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Abstract We use some properties of orthogonal polynomials to provide a class of
upper/lower variance bounds for a function g(X) of an absolutely continuous random
variable X , in terms of the derivatives of g up to some order. The new bounds are
better than the existing ones.
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1 Introduction

Let Z be a standard normal random variable and g : R → R any absolutely continuous
(a.c.) function with derivative g′. Chernoff (1981), using Hermite polynomials, proved
that [see also the previous papers by Nash (1958); Brascamp and Lieb (1976)]

Varg(Z) ≤ E
(
g′(Z)

)2
,

provided thatE
(
g′(Z)

)2
< ∞, where the equality holds if and only if g is a polynomial

of degree at most one—a linear function. This inequality plays an important role in
the isoperimetric problem and has been extended and generalized by several authors;
see, e.g., Chen (1982); Cacoullos and Papathanasiou (1985); Papathanasiou (1988);
Houdré and Kagan (1995); Papadatos and Papathanasiou (2001); Prakasa Rao (2006)
and references therein.
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688 G. Afendras

The results of the present paper are related to the following class of random variables
[cf. Korwar (1991); Diaconis and Zabell (1991); Johnson (1993); see Afendras et al.
(2011); Afendras and Papadatos (2012a,b)].

Definition 1 [integrated Pearson family] Let X be a random variable with density
f and finite mean μ = EX . We say that X (or its density) belongs to the integrated
Pearson family (or integrated Pearson system) if there exists a quadratic polynomial
q(x) = δx2 + βx + γ (with δ, β, γ ∈ R |δ| + |β| + |γ | > 0), such that

∫ x

−∞
(μ − t) f (t) dt = q(x) f (x) for all x ∈ R. (1)

This fact will be denoted by X or f ∼ IP(μ; q) or, more explicitly, X or f ∼
IP(μ; δ, β, γ ).

The definition of this class is sometimes considered as equivalent to the Pearson
family; cf. Korwar (1991); Johnson (1993). However, this is not precise. In fact, several
properties holding for integrated random variables are not true for all Pearson distrib-
utions. For instance, Properties P3 and P4 in Ord (1972), pp. 4–5, are not informative
for the behavior of moments [see (1.7)], unless the distribution is integrated Pearson.
The same is true for eq. (12.45), p. 22, of Johnson et al. (1994). In a review paper by
Diaconis and Zabell (1991), the classification of Pearson distributions were related to
orthogonal polynomials (see Table 2, p. 296). This implicitly stated family is close to
what we call “integrated Pearson family”. Its properties have been analyzed in detail
in a recent work by Afendras and Papadatos (2012a).

Let X ∼ IP(μ; q) be a random variable and let us consider a suitable function
g. Johnson (1993) established Poincaré-type upper/lower bounds for the variance of
g(X) of the form

(−1)n(Varg(X) − Sn
) ≥ 0, where Sn =

n∑

k=1

(−1)k−1Eqk(X)
(
g(k)(X)

)2

k!∏k−1
j=0(1 − jδ)

. (2)

In particular, for the normal see Papathanasiou (1988) and Houdré and Kagan (1995);
for the gamma see Papathanasiou (1988).

Afendras et al. (2011), using Bessel’s inequality, showed that

Varg(X) ≥
n∑

k=1

E2qk(X)g(k)(X)

k!Eqk(X)
∏2k−2

j=k−1(1 − jδ)
; (3)

for the case n = 1 see Cacoullos (1982).
Afendras and Papadatos (2012b) showed that, under appropriate conditions, the

following two forms of Chernoff-type upper bounds of the variance of g(X) are valid:

Sn,(str) =
n∑

i=1

E2qi (X)g(i)(X)

i !Eqi (X)
∏2i−2

j=i−1(1 − jδ)
+Eqn(X)

(
g(n)(X)

)2−E2qn(X)g(n)(X)
Eqn(X)

(n + 1)!∏2n−1
j=n (1 − jδ)

,

(4)
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Variance bounds for integrated Pearson family 689

Sn,(weak) =
n−1∑

i=1

E2qi (X)g(i)(X)

i !Eqi (X)
∏2i−2

j=i−1(1 − jδ)
+ Eqn(X)

(
g(n)(X)

)2

n!∏2n−2
j=n−1(1 − jδ)

. (5)

The equality in (4) holds when g is a polynomial of degree at most n + 1 and in (5)
when g is a polynomial of degree at most n. The bound (5) for beta distributions has
been shown by Wei and Zhang (2009), using Jacobi polynomials.

In the present article, we shall apply a technique introduced by Afendras and
Papadatos (2012b) to obtain a general class of bounds. Specifically, in Sect. 2 we
provide a new class of upper/lower bounds for the variance of g(X). They can be
called as “Poincaré-type” of order n and with point balance m. They hold for a sub-
family of Pearson distributions. In particular, the bound for N (μ, σ 2) distribution,
namely

Sm,n(g) =
m∑

i=1

(m
i

)
σ 2i

(m + n)i
E2g(i)(X) +

n∑

i=1

(−1)i−1

(n
i

)
σ 2i

(m + n)i
E
(
g(i)(X)

)2

(for (x)k see Definition 2), satisfies the inequality

(−1)n(Varg(X) − Sm,n(g)
) ≥ 0,

where the equality holds if and only if g is a polynomial of degree at most m + n.
For fixed n, Sect. 3 investigates the bounds Sm,n(g) as m increases. It is shown that

the bound Sm+1,n(g) is better than Sm,n(g), i.e.,

∣∣Varg(X) − Sm+1,n(g)
∣∣ ≤ ∣∣Varg(X) − Sm,n(g)

∣∣.

Also, for any suitable function g, Sm,n(g) → Varg(X) as m → ∞.

2 Unified extension of variance bounds

This section presents a wide class of variance bounds. First, we prove the following
useful lemma.

Lemma 1 Let X ∼ IP(μ; q) ≡ IP(μ; δ, β, γ ) and let us consider a positive integer m
with EX2m < ∞. Suppose that the function g is defined on the support J = (α, ω) of

X, and assume that g ∈ Cm−1(J ) and g(m−1) := dm−1g(x)

dxm−1 are absolutely continuous

with (a.s.) derivative g(m). If Eqm(X)|g(m)(X)| < ∞ then

Eqi (X)|g(i)(X)| < ∞ for all

i = 0, 1, . . . , m − 1.

Proof Fix i ∈ {0, 1, . . . , m − 1} and assume that Eqi+1(X)|g(i+1)(X)| < ∞. Setting
h := g(i), we have thatEqi+1(X)|h′(X)| < ∞. Consider the random variable Xi with
density fi = qi f/Eqi (X) ∼ IP(μi ; qi ), where μi = (μ+iβ)/(1−2iδ), qi = q/(1−
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690 G. Afendras

2iδ) and J (Xi ) = J (see Appendix A). One can easily see thatEqi (Xi )|h′(Xi )| < ∞.
Since EX2m < ∞ we get EX2(m−i)

i < ∞. Hence EX2
i < ∞ because m − i ≥ 1.

Using Lemma 2 (for k = 1) we have that E|P1,i (Xi )h(Xi )| < ∞, where P1,i (x) =
x −μi is the Rodrigues polynomial of degree 1 corresponding to the density fi . Since
μi ∈ (α, ω), we can find ε > 0 such that [μi − ε, μi + ε] ⊂ (α, ω). Thus,

E|P1,i (Xi )h(Xi )| =
∫ μi −ε

α

(μi − x)|h(x)| fi (x) dx +
∫ μi +ε

μi −ε

|(μi − x)h(x)| fi (x) dx

+
∫ ω

μi +ε

(x − μi )|h(x)| fi (x) dx

≥ ε

∫ μi −ε

α

|h(x)| fi (x) dx +
∫ μi +ε

μi −ε

|(μi − x)h(x)| fi (x) dx

+ ε

∫ ω

μi +ε

|h(x)| fi (x) dx .

Hence,
∫ μi −ε

α
|h(x)| fi (x) dx and

∫ ω

μi +ε
|h(x)| fi (x) dx are finite. The function h is

continuous in the compact interval [μi − ε, μi + ε] so
∫ μi +ε

μi −ε
|h(x)| fi (x) dx is finite.

Therefore, E|h(Xi )| = E|g(i)(Xi )| = Eqi (X)|g(i)(X)|
Eqi (X)

is finite.

We have shown that Eqi+1(X)g(i+1)(X) < ∞ implies Eqi (X)g(i)(X) < ∞.
Applying this for i = m − 1, m − 2, . . . , 0, the proof is completed. ��

Now, we give the following definitions that will be used in the sequel.

Definition 2 For x ∈ R and k ∈ N define:

(a) (x)k = x(x − 1) · · · (x − k + 1), with (x)0 = 1.

(b) [x]k = x(x + 1) · · · (x + k − 1), with [x]0 = 1.

Note that [x]k = (−1)k(−x)k = (x + k − 1)k .

Definition 3 [cf. Afendras and Papadatos (2012b)] Assume that X ∼ IP(μ; q) and
denote q(x) = δx2 + βx + γ , its quadratic polynomial. Let J (X) = (α, ω) be
the support of X and fix the non-negative integers m, n such that E|X |2	 is finite,
where 	 = max{m, n}. We shall denote by H m,n(X) the class of Borel functions
g : (α, ω) → R satisfying the following properties:

H1 : g ∈ C	−1(α, ω) and the function g(	−1)(x) := d	−1g(x)

dx	−1 is a.c. in (α, ω) with

a.s. derivative g(	).
H2 : Eqn(X)

(
g(n)(X)

)2
< ∞ and Eqm(X)|g(m)(X)| < ∞.

Note that from (21), Lemma 1 and E2qi (X)|g(i)(X)| ≤ Eqi (X) · Eqi (X)(
g(i)(X)

)2
, i = 1, 2, . . . , n, if m ≤ n and if Eqn(X)

(
g(n)(X)

)2 is finite then it is
implied that Eqm(X)|g(m)(X)| is finite. For m = n = 0, the property H1 does not
impose any restrictions on g, and

H 0,0(X) ≡ L2(R, X) := {
g : (α, ω) → R such that Varg(X) < ∞}

.
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Variance bounds for integrated Pearson family 691

Also, it is obvious that H 0,n = H 1,n = · · · = H n,n .
Furthermore, we shall denote by H ∞,n(X) and H ∞(X) ≡ H m,∞(X) [m is

arbitrary because in this case this index is insignificant] the classes of functions
H ∞,n(X) := ∩∞

m=0H
m,n(X) and H ∞(X) := ∩∞

n=0H
∞,n(X); i.e,

H ∞,n(X) ={g ∈ C∞(J ) : Eqn(X)
(
g(n)(X)

)2
< ∞ and Eqi (X)|g(i)(X)|

< ∞ ∀i > n
}
,

H ∞(X) ={g ∈ C∞(J ) : Eqn(X)
(
g(n)(X)

)2
< ∞ ∀n ∈ N

}
.

From Lemma 1 and from (21), we conclude that the (finite or infinite) sequence
H m,n(X) is decreasing in m and in n. In particular, if all moments of X exist then

L2(R, X) ≡ H 0,0(X)

|∪
H 1,0(X) ⊇ H 1,1(X)

|∪ |∪
H 2,0(X) ⊇ H 2,1(X) ⊇ H 2,2(X)

|∪ |∪ |∪
...

...
...

|∪ |∪ |∪
H ∞,0(X) ⊇ H ∞,1(X) ⊇ H ∞,2(X) ⊇ · · · ⊇ H ∞(X).

Let X ∼ IP(μ; δ, β, γ ) with δ ≤ 0. Also, consider two (fixed) non-negative integers
m, n, with n �= 0, and a function g ∈ H m,n(X). According to Parseval’s identity we
have that

Varg(X) =
∞∑

k=1

c2
k , (6)

where ck = Eg(X)ϕk(X) are the Fourier coefficients of g with respect to the corre-
sponding (to X ) orthonormal polynomial system {ϕk}∞k=0.

For each i = 1, 2, . . . , n the function g(i) ∈ H m−i,n−i (Xi ) and, from Parceval’s
identity again, E

(
g(i)(Xi )

)2 = ∑∞
k=0

(
c(i)

k

)2, where c(i)
k = Eg(i)(Xi )ϕk,i (Xi ) are

the Fourier coefficients of g(i) with respect to the orthonormal polynomial system
{ϕk,i }∞k=0 corresponding to Xi ∼ fi ∝ qi f ; see Appendix A. Using (22) we have that

Eqi (X)
(
g(i)(X)

)2 =
∞∑

k=i

⎛

⎝(k)i

k+i−2∏

j=k−1

(1 − jδ)

⎞

⎠ c2
k , i = 1, 2, . . . , n, (7)
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692 G. Afendras

see [Afendras and Papadatos 2012b, Lemma 3.1, eq. (3.4)], where each coefficient of
c2

k is positive. Also, from (20),

Eqi (X)g(i)(X) =
⎛

⎝i !Eqi (X)

2i−2∏

j=i−1

(1 − jδ)

⎞

⎠

1/2

ci , i = 1, 2, . . . , m, (8)

see [Afendras et al. 2011, Section 3, eq.’s (3.2) and (3.5)].
Let λn = (λ1;n, λ2;n, . . . , λn;n)t ∈ Rn . According to Tonelli’s theorem, we have

that
∑n

i=1
∑∞

k=i

∣∣λi;n(k)i
∏k+i−2

j=k−1(1 − jδ)
∣∣c2

k = ∑n
i=1 |λi;n|∑∞

k=i

[
(k)i

∏k+i−2
j=k−1

(1 − jδ)
]
c2

k =∑n
i=1

∣∣λi;n
∣∣Eqi (X)

(
g(i)
)2

< ∞ and, using Fubini’s theorem,

n∑

i=1

λi;nEqi (X)
(
g(i)(X)

)2=
∞∑

k=1

ρk;nc2
k , where ρk;n=

min{k,n}∑

i=1

λi;n(k)i

k+i−2∏

j=k−1

(1 − jδ).

(9)

We seek a vector λm,n such that ρm+1,n = ρm+2,n = · · · = ρm+n,n = 1. From (7)
we obtain the system of equations

Am,n · λm,n = 1n, (10)

where the matrix Am,n ∈ Rn×n has (r, c)-element which is given by

ar,c;m,n = (m + r)c

m+r+c−2∏

m+r−1

(1 − jδ)

and the vector 1n = (1, 1, . . . , 1)t ∈ Rn .
The above system has the unique solution, see Appendix B,

λi;m,n = (−1)i−1
(n

i

)/
[

(m + n)i

m+i−1∏

j=m
(1 − jδ)

]

, i = 1, 2, . . . , n. (11)

From (9) and (11), using the hypergeometric series (23), we have that ρk;m,n =
1 − (m + n − k)n

∏m+n+k−1
j=m+k (1 − jδ)

/[
(m + n)n

∏m+n−1
j=m (1 − jδ)

]
. Equivalently,

ρk;m,n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − (m+n−k)n
∏m+n+k−1

j=m+k (1− jδ)

(m+n)n
∏m+n−1

j=m (1− jδ)
, 1 ≤ k ≤ m,

1 , m < k ≤ m + n,

1 + (−1)n−1 (k−m−1)n
∏m+n+k−1

j=m+k (1− jδ)

(m+n)n
∏m+n−1

j=m (1− jδ)
, k > m + n.
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Variance bounds for integrated Pearson family 693

Thus,

n∑

i=1

(−1)i−1

(n
i

)
Eqi (X)

(
g(i)(X)

)2

(m + n)i
∏m+i−1

j=m (1 − jδ)

= Varg(X) −
n∑

k=1

(m + n − k)n
∏m+n+k−1

j=m+k (1 − jδ)

(m + n)n
∏m+n−1

j=m (1 − jδ)
c2

k

+
∑

k>m+n

(−1)n−1
(k − m − 1)n

∏m+n+k−1
j=m+k (1 − jδ)

(m + n)n
∏m+n−1

j=m (1 − jδ)
c2

k . (12)

The main result of this paper is contained in the following theorem.

Theorem 1 Let X ∼ IP(μ; δ, β, γ ) with δ ≤ 0. Fix two non-negative integers m, n
[with n �= 0] and a function g ∈ H m,n(X). Consider the quantity

Sm,n(g) =
m∑

i=1

aiE
2qi (X)g(i)(X) +

n∑

i=1

(−1)i−1biEqi (X)
(
g(i)(X)

)2
, (13)

where

ai :=
(m

i

)∏m+n+i−1
j=m+i (1 − jδ)

(m + n)iEqi (X)
(∏2i−2

j=i−1(1 − jδ)
)∏m+n−1

j=m (1 − jδ)
,

bi :=
(n

i

)

(m + n)i
∏m+i−1

j=m (1 − jδ)

are strictly positive constants (depending only on m, n and X) and the empty sums
(when m = 0) are treated as zero. Then, the following inequality holds:

(−1)n(Varg(X) − Sm,n(g)
) ≥ 0,

and where Sm,n(g) becomes equal to Varg(X) if and only if g is a polynomial of
degree at most m + n.

Proof From (13), via (8) and (12), we obtain that (−1)n
(
Varg(X) − Sm,n(g)

) =
Rm,n(g), where the residual

Rm,n(g) =
∑

k>m+n

rk;m,n(X)c2
k :=

∑

k>m+n

(k − m − 1)n
∏m+n+k−1

j=m+k (1 − jδ)

(m + n)n
∏m+n−1

j=m (1 − jδ)
c2

k

(14)

is non-negative and equals to zero if and only if ck = 0 for all k > m + n, i.e., the
function g : J (X) → R is a polynomial of degree at most m + n. ��
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694 G. Afendras

Let X ∼ IP(μ; δ, β, γ ) with δ ≤ 0. Then X is a linear function of a normal, a
gamma or a beta random variable, see Afendras and Papadatos (2012a). The bounds
Sm,n(g) for the three main cases are included in Table 1.

Remark 1 (a) For fixed n and for any function g ∈ H M,n(X), where M can be finite
or infinite, the variance bounds {Sm,n(g)}M

m=0 are of the same type, i.e., upper
bound when n is odd and lower bound when n is even.

(b) The bounds {Sm,n(g)}n
m=0 require the same conditions on the function g, i.e.,

g ∈ H n,n(X).

Remark 2 (a) The bound S1,1(g) is the bound S1,(str) of (4).
(b) The bounds S0,n(g) are the bounds Sn which are given by (2). Also, for the special

case m = 0, n = 1 observe that S0,1(g) = S1 = S1,(weak); see (5).
(c) The results shown in Theorem 1 apply to the special case where n = 0 (note that

the second sum is empty and is treated as zero). In this case, the lower bound
Sm,0(g) is reduced to the one given by (3).

Remark 3 Regarding the conditions on the function g of Theorem 1, we note that
g ∈ H max{m,n},n−1(X) � H max{m,n},n(X) implies that the bound Sm,n(g) is trivial,
i.e., +∞ when n is odd and −∞ when n is even.

Now, we seek for upper bounds of the non-negative residual Rm,n(g).

Proposition 1 Assume the conditions of Theorem 1 and, further, suppose that g ∈
H T,T (X) for some T ∈ {n, . . . , m + n + 1}. Then the residual Rm,n(g), given by
(14), is bounded above by

uτEqτ (X)
(
g(τ )(X)

)2
, τ = n, n + 1, . . . , T, (15)

where uτ = um,n,τ (X) := ∏2m+2n
j=2m+n+1(1 − jδ)

/[(m+n
n

)
(m + n + 1)τ

∏m+n+τ−1
j=m

(1 − jδ)
]
.

Proof Using (7), we write the quantity (15) in the form
∑∞

k=τ πk;τ c2
k . Next, consider

the sequence
{
wk;τ = πk;τ /rk;m,n(X)

}∞
k=m+n+1, where rk;m,n(X) are the numbers

given by (14), and observe that this sequence is increasing in k, with wm+n+1;τ = 1.
��

The upper bounds (when there are at least two) of the residual Rm,n(g), given by
(15), are not comparable. For example, consider the functions g1 = ϕτ and g2 =
ϕm+n+2 (both belong to H ∞(X)), where ϕk are the polynomials given by (19), and
observe that

uτEqτ (X)
(
g(τ )

1 (X)
) = uτ τ !

2τ−2∏

j=k−2

(1 − jδ) > 0 = uτ+1Eqτ+1(X)
(
g(τ+1)

1 (X)
)

and

uτEqτ (X)
(
g(τ )

2 (X)
)

uτ+1Eqτ+1(X)
(
g(τ+1)

2 (X)
) = (m + n − τ + 1)

(
1 − (m + n + τ)δ

)

(m + n − τ + 2)
(
1 − (m + n + τ + 1)δ

) < 1,

since δ ≤ 0.
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1)
i−

1
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+β
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] iE
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i (
1

−
X

)i(
g(

i)
(
X
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2
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3 Investigating the bounds Sm,n for fixed n

Next, for n fixed, we investigate the bounds Sm,n(g) as m increases. We compare the
variance bounds Sn,n(g) and Sn , given by (13) [for m = n] and (2), respectively. Also,
we compare the new upper variance bounds Sn,1(g) and Sn−1,1(g) with the existing
Chernoff-type upper variance bounds Sn,(str) and Sn,(weak), respectively; see (4) and
(5).

Theorem 2 Let X ∼ IP(μ; δ, β, γ ) with δ ≤ 0. Fix the positive integer n and consider
a function g ∈ H M,n(X), where M can be finite (M ≥ n) or infinite. Then, for each
m1, m2 such that 0 ≤ m1 < m2 ≤ M the following inequality holds

∣∣Varg(X) − Sm1,n(g)
∣∣ ≥ ζm1,m2,n(δ)

∣∣Varg(X) − Sm2,n(g)
∣∣, (16)

where ζm1,m2,n(δ) := (m2+n)n
∏m2+n−1

j=m2
(1− jδ)

(m1+n)n
∏m1+n−1

j=m1
(1− jδ)

> 1. The equality holds if and only if the

function g : J (X) → R is a polynomial of degree at most n + m1.

Proof Consider the positive sequence
{
ζk;m1,m2,n(δ)=rk;m1,n(X)

/
rk;m2,n(X)

}
k>m2+n ,

where rk;m,n(X) are given by (14). This sequence is decreasing in k. Specifically,

ζk;m1,m2,n(δ) ↘ ζm1,m2,n(δ) ≡ (m2 + n)n
∏m2+n−1

j=m2
(1 − jδ)

(m1 + n)n
∏m1+n−1

j=m1
(1 − jδ)

, as k → ∞.

Moreover, we observe that rk;m1,n(X) > 0 and rk;m2,n(X) = 0 for all k = n +
m1 + 1, . . . , n + m2. Therefore (16) follows.

We write
∣
∣Varg(X)−Sm1,n(g)

∣
∣−ζm1,m2,n(δ)

∣
∣Varg(X)−Sm2,n(g)

∣
∣ = ∑

k>n+m1
θkc2

k
and we observe that θk > 0 for all k. Thus, the equality in (16) holds if and only if g
is a polynomial of degree at most n + m1. ��

Notice that if δ < 0 then
∏m2+n−1

j=m2
(1 − jδ)

/∏m1+n−1
j=m1

(1 − jδ) > 1 for each n
and m1 < m2. Therefore, ζm1,m2,n(δ) ≥ ζm1,m2,n(0) = (m2 + n)n/(m1 + n)n , since
δ ≤ 0.

Remark 4 Assume the conditions of Theorem 2. (a) In view of Remark 1(a), the
bounds {Sm,n(g)}M

m=0 are of the same type. From (16) it is follows that the bound
Sm2,n(g) is better than the bound Sm1,n(g). Now, writing n = 2r (when n is even) or
n = 2r + 1 (when n is odd) we observe that

S0,2r (g) ≤ S1,2r (g) ≤ · · · ≤ Varg(X) ≤ · · · ≤ S1,2r+1(g) ≤ S0,2r+1(g).

(b) For the case M = ∞, from (6), (13) and (a) it follows that

Sm,n(g) ↗ Varg(X)
[when n is even]

or Sm,n(g) ↘ Varg(X)
[when n is odd]

as m → ∞.
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Now, we compare the existing variance bounds Sn
( ≡ S0,n(g)

)
with the best pro-

posed bound shown in this article requiring the same conditions on g, i.e., with the
bound Sn,n(g); see Remark 1(b).

Corollary 1 The variance bounds Sn,n(g) and Sn, given by (13) (for m = n) and (2)
respectively, are of the same type and require the same conditions on g. Moreover, the
new bound Sn,n(g) is better than the existing bound Sn. Specifically,

∣∣Varg(X) − Sn
∣∣ ≥

(
2n

n

)∏2n−1
j=n (1 − jδ)

∏n−1
j=0(1 − jδ)

∣∣Varg(X) − Sn,n(g)
∣∣.

The equality holds only in the trivial cases when Varg(X) = Sn,n(g) = Sn, i.e.,
the function g : J (X) → R is a polynomial of degree at most n.

Note that, since δ ≤ 0,
(2n

n

)∏2n−1
j=n (1 − jδ)

/∏n−1
j=0(1 − jδ) ≥ (2n

n

)
.

The quantities Sn,(str) and Sn,1(g) are upper bounds for Varg(X). Both bounds are
equal to Varg(X) if and only if the function g is a polynomial of degree at most n +1.
The quantities Sn,(weak) and Sn−1,1(g) are upper bounds for Varg(X). Both bounds
are equal to Varg(X) if and only if the function g is a polynomial of degree at most
n. Thus, it is reasonable to compare these bounds.

Theorem 3 For n = 1, 2, . . . and any suitable function g we have that:

(a) Sn,1(g) ≤ Sn,(str), where the equality holds when n = 1 or n > 1 and g is a
polynomial of degree at most n + 1.

(b) Sn−1,1(g) ≤ Sn,(weak), where the equality holds when n = 1 or n > 1 and g is a
polynomial of degree at most n.

Proof (a) From (13) and (4), via (7) and (8), we have that

Sn,(str) − Sn,1(g) = ∑

k>n+1

k[1−(k−1)δ]
(n+1)(1−nδ)

(
(k−1

n−1)
∏n+k−2

j=k (1− jδ)

n
∏2n−1

j=n+1(1− jδ)
− 1

)
c2

k , (17)

where each coefficient of c2
k , k > n + 1, is zero when n = 1 and is positive when

n > 1. (b) Similarly, from (13) and (5), via (7) and (8), it follows that

Sn,(weak) − Sn−1,1(g) = ∑
k>n

k[1−(k−1)δ]
n[1−(n−1)δ]

(
(k−1

n−1)
∏n+k−2

j=k (1− jδ)
∏2n−2

j=n (1− jδ)
− 1

)
c2

k , (18)

where each coefficient of c2
k , k > n, is zero when n = 1 and is positive when n > 1.

��
Remark 5 For each n = 2, 3, . . . it follows that:

(a) The bound Sn,1(g) is better than the bound Sn,(str); notice that the bound Sn,1(g)

requires a milder finiteness condition, g ∈ H n,1(X), compared to Sn,(str) which
requires that g ∈ H n,n(X) ⊆ H n,1(X).

(b) The bound Sn−1,1(g) is better than the bound Sn,(weak); as in (a), the bound
Sn−1,1(g) requires a weaker finiteness condition, i.e., g ∈ H n−1,1(X), rather
than Sn,(weak), i.e., g ∈ H n,n(X) ⊆ H n−1,1(X).
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Final Conclusion The variance bounds given by Theorem 1, for appropriate choices
of n and m, either provide existing univariate variance bounds or improvements. Our
bounds cover all usual cases, namely:

– Chernoff-type [Nash (1958); Brascamp and Lieb (1976); Chernoff (1981); Cacoul-
los and Papathanasiou (1985); Papadatos and Papathanasiou (2001); Prakasa Rao
(2006); Afendras and Papadatos (2012b)],

– Poincaré-type [Papathanasiou (1988); Cacoullos (1989); Johnson (1993); Houdré
and Kagan (1995); Afendras et al. (2011)],

– Bessel-type [Cacoullos (1982); Houdré and Kagan (1995); Afendras et al. (2011)].

Note that no further conditions on the function g are imposed; instead, the new bounds
require the same or weaker conditions, see Remarks 1, 2 and 5, Theorem 3, and
Corollary 1. Therefore, the new proposed variance bounds outweigh all the existing
variance bounds presented in the bibliography.

Appendix A: Some useful properties of the integrated Pearson family

The following properties have been reproduced from Afendras et al. (2011); Afendras
and Papadatos (2012a,b) and are stated here for easy reference.

Consider a random variable X with density f ∼ IP(μ; q) ≡ IP(μ; δ, β, γ ).
Let a ∈ (1,+∞). Then E |X |a < ∞ if and only if δ < 1/(a − 1). Notice that

X has finite moments of any order if and only if δ ≤ 0; see Afendras and Papadatos
(2012a, Corollary 2.2).

The support of X is the interval J (X) = (α, ω) and the density f ∈ C∞(α, ω), see
Afendras and Papadatos (2012a).

If E|X |2i+1 < ∞, i ∈ N∗ ≡ N� {0} (that is, δ < 1/2i), then the random variable
Xi with density function fi (x) = qi (x) f (x)/Eqi (X) follows IP(μi ; qi ) distribution
with μi = (μ + iβ)/(1 − 2iδ) and qi = q/(1 − 2iδ); see Afendras and Papadatos
(2012a, Theorem 5.2). Note that if E|X |2i < ∞ and E|X |2i+1 = ∞ then the function
fi is a probability density function; however, E|Xi | = ∞ so Xi does not belong to
the integrated Pearson family.

If E|X |2N < ∞, N ∈ N∗ [that is, δ < 1/(2N − 1)], then the quadratic q gener-
ates the orthogonal polynomials through the Rodrigues-type formula, Papathanasiou
(1995),

Pk(x) = (−1)k

f (x)

dk

dxk

[
qk(x) f (x)

]
, x ∈ J (X), k = 0, 1, . . . , N .

Afendras et al. (2011) showed an extended Stein-type identity of order n. This identity
takes the form EPk(X)g(X) = Eqk(X)g(k)(X), provided that Eqk(X)|g(k)(X)| <

∞. Also, EPk(X)Pm(X) = δk,mk!Eqk(X) ×∏2k−2
j=k−1(1 − jδ); thus, the system of

polynomials {ϕk}N
k=0 is orthonormal, with respect to density f , where

ϕk(x) = Pk(x)

(
k!Eqk(X)

2k−2∏

j=k−1

(1 − jδ)

)−1/2

. (19)
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Hence,

Eqk(X)g(k)(X) =
(

k!Eqk(X)

2k−2∏

j=k−1

(1 − jδ)

)−1/2

Eϕk(X)g(X). (20)

Moreover, the system of polynomials
{
ϕ

(i)
k+i

}N−i
k=0 [where ϕk are the polynomials

given by (19) and ϕ
(i)
k+i is the i-th derivative of ϕk+i ] is orthogonal with respect to

density fi . Specifically, if ϕk,i are the orthonormal polynomials corresponding to
the density fi then ϕ

(i)
k+i (x) = ν

(i)
k ϕk,i (x), where ν

(i)
k = ν

(i)
k (X) := [

(k + i)i ×
(∏k+2i−2

j=k+i−1(1 − jδ)
)
/Eqi (X)

]1/2, see Afendras and Papadatos (2012a, Corollary
5.4).

Lemma 2 [Afendras et al. (2011, Theo. 3.1(b), p. 516)] Let X ∼ IP(μ; q),
with EX2k < ∞, and a suitable function g, with Eqk(X)|g(k)(X)| < ∞, then
E|Pk(X)g(X)| < ∞.

Lemma 3 [Afendras and Papadatos (2012b)] Let a random variable X ∼ IP(μ; q)

and let us consider the strictly positive integers n and N such that n ≤ N and
E|X |2N < ∞.

I f g ∈ H n,n(X) then g(i) ∈ H n−i,n−i (Xi ) f or each i = 0, 1, . . . , n − 1.

(21)

Eϕk,i (Xi )g
(i)(Xi ) = ν

(i)
k (X)Eϕk+i (X)g(X) f or each

{
i = 1, 2, . . . , n,

k = 0, 1, . . . , N − i.

(22)

If the parameter δ of q is non-positive, then the moment generating function of X
is finite in a neighborhood of zero; thus, the system of polynomials {ϕk}∞k=0 forms
an orthonomal basis of L2(R, X) and the Parseval identity holds, see Afendras and
Papadatos (2012a). Notice that for each i ∈ N the parameter δi = δ

1−2iδ is also
non-positive. Thus, the system of polynomials {ϕk,i }∞k=0 is an orthonomal basis of
L2(R, Xi ) and the Parseval identity also holds.

Appendix B: The solution of the system (10)

Consider the determinants dm,n = det(Am,n) and di;m,n = det(Ai;m,n), i =
1, 2, . . . , n, where the matrix Ai;m,n is formed from Am,n by replacing column i
with the vector 1n .

For each t = 1, 2, . . . , n define the matrix Bm,n(t) ∈ R(n−t+1)×(n−t+1) [m, n are
fixed] which has elements br,c;m,n(t) = (m + r − 1)c−1

∏m+r+c+t−3
j=m+r+t−1(1 − jδ), where

empty products are treated as one. Observe that dm,n = (m + n)n
(∏m+n−1

j=m (1 − jδ)
)

det
(
Bm,n(1)

)
and det

(
Bm,n(t)

) = (n−t)!(∏m+n−t
j=m+1(1−[2 j+(t−1)]δ)) det

(
Bm,n(t+

1)
)
, t = 1, 2, . . . , n − 1.
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Thus, it follows that

dm,n = (m + n)n

⎡

⎣
n−1∏

j=0

j !
⎤

⎦

⎡

⎣
m+n−1∏

j=m

(1 − jδ)

⎤

⎦

n−1∏

t=1

⎛

⎝
m+n−t∏

j=m+1

(1 − [2 j + (t − 1)]δ)
⎞

⎠ �= 0.

Now, for each t=1, 2, . . . , n define the matrix Bi,m,n(t) ∈ R(n−t+1)×(n−t+1) [i, m, n
are fixed integers] which has (r, c)-element br,c;i,m,n(t)=(m+r)c−1

∏m+r+c+t−4
j=m+r+t−2(1−

jδ), when c = 1, 2, . . . , i −t , and br,c;i,m,n(t) = (m+r)c
∏m+r+c+t−3

j=m+r+t−2(1− jδ), when

c = i − t +1, i − t +2, . . . , n − t +1. Observe that di;m,n = (−1)i−1 det
(
Bi,m,n(1)

)
,

det
(
Bi,m,n(t)

) = (n−t+1)!
(i−t+1)

(∏m+n−t
j=m+1(1 − [2 j + (t − 1)]δ)) det

(
Bi,m,n(t + 1)

)
, t =

1, 2, . . . , i −1, and det
(
Bi,m,n(i)

) = (n − i +1)!(∏m+n−i
j=m+1(1−[2 j + (i −1)]δ))(m +

n − i)n−i
(∏m+n−1

j=m+i(1 − jδ)
)

det
(
Bm,n(i + 1)

)
.

Thus, it follows that

di;m,n = (−1)i−1 (m + n − i)n−i

i !(n − i)!

⎡

⎣
n∏

j=0

j !
⎤

⎦

⎡

⎣
m+n−1∏

j=m+i

(1 − jδ)

⎤

⎦

n−1∏

t=1

⎛

⎝
m+n−t∏

j=m+1

(1 − [2 j + (t − 1)]δ)
⎞

⎠ .

Therefore, according to Cramér’s rule, (11) follows.

Appendix C: A useful hypergeometric series

Lemma 4 Let m, n, k ∈ N and δ ≤ 0. Then, the following hypergeometric series
holds:

n∑

i=0

(−1)i
(

n

i

)
(k)i

(m + n)i

∏k+i−2
j=k−1(1 − jδ)

∏m+i−1
j=m (1 − jδ)

= (m + n − k)n
∏m+n+k−1

j=m+k (1 − jδ)

(m + n)n
∏m+n−1

j=m (1 − jδ)
.

(23)

Proof For the case δ = 0, write (23) as

n∑

i=0

(−1)i
(

n

i

)
(k)i

(m + n)i
= (m + n − k)n

(m + n)n
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and observe that this follows from Vandermonde’s formula,

n∑

i=0

(−1)i
(

n

i

)
(x)i

(x + y)i
= (y)n

(x + y)n
,

by replacing x with k and y with m + n − k, see Charalambides (2002, p. 125).
For the case δ < 0, write (23) as

n∑

i=0

(−1)i (n)i (k)i (1/δ + 1 − k)i

i !(m + n)i (1/δ − m)i
= (m + n − k)n(1/δ − m − k)n

(m + n)n(1/δ − m)n
.

This follows from Dougall’s identity,

s∑

i=0

(α)i (β)i (s)i

i ![γ + 1]i (α + β + γ + s)i
= [α + γ + 1]s[β + γ + 1]s

[γ + 1]s[α + β + γ + 1]s
,

using the substitution α �→ k, β �→ (1/δ + 1 − k), γ �→ (−m − n − 1) and s �→ n,
see [Dougall 1907, eq. (2)]. ��
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