.2.25) in Example 1.2.17

in Taniguchi and Kakizawa (2000) with q = 0. One can check that Θ is bounded if and
only if m = 1 and, moreover, Θ is open (some details of the proofs of these properties
of Θ is given in the Appendix). In particular, we have Θ = (−1, 1) if m = p = 1.

It is known that, if θ = (θ1, . . . , θp)
t ∈ Θ , we can consider a stationary m-

dimensional AR(p) process {Xn : n ≥ 0} defined by

Xk+p =
p∑

j=1

θ j Xk+p− j + Zk+p
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706 C. Macci, S. Trapani

where {Zk : k ≥ 0} are i.i.d. random variables with centered normal distribution
and invertible covariance matrix �2

Z , and X0 has a suitable centered Normal distri-
bution which depends on θ . In such a case, the spectral density matrix fθ and the
autocovariance matrix function Γθ are defined by

{
Γθ(r) = ∫ π

−π
eirλ fθ (λ)dλ

fθ (λ) = 1
2π

(θ̃(eiλ))−1�2
Z ((θ̃(e−iλ))t )−1 = 1

2π
(θ̃(eiλ))−1�2

Z ((θ̃(eiλ))∗)−1;

see, e.g., Example 1.2.17 in Taniguchi and Kakizawa (2000) with q = 0 for the
first equality for fθ . Moreover, if we consider the random variables A(h, j)

n :=
1
n

∑n−1
i=0 Xi+p−h Xt

i+p− j and B(h)
n := 1

n

∑n−1
i=0 Xi+p−h Xt

i+p, we have

{
limn→∞ B(h)

n = Γθ(h)

limn→∞ A(h, j)
n = Γθ(h − j)

with probability 1. (3)

In what follows, we consider a slightly different model, i.e. we require that the
joint distribution of (X0, . . . , X p−1) does not depend on θ . Actually in this case, the
joint distribution of (X0, . . . , X p−1) has no influence and the posterior distributions
can be easily handled. We also note that we are changing the joint distribution of a
finite subset of random variables of a stationary sequence, and this does not change the
asymptotic behavior of the empirical means considered in the paper. In conclusion, all
the limits of the empirical means considered below remain valid (as for the stationary
case) and can be formulated in terms of the spectral density and the autocovariance
function presented above.

2.3 Complex analysis

Some known results on complex analysis are needed in some proofs below. They are
summarized in the following lemma.

Lemma 1 (i) Let ϕ : D → C be a continuous function on D which is harmonic on
D. Then 1

2π

∫ π

−π
ϕ(eiλ)dλ = ϕ(0). (ii) Let ϕ : D → C be a continuous function on

D which is holomorphic on D. Then ϕ is harmonic on D. (iii) Let ϕ : D → C \ {0}
be a continuous function on D which is holomorphic on D. Then log |ϕ| is harmonic
on D.

Proof (i) See, e.g., Gilbarg and Trudinger (1983), Theorem 2.1, Eq. (2.5) with n = 2
and R = 1. (ii) See, e.g., Rudin (1986), Theorem 11.4, noting that (as pointed out
some lines above) ϕ is harmonic if and only if both the real part and the imaginary part
of ϕ are harmonic. (iii) It is a consequence of Theorem 17.3 in Rudin (1986) applied
to f and to 1

f . 
�
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3 LDP and remarks

For each fixed n ≥ 1, we consider the log-likelihood based on x0, . . . , x p+n−1, i.e.

1

2

n−1∑
i=0

⎛
⎝xi+p −

p∑
j=1

θ j xi+p− j

⎞
⎠

t

(�2
Z )−1

(
xi+p −

p∑
h=1

θh xi+p−h

)

= −1

2

n−1∑
i=0

xt
i+p(�

2
Z )−1xi+p + L̃n(θ),

where

L̃n(θ) =
p∑

h=1

n−1∑
i=0

xt
i+p(�

2
Z )−1θh xi+p−h

−1

2

p∑
j=1

p∑
h=1

n−1∑
i=0

xt
i+p− jθ

t
j (�

2
Z )−1θh xi+p−h .

Actually, since the addendum − 1
2

∑n−1
i=0 xt

i+p(�
2
Z )−1xi+p does not depend on θ ,

the essential part of the log-likelihood is L̃n(θ). Moreover, we introduce a(h, j)
n :=

1
n

∑n−1
i=0 xi+p−h xt

i+p− j and b(h)
n := 1

n

∑n−1
i=0 xi+p−h xt

i+p, i.e., the sampled values of

the random variables A(h, j)
n and B(h)

n , respectively. Then we have L̃n(θ) = nLn(θ),
where

Ln(θ) =
p∑

h=1

tr
(

b(h)
n (�2

Z )−1θh

)
− 1

2

p∑
h=1

p∑
j=1

tr
(

a(h, j)
n θ t

j (�
2
Z )−1θh

)

= −1

2

⎧⎨
⎩

p∑
h=1

p∑
j=1

tr
(

a(h, j)
n θ t

j (�
2
Z )−1θh

)
− 2

p∑
h=1

tr
(

b(h)
n (�2

Z )−1θh

)⎫⎬
⎭ .

Furthermore, for a prior distribution π0 on the parameter space Θ , we consider the
posterior distributions {πn : n ≥ 1} defined by

πn(E) := π0(E |x0, . . . , x p+n−1)

=
∫

E enLn(θ)π0(dθ)∫
Θ

enLn(θ)π0(dθ)
for all Borel sets E ⊂ BΘ.

We often deal with the support of the prior distribution, and we refer to Sect. 2.2
in Parthasarathy (1967). The support of π0 will be denoted by S(π0); thus, it is the
smallest closed set having probability 1 with respect to π0; moreover, S(π0) is the set
of all the points θ such that π0(G) > 0 for all open sets G containing θ .
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708 C. Macci, S. Trapani

The aim of this section is to prove Proposition 1 which provides the LDP for
posterior distributions. The proof of Proposition 1 will be an immediate consequence
of Lemmas 3 and 4 presented below; in these two lemmas, we refer to the following
notation L∞(θ; θ(0)), where θ, θ(0) ∈ Θ:

L∞(θ; θ(0)) := −1

2

⎧⎨
⎩

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)θ t

j (�
2
Z )−1θh

)

−2
p∑

h=1

tr
(
Γθ(0) (h)(�2

Z )−1θh

)}′
. (4)

Proposition 1 Assume the two following conditions: S(π0) is a compact subset of
(M(m, R))p; there exists θ(0) ∈ S(π0) such that, for all j, h ∈ {1, . . . , p}, a(h, j)

n →
Γθ(0) (h − j) and b(h)

n → Γθ(0) (h) (as n → ∞). Then {πn : n ≥ 1} satisfies the LDP
with good rate function I (·|θ(0)) defined by

I (θ |θ(0)) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

∑p
h=1

∑p
j=1 tr

(
Γθ(0) (h − j)

· (θ j − θ
(0)
j )t (�2

Z )−1(θh − θ
(0)
h )

)
if θ ∈ S(π0)

∞ otherwise.

Remark 1 (i) We already remarked that the set Θ is bounded if m = 1; thus, in such
a case, S(π0) is bounded and, therefore, we require that S(π0) is a closed subset of
(M(m, R))p.
(ii) Assume that {X̃n : n ≥ 1} is a version of the model where θ is known, and
denote by θ(0) the true value of the parameter; then, by (3), we have B̃(h)

n :=
1
n

∑n−1
i=0 X̃i+p−h X̃ t

i+p → Γθ(0) (h) and Ã(h, j)
n := 1

n

∑n−1
i=0 X̃i+p−h X̃ t

i+p− j →
Γθ(0) (h − j) with probability 1. So, by plugging ( Ã(h, j)

n , B̃(h)
n ) into (a(h, j)

n , b(h)
n ) for all

j, h ∈ {1, . . . , p}, θ(0) can be actually interpreted as the true value of the parameter.
(iii) It is easy to check that, for any fixed σ 2 > 0, the rate function I (θ |θ(0)) does not
change if we consider σ 2�2

Z in place of �2
Z . In some sense, this is the analogous of

Remark 3.3(ii) in Macci (2010b) for the case m = p = 1.

We start with Lemma 2 which provides a standard result; this lemma is useful for
the proof of Lemma 3. An interested reader can see Lemma 3.1 in Macci (2010b) for
its proof.

Lemma 2 Let f : C1 × C2 → R be a continuous function and let C2 be a compact
set. Then, if limn→∞ xn = x, we have limn→∞ infθ∈C2 f (xn, θ) = infθ∈C2 f (x, θ).

Lemma 3 Assume the same hypotheses of Proposition 1. Then {πn : n ≥ 1} satisfies
the LDP with good rate function I (·|θ(0)) defined by

I (θ |θ(0)) =
{

L∞(θ(0); θ(0)) − L∞(θ; θ(0)) if θ ∈ S(π0)

∞ otherwise.
(5)

123



Large deviations for posterior distributions 709

Proof The goodness of the rate function is guaranteed by the compactness of S(π0).
Throughout this proof, we think (M(m, R))p equipped with the standard Euclidean
distance and we use the symbol Qε(θ) for the closed ball of the point θ ∈ Θ of radius
ε > 0. The proof of the LDP consists of two parts.

Proof of the upper bound for closed sets. Let C be a closed set. The upper bound
trivially holds if π0(C) = 0, because we have πn(C) = 0 for all n ≥ 1. Thus, from
now on we assume π0(C) > 0. Then, since, π0(Qε(θ

(0))) > 0 (indeed θ(0) ∈ S(π0))
for any ε > 0, we have

πn(C) ≤ esupθ∈C∩S(π0) nLn(θ)
π0(C)∫

Qε(θ(0))
enLn(θ)π0(dθ)

≤ e− infθ∈C∩S(π0) −nLn(θ)

einf
θ∈Qε(θ(0))nLn(θ)π0(Qε(θ(0)))

,

whence we obtain

1

n
log πn(C) ≤ − inf

θ∈C∩S(π0)
(−Ln(θ)) − inf

θ∈Qε(θ(0))
Ln(θ) − 1

n
log π0(Qε(θ

(0))).

Moreover, Ln(θ) → L∞(θ; θ(0)) as n → ∞ and, since, C ∩ S(π0) is a compact set,
by Lemma 2 we get

lim sup
n→∞

1

n
log πn(C) ≤ − inf

θ∈C∩S(π0)
(−L∞(θ; θ(0))) − inf

θ∈Qε(θ(0))
L∞(θ; θ(0));

finally, if we let ε go to zero, we have

lim sup
n→∞

1

n
log πn(C) ≤ − inf

θ∈C∩S(π0)
(−L∞(θ; θ(0))) − L∞(θ(0); θ(0))

= − inf
θ∈C∩S(π0)

(L∞(θ(0); θ(0)) − L∞(θ; θ(0)))

= − inf
θ∈C

I (θ |θ(0)).

Proof of the lower bound for open sets. We want to check condition (1). Then let
θ(∗) ∈ S(π0) be such that I (θ(∗)|θ(0)) < ∞. Moreover, let G be an open set such
that θ(∗) ∈ G. Then, for ε small enough to have Qε(θ

(∗)) ⊂ G (we recall that
π0(Qε(θ

(∗))) > 0, since, θ(∗) ∈ S(π0)), we have

πn(G) ≥
∫

Qε(θ(∗))
enLn(θ)dπ0(θ)

esupθ∈Θ nLn(θ)
≥ einf

θ∈Qε(θ(∗))
nLn(θ)

π0(Qε(θ
(∗))

enLn(θ̂ (n))
,

where θ̂ (n) is the maximum likelihood estimator, i.e. the value such that supθ∈Θ Ln(θ)=
Ln(θ̂

(n)); hence, we obtain

1

n
log πn(G) ≥ inf

θ∈Qε(θ(∗))
Ln(θ) + 1

n
log π0(Qε(θ

(∗))) − Ln(θ̂ (n)).
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710 C. Macci, S. Trapani

Moreover, by the hypotheses of Proposition 1 and the consistency of the maximum
likelihood estimator, we have Ln(θ̂ (n)) → L∞(θ(0); θ(0)) as n → ∞. Then, by
Lemma 2, we get

lim inf
n→∞

1

n
log πn(G) ≥ inf

θ∈Qε(θ(∗))
L∞(θ; θ(0)) − L∞(θ(0); θ(0))

and, if we let ε go to zero, we have

lim inf
n→∞

1

n
log πn(G) ≥ L∞(θ(∗); θ(0)) − L∞(θ(0); θ(0))

= −I (θ(∗)|θ(0)).


�
Lemma 4 For all θ, θ(0) ∈ Θ we have

L∞(θ(0); θ(0)) − L∞(θ; θ(0))

= 1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ j − θ

(0)
j )t (�2

Z )−1(θh − θ
(0)
h )

)
.

Proof As far as the equality in the statement of the lemma is concerned, we start
with the following explicit expressions for the left-hand side and the right-hand side,
denoted by Q1 and Q2, respectively:

Q1 = −1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θ

(0)
h

)

+
p∑

h=1

tr
(
Γθ(0) (h)(�2

Z )−1θ
(0)
h

)

+1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)θ t

j (�
2
Z )−1θh

)

−
p∑

h=1

tr
(
Γθ(0) (h)(�2

Z )−1θh

)
;

Q2 = 1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)θ t

j (�
2
Z )−1θh

)

−1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θh

)

︸ ︷︷ ︸
=:R1
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Large deviations for posterior distributions 711

−1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)θ t

j (�
2
Z )−1θ

(0)
h

)

︸ ︷︷ ︸
=:R2

+1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θ

(0)
h

)
.

Moreover, we can check that R1 and R2 in the latter expression coincide and, in view
of this, we recall that Γθ(0) (r) = (Γθ(0) (−r))t :

R1 =
p∑

h=1

p∑
j=1

tr
(
θ t

h(�2
Z )−1θ

(0)
j (Γθ(0) (h − j))t

)

=
p∑

h=1

p∑
j=1

tr
(
θ t

h(�2
Z )−1θ

(0)
j Γθ(0) ( j − h)

)

=
p∑

h=1

p∑
j=1

tr
(
Γθ(0) ( j − h)θ t

h(�2
Z )−1θ

(0)
j

)
= R2.

Thus,

Q2 = 1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)θ t

j (�
2
Z )−1θh

)

−
p∑

h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θh

)

+1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θ

(0)
h

)
,

whence we obtain

Q2 = 1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)θ t

j (�
2
Z )−1θh

)

−
p∑

h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θh

)

−1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θ

(0)
h

)

+
p∑

h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θ

(0)
h

)
.
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Thus, by comparing the latter equality for Q2 and the expression for Q1 at the begin-
ning of the proof, the equality Q1 = Q2 will be proved if we can show that

p∑
h=1

tr
(
Γθ(0) (h)(�2

Z )−1θ
(0)
h

)
−

p∑
h=1

tr
(
Γθ(0) (h)(�2

Z )−1θh

)

coincides with

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θ

(0)
h

)

−
p∑

h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ(0)

j )t (�2
Z )−1θh

)
;

this is equivalent to the following equality

p∑
h=1

tr
(
Γθ(0) (h)(�2

Z )−1(θ
(0)
h − θh)

)

=
p∑

h=1

tr

⎛
⎝ p∑

j=1

Γθ(0) (h − j)(θ(0)
j )t (�2

Z )−1(θ
(0)
h − θh)

⎞
⎠ ,

which will be proved by showing that

p∑
j=1

Γθ(0) (h − j)(θ(0)
j )t = Γθ(0) (h) for all h ∈ {1, . . . , p}.

This can be checked as follows. First of all, we have

p∑
j=1

Γθ(0) (h − j)(θ(0)
j )t =

p∑
j=1

∫ π

−π

ei(h− j)λ fθ(0) (λ)dλ(θ
(0)
j )t

=
∫ π

−π

eihλ fθ(0) (λ)

p∑
j=1

e−i jλ(θ
(0)
j )t dλ

=
∫ π

−π

eihλ fθ(0) (λ)(−θ̃ (0)(e−iλ) + Im)t dλ

=
∫ π

−π

eihλ fθ(0) (λ)dλ

−
∫ π

−π

eihλ fθ(0) (λ)(θ̃ (0)(e−iλ))t dλ

= Γθ(0) (h) −
∫ π

−π

eihλ 1

2π
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·(θ̃ (0)(eiλ))−1�2
Z ((θ̃ (0)(e−iλ))t )−1(θ̃ (0)(e−iλ))t dλ

= Γθ(0) (h) − 1

2π

∫ π

−π

eihλ(θ̃ (0)(eiλ))−1dλ�2
Z ;

moreover, since the function z �→ zh(θ̃ (0)(z))−1 is continuous on D and holomorphic

on D, and by noting that zh(θ̃ (0)(z))−1
∣∣∣
z=0

= 0m , we have

∫ π

−π

eihλ(θ̃ (0)(eiλ))−1dλ = 0m

by Lemma 1(i–ii) applied to each component of the matrix. 
�
Remark 2 (Proposition 3.2 in Macci (2010b) as a particular case) Here, we consider
Proposition 1 with m = p = 1, i.e. the case of univariate first-order autoregressive
processes. Actually, �2

Z and Γθ(0) (r) are numbers, and �2
Z is positive; moreover, θ(0) ∈

Θ = (−1, 1). Here, for simplicity, we write σ 2, γθ0(r) and θ0 in place of �2
Z , Γθ(0) (r)

and θ(0), respectively; moreover, we recall that γθ0(0) = σ 2

1−θ2
0

and γθ0(1) = σ 2θ0
1−θ2

0
.

Then, we have the same rate function in Proposition 3.2 in Macci (2010b) noting that

1

2
γθ0(0)(θ − θ0)

1

σ 2 (θ − θ0) = 1

2

σ 2

1 − θ2
0

(θ − θ0)
2

σ 2 = (θ − θ0)
2

2(1 − θ2
0 )

.

Note that we can meet the rate function in Proposition 3.2 in Macci (2010b) in a
different way: by (4) we have

L∞(θ; θ0) = −1

2

{
γθ0(0)

θ2

σ 2 − 2γθ0(1)
θ

σ 2

}

= −1

2

{
θ2

1 − θ2
0

− 2
θ0θ

1 − θ2
0

}
= −θ2 − 2θ0θ

2(1 − θ2
0 )

and, by (5), we obtain

L∞(θ0; θ0) − L∞(θ; θ0) = − (θ0)
2 − 2(θ0θ0)

2(1 − θ2
0 )

+ θ2 − 2θ0θ

2(1 − θ2
0 )

= (θ − θ0)
2

2(1 − θ2
0 )

.

4 The rate function as the divergence between spectral densities

We recall the definition of the divergence I ( f ; g) of a spectral density matrix f with
respect to another one g, and some properties; see, e.g., Eq. (7.3.7) in Taniguchi and
Kakizawa (2000) and the statements after that formula. We have

I ( f ; g) = 1

4π

∫ π

−π

{
tr{g−1(λ) f (λ)} − m − log det{g−1(λ) f (λ)}

}
dλ; (6)
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714 C. Macci, S. Trapani

moreover, I ( f ; g) ≥ 0 and the equality I ( f ; g) = 0 holds if and only if f (λ) = g(λ)

almost everywhere in [−π, π ].
The aim of this section is to prove Proposition 2 which provides an interesting

equality; as a consequence of this we can say that, if θ belongs to S(π0) (i.e. the
support of the prior distribution π0), the rate function for the LDP of the family of
posterior distributions I (θ |θ(0)) is equal to the divergence between spectral densities
I ( fθ(0); fθ ).

Proposition 2 For all θ, θ(0) ∈ Θ we have

I ( fθ(0); fθ ) = 1

2

p∑
h=1

p∑
j=1

tr
(
Γθ(0) (h − j)(θ j − θ

(0)
j )t (�2

Z )−1(θh − θ
(0)
h )

)
.

The proof of Proposition 2 is presented below after the following lemma.

Lemma 5 For all θ, θ(0) ∈ Θ we have

∫ π

−π

log det{ f −1
θ (λ) fθ(0) (λ)}dλ = 0.

Proof First of all, we have

f −1
θ (λ) fθ(0) (λ) =

(
1

2π
(θ̃(eiλ))−1�2

Z ((θ̃(eiλ))∗)−1
)−1

· 1

2π
(θ̃ (0)(eiλ))−1�2

Z ((θ̃ (0)(eiλ))∗)−1

= (θ̃(eiλ))∗(�2
Z )−1θ̃ (eiλ)(θ̃ (0)(eiλ))−1�2

Z ((θ̃ (0)(eiλ))∗)−1,

whence we obtain

det
(

f −1
θ (λ) fθ(0) (λ)

)
= det

(
(θ̃(eiλ))∗

)
det θ̃ (eiλ)

· det
(
(θ̃ (0)(eiλ))−1

)
det

(
((θ̃ (0)(eiλ))∗)−1

)

= det θ̃ (eiλ) det θ̃ (eiλ) det
(
((θ̃ (0)(eiλ))∗θ̃ (0)(eiλ))−1

)

= det θ̃ (eiλ) det θ̃ (eiλ)
(

det θ̃ (0)(eiλ) det θ̃ (0)(eiλ)
)−1

= | det θ̃ (eiλ)|2
(
| det θ̃ (0)(eiλ)|2

)−1

and

log det
(

f −1
θ (λ) fθ(0) (λ)

)
= log | det θ̃ (eiλ)|2 − log det |θ̃ (0)(eiλ)|2.

We complete the proof showing that the integral
∫ π

−π
log | det θ̃ (eiλ)|2dλ does not

depend on θ ∈ Θ; indeed, in such a case, we have the same value if we take θ(0) ∈ Θ
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Large deviations for posterior distributions 715

in place of θ , and the integral on [−π, π ] of the difference in the latter right-hand side
is zero. This can be done noting that, since, det θ̃ (z) 	= 0 for all z ∈ D, the function
z �→ det θ̃ (z) is continuous on D and holomorphic on D; therefore,

∫ π

−π

log | det θ̃ (eiλ)|2dλ = 2π log | det θ̃ (0)|2 = 2π

by Lemma 1(i–iii). 
�
Proof of Proposition 2 First of all, by (6) and Lemma 5, we have

I ( fθ(0); fθ ) = 1

4π

∫ π

−π

{
tr{ f −1

θ (λ) fθ(0) (λ)} − m
}

dλ. (7)

It is known that, there exists a symmetric and positive definite matrix �Z such that
�2

Z = �Z · �Z . Throughout this proof, we use the notation

Tθ,θ(0) (z) := �−1
Z θ̃ (z)(�−1

Z θ̃ (0)(z))−1;

therefore, we have

(Tθ,θ(0) (eiλ))∗ = (�−1
Z θ̃ (eiλ)(�−1

Z θ̃ (0)(eiλ))−1)∗

= ((�−1
Z θ̃ (0)(eiλ))−1)∗(�−1

Z θ̃ (eiλ))∗

= ((�−1
Z θ̃ (0)(eiλ))∗)−1(�−1

Z θ̃ (eiλ))∗.

Then, by considering an equality presented at the beginning of the proof of Lemma 5,
we have

f −1
θ (λ) fθ(0) (λ) = (θ̃(eiλ))∗�−1

Z︸ ︷︷ ︸
=(�−1

Z θ̃ (eiλ))∗

�−1
Z θ̃ (eiλ)

· (θ̃ (0)(eiλ))−1�Z︸ ︷︷ ︸
=(�−1

Z θ̃ (0)(eiλ))−1

�Z ((θ̃ (0)(eiλ))∗)−1︸ ︷︷ ︸
=((θ̃ (0)(eiλ))∗�−1

Z )−1

= (�−1
Z θ̃ (eiλ))∗�−1

Z θ̃ (eiλ)

· (�−1
Z θ̃ (0)(eiλ))−1((�−1

Z θ̃ (0)(eiλ))∗)−1,

and, therefore,

tr{ f −1
θ (λ) fθ(0) (λ)} = tr{(�−1

Z θ̃ (eiλ))∗�−1
Z θ̃ (eiλ)

·(�−1
Z θ̃ (0)(eiλ))−1((�−1

Z θ̃ (0)(eiλ))∗)−1}
= tr{�−1

Z θ̃ (eiλ)(�−1
Z θ̃ (0)(eiλ))−1

·((�−1
Z θ̃ (0)(eiλ))∗)−1(�−1

Z θ̃ (eiλ))∗}
= tr(Tθ,θ(0) (eiλ)(Tθ,θ(0) (eiλ))∗) = ‖Tθ,θ(0) (eiλ)‖2;
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thus, by (7), we obtain

I ( fθ(0); fθ ) = 1

4π

∫ π

−π

{
‖Tθ,θ(0) (eiλ)‖2 − m

}
dλ. (8)

Now, for z ∈ D, we consider the function θ �→ ‖Tθ,θ(0) (z)‖2 − m; it is a quadratic
function of θ (because θ �→ Tθ,θ(0) (z) is linear, and, therefore, θ �→ ‖Tθ,θ(0) (z)‖2

is quadratic) and we trivially have ‖Tθ(0),θ(0) (z)‖2 − m = 0. Then, noting that
θ �→ ∫ π

−π

{‖Tθ,θ(0) (eiλ)‖2 − m
}

dλ is a quadratic function which vanishes at θ = θ(0)

and is nonnegative (because
∫ π

−π

{‖Tθ,θ(0) (eiλ)‖2 − m
}

dλ = 4π I ( fθ(0); fθ ) and
I ( fθ(0); fθ ) ≥ 0), we have

∫ π

−π

{
‖Tθ,θ(0) (eiλ)‖2 − m

}
dλ

= 1

2

d2

dt2

∫ π

−π

{
‖Tθ(0)+tη,θ(0) (eiλ)‖2 − m

}
dλ

∣∣∣∣
t=0,η=θ−θ(0)

. (9)

In view of the computation of this second derivative, we remark that Tθ,θ(0) (z) =
�−1

Z θ̃ (z)(θ̃ (0)(z))−1�Z , whence we obtain

Tθ(0)+tη,θ(0) (z) = �−1
Z ( ˜θ(0) + tη)(z)(θ̃ (0)(z))−1�Z ;

moreover, we have

( ˜θ(0) + tη)(z) = Im −
p∑

j=1

(θ
(0)
j + tη j )z

j = θ̃ (0)(z) + tη#(z),

where

η#(z) := −
p∑

j=1

η j z
j ,

whence we obtain

Tθ(0)+tη,θ(0) (z) = �−1
Z (θ̃ (0)(z) + tη#(z))(θ̃ (0)(z))−1�Z

= Im + t �−1
Z η#(z)(θ̃ (0)(z))−1�Z︸ ︷︷ ︸

=:B
θ(0),η

(z)

.

Thus,

‖Tθ(0)+tη,θ(0) (z)‖2 = ‖Im‖2 + t2‖Bθ(0),η(z)‖2 + 2t · tr(Re{Bθ(0),η(z)}),
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where the matrix Re{Bθ(0),η(z)} is the real part of Bθ(0),η(z), and

1

2

d2

dt2 ‖Tθ(0)+tη,θ(0) (z)‖2 = ‖Bθ(0),η(z)‖2 for all t ∈ R. (10)

Finally, by (8), (9) and (10), we have

I ( fθ(0); fθ ) = 1

4π

∫ π

−π

{
‖Tθ,θ(0) (eiλ)‖2 − m

}
dλ

= 1

4π

∫ π

−π

‖Bθ(0),θ−θ(0) (eiλ)‖2dλ

= 1

4π

∫ π

−π

tr(Bθ(0),θ−θ(0) (eiλ)(Bθ(0),θ−θ(0) (eiλ))∗)dλ

= 1

4π

∫ π

−π

tr
(
�−1

Z (θ − θ(0))#(eiλ)(θ̃ (0)(eiλ))−1�Z

·(�−1
Z (θ − θ(0))#(eiλ)(θ̃ (0)(eiλ))−1�Z )∗

)
dλ

and, by noting that (θ − θ(0))#(z) = −∑p
j=1(θ j − θ

(0)
j )z j for all z ∈ C, we obtain

I ( fθ(0); fθ ) = 1

4π

∫ π

−π

tr

⎛
⎝�−1

Z

p∑
j=1

(θ j − θ
(0)
j )eiλ j (θ̃ (0)(eiλ))−1�Z

·
(

�−1
Z

p∑
h=1

(θh − θ
(0)
h )eiλh(θ̃ (0)(eiλ))−1�Z

)∗ ⎞
⎠ dλ

= 1

4π

∫ π

−π

p∑
j=1

p∑
h=1

tr
(
�−1

Z (θ j − θ
(0)
j )eiλ j (θ̃ (0)(eiλ))−1

·�2
Z ((θ̃ (0)(eiλ))∗)−1e−iλh(θh − θ

(0)
h )t�−1

Z

)
dλ

= 1

4π

p∑
j=1

p∑
h=1

tr

(
�−1

Z (θ j − θ
(0)
j )

∫ π

−π

eiλ( j−h)(θ̃ (0)(eiλ))−1

·�2
Z ((θ̃ (0)(eiλ))∗)−1dλ(θh − θ

(0)
h )t�−1

Z

)

= 1

4π

p∑
j=1

p∑
h=1

tr

(
�−1

Z (θ j − θ
(0)
j )

·
∫ π

−π

eiλ( j−h)2π fθ(0) (λ)dλ(θh − θ
(0)
h )t�−1

Z

)
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= 1

2

p∑
j=1

p∑
h=1

tr
(
�−1

Z (θ j − θ
(0)
j )Γθ(0) ( j − h)(θh − θ

(0)
h )t�−1

Z

)

= 1

2

p∑
j=1

p∑
h=1

tr
(
Γθ(0) ( j − h)(θh − θ

(0)
h )t (�2

Z )−1(θ j − θ
(0)
j )

)
.

This completes the proof (it is enough to exchange the roles of j and h in the latter
expression). 
�
Appendix: Some properties of the set Θ

We start proving that the set Θ is bounded if m = 1. Let r ∈ {1, . . . , p} be the
degree of the polynomial P1(z) = 1 − ∑r

j=1 θ j z j which depends on the choice of
θ = (θ1, . . . , θp) ∈ R

p, and let us consider the polynomial P2(z) = zr P1(1/z) =
zr − ∑r

j=1 θ j zr− j . Then

P2(z) =
r∏

j=1

(z − w j ) = zr +
r∑

j=1

⎛
⎝ ∑

{h1,...,h j }⊂{1,...,r}
(−wh1) · · · (−wh j )

⎞
⎠ zr− j

+(−w1) · · · (−wr )

for some w1, . . . , wr ∈ D, i.e. |w1|, . . . , |wr | < 1, because P1(z) 	= 0 for all z ∈ D.
Note that, for each fixed j ∈ {0, 1, . . . , r}, the absolute value of the coefficient of zr− j

of P2 is bounded by (r
j ); moreover, the coefficients of P2 consists of a rearrangement

in a different order of the coefficients of P1. Thus, the coefficients of P1 is bounded
and this completes the proof.

We can also prove that the set Θ is unbounded if m ≥ 2. We consider a sequence
{θ(n) = (θ

(n)
1 , . . . , θ

(n)
p ) : n ≥ 1}, where θ

(n)
j = (θ

(n)
j (h, k))h,k∈{1,...,m}, which is

defined as follows:

θ
(n)
j (h, k) :=

{
n if j = 1 and (h, k) = (1, m),

0 otherwise.

Then {θ(n) : n ≥ 1} ⊂ Θ , because det(θ̃ (n)(z)) = 1 for all z ∈ C, and, therefore,
det(θ̃ (n)(z)) 	= 0 for all z ∈ D; indeed we have

θ̃ (n)(z) = (θ̃ (n)(z; h, k))h,k∈{1,...,m}
where

θ̃ (n)(z; h, k) =
⎧⎨
⎩

1 if h = k
nz if (h, k) = (1, m)

0 otherwise.

Thus, Θ is unbounded because {θ(n) : n ≥ 1} is unbounded.
Finally, we prove that the set Θ is open. First of all, we have

Θ =
{
θ = (θ1, . . . , θp)

t ∈ (M(m, R))p : min
z∈D

| det θ̃ (z)| > 0

}
.
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Then Θ is open because the function θ �→ minz∈D | det θ̃ (z)| is continuous

on (M(m, R))p because one can check that minz∈D | det θ̃ (n)(z)| converges to

minz∈D | det θ̃ (∞)(z)| whenever θ(n) converges to θ(∞) (the details are omitted).
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