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Abstract This paper presents a simulation-based framework for sequential infer-
ence from partially and discretely observed point process models with static para-
meters. Taking on a Bayesian perspective for the static parameters, we build upon
sequential Monte Carlo methods, investigating the problems of performing sequen-
tial filtering and smoothing in complex examples, where current methods often fail.
We consider various approaches for approximating posterior distributions using SMC.
Our approaches, with some theoretical discussion are illustrated on a doubly stochastic
point process applied in the context of finance.

Keywords Point processes - Sequential Monte Carlo - Intensity estimation

1 Introduction

Partially observed point processes provide a rich class of models to describe real
data. For example, such models are used for stochastic volatility (Barndorff-Nielsen
and Shephard 2001) in finance, descriptions of queuing data in operations research
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(Fearnhead 2004), important seismological models (Daley and Vere-Jones 1988) and
applications in nuclear physics (Snyder and Miller 1998). For complex dynamic mod-
els, i.e., when data arrive sequentially in time, studies date back to at least Snyder
(1972). However, fitting Bayesian models requires sequential Monte Carlo (SMC)
(e.g. Doucet et al. 2001) and Markov chain Monte Carlo (MCMC) methods. The
main developments in this field include the work of Centanni and Minozzo (2006a,b),
Green (1995), Del Moral et al. (2006, 2007), Doucet et al. (2006), Roberts et al. (2004),
Rydberg and Shephard (2000), see also Whiteley et al. (2011). As we describe below,
the SMC methodology may fail in some scenarios and we will describe methodology
to deal with the problems that will be outlined.

Informally, the problem of interest is as follows. A process is observed discretely
upon a given time-interval [0, T']. The objective is to draw inference at time-points

tp =0<1t <--- <ty <T = tiz4+1, on the unobserved marked point process (PP)
(ks ¢1:k,,1a L1k, ), where b1k, = (1, ..., ¢kr,,) are the ordered event times (con-
strained to [0, #,,]) with k;, the number of event times up-to 7, and Sk, = (15 ee s Ckyy)

are marks, given the observations yy.,, , with r;, the number of observations up-to 7,,.
In other words to compute, for n > 1, at time ¢,

7n (ks s D1k, » C1:k,, | V1:r,,) sSOOthing (D
T (kt, — Kiy_ys Pk, +1:ky, > Sk +1:ks, [ V1, ) filtering. (2)

In addition, there are static parameters specifying the probability model and these
parameters will be estimated in a Bayesian manner. At this stage a convention in our
terminology is established. An algorithm is said to be sequential if it is able to process
data as it arrives over time. An algorithm is said to be on-line if it is sequential and
has a fixed computational cost per iteration/time-step.

One of the first works applying computational methods to PP models was Rydberg
and Shephard (2000). They focus upon a Cox model where the unobserved PP para-
meterizes the intensity of the observations. Rydberg and Shephard (2000) used the
auxiliary particle filter (Pitt and Shephard 1997) to simulate from the posterior density
of the intensity at a given time point. This was superseded by Centanni and Minozzo
(20064a,b), which allows one to infer the intensity at any given time, up to the cur-
rent observation. Centanni and Minozzo (2006a,b) perform an MCMC-type filtering
algorithm, estimating static parameters using stochastic EM. The methodology cannot
easily be adapted to the case where the static parameters are given a prior distribution.
In addition, the theoretical validity of the approach has not been established, this is
verified in Proposition 1.

SMC samplers (Del Moral et al. 2006) are the focus of this paper and can be applied
to all the problems stated above. SMC methods simulate a set of N > 1 weighted
samples, termed particles, in order to approximate a sequence of distributions, which
may be chosen by the user, but which include (or are closely related to) the distributions
in (1) and (2). Such methods are provably convergent as N — oo (Del Moral 2004).
A key feature of the approach is that the user must select:

1. the sequence of distributions,
2. the mechanism by which particles are propagated.
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If points 1 and 2 are not properly addressed, there can be a substantial discrepancy
between the proposal and target, thus the variance of the weights will be large and
estimation inaccurate. This issue is particularly relevant when the targets are defined
on a sequence of nested spaces, as is the case for the PP models—the space of the
point process trajectories becomes larger with the time-parameter n. Thus, in choosing
the sequence of target distributions, we are faced with the question of how much the
space should be enlarged at each iteration of the SMC algorithm and how to choose a
mechanism to propose particles in the new region of the space. This issue is referred
to as the difficulty of extending the space.

Two solutions are proposed. The first is to saturate the state-space, it is supposed
that the observation interval, [0, T'], of the PP is known a priori. The sequence of
target distributions is then defined on the whole interval and one sequentially intro-
duces likelihood terms, i.e. the sequence of target distributions is initially the prior
distribution with the unobserved process allowed to lie on [0, T']. As the likelihood
can be written as a product of r7 terms, each subsequent target (up-to proportionality)
is the old one, multiplied by the density of the next data-point in the sequence. This
idea circumvents the problem of extending the space, at an extra computational cost.
Inference for the original density of interest can be achieved by importance sampling
(IS). This approach cannot be used if 7 is unknown. In the second approach, entitled
data-point tempering, the sequence of target distributions is defined by sequentially
introducing likelihood terms, as above, except that the hidden process can only lie
on [0, #,]. This is achieved as follows: given that the PP has been sampled on [0, #,]
the target is extended onto [0, #,1] by sampling the missing part of the PP. Then one
introduces likelihood terms into the target that correspond to the data (as in Chopin
2002). Once all of the data have been introduced, the target density is (1). It should be
noted that neither of the methods is online, but some simple fixes are detailed.

Section 2 introduces a doubly stochastic PP model from finance which serves as
a running example. In Sect. 3, the ideas of Centanni and Minozzo (2006a,b) are dis-
cussed; it is established that the method is theoretically valid under some assumptions.
The difficulty of extending the state space is also demonstrated. In Sect.4, we intro-
duce our SMC methods. In Sect. 5 our methods are illustrated on the running example.
In Sect. 6, we detail extensions to our work.

Some notations are introduced. We consider a sequence of probability mea-
sures {@, }1<n<m* on spaces {(G,, Gn)}1<n<m*, with dominating o -finite measures.
Bounded and measurable functions on G, f, : G, — R, are written B,(G,) and
| full = supyeg, |fa(x)|. @, will refer to either the probability measure @), (dx) or
the density @, (x).

2 Model

The model we use to illustrate our ideas is from statistical finance. An important type of
financial data is ultra high-frequency data which consist of the irregularly spaced times
of financial transactions and their corresponding monetary value. Standard models for
the fitting of such data have relied upon stochastic differential equations driven by
Wiener dynamics, a debatable assumption due to the continuity of the sample paths.
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As noted in Centanni and Minozzo (2006b), it is more appropriate to model the data
as a Cox process. Due to the high frequency of the data, it is important to be able to
perform sequential/on-line inference. Data are observed in [0, T']. In the context of
finance, the assumption that 7" be fixed is entirely reasonable. For example, when the
model is used in the context of equities, the model is run for the trading day; indeed
due to different (deterministic) patterns in financial trading, it is likely that the fixed
parameters below are varied according to the day.

A marked PP, of r7 > 1 points, is observed in time-period [0, 7']. This is written
Yy = (@lps Elirp) € Qi X BT with Q7 = {017 10 <01 < -+ <0y <
T}, & € R. Here, the w are the transaction times and £ are the log-returns on the
financial transactions. An appropriate model for such data, as in Centanni and Minozzo
(2006b), is

Pl o) = [ | 5 . o)

i=1

rr T
p@r [{A1}) H {)\wi}exp [_/O Aud”}

i=1

with p a generic density, & |, o are assumed to be 7-distributed on 1 degree of freedom,
location u, scale o and A, is the intensity of the hidden process up-to time u. The
unobserved intensity process is assumed to follow the dynamics dA; = —sA,dt + dJ;
with {J; } acompound Poisson process: J; = Z];’:] ¢j with {K;} aPoisson process with
rate parameter v and i.i.d. jumps {; ~ Ex(1/y), Ex(-) is the exponential distribution.
That is, for ¢ € [0, T'],

ki
M= hoe M+ D e 9D 3)
j=1

with ¢; the jump times of the unobserved Poisson process and Aq fixed throughout
(using a short preliminary time series that is available in practice).
We define the following notation:

Xn = (ki P1:k,, > S1iky, )
Xn,1 = (K, = Kty Pl 1tk s Shyy | 1k )
n = (a)l:r,n , %_l:r,n)»

)_Jn,l = (wr,n_l +1irgy, Er,n_l +1iry, ).

Here x,, (respectively, y,) is the restriction of the hidden (observed) PP to events
in [0, #,]. Similarly, x,, 1 (respectively, y, 1) is the restriction of the hidden (observed)
PP to events in [t,,_1, t,].

The objective is to perform inference at times 0 < #; < --- < tiz < T = ti41,
i.e., to update the posterior distribution conditional on the data arriving in [#,_1, t,].
To summarize, the posterior distribution at time ¢, is
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Tty tn
TTn (X, Wy O |Yn) O(H{];(giQMaU)Awi}eXP[_/() )\ud“]
i=1
kfn
< [[{p)}p@14, Phs,) x (1. 0)
i=1

= 10,1,)(Ins Xn, i, 0) X P(Xp) X p(, 0) “)

with [ ;,] corresponding to the first part of the equation above, p ~ N (o, Bu),
o ~ Ga(as, Bs)s 1k lke ~ U, , kv ~ Po(yt) and where Uy is the uniform
distribution on the set A, A/ (i, 02) is the normal distribution of mean p and variance
02, Ga(a, B) the Gamma distribution of mean /B and Po is the Poisson distribution.
p(x,) is the notation for the prior on the hidden point-process and p(u, o) is the
notation for the prior on (i, o). Later, a g is introduced which will refer to an initial
distribution. Note it is possible to perform inference on (i, o) independently of the
unobserved PP; it will not significantly complicate the simulation methods to include
them.

It is of interest to compute expectations w.r.t. the {7, }1<n<m*, and this is possible,
using the SMC methods below (Sect. 3.1). However, such algorithms are not of fixed
computational cost; the sequence of spaces over which the {7, } 1 <, <n* lie is increasing.
These methods can also be used to draw inference from the marginal posterior of the
process, over (t,—1, t,]; such algorithms can be designed to be of fixed computational
complexity, for example by constraining any simulation to a fixed-size state-space.
This idea is considered further in Sect. 4.3.

3 Previous approaches

One of the approaches for performing filtering for partially observed PPs is from
Centanni and Minozzo (2006a). In this section, the parameters (u, o) are assumed
known. Let

Ev=J (0 x @k, x ®H)).

kENO

This is the support of the target densities for this method.
The following decomposition is adopted

T (XnlYn) = ——= - p()zn,l)nn—l()_cn—lb_/n—l)
DPn(Yn,11Yn—-1)

Ian()_’n,ll)_’n—l) :/l(l,,_l,t,,](yn,l;in)p(jn,l)ﬂn—l()zn—l|)_’n—1)din~ 4)

At time n > 2 of the algorithm, a reversible jump MCMC kernel (although the
analysis below is not restricted to such scenarios) is used for N steps to sample from
the approximated density
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7N Gl Fn) O Lty 01 Gt )P, 1) Sy (i)

where Sgnfl(in,l) = % ZzN=1 H{)—(;,»ll}(in,l) with )?,(1121, R )_(,(ﬁ)l obtained from a

reversible jump MCMC algorithm of invariant measure nrfv_ |- The algorithm forn =1

targets m; exactly; there is no empirical density S)]X o- At time n = 1, the algorithm

starts from an arbitrary point )El(l) € Ej. For n > 2 the initialization is from a draw

from the empirical Sﬁn_l and the prior p (this can be modified); N — 1 additional
samples are simulated.

The above algorithm can be justified, theoretically, using the Poisson equation
(e.g. Glynn and Meyn 1996) and induction arguments. Below the assumption (A)
is made; see appendix for the assumption (A) as well as the proof. The expectation
below is w.r.t. the simulated process discussed above, given the observed data.

Proposition 1 Assume (A). Then for any n > 1, yn, p > 1 there exists Bp n(yn) <
~+o00 such that for any f, € Bp(Ey)

p

1/p B _
yn} = BraGlfull - o

VN

| AR
_ E @)y _ > =
Eif” |:' N < fn(Xn ) £ S ()7, (dxy)

This result helps to establish the theoretical validity of the method in Centanni and
Minozzo (2006a), which to our knowledge had not been established in that paper or
elsewhere. In addition, it allows us to understand where and when the method may be
of use; this is discussed in Sect. 3.2.

3.1 SMC methods

SMC samplers aim to approximate a sequence of related probability measures
{71 }o<n<m* defined upon a common space (E, £). Note that m* > 1 can depend
upon the data and may not be known prior to simulation. For partially observed
PPs the probability measures are defined upon nested state-spaces; this case can be
similarly handled with minor modification. SMC samplers introduce a sequence of
auxiliary probability measures {77, }o<n,<m* On state-spaces of increasing dimension
(Efo.n) := Eox- - X Ey, Eo.n] = E0®- - -@Ep), such that they admit the {7, Jo<<m*
as marginals.
The following sequence of auxiliary densities is used:

n—1

T (0n) = 7 Cen) [ [ LGy, xp) (7
j=0

where {L, }o<,<m*—1 are backward Markov kernels. In our application g is the prior,
on Ej (as defined below). It is clear that (7) admits the {m,,} as marginals, and hence
these distributions can be targeted using precisely the same mechanism as in sequential
importance sampling/resampling; the algorithm is given in Algorithm 1.
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The ESS in Algorithm 1 refers to the effective sample size (ESS) (Liu 2001). This
measures the weight degeneracy of the algorithm; if the ESS is close to N, then this
indicates that all of the samples are approximately independent. This is a standard
metric by which to assess the performance of the algorithm. The resampling method
used throughout the paper is systematic resampling.

One generic approach is to set K, as an MCMC kernel of invariant distribution
7, and L,_1 as the reversal kernel L,,_1(x,, x,—1) = mn (Xn—1) Ky (Xn—1, Xn) /705 (Xn)
which we term the standard reversal kernel. One can iterate the MCMC kernels, by
which we use the positive integer M to denote the number of iterates. It is also possible
to apply the algorithm when K, is a mixture of kernels; see Del Moral et al. (2006)
for details.

Algorithm 1 A generic SMC sampler. Note that 7 (N) is termed a threshold function
such that 1 < T(N) < N and ESS is the effective sample size

e 0.Setn =0;fori =1,..., N sample X(()i) ~ oo and compute
wo (X)) oc (X)) /00 (X))
e 1. Compute the normalized importance weights,

wi (Xg,)

U)(i) =
ijzl Wp (X((){r)z

n

if the ESS = {30} wa (X1 / XN (wa (X)) < T/(N) then resample
the particles and set the importance weights to uniform. Setn = n + 1, if
n =m* + 1 stop.
c D@ _ O @) .
e 2.Fori=1,...,Nsample X,,"|X, ", =x, ;| ~ Ky(x -), and compute:

n—1°

" n (X)) Lot (X2 1 X4
Wi (X, 2y.,) O 0 @) ®
an*l(anl)Kn(anl’Xn )

wn(X(()’;L) = Wn(X(i) )wn_l(X(()’;Zl_l) and return to the start of 1.

n—1lin
3.1.1 Nested spaces
As described in Sect. 1, in complex problems it is often difficult to design efficient
SMC algorithms. In the example in Sect. 2, the state-spaces of the subsequent densities

are not common. The objective is to sample from a sequence of densities on the space,
at time n,

Ev= | x @y x @) x RxRF 1=n<m*—1
kENo
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with Eg = E;. Thatis, forany 1 <n <m* — 1, E, C E,4. Two standard methods
for extending the space, as in Del Moral et al. (2006) are to propagate particles by
application of ‘birth’ and the ‘extend’ moves.

Consider the model in Sect. 2. The following SMC steps are used to extend the
space at time n of the algorithm.

e Birth. A new jump is sampled uniformly in [¢ktn_ , t;] and a new mark from the

prior. The incremental weight is

W, (i ) Tn (Xn, W, 0| Yn) (ty _¢k,n_1)
Xn—1m, 1, 0) X p = .
mem Tpn—1(Xn—1, I, U'yn)p(é‘k,,,)

e Extend. A new jump is generated according to a Markov kernel that corresponds
to the random walk:

log [—¢k’” ~ Pty ] =9Z +log P ~ M1
th — ¢k,n th — ¢k,n71

with Z ~ N (0, 1), % > 0. The new mark is sampled from the prior. The backward
kernel and incremental weight are discussed in Del Moral et al. (2007), Sect. 4.3.

Note, as remarked in Whiteley et al. (2011), we need to be able to sample any
number of births. With an extremely small probability, a proposal from the prior is
included to form a mixture kernel.

In addition to the above steps an MCMC sweep is included after the decision of
whether or not to resample the particles is taken (see step 1. of Algorithm 1): an
MCMC kernel of invariant measure 7, is applied. The kernel is much the same as in
Green (1995).

3.1.2 Simulation experiment

We applied the benchmark sampler, as detailed above, to some synthetic data in order
to monitor the performance of the algorithm. Standard practice in the reporting of
financial data is to represent the time of a trade as a positive real number, with the
integer part representing the number of days passed since January 1st 1900 and the
non-integer part representing the fraction of 24 h that has passed during that day; thus,
1 min corresponds to an interval of length 1/1,440. Therefore we use a synthetic data
set with intensity of order of magnitude 103. The ticks w; were generated from a
specified intensity process {A,} that varied smoothly between three levels of constant
intensity at . = 6,000, A = 2,000 and A = 4,000. The log returns &; were sampled
from the Cauchy-distribution, location & = 0 and scale o0 = 2.5 x 104, The entire
data set was of size rr = 3,206, [0, T] = [0, 0.9] with 7, = n % 0.003. The intensity
from which they were generated had constant levels at 6,000 in the interval [0.05,
0.18]; at 4,000 in the interval [0.51, 0.68]; and at 2,000 in the intervals [0.28, 0.42]
and [0.78, 0.90].
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Fig. 1 Effective sample size plots for the SMC sampler described in Algorithm 1, implemented with
N = 1,000 particles and with M = 5 MCMC sweeps at each iteration. The dashed line indicates the
resampling threshold at N /2 = 500 particles; resampling is needed at 94.4 % of the time steps

The sampler was implemented with all combinations {(M, N)} for N €
{100, 1,000} and M € {1, 5, 20}, resampling whenever the effective sample size fell
below N /2 (recall N is the number of particles and M the MCMC iterations). When
performing statistical inference, the intensity (3) used parameters y = 0.001, v = 150
and s = 20.

It was found that for this SMC sampler, the system consistently collapses to a
single particle representation of the distribution of interest within an extremely short
time period. That is, resampling is needed at almost every time step, which leads to
an extremely poor representation of the target density. Figure 1 shows the ESS at
each time step for a particular implementation. As can be seen, the algorithm behaves
extremely poorly for this model.

3.2 Discussion

We have reviewed two existing techniques for the analysis of partially observed PPs.
It should be noted that there are other methods, for example in Varini (2007). In that
paper, the intensity has a finite number of functional forms and the uncertainty is
related to the type of form at each inference time ¢,,.

The relative advantage of the approach of Centanni and Minozzo (2006a), against
SMC samplers, is the fact that the state-space need not be extended. On page 1586 of
Centanni and Minozzo (2006a) the authors describe the filtering/smoothing algorithm,
for the process on the entire interval [0, 7,,] at time n; the theory discussed in Proposition
1 suggests that this method is not likely to work well as n grows. The bound, which is
perhaps a little loose is, forn > 2

Bp,n()_’n) = [Bp + 1] +]2an,n71(yn71)

€n(Yn)

2
e1(y1) N
ities (e.g. Shiryaev 1996), €,(y,) € (0, 1) and k, > 0 a constant that is model/data

with B 1 (y1) = [B,+1], B}, aconstantrelated to the Biirkholder/Davis inequal-
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dependent which is possibly bigger than 1. The bound indicates that the error can
increase over time, even under the exceptionally strong assumption (A) in appendix.
This is opposed to SMC methods which are provably stable, under similar assumptions
(and that the entire state is updated), as n — oo (Del Moral 2004). In other words,
whilst the approach of Centanni and Minozzo is useful in difficult problems, it is less
general with potentially slower convergence rate than SMC. Intuitively, it seems that
the method of Centanni and Minozzo (2006a) is perhaps only useful when considering
the process on (t,—1, t,], as the process further back in time is not rejuvenated in any
way. As a result, static parameter estimation may not be very accurate. In addition,
the method cannot be extended to a sequential algorithm such that fully Bayesian
inference is possible. As noted above, SMC samplers can be used in such contexts,
but require a computational budget that grows with the time parameter n.

As mentioned above, SMC methods are provably stable under some conditions as
the time parameter grows. However, some remarks related to the method in Algorithm
1 can help to shed some light on the poor behaviour in Sect. 3.1.2. Consider the scenario
when one is interested in statistical inference on [0, #1]. Suppose for simplicity, one
can write the posterior on this region as

}"11

(@) ocexp § D gi(vis £1) f pGED) ©)

i=1

for fixed ryy, u, o, with g; : Rtx ExE 1 — R.If one considers just pure importance
sampling, then conditioning upon the data, one can easily show that for any 7;-(square)
integrable f with f f(x1)p(x1)dx; = 0, the asymptotic variance in the associated
Gaussian central limit theorem is lower-bounded by:

/f(il)zexp 2> gilyis ¥1) P(fl)dfl//exp > gilyis ) pGidi).

i=1 i=1

Then, for any mixing type sequence of data the asymptotic variance will for some
f and in some scenarios, grow without bound as r;, grows—this is a very heuristic
observation that requires further investigation. Hence, given this discussion and our
empirical experience, it seems that we require a new methodology, especially for
complex problems.

3.3 Possible solutions to the problems of extending the state-space

An important remark associated with the simulations in Sect. 3.1.2 is that it cannot be
expected that simply increasing the number of particles will necessarily a significantly
better estimation procedure. The algorithm completely crashes to a single particle and
it seems that naively increasing computation will not improve the simulations.

As discussed above, the inherent difficulty of sampling from the given sequence
of distributions is that of extending the state-space. It is known that conditional on
all parameters except the final jump, the optimal importance distribution is the full
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conditional density (Del Moral et al. 2006). In practice, for many problems it is either
not possible to sample from this density or to evaluate it exactly (which is required).
In the case that it is possible to sample from the full conditional, but the normalizing
constant is unknown, the normalizing constant problem can be dealt with via the
random weight idea (Rousset and Doucet 2006). In the context of this problem we
found that the simulation from the full conditional density of ¢, was difficult, to the
extent that sensible rejection algorithms and approximations for the random weight
technique were extremely poor.

Another solution, in Del Moral et al. (2007), consists of stopping the algorithm
when the ESS drops and using an additional SMC sampler to facilitate the extension
of the state-space. However, in this example, the ESS is so low, that it cannot be
expected to help. Due to above discussion, it is clear that a new technique is required
to sample from the sequence of distributions; two ideas are presented below. One idea,
in the context of estimating static parameters, that could be adopted is SMC? (Chopin
et al. 2012) which has appeared after the first versions of this article.

4 Proposed methods

In the following section, two approaches are presented to deal with the problems in
Sect. 3.1.2. First, a state-space saturation approach, where sampling of PP trajectories
is performed over a state space corresponding to a fixed observation interval. Second,
a data-point tempering approach. In this approach, as the time parameter increases, the
(artificial) target in the new region is simply the prior and the data are then sequentially
added to the likelihood, softening the state-space extension problem. Both of these
procedures use the basic structure of Algorithm 1, with some refinements, that are
mentioned in the text. As for the procedure in Algorithm 1 we add dynamic resampling
steps; when MCMC kernels are used, one can resample before sampling—see Del
Moral et al. (2006) for details.

4.1 Saturating the state-space

A simple idea, which has been used in the context of reversible jump, is to saturate the
state-space. The idea relies upon knowing the observation period of the PP ([0, T']) a
priori to the simulation. This is realistic in a variety of applications. For example, in
Sect. 2, often we may only be interested in performing inference for a day of trading
and thus can set [0, T'].

In detail, it is proposed to sample, in the case of the example in Sect. 2, from the
sequence of target densities defined on the space

E= U (k) x ®rr x RHF] x R x (RT)2. (10)
keNy

The (marginal, that is in the sense of (7)) target densities are now, denoted with a
S as a super-script:
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"tn In
ﬂyf(ina W, oY) O(H{I;(Ei;ﬂ,a))\wi}exp[_/ )\ud”]
0

i=1
ktn
< [T{p)}p’ (1,05 k) x p(u.0) 1<n<T

i=1

where the prior on the point process is:

S (14, Tipra,, 0<gr <-<gu, 1 (D14, )InCks,) + Tpoy (K, )

1
kL
(yT)fme "
pS (k) = L ——
ky,!

We then use, for K;,, an MCMC kernel of invariant measure 71,15 and the standard
reversal kernel discussed in Sect. 3.1 for the backward kernel. The initial distribution is
the prior and the weight at time O is proportional to 1 for each particle. The incremental
weights at subsequent time-points are simply:

nyf(infl s =1, On—11¥n)

S - —
T[n_l(-xl’l—la Mn—150n—11Yn—1)

Wi (Xn—1, n—1, On—1) X 1<n<T.

Inference w.r.t. the original {7,}1<;,<m* can be performed via IS as the supports
of the targets of interest are contained within the proposals (i.e. via the targets of the
saturated algorithm).

4.2 Data-point tempering

A simple solution to the state-space extension problem, which allows data to be incor-
porated sequentially, albeit not being of fixed computational complexity is as follows.
When the time parameter increases, the new part of the process is simulated according
to the prior. Then each new data point is added to the likelihood in a sequential manner.
In other words if there are n data points, then there are m* = n + m time-steps of the
algorithm.

To illustrate, consider only the scenario of the data in [0, Iy, 1, with r,; > 0. Then
our sequence of (marginal) targets are: JTOT E(x1, u,0) = p1)p(w)p(o) and for
I <n<r,

7, (F1, s 0 |yin) oc]'[{ﬁ(si;u,om,-}exp[— /O ! Audu]p@l)ﬁ(u)ﬁ(a).

i=1

Then, when considering the extension of the point-process onto [0, 2], one has a
(marginal) target that is:
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r,l

n
”rT,FH(iz,M,UI&l) uH{ﬁ(Ei;u,o)/\wi}eXp[—/o kudu}p(iz)ﬁ(u)ﬁ(a)

i=1

When one extends the state-space, we sample from the prior on the new segment,
which leads to a unit incremental weight (up-to proportionality)—no backward kernel
is required here. Then, when adding data, we simply use MCMC kernels to move the
particles (the kernels as in Sect. 3.1.1) and the standard reversal kernel discussed in
Sect. 3.1 for the backward kernel. This leads to an incremental weight that is the ratio
of the consecutive densities at the previous state.

The potential advantage of this idea is that, when extending the state-space, there
is no extra data, to potentially complicate the likelihood. Thus, it is expected that if
the prior does not propose a significant number of new jumps that the incremental
weights should be of relatively low variance. The subsequent steps, when considering
the jumps in [#,, f,+1) are performed on a common state-space and hence should not
be subject to as substantial variability as when the state-space changes. This idea could
also be adapted to the case that the likelihood on the new interval is tempered instead
(e.g. Jasra et al. 2007).

As a theoretical investigation of this idea, we return to the discussion of Sect. 3.2
and in particular, where the joint target density is (9). We consider the data-point
tempering which starts with a draw from the prior and sequentially adds data points.
In other words, runs for ry + 1 time-steps with

7, (1) o exp {Zg,-(y,-; xl)] p(E1)
i=1

witha —00 < g < g < oo such that for each i, y; and all )21,5 < gi(yi; x1) < g.The
algorithm resamples at every time-step and uses MCMC kernels, which are assumed
to satisfy, for some € (0, 1), andeach 1 <n < T s Tt X1, )Ei

Ky(x1,") > '[Kn(iia ).
At the very final time-step one also resamples after the final weighting of the

particles. Write Xh.. . X {V as the samples that approximate target (9). Suppose
f € Bp(E1), then there is a Gaussian central limit theorem for

1<,
VN (ﬁ > (R - /. G, (f])dza).

Writing the asymptotic variance as UTZE,r,l (f), we have the following result whose
proof is in appendix.

Proposition 2 For SMC sampler described above, with final target (9) then we have
forany f € Bp(E) that there exists a B € (0, +00) such that for any ry = Loy

ot (f) < B.
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The upper-bound does not grow with the number of data. That is, by increasing
the computational complexity linearly in the number of data, one has an algorithm
whose error does not grow as more data (and regions) are added. This is similar to
the observation of Beskos et al. (2011), when increasing the dimension of the target
density. We note that the result is derived under exceptionally strong assumptions. In
general, when one considers I, growing, one requires sharper tools than the Dobrushin
coefficients used here (e.g. Eberle and Marinelli 2012); this is beyond the scope of
the current article and our result above is illustrative (and hence potentially over-
optimistic).

4.3 Online implementation

A key characteristic that has not yet been addressed is the fact that each approach has
a computational complexity that is increasing with time. In a procedure that would
otherwise be well suited to providing online inference, this is an unattractive fea-
ture. A large contribution to this increasing computational budget derives from the
MCMC sweeps at the end of each iteration. As the space over which the invariant
MCMC kernel is being applied is increased, so does the expense of the algorithm.
An improvement to the computational demand of the samplers can therefore be made
by keeping the space over which the MCMC kernel is applied constant. The reduced
computational complexity (RCC) alternative to each of the samplers is also designed
by amending the algorithms such that, at time #,, the MCMC sweep operates over,
at most, 20 changepoints, i.e. over the interval [¢, —19, f,). Due to the well-known
path degeneracy problem in SMC (see Kantas et al. 2011), the estimates will be poor
approximations of the true values, when including static parameters and extending the
space of the point process for a long time. We note, at least for our application, it is
reasonable to consider T fixed and thus, this is less problematic.

5 The finance problem revisited

We now return to the example from Sect. 2 and the settings as in Sect.3.1.2.

5.1 Simulated data

The saturated and tempered samplers, as well as their RCC alternatives, were imple-
mented using the simulated data set (in Sect.3.1.2), in order to compare their respec-
tive performances against the benchmark sampler and to compare the accuracy of the
resulting intensity estimates against an observed intensity process. All of the alterna-
tive samplers were implemented under the same conditions, using the algorithm and
model parameters as described for the implementation of the benchmark sampler. All
results are averaged over 10 runs of the algorithm.

In assessing the performance of the sampler, quantities of interest are, once again,
the resampling rate and the processing time, as well as the minimum ESS recorded
throughout the execution of the sampler. The resampling rates for all three samplers
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Table 1 Table showing the resampling rates of each of the three SMC samplers and their reduced compu-
tational complexity alternatives, for the six algorithm parameterizations that were tested

M =1 (%) M =5 (%) M =20 (%)

N =100 N = 1,000 N =100 N = 1,000 N =100 N = 1,000

Benchmark 31.3 52.0 423 94.4 74.0 99.7
Benchmark-RCC ~ 37.6 88.1 69.0 99.7 99.4 99.7
Saturated 21.0 21.3 19.7 20.1 18.2 17.6
Saturated-RCC 20.7 20.7 18.5 18.8 154 154
Tempered 2.0 2.0 1.9 1.9 1.7 1.7
Tempered-RCC 2.0 2.0 1.7 1.8 1.4 1.4

The ESS plots for the saturated and tempered samplers with N = 1,000, M = 5 are given in Fig.2 for
comparison with the corresponding ESS plot for the benchmark sampler, given in Fig. 1

Table 2 Table showing the minimum ESS encountered during implementation by each of the three SMC
samplers and their reduced computational complexity alternatives, for the six algorithm parameterizations
that were tested

M=1 M=5 M =20

N =100 N = 1,000 N =100 N = 1,000 N =100 N = 1,000

Benchmark 1.0 1.0 1.0 1.0 1.0 1.0
Benchmark-RCC 1.0 1.0 1.0 1.0 1.0 1.0
Saturated 38.1 410.2 38.6 397.0 38.6 398.9
Saturated-RCC 38.5 401.2 40.6 394.4 43.0 425.9
Tempered 47.6 484.7 47.7 475.5 47.9 483.4
Tempered-RCC 47.8 475.7 48.4 481.7 48.3 486.6

and their RCC alternatives are presented in Table 1, with the corresponding minimum
ESS’s attained recorded in Table 2 and the corresponding processing times in Table 3.
Figure 2 displays the evolution of the ESS over a particular run of the algorithm.
Figure 3 shows the estimated intensity at each time #,,, given data up to time #,. From
Table 1, it is clear to see that, for the saturated and tempered samplers, an increase in
M results in a decrease in the resampling rates, i.e. a decrease in sampler degeneracy,
as expected. It is also plain to see from Table 2 that, as N increases, so does the
minimum ESS, and thus the reliability of the estimates. From Tables 1, 2, and Fig. 3,
and comparing Figs. 1 and 2, it is clear that the saturated and tempered samplers
significantly outperformed the benchmark sampler.

We use the posterior medians to report intensities. Since we have access to a ‘true’
intensity process, the accuracy of these estimated intensity process is measured using
the root mean square error (RMSE). Table 4 presents the RMSEs of the intensity esti-
mates (given the data up to #,, averaged over each t,,) and Table 5 presents the RMSEs
of the smoothed (conditional upon the entire data set) intensity estimates resulting
from each of the three samplers and their RCC alternatives. The most important result
to note is the performance of the saturated and tempered samplers in comparison with
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Table 3 Table showing the processing time, in seconds, for each of the three samplers and their reduced
computational complexity alternatives, for the six algorithm parameterizations that were tested

M=1 M=5 M =20

N =100 N = 1,000 N =100 N = 1,000 N =100 N = 1,000

Benchmark 612.9 9,689.1 2,849.7 45,690.4 13,352.1 144,621.3
Benchmark-RCC 449.0 7,910.9 1,132.7 10,657.6 3,106.2 31,208.5
Saturated 1,125.3 10,667.8 3,234.3 39,061.1 15,381.9 141,817.3
Saturated-RCC 637.5 6,215.2 1,200.7 11,412.6 4,391.9 47,662.8
Tempered 1,160.2 10,633.4 3,138.4 38,679.6 14,086.7 130,899.1
Tempered-RCC 666.0 6,424.4 1,156.3 11,209.1 3,231.3 34,795.3
1200 1200
1000 1000
800 800
) %)
2 <RI | 2 - |
400 400
200 200
0 0
0 02 0.4 0.6 0.8 1 0 02 0.4 06 0.8 1
Time Time
(a) Saturated (b) Tempered

Fig. 2 Effective sample size plots for the SMC samplers with state space saturation (left) and data point
tempering (right), ran with N = 1,000 particles and with M = 5 MCMC sweeps at each iteration. The
dashed line indicates the resampling threshold at N /2 = 500 particles; the corresponding resampling rates
are 20.1 % for the saturated sampler and 1.9 % for the tempered sampler

12000 7000 7000
10000 6000 6000
2 8000 > so00 > 5000
@ @ 4000 B 4000
§ 6000 é 3000 g 3000
£ 4000 Z 5000 £ 00
2000 1000 1000
0 0 0

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
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(a) Benchmark (b) Saturated (€) Tempered

Fig.3 Estimates (given the data up to #,,) of the intensity of a simulated data set, generated by the benchmark
SMC sampler (/eft) and the samplers with state space saturation (centre) and data point tempering (right),
run with N = 1,000 particles and with M = 5 MCMC sweeps at each iteration. The model parameters
were y = 0.001,v = 150 and s = 20

the benchmark sampler. As can be seen in terms of accuracy for intensity estimates,
the two proposed alterations to the sampler improve the performance consistently and
significantly. Looking at the resampling rates and processing times, in Tables 1 and 3,
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Table 4 Table showing the root mean square error of the intensity

M=1 M=5 M =20

N=100 N=1,000 N=100 N =1000 N =100 N = 1,000

Benchmark 688.561 1,116.639 620.432 1,942.992 1,330.232 1,501.263
Benchmark-RCC ~ 676.932 2,026.956 880.824 2,247.313 1,472.126 1,264.533
Saturated 242.834 192.580 228.390 193.778 237.315 198.223
Saturated-RCC 229.449 189.279 224.692 193.379 225.592 194.623
Tempered 254.396 196.928 247.754 201.681 248.367 202.501
Tempered-RCC 256.012 191.407 227.241 197.043 230.805 200.227

This is given the data up to #,, averaged over each #, and for each of the three samplers and their reduced
computational complexity alternatives, for the six algorithm parameterizations that were tested

Table 5 Table showing the smoothed root mean square error of the intensity

M=1 M=5 M =20

N =100 N = 1,000 N =100 N = 1,000 N =100 N = 1,000

Benchmark 768.702 670.656 495.019 627.909 489.243 571.107
Benchmark-RCC  698.640 1,034.890 572.794 572.841 535.004 599.031
Saturated 360.794 264.331 296.953 114.064 153.444 89.397
Saturated-RCC 478.871 265.477 405.767 266.980 468.853 205.243
Tempered 350.015 170.321 271.712 128.078 157.709 81.666
Tempered-RCC 485.825 249.529 475.348 193.898 514.107 180.914

The entire data set is given and for each of the three samplers and their reduced computational complexity
alternatives, for the six algorithm parameterizations that were tested

respectively, we can see that, as expected, although the tempered sampler resampled
the particles significantly less than the benchmark sampler, the individual incorpora-
tion of each data point resulted in a greater computational cost. These two aspects of
the benchmark and tempered samplers appear to have countered each other, resulting
in their processing times being largely similar.

We consider also the effect that changes in M and N have on the accuracy of
estimates provided by the saturated and tempered samplers. For the saturated and
tempered samplers, the results in Tables 4 and 5 corroborate the expected improvement
in accuracy, in both for the sequential estimates at ¢, given data up-to 7, and smoothed
estimates (given the entire data), that results from an increase in the number of particles
used. Whilst for the sequential estimates, there is no clear improvement in accuracy
with increasing M, an improvement can be seen in the accuracy of the smoothed
estimates.

Finally, using the simulated data, we consider the performance of the samplers when
limiting the space over which the invariant MCMC kernels are applied, i.e. the RCC
alternatives. As can be seen from Table 4, the RCC alteration does not sacrifice any
accuracy in the estimates of the intensity (given the data up to each time #,); however,
it can be seen from Table 5 that the accuracy of the smoothed intensity estimates is

@ Springer



430 J. S. Martin et al.

rather poor. This is to be expected, due to path degeneracy; we note that one cannot
estimate static parameters with the RCC approach unless the time window 7 is quite
small.

5.2 Real data

All three samplers were also tested on real financial data, with the RCC alternatives
also being used to generate intensity estimates, given the data up to #,: the share price
of ARM Holdings, plc., traded on the LSE was used. The entire data set was of size
rr = 1819,[0, T] = [0, 0.3] (represents 3/10 of a trading day, that is, 3/10 of 24 hours;
the first trade is just after 9 am and the last around 16:15.) with #,, = n%0.001. Genuine
financial data are likely to correspond to a more volatile latent intensity process than
that which was used to generate the synthetic data set, and so the parameterization of
the target posterior should be chosen such that large jumps in the intensity process
are possible, and such that the intensity may also revert quickly to a lower intensity
level. Hence, we specify: {y, v, s} = {0.001, 500, 250}. Each of the samplers were
run using N = 1,000 particles, applying M = 5 MCMC sweeps at each iteration,
whilst the resampling rates and the minimum ESS obtained for each procedure were
monitored to ensure that the algorithms did not collapse.

Clearly, there is no ‘known’ intensity process against which to compare the point-
wise estimates produced by the samplers. In addition, any inverse-duration based
representation of the intensity against which useful comparisons could be drawn would
involve making assumptions on the smoothness of the intensity process itself. Thus,
we turn to measuring the one-step-ahead predictive accuracy of the estimators of
the intensity. This is achieved as follows: denoting the intensity estimated over the
interval [t,_;, t,) as )A\n, j» one predicts the expected number of ticks in the interval
[tntijs thsi) as ()A»,w-)_1 fori > 1 and j > 1, where j is the number of periods
over which the prediction is made and i is a lag index. The prediction errors are
then calculated based on the predicted and observed number of ticks in the period
Inti—j» thti); the Toot mean square prediction error (RMSPE) will be used. We will
report on the one-step-ahead estimates (i = 1), estimating the intensity over each
interval with j = 1.

Table 6 Table showing the root mean square prediction errors for the intensity estimates [given data up to
time #, and entire data (smoothed)] given by each of the three samplers for the parameter values N = 1,000,
M=5

Data t, RMSPEs  Smoothed RMSPEs  Processing times (s) Resampling rates (%)

Saturated 2.18876 2.13479 4,064.5 39.5
Saturated-RCC ~ 2.19112 - 2,193.1 39.9
Tempered 2.34671 2.11468 4,605.5 19.8
Tempered-RCC  2.42776 - 2,237.3 19.9

The RMSPE:s for the smoothed intensity estimates given by the RCC alternatives to the samplers are also
provided, along with the observed processing times and resampling rates for each sampler
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Table 6 presents the RMSPEs for the intensity estimates resulting from the samplers
and the RCC alternatives. It was observed that, in calculating the RMSPEs for lag
indices i = 1,..., 100 using each sampler, both the saturated and the tempered
samplers displayed the smallest error at i = 1, i.e. their respective one-step-ahead
predictions were more accurate than those made for lags up to 2.64 h (each observation
interval corresponds to 0.0264 days = 1.584 min).

The RCC samplers provide significant computational savings and do not seem to
degrade substantially, w.r.t. the error criteria. Again, we remark that, in general, one
should not trust the estimates of the RCC, but as seen here, they can provide a guideline
for the intensity values.

6 Summary

In this paper, we have considered SMC simulation for partially observed point
processes and implemented them for a particular doubly stochastic PP. Two solu-
tions were given, one based upon saturating the state-space, which is suitable in a
wide variety of applications and data-point tempering which can be used in sequential
problems. We also discussed RCC versions of these algorithms, which reduce com-
putation, but will be subject to the path degeneracy problem when including static
parameters and considering the smoothing distribution. We saw that the methods can
be successful, in terms of weight degeneracy versus the benchmark approach detailed
in Del Moral et al. (2007). In addition, for real data it was observed that predictions
using the RCC could be reasonable (relative to the normal versions of the algorithms),
but caution on using these estimates should be used.

The methodology we have presented is not online. As we have seen, when one
modifies the approaches to have fixed computational complexity, the path degeneracy
problem occurs and one cannot deal with scenario with static parameters. In this case,
we are working with Dr. N. Whiteley on a technique based upon fixed window filtering.
This is an on-line algorithm which allows data to be incorporated as they arrive with
computational cost which is non-increasing over time, but is biased. The approach
involves sampling from a sequence of distributions which are constructed such that,
at time f,, previously sampled events in [0, #,_¢] can be discarded. In order to be
exact (in the sense of targeting the true posterior distributions), this scheme would
involve point-wise evaluation of an intractable density. We are working on a sensible
approximation of this density, at the cost of introducing a small bias.

7 Appendix
7.1 Proposition 1

In this appendix we give a proof of Proposition 1. For probability measure = and
function f, w(f) := ff(x)w(dx). For any collection of points (Xl(l), e x,ﬂ) €

Eflv_l pg write
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N
1
SN () = m ZH{X,Y_).}(X)'
i—1

The transition kernels are written K (which is not to be confused with the K; from
the SMC samplers algorithm) and for any n > 2, N > 1, N-empirical density Srllv_l,
Kgn . is the kernel of invariant distribution

l(lnflatn] (.)_}n,l; )En)

S, 1) Sy (Fa1)

pn(yn,1|yn—l) " ol
where we have dropped the ~ notation from the main text of the article. Recall the
generic notation x,, € E,. We drop the dependence upon the data and denote

Gt )
gn () = I D T g ). (11)
pn()’n,lb’n—l)

The N-empirical measure of points generated up to time n — 1 is writ-

ten S}Cvn_l. For a given n > 1, f, : E, — R we have the notation

Kn’slll\’_l(fn)(x) = fEnfn(y)Kn,S’iV_l(xde) and i > 1, Kli,SN (f)x) =

n—1

Iz K;—SlN (@, dy)K, v (f) (), Kr?’ o, (x,dy) = 8,(dy) the Dirac measure. The

Pn—1
o -finite measure dx, | is defined on the space E,, \ E,_1; in practice, it is the product
of an appropriate version of Lebesgue and counting measures.
The following assumption is made.

Assumption (A). There_ exist an € € (0, 1) and probability measure x| on E,
such that for any x| € E|

Ki(x1,-) = e1x1 ().

Foranyn > 2, thereexistane, € (0, 1) and probability measure «,, on E, \E n—1

such that for any x;, € E, and any collection of points (X,El_)p - XYYX)I) € E",]lv_l

Ky Gns ) = €801 Oren ().

For any n > 2

sup /_ _ 18 (Kn—1, X, 1)1dXn,1 < +00
i,,,1€En71 E \E;—1

where g, is as in (11).

It should be noted that the uniform ergodicity assumption on K ¢~ L (X, -) is quite
n—1°
strong. If the kernel K ¢v , were an Metropolis-Hastings independence sampler of
n—1°
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proposal Sy | X gu(-) Tn = (Zn—1, ¥n,1), then

Ko ()E,~)Zmin[1, = =
Sn—l’n " gn(xn)CIn(vn,l)

] Sal1()qn ()

satisfies the assumption if g, (x,.1)/8,(X,) is uniformly lower-bounded. Note also,
due to the suppression of the data from the notation, it is typical that €, would depend
upon yj,.

Proof 1 The proof is inductive on n. Some details are omitted as the proof is quite
similar to the control of adaptive MCMC chains, e.g. Andrieu et al. (2011). It should be
noted the proof for this algorithm differs as the kernel possesses an invariant measure
that does not change with the iterationi € {1, ..., N}.

Let n = 1 then, by (A) K is a uniformly ergodic Markov kernel of invariant
measure 1. It is simple to use the Poisson equation to prove the proposition, which
is given to establish the induction. Let fl (x1) = Zﬁo[Kf(fl)(il) — m1(f1)] be the
solution to the Poisson equation; fl — Kl(fl) = f1 — m1(f1). Then

N
Z[fl(xf ) —m(f] = Z[fl(x ) = Ki(fn@E]

i=1 =

T

A =K o@EM+AED K ED)

I
-

i

the first quantity on the RHS is a Martingale, M}, w.r.t. the filtration ]-"{ (i.e. the
o-algebra generated by Markov chain). Then, using the Minkowski inequality

1/p

| < : ' 1 U
E.o ‘Nz[ﬁ(ifl))—m(ﬂ)]‘ SN[Eifl) [[ad]" ] + 1A

+ g [[Radoa™| "]

p:|l/p

The last term can be dealt with as follows.

SUKIDENY) =)

i=0

N pil/p
E.o [‘Kl(fl)(x{N))‘ ] =E.mn |:
1 1

fi B rl/p
: ”f‘”zE X H[Kl (Ilf ||) . ]
Al
€1

Here, we have applied the conditional Jensen inequality and the bound on
the total variation distance for uniformly ergodic Markov chains: Vx € Ej,
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supf:E_l_>[071] |K{(f)(x) —m(f)] < - €1)'. Note that this bound holds for any

X1 € E;. The Martingale term is bounded using the Biirkholder and Davis inequalities
(i.e. the inequality below holds for any p > 1):

p/21V/p
Nlak
Eif” HMN‘ ] < BPE)EI(I)

N-—1
S AGE) - Ki(foGEDP
i=1

When p > 2 the Minkowski inequality and the above manipulations yield a bound
VNB(p, el fill, with B(p, €1) a constant only depending upon p and €;. When
p € [1,2) the inequality (a — b)? < 2(a® +b?) fora, b € R is applied then Jensen to
yield a similar bound; see Andrieu et al. (2011) and the references therein. Thus, for
n = 1 it follows Eﬁn[lM}“p]l/” < V/NB(p, €| fill; note that B(p, €1) depends
only on €] and p—this is important in the sequel. Putting these bounds together and
noting that, by the above arguments, the solution to the Poisson equation is uniformly
bounded in x the proof at rank n = 1 is completed.

Now assume the result at # — 1 and consider n. Note that via Fubini

T[n(fn)z/E fn(xn)gn(in)nnfl(d)znfl)din,l Z/E I(fn X gn)(Xn—1)7n—1(dX,—1)

n—1

where I(fu X 8n) = [ \g,_, JaGin—1, %n,1)8n (Xn—1, ¥n,1)dXn,1. Then application of
the Minkowski inequality yields:

pl/p

1Y .
Effl) ‘ﬁ ; fn(iy(,l)) — 1, (fn)

| pl/p
<Eqp ’ﬁ ;fn(ffm — SN, (o % ga)

1/p

B [[18Y,20 = 710 (o x 80| '] (12)

Due to the induction hypothesis and (A), the second term on the RHS of the inequal-
ity is upper-bounded by

Bpp—1sups i L fn % gn)(Xn—1) - Byl full

VN - VN

for some B, < +oo; if the data were not suppressed, then there is an explicit
dependence upon this quantity. Then considering the first term on the RHS of (12),
conditioning upon the o -algebra ]—"]N Q- -®fr1lv_1 generated by the process at time 7 is

auniformly ergodic Markov chain of invariant distribution S )]EV 1 dXn—1)gn (Xn)dXp 1.
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Thus, for example:

A pl/p AR I/p
o [k, o] " <z [ (L

€n

adopting exactly the above arguments. Noting that the bound on the conditional expec-
tation is deterministic, i.e. does not depend upon F; IN R Q f,ﬁv_l, the induction is
easily completed. O

7.2 Proof of Proposition 2

For the proof of Proposition 2, we require a round of notations. We write X, =
(xp, )E;,) e E % and define the following quantities:

Tp(Xp)

GG = G

l<p<r1

with Go(xo) = 1. In addition, set no(-) = p(-) and
My(xXp-1,dxp) = 5x;,_l(dxp)Kp(xp’ dx;,) I<p=n

We add an extra Markov kernel to allow us to use directly formulae in Del Moral
(2004); M,,1 +1 (JE,,] , d)Er,1 +1) = 8z, (d)?rt1 +1). Then we define
1

~ p—1 5 B _
i /(52);;1 1n0(dXo) quo Gy (Fg)My(Fg—1,d%y)
np(d-xp) = :

= 1§P§rtl+1~
/( o O [T, GG My Gy, 5
1

In addition Q, (%,—1, %) = G p1 (Fpe)Mp(Fpe1, ), 1 < p < 17 + 1, with
QrnGipmt i) = [ QpiiGipedipi) - QuGioro i) 1= p=n<r +1
(ED)

with the convention that Q , , is the identity operator. Also define P, , (X1, dX,) =
Qp,n(ip—l ) din)/Qp,n(l)(ip—l) and finally

Qp,n (ipfh din)
Mp Qp,n(l)

Proof of Propostion 2 We have from Proposition 9.4.2 of Del Moral (2004) that:

Ep,n(ip—l s din) =

Iy +1

Ot (1) = 2 1p(Qpury +1(F = 1, 1)) (13)

p=0
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The objective is to re-write the summand in terms of a difference Pp,rl1 +1(x, ) —
Pp,,,1 1+1(X’, -) and use the mixing conditions to control the Dobrushin coefficient of
the kernel Pp,r,] +1; see e.g. Del Moral et al. (2012) section 4. To that end, we can only
consider the first r, — 1 terms, for which the Dobrushin coeffient will satisfy:

Lo +1-p1/2]

IB(Pp,rfl +1) =Ssup ||Pp,rt1 +1(X, ')_Pp,rxl +1(32/» Mew=U-p 'y, =P >1
X, x'

(14)

for some p € (0, 1) that does not depend upon Iy, and || - |7y the total variation distance
(again see Del Moral et al. 2012, as the condition (M), of that paper is satisfied). The
reminder of the terms in the sum are easily bounded, independently of 7; , and we
omit these calculations.

Using standard properties of Feynman—Kac formula, we have that each summand
in (13) is equal to

( Qp,r,1 +1(1)2 np(Qp,rtl +1(1)[Pp,r,1 +1(f)(f) - Pp,r,l-‘rl (f)])2)
r np(Qp,rI]—H(]))z np(Qp,rI]—H(]))z

Using Jensen’s inequality, it follows that

Qpory +1(D* 0p(Qpur, +1(DIPpry +1(HE) = Ppor, +1())D?
"”(np(Qp,r,lﬂaw 15 (Qpr, +1(1)? )
Np(Qp.r, +1(1)?)?
Np(Qp.r, +1(1*

< 1 £ 1?B(Pp.r, +1)?

Using the fact that (see, e.g. section 4 of Del Moral et al. 2012)

Qp,r,] +1(1)()E)
sup——— < B
i Qo 11 (DE)

for a B € (0, +00) that does not depend on Iy, and using the bound in (14) we can
conclude. O
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