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Abstract In the Bayesian modelling the data and the prior information concerning
a certain parameter of interest may conflict, in the sense that the information carried
by them disagree. The most common form of conflict is the presence of outlying
information in the data, which may potentially lead to wrong posterior conclusions.
To prevent this problem we use robust models which aim to control the influence of the
atypical information in the posterior distribution. Roughly speaking, we conveniently
use heavy-tailed distributions in the model in order to resolve conflicts in favour of
those sources of information which we believe is more credible. The class of heavy-
tailed distributions is quite wide and the literature have been concerned in establishing
conditions on the data and prior distributions in order to reject the outlying information.
In this work we focus on the subexponential and L classes of heavy-tailed distributions,
in which we establish sufficient conditions under which the posterior distribution
automatically rejects the conflicting information.

Keywords Bayesian robustness · Conflicting information · Regularly varying
distributions · Subexponential distributions

1 Introduction

In Bayesian context the idea of surprising events such as outliers, gross errors (such as
copying), is associated with the presence of conflicting information. Broadly speaking,
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we say that two sources of information conflict if they disagree; that is, the functions
(likelihood/densities) concerning the parameter of interest are concentrated far away
from each other. As extensively discussed in the literature (e.g. Finetti 1961; Lindley
1968; O’Hagan and Forster 2004), problems of conflicts are directly related with the
tails thickness. A surprising event occurs on the tails of the distributions and if we
model it with a light-tailed distribution it will yield very low posterior probabilities,
which may disturb the posterior estimates. Clarke and Gustafson (1998) provides a way
of quantifying the sensitivity of the posterior estimates under perturbations in the prior
information, data model and data themselves. A detailed discussion about conflicts
and their potential effects on the posterior distribution can be found in O’Hagan and
Forster (2004, Sect. 3.35).

To the purpose of resolving problems of conflicts, a long literature has been devel-
oped aiming to establish sufficient conditions on the distributions in the model in
order to make the posterior distribution unaffected by conflicts (surprising events). In
the pure location-parameter case, Dawid (1973) and O’Hagan (1979) proposed suf-
ficient conditions on the data and prior distribution which allows to resolve conflict
by rejecting the conflicting information in favour of the other source. Some further
development of the ideas of Dawid and O’Hagan can be found in O’Hagan (1988,
1990), Pericchi et al. (1993) and Pericchi and Sansó (1995), O’Hagan and Le (1994)
and Le and O’Hagan (1998) and finally Haro-Lòpez and Smith (1999), who proposed
some conditions on multivariate v-spherical family (Fernandez et al. 1995) involving
location and scale parameters in order to bound the influence of the likelihood over the
posterior distribution. However, their approach establishes conditions which are quite
difficult to verify, and does not provide explicitly the limiting posterior distribution.

Andrade and O’Hagan (2006) used the theory of regular variation in order to
resolve conflicts in Bayesian modelling of location and scale parameters structures;
Andrade and O’Hagan (2011) generalised their idea to location-scale structures. The
advantage of regarding heavy tails as regularly varying distributions is that regular
variation provides a much easier interpretation of tails decay, since any distribution
with regularly varying tails can be represented simply as a power function. The concept
Credence (O’Hagan 1988), as a form of expressing the credibility of a source of
information, has an equivalent in the regular variation theory.

The regularly varying class is quite restrictive, since it embraces only distributions
whose tails behave like a power law function, which may lead to some well-known
problems such as moments indeterminacy and convergence of MCMC algorithms. In
this work we consider the subexponential and the L classes of heavy-tailed distribu-
tions, which embraces the regular variation class; however, they also comprise distrib-
ution whose tails are lighter than those of the regularly varying class, but heavier than
the exponential function. The use of these classes change completely the approaches
based on regular variation and those proposed by Dawid (1973) and O’Hagan (1979),
due to the tails thickness of the subexponential and L distribution. We consider a
general problem of many observations which involves a group of outliers and pro-
pose sufficient conditions on the location and the scale parameter structures to resolve
posterior conflicts of information. More precisely, consider an i.i.d. random sample
X = (x1, x2, . . . , xn), let X L = (x1, x2, . . . , xk) and XU = (xk+1, . . . , xn), where
X L is a group of outliers, that is X L is large in relation to XU . Considering a general
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model xi |y D∼ f (x |y) (i = 1, 2, . . . , n) and y
D∼ p(y), where y is a location or a

scale parameter, the idea is to find sufficient conditions on f and on p so that the
posterior distribution becomes unaffected by the outlying group. Using the Subexpo-
nential and L classes, we propose conditions in which the posterior distribution tends
to some quantity which does not involve X L , i.e. p(y|X) → p(y) f (XU |y)/K as
min{X L} → ∞, where K is the normalising constant.

In Sect. 2 we provide the definitions and some properties of the classes of distrib-
utions which we use throughout the paper. In Sect. 3 we find sufficient conditions on
the location parameter structure in order to reject observations in the sample which are
far away from the other sources of information. In Sect. 4 we consider the scale para-
meter case, in which we propose alternative conditions to those proposed by Andrade
and O’Hagan (2006). We illustrate the theory in Sect. 5, where we provides exam-
ples involving distributions belonging to the classes studied. Finally, we make some
general comments in Sect. 6.

2 Some classes of distribution functions

In this section we recall some important classes of functions (and some properties)
that play an important role in the models that we will consider. The basic reference
for these classes is Bingham et al. (1987), which will be cited as BGT from now on.

Definition 1 A measurable function f is regularly varying at ∞ and with index ρ ∈ �,
written f ∈ RV (ρ), if it satisfies:

lim
x→∞

f (xy)

f (x)
= yρ, ∀y > 0. (1)

In particular, if ρ = 0, f is said to be slowly varying. The class RV generalises the
Pareto distribution in which P(X > x) = x−α , a power function. When 0 < α < 2,
this Pareto distribution has a “fat” tail. It means that X can exceed a high level x
with a rather high probability. In order to include also heavy tail distributions such
as P(X > x) = x−α log(x) or P(X > x) = x−α log(log(x)), the class RV was
introduced. Equivalently to (1), we have

P(X > xt)

P(X > x)
→ t−α as x → ∞. (2)

Sometimes a heavy tail is not RV but it possesses properties similar to those of
distributions that are in RV . As an example we consider P(X > x) = exp(−β[log x])
(where [.] is the integer part). This tail is not a regularly varying tail. In this case (2)
is replaced by: for all t > 0,

P(X > xt)

P(X > x)
is bounded as x → ∞.

Definition 2 A measurable function f is O-regularly varying at ∞, written f ∈
O RV , if it satisfies:
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lim
x→∞ sup

f (xy)

f (x)
< ∞, ∀y > 0. (3)

If f ∈ O RV , the upper index of f is given by:

α( f ) = lim
y→∞

log lim supx→∞ f (xy)/ f (x)

log(y)
, (4)

and the lower index of f is given by β( f ) = α(1/ f ). It can be proved (see BGT, Sect.
2.0.1) that if f ∈ O RV , then for any β < β( f ) and α > α( f ), there exist constants
C, D and x◦ so that

Cyβ ≤ f (xy)

f (x)
≤ Dyα, ∀y ≥ 1,∀x ≥ x◦. (5)

Definition 3 A measurable function f is in the class L if it satisfies:

lim
x→∞

f (x + y)

f (x)
= 1, ∀y ∈ �. (6)

Equivalently, f ∈ L if and only if f ◦ log ∈ RV (0). It is well known that f ∈
RV (ρ) ∀ρ ∈ R implies that f ∈ L. The converse statement is false in general.
Another definition of L uses the F(x) = P(X ≤ x), that is F(x) is said to have a long
tail if for all t > 0, we have

P(X > x + t)

P(X > x)
→ 1, as x → ∞

If the long-tailed quantity X exceeds some high level x , the probability approaches 1
that it will exceed any other higher level approaches 1.

Definition 4 A density function f is a subexponential density, written f ∈ SD, if
f ∈ L and if

lim
x→∞

f ⊗2(x)

f (x)
= 2, (7)

where f ⊗2(x) = f ⊗ f (x) is the 2-fold convolution of f .

Let X1, X2, . . . , Xn denote i.i.d. random variables with common distribution
function F . Also consider the partial sums Sn = ∑n

1 Xi and the partial maxima
Mn = max(X1, X2, . . . , Xn).

On many cases the sequence obeys the principle of the single jump. This means
that the tail of the partial sum Sn is determined completely by the tail of the largest
value Mn . More precisely, as x → ∞, we have

P(Sn > x) ∼ P(Mn > x). (8)
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Distributions that satisfy (8) are called subexponential distributions. It can be proved
that subexponential distributions are long tailed. Moreover it can be proved that (8)
with n = 2 implies (8) for all n ≥ 2.

It can be proved for density functions that if f ∈ RV or f ∈ L ∩ O RV imply that
f ∈ SD. See Chover et al. (1973).

3 Location parameter models

3.1 Notation

Consider a random sample X = (x1, x2, . . . , xn) of independent and identically dis-
tributed (i id) random variables with fixed sample size n. A general location parameter
Bayesian model is of the form

xi |y D∼ f (xi | y) = f (xi − y), 1 ≤ i ≤ n;
y

D∼ p(y),

where f is a fixed p.d.f. and p(y) is the prior p.d.f. of y which is the parameter of
interest.

Let X L = (x1, x2, . . . , xk) and XU = (xk+1, . . . , xn). Suppose that X L represents
those pieces of information which are large in relation to XU and the prior information.
We clearly have

f (X |y) = �k
i=1 f (xi − y) × �n

j=k+1 f (x j − y)

= f (X L | y) × f (XU | y)

= L × U.

The posterior p.d.f. of y is given by:

p(y | X) = f (X | y)p(y)
∫
� f (X | y)p(y)dy

. (9)

We want to investigate what happens to p(y | X) as x = min(x1, x2, . . . , xk) → ∞.
This is a situation in which the sample fractions X L and XU conflict, in the sense that
they carry very diverse information, that is the likelihood of y based on X L is settled
far away from the likelihood of y based on XU and the prior distribution p(y). This
kind of conflict may disturb the posterior distribution and potentially lead to wrong
conclusions. In order to avoid this behaviour, the idea is to establish conditions under
which

p(y | X) → p(y | XU ) ∝ p(y) f (XU |y), as x → ∞. (10)

In this case we say that the influence of the data over the posterior distribution van-
ishes, leaving the posterior distribution depending only on the prior distribution and
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the likelihood of y based on XU . The model rejects the data X L in favour of the prior
distribution and the rest of the data. As a matter of fact, the influence of the outliers
diminishes because the information provided by the them appears in both the numer-
ator and the denominator of the posterior distribution, hence they cancel out under the
conditions established to obtain (10) This behaviour implies that the posterior distrib-
ution is robust to atypical data, that is if x becomes too far away from the prior mode
and the data XU , X L is rejected.

3.2 Preliminary results

If f ∈ L, then as z → ∞ we have f (z − y)/ f (z) → 1. If f ∈ L, it follows that

L = �k
i=1 f (xi − y) ∼ �k

i=1 f (xi )(asx → ∞).

Now we consider (cf. (9)) the integral
∫
� f (X | y)p(y)dy and write

∫

�
f (X | y)p(y)dy =

∫

�
f (X L | y) f (XU | y)p(y)dy.

Using Fatou’s lemma, we get that for f ∈ L,

lim inf
x→∞

∫
� f (X | y)p(y)dy

�k
i=1 f (xi )

≥
∫

�
f (XU | y)p(y)dy

and then also that

lim sup
x→∞

p(y | X) ≤ f (XU | y)p(y)
∫
� f (XU | y)p(y)dy

= p(y | XU ).

3.3 Main results

The theorems in this section will establish sufficient conditions on the data and prior
distributions in order to achieve (10). Since we are dealing with the limit of (9) as
x → ∞, we need to apply the dominated (bounded) convergence theorems to solve
the limit of the integral in the denominator. Thus, the general strategy to prove the
forthcoming theorems is to bound the integrands using the proposed conditions.

Theorem 5 (Densities in L ∩ O RV ) Suppose that f is a bounded density and that
f ∈ L ∩ O RV with α( f ) < 0. Also assume that

∫ ∞

x
p(y)dy = o(�k

i=1 f (xi )), as x → ∞. (11)

Then we have

p(y | X) → p(y|XU ), as x → ∞.
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Proof For the integral in (9), we write
∫

�
f (X |y)p(y)dy =

(∫ 0

−∞
+

∫ x/2

0
+

∫ ∞

x/2

)

L × U × p(y)dy

= I + I I + I I I.

First consider I I . In I I we have 0 ≤ y ≤ x/2 and it follows that

xi − x/2 ≤ xi − y ≤ xi , 1 ≤ i ≤ k

and then also that

xi/2 ≤ xi − y ≤ xi , 1 ≤ i ≤ k.

First note that for f ∈ L we have L ∼ �k
i=1 f (xi ), as x → ∞. Since f ∈ O RV , it

follows that in I I, L/�k
i=1 f (xi ) is bounded. Since f is bounded (by assumption) we

have that U is bounded, then there exists a constant C such that
∫

�
U × p(y)dy < C

∫

�
p(y)dy = C,

hence

I I

�k
i=1 f (xi )

→
∫ ∞

0
U × p(y)dy.

Next we consider I . In I we have xi ≤ xi − y. Using (5) we obtain that

f (xi − y)

f (xi )
= f (xi (xi − y)/xi )

f (xi )
≤ D

(
xi − y

xi

)α

,

where α( f ) < α. Since α( f ) < 0, we can choose α < 0 and then we see that in
I, L/�k

i=1 f (xi ) is bounded. Again Lebesgue’s theorem can be applied to obtain that

I

�k
i=1 f (xi )

→
∫ 0

−∞
U × p(y)dy.

For the third term I I I we use the assumption that f is a bounded density. In this case
we obtain that

I I I ≤ (sup f (z))n ×
∫ ∞

x/2
p(y)dy.

By our assumption on p we obtain that

I I I = o(�k
i=1 f (xi/2)).

Using f ∈ O RV , we conclude that I I I = o(�k
i=1 f (xi )). This proves the theorem.

��
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Theorem 6 (Densities in L) Suppose that f ∈ L and that f is bounded. Also suppose
that there exists s > 0 such that

∫ 0

−∞
e−syU × p(y)dy +

∫ ∞

0
esyU × p(y)dy < ∞.

If
∫ ∞

x p(y)dy = o(�k
i=1 f (xi )), as x → ∞, we have that

p(y | X) → p(y | XU ), as x → ∞.

Proof Since f ∈ L, we still have L/�k
i=1 f (xi ) → 1 as x → ∞. Also we have

F := f ◦ log ∈ RV (0). Using (5), for each ε > 0, we can find constants A, B, z◦ so
that

f (z − y)

f (z)
≤ Ae−εy, y ≤ 0, z ≥ z◦, (12)

f (z − y)

f (z)
≤ Beεy, y ≥ 0, z − y ≥ z◦, z ≥ z ◦.

Now we write the integral as follows:

∫

�
f (X |y)p(y)dy =

(∫ 0

−∞
+

∫ x−z◦

0
+

∫ ∞

x−z◦

)

L × U × p(y)dy

= I + I I + I I I.

First consider I . For L we have y ≤ 0 and xi ≥ x . It follows from (12) that for x ≥ z◦
we have

L = �k
i=1 f (xi − y) ≤ �k

i=1 A f (xi )e
−εy .

Taking s = εk, we can use Lebesgue’s theorem to see that

I

�k
i=1 f (xi )

→
∫ 0

−∞
U × p(y)dy.

Now consider I I . In I I we have 0 ≤ y ≤ x − z◦ so that

z◦ ≤ xi − x + z◦ ≤ xi − y ≤ xi .

It follows from (12) that for x ≥ z◦ we have

L = �k
i=1 f (xi − y) ≤ �k

i=1 B f (xi )e
εy .
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Taking s = εk, we can use Lebesgue’s theorem to see that

I I

�k
i=1 f (xi )

→
∫ ∞

0
U × p(y)dy.

Finally consider I I I . Since f has a bounded density, we find that

I I I ≤ (sup f (z))n
∫ ∞

x−z◦
p(y)dy.

Our assumption about p shows that

I I I = o(�k
i=1 f (xi − z◦)).

Using f ∈ L, we obtain that I I I = o(�k
i=1 f (xi )). This proves the result. ��

Now, assume k = 1 in Sect. 3.1, we have only one outlier and then we have
L = f (x1 − y). In this subsection we assume f ∈ SD, that is f ∈ L and f satisfies
f ⊗ f (x)/ f (x) → 2, as x → ∞.

Theorem 7 (Densities in SD) Suppose that f ∈ SD ⊂ L and that p(|x |) =
o( f (|x |)), then p ⊗ f (x)/ f (x) → 1.

Proof We write

p ⊗ f (x) =
(∫ −x◦

−∞
+

∫ x◦

−x◦
+

∫ ∞

x◦

)

p(y) f (x − y)dy

= I + I I + I I I.

Since p(−x) = o(1) f (−x) as x → ∞, for ε > 0 we can find x◦ so that we have

I ≤ ε

∫ −x◦

−∞
f (y) f (x − y)dy ≤ ε f ⊗ f (x),

It follows that

lim sup
I

f (x)
≤ 2ε.

For I I I , in a similar way we find that

lim sup
I I I

f (x)
≤ 2ε.

Now consider I I . Using f ∈ L, we get that

I I

f (x)
→

∫ x◦

−x◦
p(y)dy.
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By choosing x◦ sufficiently large, we obtain that

1 −
∫ x◦

−x◦
p(y)dy ≤ ε,

We conclude that

lim sup
x→∞

∣
∣
∣
∣

p ⊗ f (x)

f (x)
− 1

∣
∣
∣
∣ ≤ 5ε.

Now let ε → 0, to get the desired result. ��
Depending on the distributions the verification of the conditions above may become

difficult. Thus the following theorem provides the same result, but with conditions
slightly different from those of Theorem 7.

Theorem 8 (Densities in SD) Assume that f ∈ SD, (this is: f ∈ L and f ⊗
f (x)/ f (x) → 2, as x → ∞). Also assume that p(|x |) ∼ α f (|x |) where α > 0.
Then p ⊗ f (x) ∼ (α + 1) f (x).

Proof We choose a in such a way that

(α − ε) f (|x |) ≤ p(|x |) ≤ (α + ε) f (|x |), ∀x with |x | ≥ a.

Now choose x◦ ≥ a. We reconsider I and I I I from the proof of Theorem 7 and get
that

(α − ε)

∫ −x◦

−∞
f (y) f (x − y)dy ≤ I ≤ (α + ε)

∫ −x◦

−∞
f (y) f (x − y)dy

(α − ε)

∫ ∞

x◦
f (y) f (x − y)dy ≤ I I I ≤ (α + ε)

∫ ∞

x◦
f (y) f (x − y)dy

It follows that

(α + ε)

{

f ⊗ f (x) −
∫ x◦

−x◦
f (y) f (x − y)dy

}

≤ I + I I I

≤ (α + ε)

{

f ⊗ f (x) −
∫ x◦

−x◦
f (y) f (x − y)dy

}

,

and using f ∈ L we obtain that

(α − ε)

(

2 −
∫ x◦

−x◦
f (y)dy

)

≤ lim
x→∞

(
sup

inf

)
I + I I I

f (x)
≤ (α + ε)

(

2 −
∫ x◦

−x◦
f (y)dy

)

.
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For I I we obtain that (use f ∈ L), we get that

I I

f (x)
→

∫ x◦

−x◦
p(y)dy.

We can find x◦ sufficiently large such that

1 − ε ≤
∫ x◦

−x◦
f (y)dy ≤ 1, 1 − ε ≤

∫ x◦

−x◦
p(y)dy ≤ 1.

We get that

(α − ε) + 1 − ε ≤ lim
x→∞

(
sup

inf

)
p ⊗ f (x)

f (x)
≤ (α + ε)(1 + ε) + 1.

Now let ε → 0 to get the desired result. ��

3.4 Many observations

Theorems 7 and 8 can be extended to many observations with some of them possibly
being outliers. In order to show this, consider a random sample x = (x1, x2, . . . , xn)

i id with a p.d.f. f (xi |y) = f (xi − y)∀i , where y is a location parameter. Let also

y
D∼ p(y) (prior distribution).
In practical problems we might have a few observations very large, that is

(x1, . . . , xk) (k ≤ n) tending to infinity. This is equivalent to think of the k obser-
vations close to each other and tending to infinity, that is xi = x + ξi for ξi fixed
(i = 1, . . . , k). Thus we can write the joint distribution of (x1, . . . , xk) as:

f (x1, . . . , xk |y) =
k∏

i=1

f (x + ξi − y) = g(x − y),

which clearly keeps the location structure. In fact, the outliers behave like a single
observation as x → ∞.

The joint distribution of the rest of the observations is given by:

f (xk+1, . . . , xn|y) =
n∏

i=k+1

f (xi − y) = U.

The posterior can be written as

p(y|x) = U × g(x − y) × p(y)
∫
R

U × g(x − y) × p(y)dy
.
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Let p∗(y) = U × p(y), it follows that we have the same structure of Theorem 8, holds
if p∗(|x |) ∼ αg(|x |) as x → ∞. In this case the posterior distribution

p(y|x) → U × p(y)
∫
R

U × p(y)dy
(x → ∞).

4 Scale parameter models

4.1 Notation

Due to (1), notice that regular variation provides a natural way to deal with scale
parameters since the scale structure of a scale parameter model is the same as in the
definition of regular variation. Consider a sample X = (x1, x2, . . . , xn) of independent
and identically distributed (iid) with fixed sample size n. A typical scale parameter
model is of the form

xi |y D∼ f (xi | y) = y−1h(xi/y), 1 ≤ i ≤ n;
y

D∼ p(y),

where f is the data p.d.f. and p(y) is the prior p.d.f. of y which is the parameter of inter-
est. For convenience, we assume that all random variables involved are concentrated
on the positive halfline.

Suppose that xi , 1 ≤ i ≤ k < n are large. As before we define X L =
(x1, x2, . . . , xk), x = min(x1, . . . , xk) and XU = (xk+1, . . . , xn). We clearly have

f (X | y) = y−n�k
i=1h(xi/y) × �n

j=k+1h(x j/y)

= y−n × L × U.

The posterior p.d.f. of y is given by:

p(y | X) = f (X | y)p(y)
∫
� y−n L × U × p(y)dy

. (13)

4.2 Main result

Now we suppose that h ∈ RV (α). In this case it is easy to see that

L

�k
i=1h(xi )

→ y−αk , as x → ∞.

We need extra conditions to see what happens in (13) if x → ∞. An alternative to the
conditions proposed in Andrade and O’Hagan (2006) is provided by the next result.

Theorem 9 (Densities in RV) Suppose that h ∈ RV (α) with α < 0 and suppose that
h is bounded on bounded intervals. Assume that for ε > 0 we have
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∫ 1

0
y−(α+ε)kU × p(y)dy +

∫ ∞

1
y−(α−ε)kU × p(y)dy < ∞, (14)

Then

1

�k
i=1h(xi )

∫

�
L × U × p(y)dy →

∫ ∞

0
y−αkU × p(y)dy < ∞ (15)

Proof We have

∫

�
L × U × p(y)dy =

(∫ 1

0
+

∫ ∞

1

)

L × U × p(y)dy = I + I I.

First consider I and write

I

�k
i=1h(xi )

=
∫ 1

0
�k

i=1
h(xi/y)

h(xi )
U × p(y)dy.

Since 1 ≤ 1/y and h ∈ RV (α), for each ε > 0 we can find constants C and z◦ such
that

h(z/y)

h(z)
≤ Cy−α−ε, ∀z ≥ z◦, ∀y ≤ 1.

It follows that

�k
i=1

h(xi/y)

h(xi )
≤ Ck y−αk−εk, ∀x ≥ z◦, ∀y ≤ 1.

Using (14) it follows that we can apply dominated convergence and we find that

I

�k
i=1h(xi )

→
∫ 1

0
y−αkU × p(y)dy.

Now consider I I . Using h ∈ RV (α), for each ε > 0, we can find constants D and z◦
such that

h(xi/y)

h(xi )
≤ Dy−α+ε, ∀y ≥ 1 and xi/y ≥ z◦.

Now consider the case where y ≥ 1, xi/y < z◦ and xi ≥ z◦. Since we assume that h
is bounded on bounded intervals, we get that

h(xi/y)

h(xi )
≤ sup

u≤z◦
h(u)

1

h(xi )

= sup
u≤z◦

h(u)
1

x−α+ε
i h(xi )

x−α+ε
i .
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Since z−α+εh(z) → ∞ as z → ∞, we can find a constant D◦ so that

h(xi/y)

h(xi )
≤ D◦x−α+ε

i ,∀y ≥ 1, xi/y < z◦, xi ≥ z◦.

Now it follows that

h(xi/y)

h(xi )
≤ D◦yα−εx−α+ε

i y−α+ε.

Since α < 0 and xi/y < z◦, we get that

h(xi/y)

h(xi )
≤ D◦(z◦)−α+ε y−α+ε = Fy−α+ε.

Combining these estimates, we have proved that we can find a constant G such that

h(xi/y)

h(xi )
≤ Gy−α+ε, ∀y ≥ 1, ∀xi ≥ z◦.

Assumption (14) can be used and applying dominated convergence, we get that

I I

�k
i=1h(xi )

→
∫ ∞

1
y−αkU × p(y)dy.

Combining the results for I and I I , we obtain (15). ��

4.3 Remark

We briefly discuss conditions under which condition (14) holds. We prove the follow-
ing result:

Proposition 10 Suppose that h ∈ RV (α) is bounded on bounded intervals. Also
assume that

∫ 1

0
yθ−(n−k)(α+ε) p(y)dy < ∞ resp.

∫ ∞

1
yθ p(y)dy < ∞.

Then for fixed XU ,

∫ 1

0
yθU × p(y)dy < ∞, resp.

∫ ∞

1
yθU × p(y)dy < ∞.

Proof First consider an integral of form

∫ 1

0
yθU × p(y)dy.
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Clearly we have

∫ 1

0
yθU × p(y)dy =

(∫ a

0
+

∫ 1

a

)

yθU × p(y)dy = A + B,

where 0 < a < 1. First consider B. Since we assume that h is bounded on bounded
intervals, we have

B ≤
∫ 1

a
yθ p(y)dy ≤ max(1, aθ )

∫ 1

a
p(y)dy < ∞.

Next consider A. Using z−α−εh(z) → 0, we can find z◦ such that h(z) ≤ εzα+ε, z ≥
z◦. It follows that

h(xi/y) ≤ ε(xi/y)α+ε, xi/y ≥ z◦.

Since y ≤ a, we should choose a such that xi/a ≥ z◦, or a ≤ xi/z◦. Having done
this, we find

A ≤
∫ 1

a
yθ�n

i=k+1ε(xi/y)α+ε p(y)dy

= εn−k�n
i=k+1xα+ε

i

∫ 1

a
yθ−(n−k)(α+ε) p(y)dy < ∞.

Next consider an integral of the form

∫ ∞

1
yθU × p(y)dy.

Since we assume that h is bounded on bounded intervals, we have

h(xi/y) ≤ sup
z≤xi

h(z) = s(xi )

and then also
∫ ∞

1
yθU × p(y)dy ≤ �n

i=k+1s(xi )

∫ ∞

1
yθ p(y)dy < ∞.

This proves the result. ��

5 Examples

We illustrate the theory with a general problem of estimating the location and the scale
parameters of the random sample x = (2, 3, 3, 4, x5), where we take x5 arbitrarily
large in order to observe the behaviour of the posterior distribution of the location and
the scale parameters. The general model is
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⎧
⎪⎪⎨

⎪⎪⎩

xi |y, σ
D∼ f (xi |y, σ ) = σ−1h

( xi −y
σ

)
i id, i = 1, . . . , 5

y
D∼ p(y)

σ
D∼ π(σ)

. (16)

We use the OpenBugs (MCMC methods) for sampling from the posterior distribu-
tions, in all the cases the algorithm was run until its convergence, then the posterior
estimates of the location and of the scale parameters were computed.

In order to achieve rejection of the outlying observation we need to model accord-
ingly to the theorems above. This basically means to choose suitably heavy-tailed
distributions for the data and for the prior distributions and lighter tails for the prior
distributions of the location and the scale parameters. As our purpose is to illustrate the
theory, we opt for quite strong prior information (small variances), which will make
the MCMC algorithm to achieve convergence more quickly. Thus we expect to base
the posterior estimates on the prior information and on the non-outlying observations
XU = (2, 3, 3, 4). As for the data distribution, we propose four different choices for
f , namely, models: (I) f light-tailed, (II) f ∈ RV , (III) f ∈ L and (IV) f ∈ SD. Thus
we assess the behaviour of the posterior estimates as we disturb the data by increasing
x5.

We need to verify if the distributions of Models (I)–(IV) satisfy the conditions of
the Sects. 3 and 4.

Model I The traditional light-tailed choice for f is a normal distributions with
mean (location) y and standard deviation (scale) σ . It is easy to verify that
the normal distributions does not belong to any of the families above. In
fact,

lim
x→∞ f (x − y)/ f (x) =

⎧
⎨

⎩

0, y < 0;
1, y = 0;
∞, y > 0.

,

hence f /∈ L, therefore f /∈ RV and f /∈ SD. Notice that f /∈ O RV ,
since we the limit (3) is infinity as y > 0. As for the prior information, we

assign y
D∼ N (0, 0.05) and σ

D∼ G(3, 10).
Model II Besides being bounded, by (1), the Student’s t distribution with d degrees

of freedom and is regularly varying with index −(d + 1). Thus we assign
to f (xi |y, σ 2) a t distribution with d = 4 degrees of freedom, mean

y and variance σ 2. In addition we assign y
D∼ N (0, 0.05) for the prior

distribution of y and σ
D∼ G(3, 10). Now we need to verify the conditions

of Theorems 5 (location parameter) and 9 (scale parameter).
Location parameter: We have to show that

[1 − �(x)]/
n∏

i=1

f (xi ) → 0, as x → ∞,
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where � is the cumulative distribution of the standard normal distribution.
In fact, 1−�(x) = erfc(x/

√
2)/2, where erfc is the complementary error

function

er f c(x) = 2(2π)−1/2
∫ ∞

x
e−x2/2dx,

which has the asymptotic expansion

er f c

(
x√
2

)

= 2e−x2/2

√
2π

n∑

n=0

(−1)n1 · 2 · 3 · · · (2n − 1)

x2n+1 . (17)

For any k (≤ n)
∏k

i=1 f (xi ) ∝ ∏k
i=1

(
1 + x2

i /(d − 2)
)−(d+1)/2

, it follows

that [1 − �(x)]/∏k
i=1 f (xi ) → 0 as x → ∞. Hence the conditions of

Theorem 5 as satisfied. Here k = 1 which makes the condition even easier
to verify.
Scale parameter: It’s straightforward by application of Proposition 10,
since the prior of the scale parameter is a Gamma distribution, it follows
that

∫ ∞

1
σθ p(σ )dσ < ∞, for all θ > −α = −3.

Model III The Exponential Power Distribution (EPD) (or generalised normal distri-
bution) (Box and Tiao 1973) is of the form

f (xi |y, σ 2) ∝ 1

σ
e
−

∣
∣
∣

xi −y
σ

∣
∣
∣
q

.

This structure generalises several well known distributions. For instance, if
q = 2 f is a normal distribution and if q = 1 f is the double exponential.
For 0 < q ≤ 1 we have E P D ∈ L, thus we choose q = 1/3. From (1), the
EPD is not in the RV class, hence we cannot guarantee robustness of the

posterior estimate of the scale parameter, here we assign σ
D∼ G(3, 0.01).

As for the location parameter, let y
D∼ N (0, 0.05), again we have to satisfy

the conditions of Theorem 5. In fact, similarly to the strategy used in Model
II above,

∏k
i=1 f (xi ) ∝ σ−k exp{−∑k

k=1 |xi |q}, which can be compared
with (17), hence Condition (11) is verified.

Model IV The LogNormal distribution is a well known subexponential distribution
(see Goldie and Kluppelberg 1998). The LogNormal distribution is also
in L, but not in O RV . We consider the model

f (xi |y, σ 2) ∝ (xiσ)−1e− (log xi −y)2

2σ2 , i = 1, . . . , 5
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that is xi is lognormally distributed with location parameter y and scale
parameter σ . In addition we choose a LogNormal distribution for the prior

distribution of y, that is y
D∼ LogN(0, 0.05), hence we satisfy the condition

that p(x) ∼ f (x) (x → ∞) (Theorem 8). Again, as in the L the SD class
will not produce a robust posterior distribution for the scale parameter,

thus we arbitrarily choose σ
D∼ IG(3, 10).

Note that we have different models, thus we cannot compare the models estimates. In
fact, we compare the behaviour of the posterior estimates in the different models.

In order to verify robustness of each model, we considered the data x and we made
the outlier x5 to vary from 1 to 1,000. Thus we ran the MCMC algorithm 1,000 times
for each model in order to generate a sample from the posterior distribution, then we
computed and plot the posterior estimates of y and of σ corresponding the each value
of x5. Due to natural oscillation of MCMC outputs we added to each plot a trend
line, which basically averages the outputs by some polynomial regression (commonly
used in times series analysis), this helps to see the variation of the posterior estimates.
Figure 1a (Model I) shows a quite common model used in Bayesian analysis, in which
both the data and the prior distributions are light-tailed. In this case the model is quite
sensitive to atypical information, that is note that, as x5↑∞ the posterior estimates
follow the outlying information faithfully to the infinity. This was the behaviour iden-
tified by de Finetti (1961) and described in more details by Lindley (1968). In practice
this basically means that if outliers are in the data, the posterior distribution may be
disturbed by them, and potentially lead to wrong conclusions. As an alternative, in
Model II the data distribution is in L ∩ O RV , which is verified by the fact that a
Student t distribution is regularly varying. The prior distributions are light-tailed, thus
Theorem 5 and 9 assures that the posterior estimates will be robust to atypical data. In
fact, Fig. 1b shows that the posterior estimates for y and for σ becomes unaffected by
the outlying information when it becomes too large. As pointed out by Andrade and
O’Hagan (2006), the posterior estimates reject the outlying data in favour of the rest of
the data and the prior information. Model III assigns to the data a distribution which is
in L, but not in O RV , thus as shows Fig. 1c we achieve robustness only on the location
parameter, whose posterior estimates tend to a constant, the posterior estimates of the
scale parameter tend to infinity as x5↑∞. Similarly, in Model IV (Fig. 1d) we cannot
control the influence of the outlier in the posterior distribution of σ , which produces
estimates very sensitive to changes of x5, in contrast the posterior estimates of the
location parameter y tends to a constant, rejecting the outlier.

The classes of heavy-tailed distributions defined in Sect. 2, when combined with
light-tailed prior distributions, produces quite diverse behaviours of the posterior distri-
bution in the presence of conflicting information. Ultimately the posterior distribution
will be based on that source of information whose distribution (data or prior) has
lighter tails. Thus we assign a heavy-tailed distribution to the source of information
which we believe might carry conflicting information and a distribution with lighter
tails to the other source of information. In this way the conflicting information will
be automatically discarded by the model. This happens due the fact that heavy-tailed
distributions are more prepared to deal with events which occur far away from the
mode of the distribution, due to the weight of its tails. See Andrade and O’Hagan
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Fig. 1 Posterior estimates for the location and the scale parameters
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(2006) for further details. In the examples above the posterior estimates of the loca-
tion and of the scale parameters are robust to conflicting information due the L and
O RV distributions assigned to the data, this behaviour is also achieved when we use
regularly varying distributions (Andrade and O’Hagan 2011). With respect to models
involving either an L or a subexponential distribution, only the estimate of the location
parameter will be unaffected by conflicts. This suggests that scale parameters should
be modelled with distribution with approximately power law tails decay, which is
provided by the RV and O RV classes.

6 Discussion

The results presented involve quite wide classes of heavy-tailed distribution, in par-
ticular the L and SD embraces most of the distributions whose tails decay like e−xq

(q < 1) and those with regularly varying tails, which behave like a polynomial. Distri-
butions like the EPD, Laplace and LogNormal have been used as heavy tails in practical
applications (see Pericchi and Sansó 1995; Pericchi et al. 1993). By working in wider
classes of heavy-tailed distribution, we expand the scope distributions, which can be
used in order to achieve posterior robustness. As shown in the examples, we cannot
achieve posterior robustness on the scale parameters within the classes L and SD. As
Andrade and O’Hagan (2006) point out, differently from the location case in which
conflicts disturb only the location of the posterior distribution, in a scale parameter
structure the posterior distribution is affected both on the location and on the scale as
some observation increases, thus we need quite heavy tails to resolve those conflicts.

The results above concern the cases where we want to reject some observations or the
whole sample in favour of the prior information or the prior information and the non-
outlying data, although this is the most common form of conflict, in some situations
one may wish to weaken the prior information in the model, perhaps for finding the
prior information not so credible. In this case, the theory presented provides tools for
making the model to behave in the way the modeller wishes. In order to reject some
prior information we basically need to model accordingly to the Theorems above, but
how focusing in the prior information, that is assign some heavy-tailed distribution to
the prior information and some distribution with lighter tails to the data. For instance,
in Theorem 5, in order to reject the prior distribution in favour of the data, we need
to choose p ∈ L ∩ O RV , with p bounded, α(p) < 0 and

∫ ∞
x f (y)dy = o(p(x))

as x → ∞. In general we need just to exchange the prior distribution with the data
distribution in the theorems presented above. Andrade and O’Hagan (2006, 2011)
provide some further description of how to reject prior information of the location and
the scale parameter.
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