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Abstract This paper develops the empirical likelihood (EL) inference on parameters
and baseline function in a semiparametric nonlinear regression model for longitudinal
data in the presence of missing response variables. We propose two EL-based ratio
statistics for regression coefficients by introducing the working covariance matrix and
a residual-adjusted EL ratio statistic for baseline function. We establish asymptotic
properties of the EL estimators for regression coefficients and baseline function. Sim-
ulation studies are used to investigate the finite sample performance of our proposed
EL methodologies. An AIDS clinical trial data set is used to illustrate our proposed
methodologies.

Keywords Empirical likelihood · Imputation · Longitudinal data · Missing at
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1 Introduction

Longitudinal data are often encountered in economical, psychological, biomedical,
behavioral, educational and social research. In longitudinal studies, subjects are
observed repeatedly over time and responses of interest are recorded together with
covariates. Semiparametric regression models are often employed to fit various longi-
tudinal data because the parametric part provides an interpretable data summary and
the nonparametric functions provide flexibility to all the data to decide some unknown
or uncertain components such as the shape of the mean response over time. Various
statistical methods have been developed to estimate the regression coefficients and
smoothing functions in a semiparametric regression model in past years. For example,

N.-S. Tang (B) · P.-Y. Zhao
Department of Statistics, Yunnan University, Kunming 650091, People’s Republic of China
e-mail: nstang@ynu.edu.cn

123
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see Green (1987), Zeger and Diggle (1994), Lin and Carroll (2001), Ruppert et al.
(2003) and Fan and Li (2004). However, nonlinear relations among the covariates
are important for developing more reasonable and meaningful models, see Bates and
Watts (1988). Recently, semiparametric nonlinear regression models have received
considerable attention, for example, see Zhu et al. (2000), Li and Nie (2008), and
Wang and Ke (2009). These existing theories and methods have been developed under
the assumption that responses or covariates in semiparametric nonlinear regression
models are not subject to missingness. Hence, this paper aimed to develop an infer-
ence procedure for regression coefficients and smoothing functions in semiparametric
nonlinear regression models with missing responses at random.

Since missing data are often encountered in various fields, such as surveys, clinical
trials and longitudinal studies (Little and Rubin 2002) due to some potential reasons
such as study drop-out or study subjects’ refusal to answer some items on a question-
naire or failing to attend a scheduled clinic visit, various methods have been developed
to analyse semiparametric regression models with missing data. For example, see Yi
and Cook (2002), Shardell and Miller (2008), Chen et al. (2008). Particularly, EL
inference for semiparametric regression models with missing data has received a lot
of attention in recent years because it is especially useful for constructing confidence
intervals or regions of parameters of interest in the considered models. For example,
see Wang et al. (2004), Liang et al. (2007), Liang and Qin (2008), Xue and Xue (2011).
Also, nonlinear regression models with responses missing at random were studied in
recent years, for example, see Müller (2009) and Ciuperca (2011). However, it is more
challenging to deal with semiparametric nonlinear regression models for longitudinal
data with missing responses at random due to nonlinearity of unknown regression
coefficients and the within-subject correlation. Moreover, there is little work done on
the development of the EL method for semiparametric nonlinear regression models
for longitudinal data with missing responses at random.

The aim of this paper was to develop a general EL inference procedure for parame-
ters and baseline function using the complete-case data set or the imputed values in a
semiparametric nonlinear regression model for longitudinal data with responses miss-
ing at random. In our proposed methods, the value for a missing response is imputed
using the inverse-probability weighted imputed method, and the within-subject cor-
relation structure is considered by introducing the working covariance matrix into
the proposed auxiliary random vectors. Particularly, to avoid selecting the optimal
bandwidth and the so-called “curse of dimensionality” in estimating selection proba-
bility function via the kernel method, we employ a logistic regression model, which
is widely used in missing data analysis (see Ibrahim et al. 2001; Lee and Tang 2006;
Chen and Zhong 2010), to evaluate estimation of the selection probability function
by maximizing the corresponding likelihood function of the given logistic model.
Our proposed EL method has the following features: (1) the EL ratio statistic on β
follows asymptotically the central Chi-squared distribution, which can be directly
used to construct confidence regions of the parameters without any extra Monte Carlo
approximation needed when our proposed EL method is not used; (2) unlike normal-
approximation-based (NA-based) method for constructing confidence region on β,
a consistent estimator of the asymptotic covariance matrix is not needed; (3) our
empirical results show that the EL-based method has advantage over the NA-based
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in terms of the coverage probability and the interval width; and (4) our proposed the-
oretical results are new since other literature only considered nonlinear models with
responses missing at random (Ciuperca 2011) or semiparametric linear regression
models with responses missing at random or within-subject independence structure.
We here extend the EL inference for semiparametric regression models with missing
responses at random to semiparametric nonlinear regression models for longitudinal
data with missing responses at random by incorporating the within-subject correlation
into the constructed auxiliary vectors. We systematically investigate the asymptotic
properties of the maximum EL estimators (MELEs) under this new setting.

The rest of the paper is organized as follows: Section 2 outlines the formulations of
two ELs for β based on the complete-case data and the inverse probability weighted
imputation technique. We propose a calibrated method for constructing EL ratios and
an imputation estimator for g(t) in Sect. 2. In Sect. 3, we establish the asymptotic
properties of the proposed three EL ratio functions and their corresponding EL esti-
mators. Numerical illustrations including two simulation studies and a real example
are presented to compare the finite sample performance of the proposed methods in
Sect. 4. Some concluding remarks are given in Sect. 5. Technical details are presented
in the Appendix.

2 Methods

2.1 Model and notation

Consider a data set from n independent subjects. For the i th subject, we suppose
that Yi j is the observed value of a scale response variable at time Ti j , and Xi j is
the corresponding p × 1 covariate vector for i = 1, . . . , n, j = 1, . . . , ni . Under
the abovementioned assumption, a semiparametric nonlinear regression model can be
written as

Yi j = f (Xi j ;β)+ g(Ti j )+ εi j (1)

for i = 1, . . . , n, j = 1, . . . , ni . Here f (X;β) is a twice continuously differentiable
function with respect to β (a p-dimensional unknown parameter) but is nonlinear
with respect to β; g(·) is an unknown regression function defined on the interval
[0, 1]. The time points Ti j are known design points. We assume that εi j satisfies
E(εi j |Xi j , Ti j ) = 0, and ε1, . . . , εn are mutually independent with zero mean and the
positive definite covariance matrix Σi , i.e. var(εi ) = Σi , where εi = (εi1, . . . , εini )

T

for i = 1, . . . , n.
Throughout this paper, we assume that Yi j ’s are subject to missingness and Xi j ’s

and Ti j ’s are completely observed. Let δi j = 0 if Yi j is missing and δi j = 1 if Yi j

is observed. Generally, the missing components may vary across different subjects.
Here we assume that Yi j is missing at random (MAR), i.e. δi j and Yi j are conditionally
independent given Xi j and Ti j : P(δi j = 1|Xi j ,Yi j , Ti j ) = P(δi j = 1|Xi j , Ti j ) �
p(Xi j , Ti j ). It is assumed that δi j is independent of δik for any j �= k. Without loss of
generality, we also assume that Ti j ’s are all scaled into the interval [0, 1].
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For simplicity, we consider the following missingness data mechanism model:

P(δi j = 1|Xi j ,Yi j , Ti j ) = p(Xi j , Ti j ; γ ) = exp{γ0 + γ T
1 Xi j + γ2Ti j }

1 + exp{γ0 + γ T
1 Xi j + γ2Ti j }

, (2)

where γ1 = (γ11, . . . , γ1q)
T, γ0 is a constant term and γ = (γ0, γ

T
1 , γ2)

T. The logis-
tic regression model (2) is a widely used model in many missing data literature,
for example, see Ibrahim et al. (2001) and Lee and Tang (2006) and among oth-
ers. In fact, model (2) can be also relaxed by assuming a more complicated interac-
tion/quadratic covariates parametric model or a nonparametric model or an exponential
tilting model for missingness data mechanism as done in many missing data litera-
ture, for instance, see Liang et al. (2007), Wang et al. (2004), Kim and Yu (2011) and
among others. Also, model (2) can be regarded as a first-order approximation to non-
parametric function p(x, t) and it can avoid selecting the optimal bandwidth and the
so-called ”curse-of-dimensionality” in estimating selection probability via the kernel
method.

Parameter γ can be estimated by maximizing the following binary likelihood:

L(γ ) =
n∏

i=1

ni∏

j=1

p(Xi j , Ti j ; γ )δi j (1 − p(Xi j , Ti j ; γ ))1−δi j .

The re-weighted least squares iterative algorithm can be used to obtain consistent
estimator γ̂ of unknown parameter γ .

2.2 MELE of β with the complete-case data

To delete the incomplete cases, we pre-multiply (1) by the observation indicator δi j ,
which yields δi j Yi j = δi j f (Xi j ;β) + δi j g(Ti j ) + δi jεi j . It follows from the above
assumptions that E(δi j Yi j |Ti j = t) = E(δi j f (Xi j ;β)|Ti j = t)+ E(δi j |Ti j = t)g(t).
Let gC

2 (t) = E(δi j Yi j |Ti j = t)/E(δi j |Ti j = t) and gC
1 (t;β) = E(δi j f (Xi j ;β)|Ti j =

t)/E(δi j |Ti j = t). Then, we obtain g(t) = gC
2 (t) − gC

1 (t;β). The kernel estimators
of gC

1 (t;β) and gC
2 (t) are

ĝC
1 (t;β) =

n∑

i=1

ni∑

j=1

W C
i j (t) f (Xi j ;β) and ĝC

2 (t) =
n∑

i=1

ni∑

j=1

W C
i j (t)Yi j , (3)

respectively, where W C
i j (t) = δi j Kh(Ti j − t)/{∑n

k=1
∑nk

l=1 δkl Kh(Tkl − t)} is the
kernel weight function, Kh(t) = K (t/h) in which K (u) is a kernel function on the
real line, h = hn is a positive smoothing bandwidth sequence such that hn → 0 and
nhn → ∞ as n → ∞. It is easily shown that ĝC

1 (t;β) and ĝC
2 (t) are the consistent

estimators of gC
1 (t;β) and gC

2 (t), respectively, and ĝ(t) = ĝC
2 (t)− ĝC

1 (t;β) is also a
consistent estimator of g(t).

Let ỹi j =Yi j −∑n
k=1

∑nk
l=1 W C

kl(Ti j )Ykl , f̃i j (β)= f (Xi j ;β)−∑n
k=1

∑nk
l=1W C

kl(Ti j )

f (Xkl;β), d̃i j (β)=di j (β)−∑n
k=1

∑nk
l=1W C

kl(Ti j )dkl(β)with di j (β)=∂ f (Xi j ;β)/∂β
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for j = 1, . . . , ni , ỹi = (ỹi1, . . . , ỹini )
T, f̃i (β) = ( f̃i1(β), . . . , f̃ini (β))

T, Δi =
diag(δi1, . . . , δini ) and Di (β) = (d̃i1(β), . . . , d̃ini (β))

T for i = 1, . . . , n. To develop
the EL procedure for β, we consider the following auxiliary random vectors:

Zi1(β) = DT
i (β)Δi V −1

i Δi (ỹi − f̃i (β)), i = 1, . . . , n, (4)

where Vi is an arbitrarily specified working covariance matrix. If Vi = I (a ni × ni

identity matrix), the observations within the same subject are independent; if Vi is
the true covariance matrix of ni observations for the i th subject, the within-subject
correlation structures for the longitudinal data are considered. When the working
covariance matrix Vi is unknown, we should first use the method of moments (e.g.,
see Lin and Carroll 2001) to estimate it and then discuss statistical inference on β
based on estimator of Vi . For example, Vi can be estimated by n−1 ∑n

i=1 ẽi ẽT
i , where

ẽi = ỹo
i − f̃ o

i (β̂), ỹo
i = (ỹo

i1, . . . , ỹo
ini
)T, f̃ o

i (β̂) = ( f̃ o
i1(β̂), . . . , f̃ o

ini
(β̂))T, ỹo

i j =
Y o

i j − ∑n
k=1

∑nk
l=1 Wkl(Ti j )Y o

kl with Y o
i j = δi j Yi j + (1 − δi j )( f (Xi j , β̂) + ĝ(Ti j )),

f̃ o
i j (β̂) = f (Xi j ; β̂)− ∑n

k=1
∑nk

l=1 Wkl(Ti j ) f (Xkl; β̂), and β̂ is obtained by solving

the following equation: n−1 ∑n
i=1 Zi1(β) = 0 with Vi = I in Eq. (4).

Without loss of generality, we assume that Vi is known in this paper. It can be
shown from MAR assumption that E(Zi1(β)) = 0 when β is the true parameter.
Thus, the true parameter β can be estimated from the completely observed data using
the following estimating equations: E{H(β)} = 0, where H(β) = n−1 ∑n

i=1 Zi1(β),
which shows that estimate (say β̂M ) of parameter β can be obtained by using the
following iterative formula:

β(k+1) = β(k) +
{

n∑

i=1

DT
i (β)Δi V −1

i Δi Di (β)

}−1

×
{

n∑

i=1

DT
i (β)Δi V −1

i Δi (ỹi − f̃i (β))

}
, k = 0, 1, . . . ,

where β(k+1) is the value of β at the kth iteration, and Di (β) and f̃i (β) are eval-
uated at β(k). Here β̂M is referred to as the generalized least squares estimator
(GLSE). It is easily seen from the above iterative formula that when the rank of∑n

i=1 DT
i (β)Δi V −1

i Δi Di (β) is less than p, it is impossible to implement the above
iterative procedure. The EL method of Owen (2001) is a very powerful nonparametric
method for making inference on β based on the estimating equation E{H(β)} = 0
and it has many advantages over NA-based method (Owen 2001). For example, it
has better small sample performance than NA-based approach, and EL-based confi-
dence regions are range preserving and transformation respecting and the regularity
conditions for EL-based method are weak and natural. The EL method has become
increasingly common in recent years and has been used widely in many applied areas
(Wang et al. 2004; Liang and Qin 2008; Ciuperca 2011). Hence, an alternative EL
approach is developed to obtain estimator of parameter β and construct the confi-
dence interval of β based on estimating equations E{H(β)} = 0 as follows:
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Let pi be the probability weight allocated to Zi1(β) such that
∑n

i=1 pi = 1 and
pi ≥ 0 for each i . The EL for β based on H(β) can be defined as

Ln(β) = sup

{
n∏

i=1

pi | pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pi Zi1(β) = 0

}
.

Using the Lagrange multiplier method, the optimal value of pi is p̂i = n−1{1 +
λT

n1(β)Zi1(β)}−1, where λn1(β) (an p × 1 vector) is the Lagrange multiplier and
satisfies Qn1(β, λn1) = n−1 ∑n

i=1 Zi1(β)/{1 + λT
n1(β)Zi1(β)} = 0. Then, the log

empirical likelihood ratio function (LELRF) for β with the complete-case data is


c(β) = −2 log

{
n∏

i=1

(n p̂i )

}
= 2

n∑

i=1

log{1 + λT
n1(β)Zi1(β)}. (5)

Maximizing −
c(β) yields the MELE of β, denoted by β̂c. Under some regular
conditions, β̂c can be obtained by simultaneously solving the following two equa-
tions: Qn1(β, λn1) = 0 and Qn2(β, λn1) = n−1 ∑n

i=1 λ
T
n1(β) ×∂β Zi1(β)/{1 +

λT
n1(β)Zi1(β)} = 0, where ∂β represents taking partial derivative with respect to
β. An estimator of g(t) with the complete-case data is ĝC(t) = ĝC

2 (t)− ĝC
1 (t; β̂c).

2.3 MELE of β with the imputed values

Clearly, the above-presented EL with the complete-case data do not completely use
all the information contained in the data set {(Xi j ,Yi j , Ti j , δi j ) : i = 1, . . . , n,
j = 1, . . . , ni }. In particular, when the proportion of missing responses is large,
statistical inference such as estimator of parameter β and its confidence region based
on 
c(β) may lead to unreasonable conclusions. To overcome the above-mentioned
shortcomings, the imputation method is here employed to deal with missing values
of responses in model (1). Inspired by linear regression imputation (Yates 1933),
we impute ỹi j by f̃i j (β̂c)) if Yi j is missing and obtain the imputed values of ỹi j

by ỹ∗
i j = δi j ỹi j/p(Xi j , Ti j ) + (1 − δi j/p(Xi j , Ti j )) f̃i j (β̂c)). In this case, when

Vi is unknown, Vi can be estimated by n−1 ∑n
i=1 ε̃i ε̃

T
i , where ε̃i = ỹ∗

i − f̃i (β̂c),
ỹ∗

i = (ỹ∗
i1, . . . , ỹ∗

ini
)T and f̃i (β̂c) = ( f̃i1(β̂c), . . . , f̃ini (β̂c))

T for i = 1, . . . , n. Then,
we introduce the following auxiliary random vectors:

Zi2(β) = DT
i (β)V

−1
i (ỹ∗

i − f̃i (β)), i = 1, . . . , n.

The empirical log-likelihood for β based on the imputed values can be defined as


I (β) = −2 max

{
n∑

i=1

log(npi ) | pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pi Zi2(β) = 0

}
.
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Clearly, 
I (β) is more reasonable than the empirical log-likelihood 
c(β) because
it fully explores the information contained in the data set. Then, the LELRF for β is

I (β) = 2

∑n
i=1 log{1+λT

n2 Zi2(β)}, whereλn2 is the Lagrange multiplier and satisfies
Mn1(β, λn2) = n−1 ∑n

i=1 Zi2(β)/{1 + λT
n2 Zi2(β)} = 0. Maximizing −
I (β) leads

to the MELE of β, denoted by β̂I . Under some regular conditions, β̂I can be obtained
by simultaneously solving the two equations: Mn1(β, λn2) = 0 and Mn2(β, λn2) =
n−1 ∑n

i=1 λ
T
n2∂β Zi2(β)/{1 + λT

n2 Zi2(β)} = 0. And an estimator of g(t) with the
imputed values of missing responses is ĝI(t) = ĝC

2 (t)− ĝC
1 (t; β̂I ).

2.4 Maximum residual-adjusted EL estimator for g(t)

By Eq. (3), g(t) can be estimated by ĝC (t) = ∑n
i=1

∑ni
j=1 W C

i j (t)(Yi j − f (Xi j ; β̂c)) �
ĝC

2 (t)− ĝC
1 (t; β̂c). Then, it follows from Eq. (1) that for any t ∈ [0, 1], we have

ĝC (t)− g(t) =
n∑

i=1

ni∑

j=1

W C
i j (t){εi j + f (Xi j ;β)− f (Xi j ; β̂c)+ g(Ti j )} − g(t).

It follows from
∑n

i=1
∑ni

j=1 W C
i j (t){g(Ti j )−g(t)} = Op(h2) that the LELRF for g(t)

constructed from ĝC (t) is not asymptotically distributed as a Chi-squared distribution.
To overcome the above-mentioned difficulties, a modified estimator of g(t) is defined
by ĝMC(t) = ∑n

i=1
∑ni

j=1 W C
i j (t){Yi j − f (Xi j ; β̂c) − (ĝC (Ti j ) − ĝC (t))}. Then, we

can define the following auxiliary random variables η̂i R(g(t)) = ∑ni
j=1 δi j {Yi j −

f (Xi j ; β̂c) − g(t) − (ĝC (Ti j ) − ĝC (t))}Kh(Ti j − t) for i = 1, . . . , n. A residual-
adjusted EL for g(t) can be defined as


R(g(t)) = −2 max

{
n∑

i=1

log(npi )|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pi η̂i R(g(t)) = 0

}
.

The LELRF for g(t) with the complete-case data is 
R(g(t)) = 2
∑n

i=1 log{1 +
λn3η̂i R(g(t))}, where λn3 satisfies Sn1(g(t), λn3) = n−1 ∑n

i=1 η̂i R(g(t))/{1 +
λn3η̂i R(g(t))} = 0. Maximizing −
R(g(t)) results in the maximum residual-adjusted
EL estimator of g(t), denoted as ĝ(t).

2.5 Imputation estimator for g(t)

All the above-presented estimators for g(t) are obtained from the complete-case data
set and do not sufficiently use the information contained in the data set, which may
yield bias estimator of g(t). Motivated by the imputation method for missing responses
given in Sect. 2.3, we propose an imputation estimator for g(t) as follows:

Let Ỹ I
i j = δi j Yi j/p(Xi j , Ti j )+ (1 − δi j/p(Xi j , Ti j ))( f (Xi j ;β)+ g(Ti j )). Under

MAR assumption, it can be shown that E(Ỹ I
i j |Xi j , Ti j ) = f (Xi j ;β)+ g(Ti j ), which

implies Ỹ I
i j = f (Xi j ;β) + g(Ti j ) + εi j for i = 1, . . . , n and j = 1, . . . , ni , where
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E(εi j |Xi j , Ti j ) = 0. Let g1(t;β) = E{ f (Xi j ;β)|Ti j = t} and g2(t) = E{Ỹ I
i j |Ti j =

t}, which implies that g(t) = g2(t)− g1(t;β). The kernel estimators of g1(t;β) and
g2(t) are

ĝIP
1 (t;β) =

n∑

i=1

ni∑

j=1

Wi j (t) f (Xi j ;β) and ĝIP
2 (t) =

n∑

i=1

ni∑

j=1

Wi j (t)Ỹ
I

i j , (6)

respectively, where Wi j (t) = Kb(Ti j − t)/
∑n

k=1
∑nk

l=1 Kb(Tkl − t) is a kernel
weight function. Under some regular conditions, we can show that ĝIP

1 (t;β) and
ĝIP

2 (t) are the consistent estimators of g1(t;β) and g2(t), respectively, and ĝIP(t) =
ĝIP

2 (t)−ĝIP
1 (t;β) is a consistent estimator of g(t). Unfortunately, Ỹ I

i j contains unknown
parameter β and nonparametric function g(Ti j ). A natural idea for solving this prob-
lem is to replace these unknown quantities by their corresponding estimators. Here,
using β̂I (defined in Sect. 2.3) and ĝ(t) (defined in Sect. 2.4) to replace β and
g(t) in ĝIP

1 (t;β) and ĝIP
2 (t) leads to a new estimator of g(t), which is given by

ĝMIP(t) = ĝMIP
2 (t) − ĝIP

1 (t; β̂I ), where ĝMIP
2 (t) = ∑n

i=1
∑ni

j=1 Wi j (t)Ỹ MIP
i j with

Ỹ MIP
i j = δi j Yi j/p(Xi j , Ti j )+ (1 − δi j/p(Xi j , Ti j ))( f (Xi j ; β̂I )+ ĝ(Ti j )).

3 Asymptotic properties

Here, we assume that function ∂ f (Xi j ;β)/∂β can be written as

∂ f (Xi j ;β)
∂βa

= ha(Ti j ;β)+ ui ja(β), i = 1, . . . , n, j = 1, . . . , ni , a = 1, . . . , p,

where ha(Ti j ;β) = E(∂ f (Xi j ;β)/∂βa |Ti j ). Then, we have d̃i j (β) = ui ja(β) +
ȟa(Ti j ;β), where ȟa(Ti j ;β) = ha(Ti j ;β)−ĥa(Ti j ;β)with ĥa(Ti j ;β)=∑n

k=1
∑nk

l=1
W C

kl(Ti j )∂ f (Xkl;β)/∂βa .
Based on the above-mentioned notation, we consider asymptotic distributions of the

LELRFs 
l(β) and the estimators β̂l (l = c, I ) for parameter β presented in Sects. 2.2
and 2.3.

Theorem 1 Suppose that the conditions (A1)–(A11) given in the Appendix hold. If β

is the true parameter, then 
l(β)
L→ χ2

p for l = c and I , where χ2
p is the Chi-squared

distribution with p degrees of freedom, and
L→ denotes the convergence in distribution.

Let χ2
p,α be the upper α-percentile of the central Chi-squared distribution with p

degrees of freedom for 0 < α < 1. It follows from Theorem 1 that the approximate
100(1 − α) % EL confidence region (ELCR) for β can be obtained by {β : 
l(β) ≤
χ2

p,α} for l = c and I .

Theorem 2 Suppose that the conditions (A1)–(A11) given in the Appendix hold. If β
is the true parameter, then we have

√
n(β̂k − β)

L→ N (0, Ξ−1
k ΛkΞ

−1
k ) for k = c, I,
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EL semiparametric nonlinear regression analysis 647

where Λc = limn→∞ n−1 ∑n
i=1 uT

i Δi V −1
i ΔiΣiΔi V −1

i Δi ui , Ξc = limn→∞ n−1
∑n

i=1 uT
i Δi V −1

i Δi ui , ΛI = limn→∞ n−1 ∑n
i=1 uT

i V −1
i Δ̃iΣi Δ̃i V −1

i ui, Δ̃i =
diag(δi1/P(Xi1, Ti1),. . ., δini /P(Xini , Tini )), ΞI = limn→∞ n−1 ∑n

i=1 uT
i V −1

i Δ̃i ui ,
ui = (ui1, . . . , uini )

T with ui j = (ui j1, . . . , ui jp)
T.

Let Ω̂k = Ξ̂−1
k Λ̂kΞ̂

−1
k , where Λ̂k = n−1 ∑n

i=1 Zik(β̂)ZT
ik(β̂) and Ξ̂k =

n−1 ∑n
i=1{∂Zik(β)/∂β}

β=β̂k
for k = c and I . It is easily shown that Ω̂k is the consis-

tent estimator of Ξ−1
k ΛkΞ

−1
k for k = c and I . Then, it follows from Theorem 2 that

√
nΩ̂−1/2

k (β̂k −β) L→ N (0, Ip), which yields n(β̂k −β)TΩ̂−1
k (β̂k −β) L→ χ2

p, where
Ip is the p × p identity matrix. Therefore, the approximate 100(1 − α) % ELCR for
β can be constructed by {β : n(β̂k − β)TΩ̂−1

k (β̂k − β) ≤ χ2
p,α} for k = c and I .

Theorem 3 Suppose that the conditions (A1)–(A11) given in the Appendix hold and
the kernel function K (·) is twice continuously differentiable on [0, 1]. If g(t0) is the

true value of the baseline function g(t), then we have 
R(g(t0))
L→ χ2

1 .
By Theorem 3, an approximate 100(1−α)% pointwise EL confidence interval (CI)

for g(t0) can be constructed by {g(t0) : 
̂(g(t0)) ≤ χ2
1,α}.

Theorem 4 Suppose that the conditions (A1)–(A11) in the Appendix hold. Then, we
have

√
Nh{ĝ(t0)− g(t0)} − b(t0){q(t0)κ(t0)}−1 L→ N (0, γ 2(t0)),

where b(t0) = h5/2
0 [g′(t0){q ′(t0)κ(t0) + q(t0)κ ′(t0)} + 1

2 g′′(t0)q(t0)κ(t0)]
∫ 1
−1 u2

K (u)du, γ 2(t0)=V 2(t0){q(t0)κ(t0)}−2 with V 2(t0)=σ 2
ε (t0)q(t0)κ(t0)

∫ 1
−1 K 2(u)du,

the definitions of q(t0) and κ(t0) are given in Appendix, and h0 is a constant defined
in the condition (A3) of Appendix.

Proposition 1 If the condition (A2) is substituted by the condition that Nh2/ log(N )
→ ∞ and Nh5 → 0, then the bias term b(t0) is asymptotically zero and

√
Nh{ĝ(t0)−

g(t0)} L→ N (0, γ 2(t0)).
To construct the pointwise CI for g(t0) based on the above-presented normal

approximation (NA), we must first estimate b(t0) and γ 2(t0). It is easily shown
from

∫
uK (u)du = 0 and h → 0 that

√
N/hE{δ(g(T ) − g(t0))Kh(T − t0)} =

b(t0)+ op(1), which implies that a consistent estimator of b(t0) can be expressed as

b̂(t0) = (Nh)−1/2
n∑

i=1

ni∑

j=1

δi j {ĝ(Ti j )− ĝ(t0)}Kh(Ti j − t0).

Similar to Xue and Xue (2011), we can estimate γ 2(t0) by γ̂ 2(t0) = V̂ 2(t0){q̂(t0)
κ̂(t0)}−2, where κ̂(t0) = (Nh)−1 ∑n

i=1
∑ni

j=1 Kh(Ti j − t0), q̂(t0) = (Nh)−1 ∑n
i=1∑ni

j=1 Kh(Ti j − t0)δi j/κ̂(t0) and V̂ (t0) = (Nh)−1 ∑n
i=1 η̂i E (g(t0)) with η̂i E (g(t)) =

∑ni
j=1 δi j {Yi j − f (Xi j ; β̂)− g(t)}Kh(Ti j − t). Then, it follows from Theorem 4 that
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γ̂−1(t0)[
√

Nh{ĝ(t0)−g(t0)}−b̂(t0){q̂(t0)κ̂(t0)}−1] L→ N (0, 1). Thus, an approximate
100(1 − α) % CI for g(t0) is given by

ĝ(t0)− (Nh)−1/2b̂(t0){q̂(t0)κ̂(t0)}−1 ± zα/2(Nh)−1/2γ̂ (t0),

where zα/2 is the upper α/2 percentile of the standard normal distribution, “−” and
“+” correspond to the lower limit and the upper limit of the confidence interval,
respectively.

Proposition 2 If the condition presented in Proposition 1 holds, the approximation
100(1 − α) % CI for g(t0) can be expressed as ĝ(t0)± zα/2(Nh)−1/2γ̂ (t0).

Theorem 5 Suppose that the conditions (A1)–(A11) given in the Appendix hold. Then,

we have ĝMIP(t) − g(t) = Op((nh)− 1
2 + (nb)− 1

2 + b + h). In particular, if h =
O(n−1/3) and b = O(n−1/3), we have ĝMIP(t)− g(t) = Op(n−1/3).

Theorem 5 shows that ĝMIP(t) attains the optimal convergence rate of nonpara-
metric kernel regression estimator when h = O(n−1/3)and b= O(n−1/3) (Stone 1980).

4 Numerical examples

4.1 Simulation studies

(1) One-dimensional case

In the simulation study, the data set {Yi j : i = 1, . . . , n, j = 1, . . . , ni } was generated
from the following semiparametric nonlinear model: Yi j = exp(Xi jβ)+cos(4πTi j )+
εi j with the true value of parameterβ beingβ = 1.5. To generate Yi j , we independently
simulated Xi j and the time point Ti j from the uniform distribution U (0, 1) and then
generated εi j via εi j = ei + vi j in which ei and vi j were independently generated
from N (0, σ 2

e ) and N (0, σ 2
v ) with the true values of parameters σ 2

e and σ 2
v being

σ 2
e = 1.0 and σ 2

v = 1.0. This structure for generating εi j ensures dependence among
the repeated measurements Yi j for each subject i because cov(εi j , εik) = σ 2

e and
the correlation coefficient between Yi j and Yik is σ 2

e /(σ
2
e + σ 2

v ) for j �= k. For
simplicity, we consider the balanced design, i.e. n1 = · · · = nn = J . To create the
missing data for responses Yi j , we consider the following four cases for the selection
probability function p(x, t; γ ) = exp(γ0 +γ1x +γ2t)/(1+exp(γ0 +γ1x +γ2t))with
γ = (γ0, γ1, γ2) specified by (1) γ = (1.85, 0.02, 0.05), (2) γ = (1.0, 0.5, 0.05),
(3) γ = (1.0, 0.001, 0.012) and (4) γ = (0.4, 0.01, 0.02). Clearly, the considered
missing data mechanism is MAR. For each given case of the selection probability
p(x, t; γ ), the missing data Yi j ’s were created via the following steps: (a) we first
generated a random number τ from the uniform distribution U (0, 1) and then (b)
the observation Yi j was missing if τ ≤ 1 − p(Xi j , Ti j ; γ ) and we set δi j = 0, and
δi j = 1 otherwise. In evaluating MELE and CI for β and estimating the parametric
function g(t) = cos(4π t), we took the kernel function to be the Gaussian kernel
K (u) = (2π)−1/2 exp(−u2/2) and set the bandwidths h and b to be n−1/5; we use the
reweighted least squares iterative algorithm to estimate the parameterγ . We considered
the following three different kinds of working covariance matrices in the simulation
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study, that is, we took V = IJ (working independence), V = Σi (true covariance
matrix) and V = Ṽi (estimator of V ), where Ṽi is evaluated using the formulae
introduced in Sects. 2.2 and 2.3.

For each of the above-specified four cases for γ , we independently simu-
lated 500 random samples of incomplete data set {(Xi j ,Yi j , Ti j , δi j ) : i =
1,. . ., n, j = 1,. . ., J } with n = 50 and 100 and J = 4. The mean response
rates for the above given four cases were roughly E[p(X, T ; γ )] ≈ 90.07,
83.47, 79.87 and 70.10 %, respectively. Results are reported in Table 1 in which
’Bias’ is the absolute difference between the true value and the mean of 500

Table 1 Bias, RMS, coverage probability and average length of β under different missing functions
P(X, T ) and sample sizes when nominal level is 0.95 and p = 1

Methods n = 50 n = 100

CEL IEL CEL IEL

I Σi Ṽi I Σi Ṽi I Σi Ṽi I Σi Ṽi

Case 1

Bias 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.000 0.000 0.002 0.000 0.000

RMS 0.087 0.0710 0.073 0.087 0.073 0.076 0.062 0.050 0.051 0.062 0.051 0.052

NACP 0.922 0.938 0.920 0.946 0.938 0.908 0.932 0.934 0.926 0.966 0.944 0.926

NAAL 0.319 0.266 0.256 0.356 0.271 0.262 0.226 0.186 0.182 0.251 0.190 0.187

ELCP 0.922 0.936 0.918 0.922 0.932 0.912 0.930 0.940 0.930 0.930 0.946 0.940

ELAL 0.325 0.267 0.256 0.325 0.273 0.263 0.225 0.184 0.180 0.225 0.188 0.184

Case 2

Bias 0.003 0.003 0.004 0.003 0.003 0.004 0.002 0.000 0.000 0.002 0.001 0.001

RMS 0.091 0.074 0.077 0.091 0.079 0.083 0.063 0.052 0.053 0.063 0.053 0.055

NACP 0.912 0.940 0.926 0.974 0.934 0.920 0.946 0.936 0.928 0.980 0.944 0.924

NAAL 0.331 0.278 0.269 0.395 0.287 0.279 0.233 0.194 0.191 0.277 0.201 0.198

ELCP 0.920 0.936 0.924 0.922 0.924 0.918 0.946 0.932 0.932 0.944 0.944 0.930

ELAL 0.337 0.280 0.270 0.336 0.290 0.282 0.232 0.192 0.188 0.232 0.199 0.196

Case 3

Bias 0.004 0.005 0.006 0.004 0.004 0.006 0.003 0.001 0.001 0.003 0.000 0.000

RMS 0.092 0.078 0.081 0.092 0.082 0.087 0.064 0.053 0.055 0.064 0.055 0.057

NACP 0.924 0.942 0.918 0.978 0.930 0.916 0.944 0.932 0.934 0.982 0.944 0.930

NAAL 0.340 0.288 0.280 0.429 0.298 0.292 0.239 0.201 0.198 0.300 0.209 0.207

ELCP 0.924 0.940 0.916 0.928 0.926 0.916 0.944 0.936 0.932 0.942 0.948 0.940

ELAL 0.347 0.291 0.282 0.344 0.302 0.295 0.239 0.199 0.196 0.238 0.208 0.205

Case 4

Bias 0.002 0.002 0.003 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.000

RMS 0.099 0.084 0.087 0.099 0.092 0.098 0.067 0.058 0.060 0.067 0.061 0.063

NACP 0.922 0.936 0.922 0.984 0.922 0.914 0.944 0.942 0.934 0.998 0.944 0.938

NAAL 0.361 0.314 0.307 0.521 0.328 0.326 0.255 0.219 0.216 0.364 0.230 0.229

ELCP 0.918 0.940 0.928 0.920 0.930 0.908 0.944 0.942 0.938 0.946 0.954 0.942

ELAL 0.369 0.318 0.310 0.365 0.335 0.331 0.255 0.217 0.215 0.253 0.230 0.229
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estimates, and ‘RMS’ is the root mean square between 500 estimates and its true
value; ‘CEL’ and ‘IEL’ represent the EL methods with the complete-case data and
the imputed values for missing responses, respectively; ‘NACP’ and ‘ELCP’ denote
coverage probabilities of NA-based and EL-based CIs for β with 95 % confidence
level, respectively; ‘NAAL’ and ‘ELAL’ denote average lengths (AL) of NA-based
and EL-based CIs for β with 95 % confidence level, respectively.

From Table 1, we have following observations: (1) the CEL method has shorter
interval length than the IEL method; (2) the EL-based method produces shorter inter-
val length but larger coverage probability than the NA-based method; (3) the coverage
probabilities for our considered EL-based CI and NA-based CI are close to the prespec-
ified nominal level when the sample size is large or the average proportion of missing
data is small; (4) the widths for the EL-based CI and the NA-based CI decrease as
sample size n increases for every fixed selection probability function; (5) the aver-
age length depends on the selection probability function, namely, the average length
increases as the missing rate increases; (6) the EL-based estimate for β is reasonably
accurate under different cases for the selection probability function and all considered
sample sizes including small sample case; and (7) the values of Bias and RMS via
the true working covariance matrix are smaller than the other two cases, whilst the
method via the estimated working covariance matrix performs better than the method
with the identity working covariance matrix; the CI via the estimated working covari-
ance matrix outperforms the CI via the identity and true working covariance matrices
in terms of the length of CI. These results show that increasing n or reducing missing
rate can improve the accuracy of estimators.

To investigate the performance of the constructed pointwise CIs for g(t), we com-
pute the 95 % confidence bands of g(t) with 400 simulation runs via the residual-
adjusted-EL-based method (see Sect. 2.4) and NA-based method (see Theorem 4)
under the first case for the selection probability function p(x, t; γ ). Results for
n = 100 are presented in Fig. 1, which indicates that the proposed EL-based method
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Fig. 1 95 % Confidence bands for g(t) based on EL (dashed curves) and NA (dotted curves) with n = 100
and p = 1 for the first case of the selection probability function. The solid curve represents the real curve
of g(t)
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Fig. 2 Simulated curves of ĝC (t), ĝ[MIP](t) for four missing functions P(x, t) and two sample sizes when
p = 1. The red solid line represents the true curve of g(t), the dotted curve represents the estimated curve
ĝC (t) based on CEL method, the dashed lines are ĝ[MIP](t), respectively

behaves satisfactorily. Although the NA-based method gives a slightly narrower
confidence band than the EL-based method, the latter does not require consistent esti-
mator for the asymptotic variance, it is much easier to implement than the NA-based
method.

To investigate the accuracy of the proposed ĝC (t) and ĝMIP(t) for g(t) under dif-
ferent missing cases for p(x, t; γ ) and sample sizes, we compute 1, 000 simulated
values of ĝC (t) (see Sect. 2.2) and ĝMIP

n (t). Figure 2 presents their corresponding
simulated curves on the inner points against the true curve of g(t). Figure 2 shows that
our proposed estimated curves are rather close to the true one in general.
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(2) Two-dimensional case

In this simulation study, we consider the following two-dimensional semiparametric
nonlinear model for longitudinal data Yi j = exp{X1i jβ1 + X2i jβ2}+cos(4πTi j )+εi j .
Here, X1i j , X2i j and Ti j were independently generated from the uniform distribution
U (0, 1), εi j was generated by εi j = ei + vi j in which ei and vi j were independently
generated from N (0, σ 2

e ) and N (0, σ 2
v ) with the true values of σ 2

e and σ 2
v being σ 2

e =
σ 2
v = 1.0, leading to a correlation structure for yi = (yi1, . . . , yini )

T. Then, Yi j ’s
were generated from the above specified two-dimensional semiparametric nonlinear
model with the true value of β being β = (β1, β2)

T = (1.0, 0.5)T. We set the number
of repeated measures ni to be the same, say m. The selection probability p(x, t; γ ) =
exp(γ0 + γ1x + γ2t)/(1 + exp(γ0 + γ1x + γ2t)) with γ = (γ0, γ1, γ2) is taken to
be (1) γ = (1, 0.5, 0.5, 0.05) and (2) γ = (0.4, 0.01, 0.02). For each of two cases,
the missing data are created as done in the one-dimensional case. In evaluating EL
estimates and confidence regions for β and estimating g(t) = cos(4π t), we took the
same kernel function and bandwidth h as done in the one-dimensional case; we also
used the reweighted least squared iterative algorithm to obtain estimate of parameter
γ . For each case, we independently generated 500 random samples of incomplete data
set {(X1i j , X2i j ,Yi j , Ti j , δi j ) : i = 1, . . . , n, j = 1, . . . ,m} with n = 50 and 100
and m = 4. The mean response rates for two cases are E[p(X, T )] ≈ 86.44 and
70.23 %, respectively. Based on the generated 500 data sets for each given selection
probability function p(x, t; γ ), we computed the values of Bias and RMS, and the
coverage probabilities and interval lengths for the 95 % CIs of β1 and β2 via the
EL-based method and the NA-based method under n = 50 and 100 with m = 4.
Here, a grid search algorithm was used to evaluate the EL-based CIs for β1 and β2
via the following steps: (i) arbitrarily give two intervals which, respectively, contain
the true values β1 = 1.0 and β2 = 0.5; (ii) given a search step length, we evaluated
the LELRF 
l(β) (l = c, I ) at each search point belonging to the given interval and
found the gridpoint β̂0 = (β̂10, β̂20) such that 
l(β̂0) ≤ χ2

2,α , which indicates that

β̂0 is just the upper or lower bound of the EL-based CI. Results are presented in
Table 2. Examination of Table 2 shows that (1) MELEs and the 95 % CIs for β1 and
β2 are rather accurate; (2) the efficiency of MELE can be improved by considering
the within-group correlation structure; and (3) the CP of the CEL method with true
covariance matrix is closer to the prespecified confidence level than that of the CEL
method with estimated covariance matrix when sample size is small (e.g., n = 50),
but the CEL method with true covariance matrix becomes more conservative than that
with estimated covariance matrix when sample size is large (e.g., n = 100) whose
main reason is that the missing rate corresponding to n = 100 is higher than that
corresponding to n = 50.

We computed the 95 % confidence band of g(t)with 400 simulation runs via the EL-
based method and the NA-based method for the first case of the selection probability
function. Results for n = 100 were shown in Fig. 3, which implies that our proposed
EL-based method behaves satisfactorily. In addition, Fig. 4 displayed the simulated
curves on the inner points against the true curve of g(t) based on 1, 000 simulated
values of ĝC (t) and ĝMIP

n (t) under different missing functions p(x, t) and sample
sizes, which shows that the same findings are observed as in Fig. 2.
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Table 2 Bias, RMS, coverage probability and average length of β under different missing functions
P(X, T ) and sample size when nominal level is 0.95 and p = 2

Methods n = 50 n = 100

CEL IEL CEL IEL

I Σi Ṽi I Σi Ṽi I Σi Ṽi I Σi Ṽi

Estimate of β1 with p1(x, t)

Bias 0.001 0.004 0.004 0.002 0.003 0.002 0.001 0.001 0.000 0.001 0.000 0.001

RMS 0.121 0.100 0.105 0.122 0.103 0.110 0.088 0.072 0.072 0.088 0.076 0.078

NACP 0.946 0.868 0.922 0.944 0.948 0.924 0.938 0.876 0.944 0.942 0.936 0.926

NAAL 0.477 0.326 0.386 0.478 0.414 0.403 0.339 0.227 0.275 0.337 0.289 0.284

ELCP 0.937 0.953 0.930 0.945 0.945 0.928 0.957 0.965 0.943 0.949 0.967 0.947

ELAL 0.280 0.228 0.217 0.279 0.236 0.226 0.194 0.158 0.154 0.193 0.161 0.158

Estimate of β1 with p2(x, t)

Bias 0.001 0.002 0.003 0.001 0.004 0.005 0.006 0.003 0.003 0.006 0.003 0.003

RMS 0.134 0.115 0.119 0.134 0.123 0.132 0.099 0.083 0.085 0.099 0.088 0.092

NACP 0.950 0.884 0.916 0.944 0.946 0.928 0.950 0.864 0.932 0.950 0.940 0.940

NAAL 0.534 0.375 0.449 0.529 0.490 0.486 0.378 0.261 0.319 0.375 0.342 0.339

ELCP 0.941 0.932 0.915 0.930 0.939 0.909 0.945 0.963 0.949 0.947 0.943 0.926

ELAL 0.319 0.267 0.261 0.319 0.287 0.282 0.215 0.183 0.180 0.213 0.191 0.188

Estimate of β2 with p1(x, t)

Bias 0.004 0.009 0.008 0.003 0.007 0.005 0.007 0.004 0.004 0.006 0.003 0.002

RMS 0.141 0.112 0.118 0.141 0.116 0.124 0.099 0.079 0.081 0.099 0.083 0.086

NACP 0.944 0.892 0.944 0.942 0.952 0.926 0.948 0.902 0.946 0.952 0.954 0.944

NAAL 0.539 0.372 0.438 0.538 0.469 0.455 0.381 0.255 0.309 0.379 0.324 0.319

ELCP 0.937 0.953 0.930 0.945 0.945 0.928 0.957 0.965 0.943 0.949 0.967 0.947

ELAL 0.280 0.228 0.217 0.279 0.236 0.226 0.194 0.158 0.154 0.193 0.161 0.158

Estimate of β2 with p2(x, t)

Bias 0.009 0.010 0.009 0.009 0.012 0.011 0.004 0.004 0.003 0.004 0.002 0.001

RMS 0.160 0.135 0.141 0.160 0.140 0.152 0.113 0.093 0.095 0.112 0.102 0.106

NACP 0.938 0.892 0.924 0.942 0.944 0.938 0.936 0.868 0.928 0.944 0.928 0.924

NAAL 0.604 0.426 0.509 0.600 0.556 0.551 0.426 0.294 0.358 0.421 0.383 0.381

ELCP 0.941 0.932 0.915 0.930 0.939 0.909 0.945 0.963 0.949 0.947 0.943 0.926

ELAL 0.319 0.267 0.261 0.319 0.287 0.282 0.215 0.183 0.180 0.213 0.191 0.188

4.2 A real example

A longitudinal data set from the pediatric AIDS clinical trial group ACTG 315 study
was used to illustrate our proposed methodologies. In an AIDS clinical trial, plasma
HIV RNA copies (viral load) and CD4+ cell counts were two important surrogate
markers for evaluating antiviral therapies (Saag et al. 1996; Mellors et al. 1996).
Clinical investigators’ main purpose is to study their relationship during antiviral treat-
ment. In this study, viral load and CD4+ cell counts from 46 patients were measured on
treatment days t = 0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 25, 27, . . . , 175,
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Fig. 3 95 % confidence bands for g(t) based on EL (dashed curves) and NA (dotted curves) with n = 100
and p = 2 for the first case of the selection probability function. The solid curve represents the real curve
of g(t)
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Fig. 4 Simulated curves of ĝC (t), ĝ[MIP](t)with two missing functions P(x, t) and two sample sizes when
p = 2. The red solid line represents the true curve of g(t), the dotted curve represents the estimated curve
ĝC (t) based on CEL method, and the dashed line represents the estimated curves ĝ[MIP](t), respectively

182, 196 after initiation of an antiviral therapy, and 361 complete pairs of viral
load and CD4+ cell count were obtained. The number of the measured time
points on individual patients ranges from 4 to 8. The data set has even been
analysed by Liang et al. (2003) and Xue and Xue (2011). The preceding studies in
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Liang et al. (2003) and Xue and Xue (2011) suggested that viral load depends linearity
on CD4 cell count but nonlinearly on treatment time; however, the scatterplot between
viral load and CD4 cell count shows that there is no rigorous linearity between viral
load and CD4 cell count. Therefore, here we used the following semiparametric non-
linear model to formulate the relationship between viral load and CD4 cell count:
Yi j = exp(Xi jβ) + g(Ti j ) + εi j , where Yi j and Xi j are the viral load and the CD4+
cell count for subject i at treatment time Ti j , respectively. To illustrate the application
of our proposed methodologies, we created missing data via the following selection
probability function: p(x, t; γ ) = exp(γ0 +γ1x +γ2t)/(1+exp(γ0 +γ1x +γ2t))with
γ = (γ0, γ1, γ2) = (0.4, 0.05, 0.1). Based on this selection probability function and
the assumption that Yi1 was always observed, the missing data for Yi j were created with
the following steps: (a) we generated a random number τ from the uniform distribution
U (0, 1), (b) Yi j was missing if τ ≤ p(Xi j , Ti j ; γ ) for i = 1, . . . , 46, j = 1, . . . , ni .
The corresponding missing proportion is roughly 15 %. As commonly done in AIDS
clinical trials, we used log10 scale in viral load and 100−1 scale in CD4 cell counts to
stabilize the variance and computational algorithms.

In the real example analysis, we took the kernel function to be K (u) =
(2π)−1/2 exp(−u2/2), the bandwidth h to be h = 24.35 (Xue and Xue 2011) and
used the reweighted least squares iterative algorithm to obtain estimate of parame-
ter γ in the selection probability function. Based on the above-given kernel func-
tion and bandwidth, we computed estimate for β and its corresponding 95 % EL-
based and NA-based CIs. Estimate of β is β̂I = −0.5713, which indicated that the
CD4+ cell counts have a negative effect on viral load during antiviral treatments; this
result is consistent with that given in Liang et al. (2003) and Xue and Xue (2011).
The 95 % EL-based and NA-based (NA-based) CIs for β are (−0.7200,−0.4620)
and (−0.6964,−0.4462), respectively. In addition, we evaluated the 95 % EL-based

0 20 40 60 80 100 120 140 160 180 200
1.5
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2.5

3

3.5

4

4.5

t

g(
t)

Fig. 5 95 % confidence bands for g(t) based on EL (the dotted curve) and NA (the “x-symbol” curve) in
the real example. The star curve represents the estimated curve of g(t)
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(see Sect. 2.4) and NA-based CIs for g(t) (see Theorem 4). The corresponding results
were reported in Fig. 5, which shows that (1) the viral load RNA levels rapidly decrease
after initial antiviral treatment, then rebound a bit little and finally become nearly flat,
(2) the EL-based method gives a narrower band than the NA-based method; these
results were consistent with those given in Xue and Xue (2011).

5 Conclusions

By introducing the working covariance matrix into the auxiliary random vector, we
develop an EL-based inference procedure for a semiparametric nonlinear regres-
sion model for longitudinal data with response missing at random. Two MELEs for
unknown parameter β in our considered semiparametric nonlinear regression models
were presented on the basis of the complete-case data and the imputed values of miss-
ing responses. Also, a maximum residual-adjusted EL estimator and an imputation
estimator for the smoothing functions were proposed. We systematically investigate
the asymptotic properties of the MELEs under this new setting. Our main contri-
bution is that (1) our considered model is more general than nonlinear regression
model and semiparametric regression model with response missing at random, which
indicates that our proposed theoretical results are new; (2) the working covariance
matrix is introduced to accommodate for the within-subject correlation, which can
be used to improve the efficiency of MELE; and (3) we proved that our constructed
EL ratio statistic for β follows asymptotically the central Chi-squared distribution,
which can be directly used to construct confidence regions of parameters in our con-
sidered semiparametric nonlinear regression model without any extra Monte Carlo
approximation needed when our proposed EL method is not used. We extended the
EL inference procedure for semiparametric regression models with missing response
at random to semiparametric nonlinear regression models for longitudinal data with
missing response at random by incorporating the within-subject correlation into the
constructed auxiliary vectors.

Appendix

For convenience and simplicity, let c denote a positive constant which may represent a
different value at different cases throughout this paper. Denote q(t) = E(δ|T = t) and
assume that variable T has the probability density function κ(t). Denote N = ∑n

i=1 ni

and suppose n = O(N ). The following conditions are required for results given in
Theorems 1–5:

(A1) The selection probability function p(x, t) and the X -density function Γ (x)
have bounded partial derivatives up to order s with s ≥ 2.

(A2) Let S(γ ) be the score function of the partial likelihood L(γ ) for parameter
γ = (γ0, γ

T
1 , γ2)

T defined in Sect. 2.1 and γ ∗ be in the interior of com-
pact set ϒ . We assume var(S(γ )) is a finite and positive definite matrix,
and E(∂S(γ )/∂γ |γ=γ ∗) exists and is invertible. The missing propensity
p(Xi j , Ti j ; γ ) > c0 > 0 for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ni }.
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(A3) The bandwidth satisfies h = h0 N−1/5 for some constant h0 > 0, and b =
b0 N−1/5 for some constant b0 > 0.

(A4) The kernel function K (·) is a symmetric and bounded probability density func-
tion with support [−1, 1].

(A5) For each design, points {Ti j : i = 1, . . . , n, j = 1, . . . , ni } are assumed to be
independent and identically distributed from a super-population density κ(t).
Both q(t) and κ(t) have continuous and bounded derivatives on (0,1) and are
bounded away from zero and infinity on [0,1].

(A6) The residuals εi j and ui j are independent of each other, and εi j and ui j are,
respectively, independent of εi ′ j and ui ′ j for any i �= i ′. Further, we assume

that E |εi j |4+r < ∞, max1≤i≤n ‖ui j‖ = op{n
2+r

2(4+r) (logn)−1} for some r > 0.
(A7) The matrices Λi and Ξi (i = c, I ) defined in Theorem 2 are positive definite.
(A8) The functions g(t) and h(t) are twice continuously differentiable on (0,1).
(A9) The function f (X;β) is continuous with respect to β in a compact set �.

(A10) There exit two positive constants c1 and c2 such that

0 ≤ min
1≤i≤n

λi1 ≤ min
1≤i≤n

λini ≤ c2 < ∞,

where λi1 and λini denote the smallest and largest eigenvalues of Σi , respec-
tively.

(A11) There exit two positive constants c3 and c4 such that

0 ≤ min
1≤i≤n

λ
′
i1 ≤ min

1≤i≤n
λ

′
ini

≤ c2 < ∞,

where λ
′
i1 and λ

′
ini

denote the smallest and largest eigenvalues of Vi , respec-
tively.

Condition (A1) is the standard assumption for nonparametric regression problem.
p(x, t) being bounded away from zero in condition (A1) indicates that data cannot be
missing with probability 1 anywhere in the domain of the (X, T )-variable. Condition
(A2) is a regular condition for consistence of MLE for parameter γ in the selection
probability. Smoothing conditions (A4), (A5) and (A8) are the standard conditions
for nonparametric problems. Conditions (A6) and (A7) are necessary for asymptotic
normality. Condition (A3) gives the rate of the optimal bandwidth for estimating g(t)
and ensures that undersmoothing ĝ(t) is not needed so that we can use the data-driven
approach to select the optimal bandwidth. Condition (A9) is a regular condition for
the general nonlinear models (Wu 1981). Conditions (A10) and (A11) are widely used
in longitudinal data analysis.

To complete Proofs of Theorems 1–5, the following Lemmas are needed:
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Lemma 1 Suppose that the conditions (A1)–(A11) hold. Then, for any constants a
and b with 0 < a < b < 1, we have

sup
a≤t≤b

E{|ĝC
1n(Ti j ;β)− gC

1 (Ti j ;β)|2|Ti j = t} = O((nh)−1 + h4),

sup
a≤t≤b

E{|ĝC
2n(Ti j )− gC

2 (Ti j )|2|Ti j = t} = O((nh)−1 + h4),

sup
a≤t≤b

E{|ĥ(Ti j ;β)− h(Ti j ;β)|2|Ti j = t} = O((nh)−1 + h4).

Proof For simplicity, we only prove the second equation. The other two equations
can be similarly proved. According to the inequality (A + B)2 ≤ 2A2 + 2B2 for any
constants A and B and

∑n
k=1

∑ni
l=1 W C

kl(Ti j ) = 1, we can prove that E{|ĝC
2n(Ti j ) −

gC
2 (Ti j )|2|Ti j = t} ≤ I1(t) + I2(t), where I1(t) = 2E{|∑n

k=1
∑nk

l=1 W C
kl(Ti j )(Ykl −

gC
2 (Tkl))|2|Ti j = t} and I2(t) = 2E{| ∑n

k=1
∑nk

l=1 W C
kl(Ti j )(gC

2 (Tkl) − gC
2 (Ti j ))|2|

Ti j = t}.
We first prove that supa≤t≤b I2(t) = O(n−1h + h4). Let q(t) = E(δ|T =

t), m(t) = q(t)κ(t) and m̂(t) = (nh)−1 ∑n
i=1

∑ni
j=1 δi j Kh(Ti j − t). Follow-

ing the standard procedure in a nonparametric regression, it can be shown that
maxa≤t≤b |m̂(t) − m(t)| = O(n−1/5) a.s.. Hence, it follows from condition (A4)
that there are two positive constants c1 and c2 such that min0≤t≤1 m(t) ≥ c1 and
min0≤t≤1 m̂(t) ≥ c2 a.s.. Let ψkl(Ti j ) = Kh(Tkl − Ti j )δkl{gC

2 (Tkl)− gC
2 (Ti j )}. Then,

by conditions (A3), (A4) and (A7), we have maxa≤t≤b |E{ψkl(Ti j )|Ti j = t}| = O(h3)

and maxa≤t≤b |E{ψ2
kl(Ti j )|Ti j = t}| = O(h3). Based on these results, it is easy to

show that I2(t) ≤ cn−1h + ch4.
Again, it is easy to show that E{δkl(Ykl − gC

2 (Tkl))} = 0. Then, we can obtain that
I1(t) ≤ c(nh)−1. Combining the above inequalities finishes the proof of the second
equation. 
�
Lemma 2 Suppose that the conditions (A1)–(A11) hold. Then, we have

n−1/2
n∑

i=1

Zi1(β)
L→ N (0,Λc), n−1/2

n∑

i=1

Zi2(β)
L→ N (0,ΛI ),

where Λc and ΛI are defined in Theorem 2.

Proof Let ǧ(Ti j ) = g(Ti j ) − ĝ(Ti j ) = g(Ti j ) − ĝC
2n(Ti j ) + ĝC

1n(Ti j ;β). Denote
σ kl

i be the (k, l)th component of V −1
i . Then, we have n−1/2 ∑n

i=1 Zi1(β) �
U1 + U2 + U3 + U4, where U1 = n−1/2 ∑n

i=1
∑ni

k=1

∑ni
l=1{δikδiluikσ

kl
i εil}, U2 =

n−1/2 ∑n
i=1

∑ni
k=1

∑ni
l=1{δikδilσ

kl
i ȟ(Tik, β)εil}, U3 = n−1/2 ∑n

i=1
∑ni

k=1

∑ni
l=1

{δikδilσ
kl
i uik ǧ(Til)}, U4 = n−1/2 ∑n

i=1
∑ni

k=1

∑ni
l=1{δikδilσ

kl
i ȟ(Tik, β)ǧ(Til)}.

We first prove Uk = op(1) for k = 2, 3, 4. It follows from Lemma 1 that E‖U2‖2

≤ c{(nh)−1 + h4} → 0. Similarly, we obtain E‖U3‖2 ≤ c{(nh)−1 + h4} → 0. By
Lemma 1 and the Cauchy–Schwarz inequality, we can obtain E‖U3‖ ≤ c

√
n{(nh)−1+

h4} → 0. Based on the above equations, we can prove that U j
P→ 0 for j = 2, 3 and

4. These results show that we only need to prove U1
L→ N (0,Λ1) to show that Lemma

2 holds. It is easy to show that var(U1) = Λc because U1 is a sum of independent
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random variables. Thus, we only need to check whether U1 satisfies condition of the
Cramer–Wold Theorem and the Lindeberg–Feller condition. For any α ∈ R p and
ε > 0, let Ln �

∑n
i=1 var{∑ni

k=1

∑ni
l=1 α

′δikδiluikσ
kl
i εil} = O(n) and I (·) be an

indicator function. Then, we can show

gn(ε) = 1

Ln

n∑

i=1

E

{
I

( ni∑

k=1

ni∑

l=1

α′δikδiluik(β)σ
kl
i εil ≥ ε

√
Ln

)

×
( ni∑

k=1

ni∑

l=1

α′δikδiluik(β)σ
kl
i εil

)2
⎫
⎬

⎭ → 0.

Therefore, it follows from the Cramer–Wold Theorem and Lindeberg–Feller Theo-

rem that n−1/2 ∑n
i=1 Zi1(β)

L→ N (0,Λc), where Λc = limn→∞ 1
n

∑n
i=1 uT

i Δi V −1
i

ΔiΣiΔi V −1
i Δi ui .

Denote Pi j (γ̂ ) = P(Xi j , Ti j ; γ̂ ), where γ̂ is a consistent estimator of γ =
(γ0, γ

T
1 , γ2)

T. Since δi j/Pi j (γ̂ ) = {δi j P−1
i j (γ )}{1− P

′
i j (γ )(γ̂ − γ )/Pi j (γ ) +

op(n−1/2)} and ỹ∗
i j − f̃i j (β) = δi j P−1

i j (γ̂ ){ỹi j − f̃i j (β)}+
{
1 − δi j/Pi j (γ̂ )

} { f̃i j (β̂)−
f̃i j (β)}, we can obtain

n−1/2
n∑

i=1

Zi2(β)

= 1√
n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
{uik(β)+ ȟ(Tik, β)}σ kl

i
δil

Pil(γ )
{εil + ǧ(Til)}{1 + op(1)}

}

+1

n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
d̃ik(β)σ

kl
i {1 − δil

Pil(γ )
{1 + op(1)}}d̃il(β)

} √
n(β̂ − β).

� J1 + J2.

For J1, we have

J1 = 1√
n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
uik(β)σ

kl
i

δil

Pil(γ )
εil{1 + op(1)}

}

+ 1√
n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
uik(β)σ

kl
i

δil

Pil(γ )
ǧ(Til){1 + op(1)}

}

+ 1√
n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
ȟ(Tik, β)σ

kl
i

δil

Pil(γ )
εil{1 + op(1)}

}

+ 1√
n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
ȟ(Tik, β)σ

kl
i

δil

Pil(γ )
ǧ(Til){1 + op(1)}

}

� J11 + J12 + J13 + J14.
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Since
√

n J11 is sum of i.i.d random variables, it follows from the Central Limit The-

orem that J11
L→ N (0,ΛI ), where ΛI = limn→∞ 1

n

∑n
i=1 uT

i (β)V
−1
i Δ̃iΣi Δ̃i V −1

i
ui (β). Similarly, for J1k(k = 2, 3, 4), we can prove that J1k = op(1) for k = 2, 3, 4.
Under the MAR assumption and the fact that

√
n(β̂ − β) = Op(1), we can show

that J2 = op(1). Combining the above equations yields that n−1/2 ∑n
i=1 Zi2(β)

L→
N (0,ΛI ).

Lemma 3 Suppose that the conditions (A1)–(A11) hold. Then, we have

1
n

n∑
i=1

Zi1(β)ZT
i1(β)

P→ Λc,
1
n

n∑
i=1

∂Zi1(β)
∂β

P→ Ξc,

1
n

n∑
i=1

Zi2(β)ZT
i2(β)

P→ ΛI ,
1
n

n∑
i=1

∂Zi2(β)
∂β

P→ ΞI ,

whereΞc =− limn→∞ 1
n

∑n
i=1 uT

i Δi V −1
i Δi ui , andΞI =− limn→∞ 1

n

∑n
i=1 uT

i V −1
i

Δ̃i ui .

Proof Let Vi1 = ∑ni
k=1

∑ni
l=1 δikδiluikσ

kl
i εil and Vi2 = ∑ni

k=1

∑ni
l=1 δikδilσ

kl
i

{ȟ(Tik, β)εil +uik ǧ(Til)+ ȟ(Tik, β)ǧ(Til)}, where ȟ(·; ·) and ǧ(·) are defined in proof
of Lemma 2. Then, it follows from the definition of Zi1(β) that Zi1(β) = Vi1 + Vi2,
which leads to

1

n

n∑

i=1

Zi1(β)Z
T
i1(β) = 1

n

n∑

i=1

Vi1V T
i1 + 1

n

n∑

i=1

Vi2V T
i2 + 1

n

n∑

i=1

Vi1V T
i2 + 1

n

n∑

i=1

Vi2V T
i1

� H1 + H2 + H3 + H4.

Using Laws of Large Number, we can obtain H1
P→ Λc. Next, we study the asymptotic

properties of Hv for v = 2, 3 and 4. We first study asymptotic property of H2. Let H2,rs

be the (r, s)th component of H2, and V2i,r be the r th component of Vi2. By the Canchy–

Schwarz inequality, we have ‖H2,rs‖ ≤ (n−1 ∑n
i=1 V 2

2i,r )
1
2 (n−1 ∑n

i=1 V 2
2i,s)

1
2 . It fol-

lows from Lemma 1 that 1
n

∑n
i=1 V 2

2i,r
P→ 0, which indicates H2

P→ 0. Similarly, we

can show that H3
P→ 0 and H4

P→ 0. Therefore, combining the above results yields
1
n

∑n
i=1 Zi1(β)ZT

i1(β)
P→ Λc.

Again, by the definition of Zi1(β), it is easy to show that

1

n

n∑

i=1

∂Zi1(β)

∂β
= 1

n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
δikδilσ

kl
i
∂ d̃ik(β)

∂βT εil

}

+1

n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
δikδilσ

kl
i
∂ d̃ik(β)

∂βT ǧ(Til)

}

−1

n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
δikδilσ

kl
i uikuT

il

}
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−1

n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
δikδilσ

kl
i uik ȟT(Til , β)

}

−1

n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
δikδilσ

kl
i ȟ(Til , β)u

T
ik

}

−1

n

n∑

i=1

ni∑

k=1

ni∑

l=1

{
δikδilσ

kl
i ȟ(Tik, β)ȟ

T(Til , β)
}

� M1 + M2 + M3 + M4 + M5 + M6.

By the Law of Large Number, we obtain M1
P→ 0 and M3

P→ Ξc. It follows from

Lemma 1 that Mv
P→ 0 for v = 2, 4, 5, 6. Combining the above equations yields

1
n

∑n
i=1

∂Zi1(β)
∂β

P→ Ξc. Similarly, we can show that other two equations also hold. 
�

Proof of Theorem 1 Let 
l(β) = 2
∑n

i=1 log(1 + λT
nl(β)Zil(β))

Δ= 2
∑n

i=1 log(1 +
ril), where ril = λT

nl(β)Zil(β) for l = c and I . Taking Taylor expansion of 
l(β) at
ril = 0 yields


l(β) = 2
n∑

i=1

(ril − 1

2
r2

il + ηil) = 2nλT
nl

{
1

n

n∑

i=1

Zil(β)

}
− nλT

nl Slλnl + 2
n∑

i=1

ηil

= n

{
1

n

n∑

i=1

Zil(β)

}T

S−1
l

{
1

n

n∑

i=1

Zil(β)

}
− nξT

nl S−1
l ξnl + 2

n∑

i=1

ηil ,

where ξnl = n−1 ∑n
i=1 Zil(β)r2

il/(1 + ril) = Op(n− 1
2 ), Sl = 1

n

∑n
i=1 Zil(β)ZT

il(β)

and ηil is the remainder term with respect to ril for l = c and I .

From Lemmas 2 and 3, we obtain n{ 1
n

∑n
i=1 Zil(β)}T S−1

l { 1
n

∑n
i=1 Zil(β)} L→ χ2

p
as n → ∞. It follows from the definitions of ξnl and Sl and the above equa-

tions that nξT
nl S−1

l ξnl = nop(n− 1
2 )Op(1)op(n− 1

2 ) = op(1) and 2
∑n

i=1 ηil ≤
2C‖λnl‖3 ∑n

i=1 ‖Zil(β)‖3 = Op(n− 3
2 )op(n

3
2 ) = op(1). Then, combining the above

equations leads to 
l(β)
L→ χ2

p for l = c and I . 
�
Proof of Theorem 2 Let T1nl(β, λnl) = n−1 ∑n

i=1 Zil(β)/{1 + λT
nl Zil(β)} and

T2nl(β, λnl) = n−1 ∑n
i=1{∂Zil(β)/∂β}Tλnl /{1 + λT

nl Zil(β)} for l = c and I .
Then, β̂l and λ̂nl are the solutions of the following equations: T1nl(β, λnl) = 0 and
T2nl(β, λnl) = 0. Taking Taylor expansions of T1nl(β̂l , λ̂nl) and T2nl(β̂l , λ̂nl) at (β, 0)
yields

0 = T1nl(β̂l , λ̂nl) = T1nl(β, 0)+ ∂T1nl(β, 0)

∂β
(β̂l − β)+ ∂T1nl(β, 0)

∂λnl
λ̂nl + op(σnl),

0 = T2nl(β̂l , λ̂nl) = T2nl(β, 0)+ ∂T2nl(β, 0)

∂β
(β̂l − β)+ ∂T2nl(β, 0)

∂λnl
λ̂nl + op(σnl),
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which leads to
(

λ̂nl

β̂l − β

)
= S−1

nl

(−T1nl(β, 0)+ op(σnl)

op(σnl)

)
,

where σnl = ‖β̂l − β‖ + ‖λ̂nl‖ and

Snl =
⎛

⎝
∂T1nl (β,0)
∂λnl

∂T1nl (β,0)
∂β

∂T2nl (β,0)
∂λnl

∂T2nl (β,0)
∂β

⎞

⎠

=

⎛

⎜⎜⎝
− 1

n

n∑
i=1

Zil(β)ZT
il(β)

1
n

n∑
i=1

∂Zil (β)

∂βT

1
n

n∑
i=1

∂Zil (β)

∂βT 0

⎞

⎟⎟⎠
P−→

(
Sl11 Sl12
Sl21 0

)
.

Then, we have

S−1
nl

P−→
(

S−1
l11 + S−1

l11 Sl12S−1
l22.1Sl22S−1

l11 −S−1
l11 Sl12S−1

l22.1
−S−1

l22.1Sl21S−1
l11 S−1

l22.1

)
,

where Sl22.1 = −Sl21S−1
l11 Sl12. It follows from Lemma 3 that T1nl(β, 0) =

1
n

∑n
i=1 Zil(β) = Op(n− 1

2 ) and ‖λnl‖ = Op(n− 1
2 ), which indicates that σnl =

‖β̂l − β‖ + ‖λ̂nl‖ = op(n− 1
2 ). Combining the above equations leads to

√
n(β̂l − β)

= S−1
l22.1Sl21S−1

l11
√

n T1nl(β, 0) + op(1) for l = c and I . Then, it follows from the

above equations and Lemmas 2 and 3 that
√

n(β̂l −β) L→ N (0, Ξ−1
l ΛlΞ

−1
l ) for l = c

and I . 
�

Proof of Theorem 3 Using Taylor expansion as done in Theorem 1, we obtain

̂(g(t0)) = (∑n

i=1 η̂i R(g(t0))
)2
/
∑n

i=1 η̂
2
i R(g(t0)) + op(1). By the definition of

η̂i R(g(t)), it is easy to obtain that

1√
Nh

n∑

i=1

η̂i R(g(t0)) =
{

1√
Nh

n∑

i=1

η̂i E (g(t0)− b(t0))

}
− [b̂(t0)− b(t0)],

n∑

i=1

η̂2
i R(g(t0)) =

n∑

i=1

η̂2
i E (g(t0))− 2

n∑

i=1

η̂2
i E (g(t0))ϕ̂i (t0)+

n∑

i=1

ϕ̂2
i (t0),

where ϕ̂i (t0) = ∑ni
j=1{ĝC

n (Ti j )− ĝC
n (t0)}δi j Kn(Ti j − t0).

According to Lemmas 4, 5 and Theorem 8 given in Xue and Xue (2011), we have

1√
Nh

n∑
i=1

η̂i E (g(t0)− b(t0))
L→ N (0, V 2(t0)),

1√
Nh

n∑
i=1

η̂2
i E (g(t0))

P→ V 2(t0),

b̂(t0)
P→ b(t0),

1√
Nh

n∑
i=1

ϕ̂2
i (t0)

P→ 0, 1√
Nh

n∑
i=1

η̂2
i E (g(t0))ϕ̂i (t0)

P→ 0.

Combining the above equations, we prove that Theorem 3 holds. 
�
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Proof of Theorem 4 By the definition of η̂i E (g(t)), we obtain

√
Nh{ĝ(t0)− g(t0)} =

1√
Nh

∑n
i=1 η̂i E (g(t0))

m(t0)
+ op(1).

From Lemma 4 of Xue and Xue (2011), we can show that Theorem 4 holds. 
�
Proof of Theorem 5 By the definition of ĝMIP(t), we have

ĝMIP(t)−g(t) = (ĝMIP
2 (t)−g2(t))− (ĝMIP

1 (t;β)− g1(t;β))−(g1(t; β̂)− g1(t;β))
−[ĝMIP

1 (t; β̂)− ĝMIP
1 (t;β)− g1(t; β̂)+ g1(t;β)],

� H1(t)− H2(t)− H3(t)− H4(t).

Again, it follows from the definition of ĝMIP
2 (t) that

H1(t) =
n∑

i=1

ni∑

j=1

Wi j (t)[Ỹ I
i j − g2(t)] +

n∑

i=1

ni∑

j=1

Wi j (t)

(
1 − δi j

p(Xi j , Ti j )

)
( f (Xi j ; β̂)

− f (Xi j ;β))+
n∑

i=1

ni∑

j=1

Wi j (t)

(
1 − δi j

p(Xi j , Ti j )

)
(ĝC

n (Ti j )− g(Ti j ))

� H11(t)+ H12(t)+ H13(t).

Taking Taylor expansion of f (Xi j ; β̂) at β̂ = β yields f (Xi j ; β̂) = f (Xi j ;β)+
Vi j (β)(β̂ − β)+ op(‖β̂ − β‖), which leads to g1(t; β̂)≈g1(t;β)+ (β̂ − β)M(t;β)
and ĝMIP

1 (t; β̂) ≈ ĝMIP
1 (t;β)+ (β̂ − β)M̂(t;β), where Vi j (β) = ∂ f (Xi j ;β)/∂β,

M(t;β)= E{Vi j (β)|Ti j = t} and M̂(t;β)= ∑n
i=1

∑ni
j=1 Wi j (t)Vi j (β). Thus, it fol-

lows from the definitions of H3(t), H4(t) and H12(t) that H3(t)≈ (β̂ − β)M(t;β),
H4(t) ≈ (β̂ − β)(M̂(t;β) − M(t;β)), H12(t) ≈ ∑n

i=1
∑ni

j=1 Wi j (t)(1 −
δi j/P(Xi j , Ti j ))Vi j (β)(β̂ − β). Note that E{Ỹ I

i j |Ti j = t} = g2(t) and E{|(1 −
δi j/p(Xi j , Ti j ))∂ f (Xi j ;β)/∂β|} = 0 under MAR assumption. Hence, by standard
kernel regression theories (Wand and Jones 1995), we have

sup
t

H11(t) = Op((nb)− 1
2 )+ Op(b), sup

t
E[|ĝC

n (Ti j )− g(Ti j )||Ti j = t]
= O((nh)− 1

2 )+ O(h),

sup
t

H2(t) = Op((nb)− 1
2 )+ Op(b), sup

t
|M̂(t;β)− M(t;β)|

= Op((nb)− 1
2 )+ Op(b),

n∑

i=1

ni∑

j=1

Wi j (t)

(
1 − δi j

P(Xi j , Ti j )

)
Vi j (β) = Op(1),

n∑

i=1

ni∑

j=1

Wi j (t)

(
1 − δi j

P(Xi j , Ti j )

)
= Op(1).
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Hence, it follows ffrom the above equations and β̂ − β = Op(n− 1
2 ) that

sup
t

|ĝMIP(t)− g(t)| = Op((nb)−
1
2 )+ Op(b)+ Op(n

− 1
2 )+ Op((nh)−

1
2 )+ Op(h)

+Op((nb)−
1
2 )+ Op(b)+ Op(n

− 1
2 )

+{Op((nb)−
1
2 )+ Op(b)}Op(n

− 1
2 )

= Op((nb)−
1
2 )+ Op(b)+ Op((nh)−

1
2 )+ Op(h).

Then, we prove Theorem 5. 
�
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