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Abstract Some new exact distributions on coupon collector’s waiting time problems
are given based on a generalized Pólya urn sampling. In particular, usual Pólya urn
sampling generates an exchangeable random sequence. In this case, an alternative
derivation of the distribution is also obtained from de Finetti’s theorem. In coupon
collector’s waiting time problems with m kinds of coupons, the observed order of
m kinds of coupons corresponds to a permutation of m letters uniquely. Using the
property of coupon collector’s problems, a statistical model on the permutation group
of m letters is proposed for analyzing ranked data. In the model, as the parameters
mean the proportion of the m kinds of coupons, the observed ranking can be intuitively
understood. Some examples of statistical inference are also given.

Keywords Generalized Pólya urn · Dirichlet distribution · Exchangeability ·
Likelihood ratio test · Permutation

1 Introduction

Coupon collector’s waiting time problems are the following. There are m different
kinds of coupons which come with a product. A coupon is obtained randomly from
each purchase of the product. The problem is how many products should we purchase

This research was partially supported by the Kansai University Grant-in-Aid for progress of research in
graduate course and by Grant-in-Aid for Scientific Research (C) of the JSPS (Grant Number 22540159).

S. Aki (B)
Department of Mathematics, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
e-mail: aki@kansai-u.ac.jp

K. Hirano
Department of Mathematics, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama-ken 350-0295, Japan

123



572 S. Aki, K. Hirano

until all kinds of coupons are collected. Mahmoud (2008) explained the problem using
urn models. When each coupon can be obtained independently with an identical prob-
ability, the probability generating function (pg f ) of the waiting time distribution is
well known (see, e.g., Exercise 38 in Chapter 8 of Graham et al. 1989). The exact
probability function of the waiting time is given in Charalambides (2005) and gener-
alizations of the problem have been studied (see, e.g., Kobza et al. 2007; Inoue and
Aki 2008).

Let X1, X2, . . . be {1, 2, . . . , m}-valued random variables. Suppose that Xi means
the type of the coupon at the i-th trial. For k = 1, 2, . . . , m, let

τk = inf{n : |{X1, . . . , Xn}| = k} (1)

and

Yk = Xτk . (2)

Then τm is the usual coupon collector’s waiting time and note that τ1 = 1. Let T1 = τ1
and for k = 2, . . . , m, let Tk = τk − τk−1. Here, we derive the joint exact distribution
of (T1, . . . , Tm) under the assumption that X1, X2, . . . are generated by a generalized
Pólya urn scheme. The generalized Pólya urn sampling includes the cases of the usual
Pólya urn sampling and the i.i.d. sampling. We obtain the exact distribution based on
the method of conditional probability generating functions. Further, by considering
that the usual Pólya urn sampling generates infinitely exchangeable random variables,
we give an alternative proof of the case of Pólya urn sampling using de Finetti’s
theorem. For k = 1, 2, . . . , m, let

Wk = inf{n : Xn = k},

i.e., Wk is the waiting time for the first coupon of type k. Let {W(1), W(2), . . . , W(m)} be
the set of order statistics for (W1, W2, . . . , Wm). Then, it is easy to see that τk = W(k)

for each k = 1, 2, . . . , m. Even if X1, X2, . . . are independent and identically distrib-
uted discrete random variables, (W1, W2, . . . , Wm) are not independent because they
do not have ties. Therefore, the random vector (Y1, . . . , Ym) is a random permutation
of {1, 2, . . . , m}. By means of coupon collector’s waiting time problems, we can con-
struct a natural and meaningful distribution on the symmetric group Sm , where Sm is

the set of all permutations of {1, . . . , m}. We use the notation σ =
(

1 2 · · · m
σ1 σ2 · · · σm

)

for σ ∈ Sm . A permutation of {1, . . . , m} can be regarded as a ranking of items
{1, 2, . . . , m}. Holland’s model is a well-known parametric model to analyze ranked
data (see Diaconis 1988). The parametric model is an exponential family with a
(m − 1) × (m − 1) matrix parameter. In the model, the parameters are theoretically
given, and it may be difficult to understand practical meanings of the parameters. In
this study, we propose some parametric models on Sm through coupon collector’s
waiting time problems. In our model, the probability with which we observe each type
of coupons is parameterized and hence the observed ranking can be explained by the
proportion of each type of coupons.
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Coupon collecting and rankings 573

In Sect. 2, the joint pg f of (T1, . . . , Tm) is given under the assumption that
X1, X2, . . . are generated by a generalized Pólya urn sampling. Further, some spe-
cial cases of the distribution are studied. In particular, the case of the usual Pólya
urn sampling is considered based on the exchangeability of the sequence {Xn}∞n=1.
Section 3 presents statistical inference on coupon collector’s problems. We show that
the maximum likelihood estimation of the proportion of each type of coupons can be
performed based on observations of (T1, . . . , Tm) and (Y1, . . . , Ym). We also investi-
gate the feasibility of a likelihood ratio test for equality of proportions of two types of
coupons among m types of coupons by simulation.

2 Coupon collector’s problems based on a generalized Pólya urn scheme

We consider the coupon collector’s waiting time problem in the sequence of a gener-
alized Pólya urn sampling. An urn contains Ni balls labeled “i” for i = 1, 2, . . . , m.
We set N = N1 + N2 + · · · + Nm . A ball is drawn at random. If it is labeled “i”,
then it is returned immediately together with additional α(≥0) balls labeled “i” and
with additional β(≥0) balls labeled “ j” for every j ( �=i). Suppose that we repeat
drawing balls in the above manner until all kinds of balls are drawn. Let Xn be
the number labeled on the ball at the n-th drawing in the sampling scheme. Then,
(Y1, Y2, . . . , Ym) and (T1, T2, . . . , Tm) are defined by Eq. (2) and the statement just
after the formula. φ(t) = E[t T1

1 t T2
2 · · · t Tm

m ] denotes the joint pg f of (T1, T2, . . . , Tm),
where t = (t1, . . . , tm). By definition, we obtain the exact pg f of τm by setting
t1 = · · · = tm = t .

Theorem 1 The joint pg f of (T1, . . . , Tm) is written as:

φ(t) =
∑

σ∈Sm

∞∑
s2=1

· · ·
∞∑

sm=1

G(s2, . . . , sm)t1t s2
2 · · · t sm

m

(N )(1+s2+s3+···+sm )↑(α+(m−1)β)

, (3)

where

G(s2, . . . , sm)

= Nσ1(Nσ1 + α)(s2−1)↑α(Nσ2 + s2β)(Nσ1 + Nσ2

+(1 + s2)(α + β))(s3−1)↑(α+β)(Nσ3 + (s2 + s3)β) · · ·
×(Nσ1 +· · ·+Nσm−1 +(1 + s2 + · · · + sm−1)(α+(m − 2)β))(sm−1)↑(α+(m−2)β)

×(Nσm + (s2 + s3 + · · · + sm)β)

= Nσ1

m∏
i=2

⎡
⎣

⎛
⎝ i−1∑

j=1

Nσ j +
⎛
⎝ i−1∑

j=1

s j

⎞
⎠ (α + (i − 1)β)

⎞
⎠

(si −1)↑(α+(i−2)β)

⎤
⎦

×
m∏

i=2

⎛
⎝Nσi + β

i∑
j=2

s j

⎞
⎠ .
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Here, for every positive integer k, we define

(n)k↑α =
k∏

i=1

(n + (i − 1)α).

When α = 1, we sometimes omit α like (n)k↑. In the above formula, we always set
s1 = 1.

Proof Conditioning on Y1, we obtain

φ(t) = E[E[t T1
1 · · · t Tm

m |Y1]]

=
m∑

σ1=1

P(Y1 = σ1)E[t T1
1 · · · t Tm

m |Y1 = σ1]

=
m∑

σ1=1

P(Y1 = σ1)t1 E[t T2
2 · · · t Tm

m |Y1 = σ1]

=
m∑

σ1=1

Nσ1

N
t1 E[t T2

2 · · · t Tm
m |Y1 = σ1].

Further, conditioning on Y2 and T2, we have

E[t T2
2 · · · t Tm

m |Y1 = σ1]

=
∑

σ2 �=σ1

∞∑
s2=1

P(Y2 = σ2, T2 = s2|Y1 = σ1)

×t s2
2 E[t T3

3 · · · t Tm
m |Y1 = σ1, Y2 = σ2, T2 = s2].

Noting that

P(Y2 = σ2, T2 = s2|Y1 = σ1)

= P(Y2 = σ2|Y1 = σ1, T2 = s2)P(T2 = s2|Y1 = σ1)

= Nσ2 + s2β

N − Nσ1 + s2(m − 1)β
· (Nσ1 + α)(s2−1)↑α(N − Nσ1 + s2(m − 1)β)

(N + α + (m − 1)β)s2↑(α+(m−1)β)

= (Nσ1 + α)(s2−1)↑α(Nσ2 + s2β)

(N + α + (m − 1)β)s2↑(α+(m−1)β)

,

we see that

φ(t) =
m∑

σ1=1

m∑
σ2 = 1
σ2 �= σ1

∞∑
s2=1

(Nσ1)s2↑α(Nσ2 + s2β)

(N )(1+s2)↑(α+(m−1)β)

t1t s2
2

×E[t T3
3 · · · t Tm

m |Y1 = σ1, (T1 = 1), Y2 = σ2, T2 = s2].

By repeating the conditioning like above, we obtain the desired result. ��
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Setting β = 0 in Theorem 1, we obtain the joint pg f of (T1, . . . , Tm) based on the
usual Pólya urn sampling.

Theorem 2 If β = 0, that is, X1, X2, . . . are generated by the Pólya urn sampling,
the joint pg f of (T1, . . . , Tm) can be written as:

φ(t) =
∑

σ∈Sm

∞∑
s2=1

· · ·
∞∑

sm=1

G(s2, . . . , sm)t1t s2
2 · · · t sm

m

(N )(1+s2+s3+···+sm )↑α

, (4)

where

G(s2, . . . , sm)

= Nσ1(Nσ1 + α)(s2−1)↑α Nσ2(Nσ1 + Nσ2 + (s2 + 1)α)(s3−1)↑α Nσ3

· · · (Nσ1 + · · · + Nσm−1 + (1 + s2 + s3 + · · · + sm−1)α)(sm−1)↑α Nσm

= Nσ1

m∏
i=2

⎡
⎣

⎛
⎝ i−1∑

j=1

Nσ j +
⎛
⎝ i−1∑

j=1

s j

⎞
⎠ α

⎞
⎠

(si −1)↑α

Nσi

⎤
⎦ ,

where s1 = 1.

After stating the corollaries below, we shall give an alternative Proof of Theorem 2
as an application of de Finetti’s theorem. By setting N1 = N2 = · · · = Nm = k in
Theorem 2, we have the following corollary.

Corollary 1 If N1 = N2 = · · · = Nm = k, the joint pg f of (T1, . . . , Tm) can be
written as:

φ(t) = m!
∞∑

s2=1

· · ·
∞∑

sm=1

km ∏m
i=2

{
((i − 1)k + (

∑i−1
j=1 s j )α)(si −1)↑α

}
(mk)(1+s2+···+sm )↑α

t1t s2
2 · · · t sm

m ,

where s1 = 1.

By setting α = 0 in (4), we have the following corollary.

Corollary 2 Suppose that one ball is sampled at random from the urn and it is returned
immediately. If the trials are repeated, that is, the sampling is i.i.d., then the joint pg f
of (T1, . . . , Tm) is given by

φ(t) =
∑

σ∈Sm

Nσ1 t1
N

· Nσ2 t2
N − Nσ1 t2

· Nσ3 t3
N − (Nσ1 + Nσ2)t3

· · ·

× Nσm tm
N − (Nσ1 + Nσ2 + · · · + Nσm−1)tm

. (5)
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Further, if N1 = N2 = · · · = Nm hold, then we have

φ(t) = m! t1
m

m−1∏
k=1

tk+1

m − ktk+1
.

Proof of Corollary 2 By setting α = 0 in (4), we have

φ(t) =
∑

σ∈Sm

∞∑
s2=1

· · ·
∞∑

sm=1

t1t s2
2 · · · t sm

m

× Nσ1 N s2−1
σ1 Nσ2(Nσ1 + Nσ2)

s3−1 Nσ3 · · · (Nσ1 + · · · + Nσm−1)
sm−1 Nσm

N 1+s2+···+sm

=
∑

σ∈Sm

Nσ1 t1
N

∞∑
s2=1

(
Nσ1

N
t2

)s2−1 Nσ2

N
t2

∞∑
s3=1

(
Nσ1 + Nσ2

N
t3

)s3−1 Nσ3

N
t3

· · ·
∞∑

sm=1

(
Nσ1 + · · · + Nσm−1

N
tm

)sm−1 Nσm

N
tm

=
∑

σ∈Sm

Nσ1 t1
N

·
Nσ2
N t2

1 − Nσ1
N t2

·
Nσ3
N t3

1 − Nσ1+Nσ2
N t3

· · ·
Nσm

N tm

1 − Nσ1+···+Nσm−1
N tm

.

Therefore, Corollary 2 holds. ��
As Theorem 1 has been proved using the method of conditional probability gen-

erating functions, we have obtained Theorem 2 as a special case of Theorem 1.
Theorem 2 derives the joint pg f of (T1, . . . , Tm)based on the usual Pólya-Eggenberger
urn scheme. It is well known that the usual Pólya-Eggenberger urn scheme generates
an infinitely exchangeable sequence (see Mahmoud 2008; Johnson and Kotz 1977).
From de Finetti’s theorem, we see that an infinitely exchangeable sequence is a mix-
ture of i.i.d. sequences with a directing random measure called the de Finetti measure.
This means that the distributional results based on infinitely exchangeable sequences
can be derived from the corresponding results based on i.i.d. sequences if the de
Finetti measure is given. Fortunately, the de Finetti measure corresponding to the
usual Pólya-Eggenberger urn scheme is known to be a Dirichlet distribution. By giv-
ing an alternative Proof of Theorem 2, let us regard Theorem 2 as an extension of the
i.i.d. case.

We need some properties of Dirichlet distributions for giving an alternative Proof
of Theorem 2. We denote the (m − 1)-dimensional simplex by

Sm−1 = {(x1, . . . , xm−1) : x j ≥ 0, x1 + x2 + · · · + xm−1 ≤ 1}.
Definition 1 The distribution on Sm−1 with density

f (x1, . . . , xm−1) = �(ν1 + · · · + νm)

�(ν1) · · · �(νm)
xν1−1

1 · · · xνm−1−1
m−1 (1 − x1 − · · · − xm−1)

νm−1
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is called a Dirichlet distribution of parameter (ν1, . . . , νm) and denoted by
D(ν1, . . . , νm−1; νm).

Lemma 1 If (X1, . . . , Xk) follows D(ν1, . . . , νk; νk+1), it holds that

E[Xr1
1 · · · Xrk

k Xk+1] = (ν1)r1↑ · · · (νk)rk↑νk+1

(ν1 + · · · + νk+1)(r1+···+rk+1)↑
,

where Xk+1 = 1 − X1 − · · · − Xk.

Proof If (X1, . . . , Xk) follows D(ν1, . . . , νk; νk+1), it holds that

E[Xr1
1 · · · Xrk

k ] = �(ν1 + r1) · · · �(νk + rk)�(ν1 + · · · + νk+1)

�(ν1) · · · �(νk)�(ν1 + · · · + νk+1 + r1 + · · · + rk)

= (ν1)r1↑ · · · (νk)rk↑
(ν1 + · · · + νk+1)(r1+···+rk )↑

.

Therefore, the result follows by the next calculations.

E[Xr1
1 · · · Xrk

k Xk+1]
= E[Xr1

1 · · · Xrk
k (1 − (X1 + · · · + Xk))]

= E[Xr1
1 Xr2

2 · · · Xrk
k ] − E[Xr1+1

1 Xr2
2 · · · Xrk

k ] − E[Xr1
1 Xr2+1

2 · · · Xrk
k ]

− · · · − E[Xr1
1 Xr2

2 · · · Xrk+1
k ]

= (ν1)r1↑ · · · (νk)rk↑νk+1

(ν1 + · · · + νk+1)(r1+···+rk+1)↑
.

��
The next lemma is a direct extension of the multinomial theorem.

Lemma 2 Let n be a positive integer and let β be a real number. Then the following
equation holds.

(x1 + x2 + · · · + xm)n↑β =
∑ (

n

k1, . . . , km

)
(x1)k1↑β(x2)k2↑β · · · (xm)km↑β,

(6)

where the summation is extended for nonnegative integers k1, . . . , km satisfying
k1 + k2 + · · · + km = n. In particular, the next equation holds for an extension
of binomial theorem.

(x + y)n↑β =
n∑

k=0

(
n

k

)
(x)k↑β(y)(n−k)↑β. (7)

Remark 1 By setting β = 1, β = −1 and β = 0 in Eq. (7), we have Nörlund’s
formula, Vandermonde’s formula and Newton’s formula, respectively. Lemma 2 may
be proved easily. The special case of the formula (6) is given in the exercises of Chapter
3 of Charalambides (2002).
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We give here an alternative Proof of Theorem 2 using de Finetti’s theorem.

Proof (An alternative proof of Theorem 2) It is well known that the infinite sequence
X1, X2, . . . is exchangeable when the Pólya-Eggenberger urn model is used for
sampling. Then from de Finetti’s theorem, the joint distribution of the sequence
{Xn}, n ≥ 1 is obtained by randomizing the parameter of a multinomial. This
randomization is expressed by a random vector P = (P1, . . . , Pm) which takes
values p = (p1, . . . , pm−1) ∈ Sm−1 and pm = 1 − p1 − · · · − pm−1. In the
Pólya-Eggenberger urn model, the random vector P follows the Dirichlet distri-
bution D( N1

α
, . . . ,

Nm−1
α

; Nm
α

), see Johnson and Kotz (1977). Therefore, we can
write

φ(t) =
∫

Sm−1

E[t T1
1 · · · t Tm

m |P = p] f ( p)d p

=
∫

Sm−1

∑
σ∈Sm

pσ1 t1 · pσ2 t2
1 − pσ1 t2

· pσ3 t3
1 − (pσ1 + pσ2)t3

· · ·

× pσm tm
1 − (pσ1 + pσ2 + · · · + pσm−1)tm

f ( p)d p

=
∑

σ∈Sm

∞∑
s2=1

· · ·
∞∑

sm=1

∫
Sm−1

pσ1(pσ1)
s2−1 pσ2 · · ·

×(pσ1 + · · · + pσm−1)
sm−1 pσm f ( p)d p t1t s2

2 · · · t sm
m

=
∑

σ∈Sm

∞∑
s2=1

· · ·
∞∑

sm=1

E[Pσ1 Ps2−1
σ1

Pσ2(Pσ1 + Pσ2)
s3−1 Pσ3 · · ·

×(Pσ1 + · · · + Pσm−1)
sm−1 Pσm ] t1t s2

2 · · · t sm
m ,

where

E[Pσ1 Ps2−1
σ1

Pσ2(Pσ1 + Pσ2)
s3−1 Pσ3 · · · (Pσ1 + · · · + Pσm−1)

sm−1 Pσm ]

= E

⎡
⎣Ps2

σ(1) Pσ(2)

⎛
⎝ ∑

j31+ j32=s3−1

(
s3 − 1

j31

)
P j31

σ1
P j32

σ2

⎞
⎠ Pσ3

× · · · ×
⎛
⎝ ∑

jm1+···+ jm,m−1=sm−1

(
sm − 1

jm1, . . . , jm,m−1

)
P jm1

σ1
· · · P

jm,m−1
σm−1

⎞
⎠ Pσm

⎤
⎦

=
∑

j31+ j32=s3−1

· · ·
∑

jm1+ jm,m−1=sm−1

(
s3 − 1

j31

)
· · ·

(
sm − 1

jm1, . . . , jm,m−1

)

×E[P1+(s2−1)+ j31+···+ jm1
σ1

P1+ j32+···+ jm1
σ2

· · · P
1+ jm,m−1
σm−1 Pσm ].
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Using Lemma 1, we obtain

E[Pσ1 Ps2−1
σ1

Pσ2(Pσ1 + Pσ2)
s3−1 Pσ3 · · · (Pσ1 + · · · + Pσm−1)

sm−1 Pσm ]
=

∑
j31+ j32=s3−1

· · ·
∑

jm1+···+ jm,m−1=sm−1

(
s3 − 1

j31

)
· · ·

(
sm − 1

jm1, . . . , jm,m−1

)

×
(

Nσ1

α

)
1+(s2−1)+···+ jm1↑

(
Nσ2

α

)
(1+ j32+···+ jm2)↑

· · ·

×
(

Nσm−1

α

)
(1+ jm,m−1)↑

(
Nσm

α

) {(
N

α

)
(1+s2+···+sm )↑

}−1

=
∑

j31+ j32=s3−1

· · ·
∑

jm1+···+ jm,m−1=sm−1

(
s3 − 1

j31

)
· · ·

(
sm − 1

jm1, · · · , jm,m−1

)

× (
Nσ1

)
1+(s2−1)+···+ jm1↑α

(
Nσ2

)
(1+ j32+···+ jm2)↑α

· · ·
× (

Nσm−1

)
(1+ jm,m−1)↑α

(
Nσm

) {
(N )(1+s2+···+sm )↑α

}−1

=
(
Nσ1

)
s2↑α

Nσ2

(N )(1+s2+···+sm )↑α

×
⎛
⎝ ∑

j31+ j32=s3−1

(
s3 − 1

j31

)
(Nσ1 + s2α) j31↑α(Nσ2 + α) j32↑α

⎞
⎠ · · ·

×
⎛
⎝ ∑

jm1+···+jm,m−1=sm−1

(
sm −1

jm1, . . . , jm,m−1

)
(Nσ1 +(s2+ j31+· · ·+ jm1)α) jm1↑α

· · · (Nσm−1 + α) jm,m−1↑α

⎞
⎠ Nσm .

Using Lemma 2 for each summation, we complete the proof. ��

3 Statistical inference on coupon collector’s problems

3.1 Parametric estimation

In this subsection, we study two statistical problems for estimating parameters con-
cerning coupon collector’s waiting time problems.

First, we study a very simple problem. Let X1, X2, . . . be independent identi-
cally distributed random variables with P(Xi = j) = p j . For estimating the prob-
ability (p1, . . . , pm) based on observations of (Y1, . . . , Ym) and (T1, . . . , Tm), we

parameterize (p1, . . . , pm) with a positive parameter θ as pi = θ i−1

1+θ+θ2+···+θm−1 ,
i = 1, 2, . . . , m. Since the joint probability function of (Y1, . . . , Ym) and (T1, . . . , Tm)
and the marginal probability function of (Y1, . . . , Ym) can be easily obtained by replac-
ing

N j
N with p j in Eq. (5), we can estimate the parameter θ by the method of maximum

likelihood. To be precise, the pg f of the waiting time can be written as:
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Fig. 1 Estimated densities of the distribution of θ̂1 and θ̂2 based on 500 estimates, respectively

φ(t) =
∑

σ∈Sm

pσ1 t1 · pσ2 t2
1 − pσ1 t2

· pσ3 t3
1 − (pσ1 + pσ2 )t3

· · · pσm tm
1 − (pσ1 + pσ2 + · · · + pσm−1 )tm

,

where each pi is parametrized by θ as above. Then, for calculating the probability
P((Y1, . . . , Ym) = σ, (T1, . . . , Tm) = (k1, . . . , km)), we can expand

pσ1 t1 · pσ2 t2
1 − pσ1 t2

· pσ3 t3
1 − (pσ1 + pσ2)t3

· · · pσm tm
1 − (pσ1 + pσ2 + · · · + pσm−1)tm

in the Taylor series around t = 0 and pick out the coefficient of tk1
1 . . . tkm

m .

Example 1 We illustrate the feasibility of estimating the parameter θ using simulated
data for m = 4 and θ = 2. We set sample size n = 50, and we repeat the estimation 500
times. We have estimated the parameter using two kinds of maximum likelihood esti-
mators. One is the mle θ̂1 based on the observations of (Y1, . . . , Y4) and (T1, . . . , T4).
The other is the mle θ̂2 based on the observations of only (Y1, . . . , Y4). Of course,
θ̂1 is better than θ̂2, since the former uses more information than the latter. In order
to compare the mle’s, we have estimated the densities of the mle’s based on the 500
mle’s θ̂1 and θ̂2, respectively. Figure 1 displays the estimated density of the mle’s θ̂1
and θ̂2. The mean and variance of the maximum likelihood estimates θ̂1 are 1.99281
and 0.01203. The mean and variance of the maximum likelihood estimates θ̂2 are
2.026877 and 0.044261. As shown in Fig. 2, the estimators are not highly dependant
though they use the same observations of (Y1, . . . , Y4). The value of the correlation
coefficient between the 500 pairs of the estimates is 0.5330742. From the simulation
study, we see that the additional use of observations of the waiting time fairly improves
the mle for θ .
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Fig. 2 Scatterplot for 500 estimates θ̂2 against the corresponding θ̂1 based on the simulated data of sample
size 50

Next, we give a numerical example of maximum likelihood estimation of the para-
meters α and β by applying Theorem 1 in Sect. 2. Under the generalized Pólya urn
sampling given in Sect. 2, we can estimate the number of additional balls α and β

based on observations of the waiting times for drawing all the kinds of balls.

Example 2 We assume that m = 3, N1 = N2 = N3 = 10 are known and that
the parameters α and β are unknown positive real numbers. The following data are
simulated by setting m = 3, α = 2 and β = 1.

Using Theorem 1, we can calculate the log-likelihood function 
(α, β) based on the
data. The graph of 
(α, β) is given in Fig. 3. Maximizing the log-likelihood function

(α, β) with respect to α and β, we obtain the mle’s α̂ = 1.73949 and β̂ = 0.76000.

3.2 Statistical inference on the symmetric group

In this subsection, we introduce a parametric model on the symmetric group by means
of the coupon collector’s waiting time problem. Holland’s model is well known to
analyze ranked data. Let ρ be the m −1 dimensional irreducible representation of Sm .
Then, the probability function of π ∈ Sm is given as:

Pθ (π) = c(θ)eTr[θρ(π)], for θ ∈ Mat(m − 1),

where c(θ)−1 = ∑
π eTr(θρ(π)), Mat(m − 1) is the set of matrices of size

(m − 1) × (m − 1), and T r [A] means the trace of A (see Diaconis 1988). The model
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Fig. 3 The graph of the
log-likelihood function 
(α, β)

is an exponential family introduced theoretically based on an irreducible represen-
tation of the symmetric group Sm . However, it may not be easy to understand the
practical meaning of the matrix parameter θ . On the other hand, in many cases of
treating practical ranking data, it is supposed that an independent random variable
for each item is observed and a permutation is obtained from the ranks of the val-
ues of random variables (see, e.g., Hall and Miller 2010 and the references therein).
Then, the distribution on the symmetric group Sm depends on the random vari-
ables which determine rankings, and it may be difficult to study statistical inference
on the symmetric group Sm generally. Further, though the distributions of the ran-
dom variables are assumed to be continuous theoretically, ties may occur in practical
data.

Here, we give a parametric model on the symmetric group Sm based on the coupon
collector’s waiting time problem. Assuming that X1, X2, . . . are {1, . . . , m}-valued
independent identically distributed random variables with P(Xi = j) = θ j , we have
from (5),

φ(t) =
∑

σ∈Sm

θσ1 t1 · θσ2 t2
1 − θσ1 t2

· θσ3 t3
1 − (θσ1 + θσ2)t3

· · · θσm tm
1 − (θσ1 + θσ2 + · · · + θσm−1)tm

.

Therefore, Y = (Y1, . . . , Ym) is a Sm-valued random variable (random permutation)
and the probability Pθ (σ ) = P(Y = σ) for σ ∈ Sm is given as

Pθ (σ ) = θ1θ2 · · · θm

(1 − θσ1)(1 − θσ1 − θσ2) · · · (1 − θσ1 − θσ2 − · · · − θσm−1)
, (8)
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where

σ =
(

1 2 · · · m
σ1 σ2 · · · σm

)
,

and θ = (θ1, θ2, . . . , θm−1) ∈ Sm−1 is the parameter of the distribution. Here, we set
θm = 1 − θ1 − θ2 − · · · − θm−1.

Based on the coupon collector’s waiting time problem, a statistical model on the
symmetric group Sm is constructed. The meaning of the parameter is clear since it is
the vector of probabilities with which the coupons of the corresponding type occur. An
observation of the coupon collector’s waiting time problem determines a permutation
on Sm uniquely, because a tie in τ1, . . . , τm does not occur.

Let Y1, Y2, . . . , Yn be independent random permutations which follow the distri-
bution (8). Since each Yi is Sm-valued, we denote it by Yi = (Yi1, . . . , Yim), where

Yi1 = σ1, . . . , Yim = σm if Yi = σ =
(

1 2 · · · m
σ1 σ2 · · · σm

)
. For k = 1, 2, . . . , m − 1, we

define the statistics

N j1, j2,..., jk =
n∑

i=1

1({Yi1, Yi2, . . . , Yik} = { j1, j2, . . . , jk}),

where 1(A) is the indicator function of A and {Yi1, Yi2, . . . , Yik} = { j1, j2, . . . , jk}
means the equality as sets.

Then, we have the next proposition.

Proposition 1 If Sm-valued random permutations Y1, Y2, . . . , Yn independently fol-
low the distribution Pθ , θ ∈ Sm−1, then {N j1, j2,··· , jk }, (k = 1, 2, . . . , m, 1 ≤ j1 <

j2 < · · · < jk ≤ m) are sufficient statistics for θ .

Proof The joint probability function of Y1, Y2, . . . , Yn is written as:

P(Y1 = (x11, . . . , x1m), . . . , Yn = (xn1, . . . , xnm))

=
n∏

i=1

θ1θ2 · · · θm

(1 − θxi1)(1 − θxi1 − θxi2) · · · (1 − θxi1 − θxi2 · · · − θxim−1)

= (θ1 · · · θm)n exp

⎛
⎝−

m∑
j=1

N j log(1 − θ j ) −
∑
j1< j2

N j1, j2 log(1 − θ j1 − θ j2)

− · · · −
∑

j1< j2<···< jm−1

N j1,..., jm−1 log(1 − θ j1 − θ j2 − · · · − θ jm−1)

⎞
⎠ ,

where θm = 1−θ1 −· · ·−θm−1. Then, the result holds from the factorization theorem.
��
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Example 3 The following S4-valued data are simulated by setting m = 4 and θ =
(0.4, 0.3, 0.2) ∈ S3 in the above model. The sample size is n = 50.

For the above data, the values of the sufficient statistics are given by

(n1, n2, n3, n4, n12, n13, n14, n23, n24, n34, n123, n124, n134, n234)

= (24, 14, 7, 5, 18, 13, 3, 7, 5, 4, 24, 12, 9, 5).

Then, from Proposition 1, we can write the log-likelihood function of θ as

ll(θ1, θ2, θ3)

= −24 log(1 − θ1) − 14 log(1 − θ2) − 7 log(1 − θ3) − 5 log(θ1 + θ2 + θ3)

−18 log(1 − θ1 − θ2) − 13 log(1 − θ1 − θ3) − 7 log(1 − θ2 − θ3)

−3 log(θ2 + θ3) − 5 log(θ1 + θ3) − 4 log(θ2 + θ1) + 26 log(1 − θ1 − θ2 − θ3)

+45 log(θ1) + 41 log(θ2) + 38 log(θ3).

Maximizing the log-likelihood function with respect to θ , we obtain the mle of θ as
θ̂ = (0.40454, 0.27290, 0.20484).

Next, we study a testing problem of the statistical model. For example, when m = 4,
we consider testing the null hypothesis H0 : θ2 = θ3 based on S4-valued observations.
In the following example, we assess the likelihood ratio test of our model.

Example 4 Setting m = 4 and 0 = {θ ∈ S3 : θ2 = θ3} we consider testing the null
hypothesis H0 : θ ∈ 0 versus the alternative hypothesis H1 : θ ∈ S3 \ 0 based
on S4-valued observations. Since the hypotheses are composite, the likelihood ratio
test may be used for the testing problem. Let λ be the likelihood ratio for testing the
hypothesis, i.e.,

λ = supθ∈0
L(θ)

supθ∈S3
L(θ)

,

where L(θ) is the likelihood function. If sample size is large enough, the likelihood
ratio test can be used and the distribution of −2 log λ is expected to be approximated
by the Chi-squared distribution with 1 degree of freedom (χ2(1)). In order to assess
whether the likelihood ratio test can be useful for a moderate sample size, we have
done the following simulation study. We repeated 100000 times to calculate values
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Fig. 4 Estimated density of the 10000 values of the test statistic based on 50 ranked data with parameter
θ = (1/3, 1/4, 1/4) and the density of χ2(1)

of −2 log λ based on simulated 50 realizations of S4-valued random variables which
follow the distribution with θ = (1/3, 1/4, 1/4) ∈ 0. The mean and variance of
the 100000 values of −2 log λ are 1.016940 and 2.081478, respectively. Further, the
number of values which exceed the value 3.841459 with P(χ2(1) > 3.841459) =
0.05 is 5131 in 100000. Figure 4 compares the estimated density of the 100000 values
of the test statistic with the density of χ2(1). Two densities look almost the same.
Further, Fig. 5 shows the quantile plots against the theoretical distribution [(χ2(1)

distribution in this case]. Since the line of the sample quantiles of the 100000 values
of the test statistic against the χ2(1) distribution is almost straight, we may consider
that the test statistic follows the χ2(1) distribution. To investigate the distribution of
the likelihood ratio statistic −2 log λ under the alternative hypothesis, we considered
two values of the parameter θi ∈ S3 \ 0 for i = 1, 2. Here, θ1 = (1/5, 1/3, 1/4)

and θ2 = (1/5, 1/6, 1/3). We repeated 10000 times to calculate values of −2 log λ

based on simulated 50 realizations of S4-valued random variables which follow the
distribution with θ1 and θ2, respectively.

For θ1, the mean and variance of the 10000 values of −2 log λ are 2.387879 and
7.654581, respectively. The number of values which exceed the value 3.841459 with
P(χ2(1) > 3.841459) = 0.05 is 2173 in 10000. For θ2, the mean and variance of the
10000 values of −2 log λ are 8.402736 and 30.64335, respectively. The number of
values which exceed the value 3.841459 with P(χ2(1) > 3.841459) = 0.05 is 7855
in 10000.

Figure 6 shows the estimated densities of the likelihood ratio test statistic under the
null hypothesis based on the 100000 values of the above test statistic, under θ = θ1 ∈
H1 and under θ = θ2 ∈ H1 based on the 10000 values of the test statistic. Since the
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Fig. 5 Quantile plots against χ2(1) distribution

Fig. 6 Estimated densities of the test statistic based on 50 ranked data

distribution of the likelihood ratio test statistic is far from the distribution of χ2(1),
we can use the likelihood ratio test in our model.
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