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Abstract We study partial linear single index models when the response and the
covariates in the parametric part are measured with errors and distorted by unknown
functions of commonly observable confounding variables, and propose a semipara-
metric covariate-adjusted estimation procedure. We apply the minimum average var-
iance estimation method to estimate the parameters of interest. This is different from
all existing covariate-adjusted methods in the literature. Asymptotic properties of the
proposed estimators are established. Moreover, we also study variable selection by
adopting the coordinate-independent sparse estimation to select all relevant but dis-
torted covariates in the parametric part. We show that the resulting sparse estimators
can exclude all irrelevant covariates with probability approaching one. A simulation
study is conducted to evaluate the performance of the proposed methods and a real
data set is analyzed for illustration.
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238 J. Zhang et al.

1 Introduction

Various semiparametric regression models have been proposed to relax model assump-
tions imposed on traditional parametric models for dealing with complex real data.
Important semiparametric regression models include partial linear models (Wahba
1984; Hardle et al. 2000), additive models (Hérdle et al. 2004), partial linear single
index models (Liang et al. 2010; Carroll et al. 1997; Yu and Ruppert 2002; Xia and
Hirdle 2006), and varying-coefficient models (Hastie and Tibshirani 1993; Fan and
Zhang 1999). In this article, we focus on partial linear single index models (PLSiM),
which allow retaining the ease of interpretation of parameters in multiple linear regres-
sion and the flexibility of the single index model, and can be expressed as

Y =X"Bo+g(Z"00) +¢, ey

where “t” denotes the transport operation throughout this paper, (X*, Z*)* € R? x
R%, (B, 00) is an unknown vector in R” x R4, ¢ is the error term with mean zero and
finite variance, and g(-) is an unknown univariate function. For the sake of identifiabil-
ity, we assume, without loss of generality, that @ is a unit vector and its first compo-
nent is positive, i.e., the parameter space of g is @ = {6 = (01,02, ...,6,)", 10]2 =
1,01 > 0,6 € R?}; here, || - ||2 stands for the Euclidean norm.

PLSiM are quite general and cover two important special cases, i.e., when the
dimension of Z is one, (1) become partial linear models (PLM). Relevant studies
for PLM include Chen (1988), Heckman (1986) and Speckman (1988). Hérdle et al.
(2000) gave a comprehensive review for PLM. When B, = 0, (1) are single index
models. There are various estimation procedures for single index models. See, for
example, Hardle et al. (1993), Ichimura (1993), Horowitz and Hirdle (1996) among
others. Horowitz (2009) enlists various examples and illustrates the usefulness of the
single index model.

The estimation for parameters 8 and 6g in (1) was once studied by Carroll et al.
(1997) using a backfitting algorithm. Yu and Ruppert (2002) proposed a penalized
spline estimation procedure. Xia and Hérdle (2006) integrated the dimension reduction
idea and the minimum average variance estimation (MAVE, Xia et al. 2002) for model
(1). More recently, Wang et al. (2010) proposed a dimension reduction-based estima-
tion procedure under the mild assumption that covariate X has a dimension reduction
structure on the covariate Z. Their procedure requires no iteration and results in a
more efficient estimator of ¢ than those obtained by Hardle et al. (1993) and Carroll
etal. (1997). Moreover, Liang et al. (2010) proposed a profile least squares estimation
procedure.

It is well known that both prediction and inference need to be assessed during the
process of data analysis. Variable selection is then often the most important aspect
regarding accuracy of the working model. The early developments of variable selec-
tion include Akaike’s information criterion (AIC, Akaike 1973), Bayes information
criterion (BIC, Schwarz 1978), and Mallows’ C, (Mallows 1973). However, these var-
iable selection procedures encounter the problem of intensive computation and the lack
of stability as argued by Breiman (1996). To overcome these drawbacks, Tibshirani
(1996) proposed the least absolute shrinkage and selection operator (LASSO),
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Partially linear single-index models 239

and Fan and Li (2001) proposed the smoothing clipped absolute deviation penalty
(SCAD). LASSO and SCAD procedures can select variables and estimate the corre-
sponding nonzero coefficients simultaneously. One distinguishing feature of the SCAD
procedure is that it can estimate the coefficients of the selected variables with an ora-
cle property. That is, the resulting estimators perform asymptotically as efficient as if
the true model were known. Recently, variable selection for semiparametric models
has received attention. Related works include Li and Liang (2008) for the generalized
varying-coefficient partially linear model, Liang et al. (2010) for PLSiM and Wang
et al. (2011) for the generalized additive partial linear model. However, these works
focus on directly observed data.

In many applications, variables may not be directly observed but with certain con-
tamination. This is common in many disciplines, such as health science and medicine
research. Observations with measurement errors must be handled delicately to make
valid inferences. Carroll et al. (2006) gave a comprehensive survey on measurement
errors. With measurement errors, variable selection becomes much more complicated.
Liang and Li (2009) developed two variable selection procedures, penalized least
squares and penalized quantile regression for PLM with additive measurement errors,
and observed that if measurement errors were ignored, some variable selection pro-
cedures might falsely choose variables and result in the final model biased. Thus,
measurement error should be taken into account in variable selection procedures to
avoid bias and false statistical inference.

In this paper, both response Y and covariate X are distorted by certain multiplicative
distorting functions. Formally:

Y =¢)Y, X=vU)X, ()

UlL(Y, Z, X), where 1l indicates independence, U is an observed continuous scalar
confounding variable, ¥ (U) isa p x p diagonal matrix, and diag(wl w,..., w,,(U)) R
where ¢ (-) and ¥, (-) denote the unknown continuous distorting functions. The diag-
onal form of v (U) implies that the confounding variable U distorts each component
of the unobserved covariate X in a multiplicative fashion (Sentiirk and Miiller 2005;
Sentiirk and Miiller 2006, 2009). This scenario is not uncommon in biomedical and
health-related studies. The collected data are often needed to adjust for some measures
like body mass index, body surface area, height or weight. For instance, in a study
of the relationship between fibrinogen and serum transferrin levels among haemodi-
alysis patients, Kaysen et al. (2002) realized that the fibrinogen and serum transferrin
levels should be normalized by dividing both response and predictors by the body
mass index (BMI). This implies a multiplicative fashion of the relationship between
unobserved primary variables and confounding variable. Sentiirk and Miiller (2005);
Sentiirk and Miiller (2006, 2009) suggested that the confounding variable affects the
primary variables through flexible multiplicative unknown functions. Such normali-
zation by division of the general distorting functions may reduce non-negligible bias
and lead to consistent estimators of the parameters of interest.

Describing the relationship between unobserved primary variables and confound-
ing variable by a varying coefficient model, Sentiirk and Miiller investigated some
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240 J. Zhang et al.

parametric models, such as the linear model (Sentiirk and Miiller 2005; Sentiirk and
Miiller 2006) and the generalized linear model (Sentiirk and Miiller 2009) using a
binning method for fitting the varying coefficient model. Recently, Cui et al. (2009)
proposed a direct plug-in estimation procedure for nonlinear regression. The direct
plug-in estimation procedure first estimates the distorting functions ¢ (-) and ¥, (-)s
by using the local linear regression, and then estimates the unobserved predictors and
response, namely, X = 1// X, v =Y /c/) respectively. Further estimation is then
implemented on the estimated predictors and response. A key feature of this direct
plug-in method is that it has a more potential application and can be easily adopted in
linear, nonlinear, generalized linear models or other semiparametric models, whereas
the binning technique used by Sentiirk and Miiller (2005); Sentiirk and Miiller (2006,
2009) is designed for linear or generalized linear covariate-adjusted models.

As mentioned above, the semiparametric models have more flexibility to handle
underlying models that are unknown. However, the estimation in covariate-adjusted
semiparametric models is very challenging. This is partially owing to substantial
difficulties in fitting covariate-adjusted semiparametric models: the lack of directly
observed data and the need of estimating some infinite-dimensional parameters in
semiparametric models. In particular, the root-n consistency and asymptotic normal-
ity are more difficult to establish than those for parametric models. Furthermore,
variable selection for covariate-adjusted data needs to be developed, a fundamental
problem that has not been addressed in the literature.

We first investigate the estimation procedure of covariate-adjusted semiparamet-
ric models, namely, covariate-adjusted partial linear single index model (CAPLSiM).
We propose a new estimation procedure based on MAVE (Xia et al. 2002). Our goal
is to estimate the unknown parameters (B, #o) consistently based on the observed
and confounded data {)7,-, X i 2, U; };':1, and to further establish asymptotic normal-
ity for the proposed estimators. Moreover, studying variable selection, we propose a
sparse principle component (SPC) analysis based on the recently developed coordi-
nate-independent sparse estimation (CISE, Chen et al. 2010). We demonstrate that the
resulting SPC-based solution is selection consistent. The final sparse estimator of
is closely related to the first SPC. We conduct Monte Carlo simulation experiments to
assess the performance of the proposed procedures. Our simulation results show that
the proposed procedures perform well both in estimation and variable selection.

The paper is organized as follows. In Sect. 2, we propose the estimation procedure
for the parameters B and @, introduce the algorithms for computing their estimators,
and present asymptotic properties of the resulting estimators. In Sect. 3, we provide an
algorithm for variable selection and give theoretical properties. In Sect. 4, we report
the results of a simulation study and the results of an analysis of a diabetes data set.
All the technical proofs of the asymptotic results are given in the Appendix.

2 Estimation and main results

From model (2), we re-write PLSiM (1) into the following CAPLSiM:
Y =X Bo(U) + ¢ (U)g(Z 00) + ¢ (U)e, 3)
where Bo(U) = (Bo,19(U)/¥1(U), By0(U)/¥2(U), ..., ﬁo,pfb(U)/lﬂp(U))r.
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Partially linear single-index models 241

Let{(X;, Z;, U;, Yi)}?zl be an i.i.d. sample from (X, Z, U, Y). When (Z 8y, U;)
close to (z" 09, u), we have an approximation:

d(U)g(Z700) ~ ¢(u)g(z"00) + ¢ u)g'(z700)05(Z; — 2) + ¢'(u)g(z"00) (Ui — u).

Then, the resulting estimators of 6o, {Bo(Ui)}:_,. {6 (UNg(ZI00)}:_,. {oUng’
(ZI.TOO)}721 and {qb/(Ui)g(ZifGO)}:.1:l are the minimizers with respectto § and a;, b},
dijdyjfor j=1,..., n;thatis,

n n
. =~ o 2
arge%lill;; {Y,'—X,- bj—aj—dj0"(Zi—Z;)—dy;(U; — Uj)} wi(Z;,Uj),

“)

where w;(Z ;, U;) are some kernel weight functions. We shall discuss the choices of
the kernel weight functions in Sect. 2.1. Given 6, (4) is a local linear smoothing esti-
mation procedure. At the same time, given (a;, bj, d1j, d2;), (4) is a weighted least
squares problem for #. Consequently, minimization of (4) can be solved by an iterative
procedure; that is, iteratively estimating nonparametric component (a;, b;, dyj, d;)
and parameter component @. Note that the above minimizer estimation procedure is
similar to MAVE (Xia et al. 2002). Minimizing (4) is a quadratic programming, which
can be solved easily with simple expressions. We describe the algorithm in the next
subsection.

2.1 Algorithm for estimation
2.1.1 An initial estimator of ¢

Note that U is independent of Z, so we can choose kernel function w;(Z;, U;) as
follows. w;(Z;,Uj) = I,(Zj,Uj))Hy,(Zi — Z;))Lp,(U; — U;)/ > 7_ Hy (Z; —
Z;)Lp,(U;—Uj), where H(-)is ag-variate multivariate density function and Hj, (-) =
h?qH(-/hl), L(-) is a univariate density function and Ly, (-) = hz_lL(-/hz), hy, hy
are bandwidths and 1,(Z;, U;) = I{% S Hn(Zi — Zj)Lp, (Ui — Uj) > coci}
for two constants cp and c; given in Assumption (A2); /{-} is the indictor function.
1,(Z;, Uj) is used to remove the effect of the boundary points in the support of Z and
U. Similar technique was employed in Xia and Hirdle (2006). The g-variate multi-
variate density function H () still faces the “curse of dimensionality”, but it suffices
to provide us a consistent initial estimator for 6.

Write jt; = di;0,M;; = (1, X, (U; —U)), (Zi — Z;)7)" and w;; = 0;(Z;, U)).
Minimizing (4) with respect to {a;, b;, d2;, i}, we obtain that, for j =1, ..., n,

o . n -1 n .
(flj,bj,dzj,,uj) Z[ZMijMirjwij] ZMin,-a),-j.
i=1

i=1
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Furthermore, let V, = (@1, iz, ..., f4y) and ¢ be the eigenvector of vV, f/;/n
corresponding to its largest eigenvalue. Recalling that the first component of 0 is
positive, we define the initial estimator of 6 as éo,im- = sign(<¢1)¢, where ¢y is
the first component of ¢. The reason for choosing the first eigenvector ¢ is that

aj— ¢>(Uj)g’(Z;00)00 P 0asn goes to infinity. In other words, [i; is proportional

to 0 in probability, then the first eigenvector ¢ is also proportional to 6 in probability.
The theoretical justification of this conclusion will be presented in Theorem 1.

2.1.2 Estimator of 8¢

To enhance the estimation efficiency, we update the kernel function w;(Z;, U;)
as I,f(Zj, Uj)Kn(Z70 — Z§0)Kh(U,- —Uj)/ > Kn(Zf6 — Z;O)Kh(Ui - Uj),
where K (-) is a univariate density function, 4 is a bandwidth, and I{(Z;,U;) =
I{% S Kn(ZF6 — Z;O)Kh(U,' —Uj) > coc1}. We implement the idea in the
following steps.
~ T N
Step 1. Given 0%, let My g = (1, X[, (Z; — 2))"6*, (U; = U))) and of; =
I,?*(Zj, U)Kn(Z70* — Z;O*)Kh(Ui —Uj)/ 20 Kn(Z70* — Z}O*)Kh
(Ui — Uj). We obtain

. n i -1 n _ i
((,1]"9*7 bj,9*7 dlj,@*a dzj»g*) = [ z M,‘j’g*MZ,-’G*C{)?j ’ Z M,]’Q*Yla)lej .
i=1 i=1
(5)
Step 2. Using (a; ¢+, bj g+, d1j g+, doj g+, 0%)" from (5), and letting 17;;. =Y -
= T
ajex — Xi blj,g* — dzjyg* (Ul‘ — Uj), we have

n n —1
0= [ ZZd%jﬂ*(z,» —Z)(Z;i — Z,-)fw?j ]

j=li=1

n n
x Z Zdw*(zi —Z)Y ol (6)

j=li=l1

Standardize # = sign(01)0/]|0||2, where 0; is the first element of # and
sign(-) is the sign function.

We first use the initial estimator 90,,',” as 0* to obtain (ajox, bjox,dijex, drjo<)"
through (5), then update the estimator of g through (6). The final estimator 90 can be
obtained iteratively between (5) and (6) until convergence.

2.1.3 Estimator of B

Under the following identifiability condition that was suggested by Sentiirk and Miiller
(2005); Sentiirk and Miiller (2006)
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Partially linear single-index models 243

EoU) =1, EyU)=1I,, )

where I, is an p x p identical matrix, and the distorting effects vanish with no
average distortion, namely, E Y = EY and EX = EX. From (3) and the assump-
tion of U1L(X,Y), Sentiirk and Miiller (2005) noted that, in the population level,
E{ﬂo’,(U)f(,} =Bo,EX, = ,BOJEX, forr =1, ..., p. Under Condition (A4) in
the Appendix that E X, s are nonzero, we know that

Bo., = EBy, (U)X, /EX,. (8)

Motivated from (8), different from the binning method proposed by Sentiirk and Miiller
(2005) to estimate B s, we propose the following estimators

n n
ﬁo”‘ = ZXj’rbj,éo,r/ ZXj’r’ ©)
Jj=1 j=l1

where 13j bo.r is the r-th component of l;j by’ which is obtained from steps 1 and 2, and

f(j,r isther-thcomponentsoff(j forj=1,...,nandr =1,..., p.

2.2 Asymptotic results for /§ o and 90

We now present the sampling property of our proposed estimators, whose proofs are
given in the Appendix. The first theorem establishes the consistency of the initial
estimator 0o ;p; .

Theorem 1 Under Conditions (A1)-(A3) and (AS), ifhy — 0, hp, — 0, h%/hl -0

2 P
and nh({Jr ha/logn — oo asn — oo, then 0¢ ini —> 0o.

Theorem 1 indicates that the multi-dimensional kernel H(-) can ensure obtaining
a consistent estimator of , although the associated bandwidth has a slower rate than
that of the optimal bandwidth. As advocated by Xia and Hirdle (2006), the MAVE
procedure coupling with such an initial estimator would eventually provide a root-n
consistent estimator of 6.

In what follows, A®? = AAT for any vector or matrix A. Denote & (1) = E(X|Z70 =
1) = (€0.1(t), ..., &, p(1)) where & , (1) = E(X,|Z70 =1),59(1) = E(Z|270 = 1),
Se(t) = E(X®2Z70 = 1), To(t) = E(ZXTIZ70 = 1), Wy (t) = Se(t) — £5%(0),

. yALl ALl
Vo(t) = E(Z82270 = 1) — c22(1), Fy(Z70) = diag (éﬁgxl ) gg’g(xp )).

. 2
Moreover, Lg, = diag (gLXII e ggﬁ) Dy, = E[¢(U)2{g/(Z’00)} Voo (Z70)

I%(Z, U)], where Z%(Z, U) = I{(Z,U) € Z x U, such that fz+4,(Z*00) fu (U) >

coct}. We now present the asymptotic distribution of 9.
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244 J. Zhang et al.

Theqrem 2 Under Conditions (A1)—-(A8), ifh — 0, nh? = oo, nh® = 0asn — oo,
Jn (ﬁo — /30) is asymptotically normal with mean 0, and covariance

S = L E{ (W), = w ) {EXZ) (W)L, — 4U)) | Lg,

+02E{d)z(U)FgO(ZTOO)WQ_OI(Z’00)F90(Z’00)IGO(ZJ-, Uj)}.

Remark I From the expressions of Fy, and Lg,, we need Condition (A8) that EX s are
all nonzeros. This is because, in the population level, the estimator of ,80’ , 1s obtained
as By, = E{X,ﬂO,,(U)}/EXr, r =1,..., p. This assumption was also imposed in
Sentiirk and Miiller (2005); Sentiirk and Miiller (2006) for their binning method, and
Cui et al. (2009) for their direct estimation method.

We next study the asymptotic distributions of 0o.

Theorem 3 Under the conditions of Theorem?2, \/n (éo —00) is asymptotically normal
with mean 0, and the covariance matrix Xg,:

2
Zi = D, E[ 0| (Toy (2700 = 50, (2700)8,(2700)) Wy, (2700) (X 6, (2760))

®2
+ (60 (Z700) — Z)}g’(Ztﬂo)I"O(Z, U)] Dy

where Dy is the generalized inverse of Dg.

Remark 2 Since the term Vy, (¢) is the conditional variance of the covariate vector Z
given a linear constraint in Z, 83V5,(Z70¢)0o = 0. So the rank of Dy, and X, equals
to g — 1 instead of ¢, and these two matrices are not invertible.

3 Variable selection for g,

From (3), we have Bo(U) = E(U)B,, with, E(U) = diag (%%

f,,((UU)) ) . Inother words, B (1) = B ¢ (U) /¥ (u). Under Condition (A7), imposed
on the distorting functions ¢ (-) and v (-)s, we know that ¢ (1) /v (u)s are nonzero
on the support of U; i.e., By () = 0 if and only if B, = 0. This means selecting
the nonzero elements of B is equivalent to selecting nonzero components of S (i)
or =8(u)/||Bo(w)]l. In this context, selection of variables is equivalent to identifying
the first sparse principal component (SPC) of B (u)B(u)" for each u on the support
of U. This motivates us to solve the variable selection problem in CAPLSiM through
finding the first SPC of E{B(U)%®?}.

To get insights into the estimator of the first SPC of E { Bo(U )®2}, we consider an

estimator of E{B(U)®?}, constructed as

n

~ 1 ~
tlasr) =130,
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Partially linear single-index models 245

where {I;1 o l;n éo} are the estimates obtained from steps 1 and 2. Let 7,, be an
estimator of the first principal component of E{ﬁO(U )®2} obtained by solving the

fOllOW ing eigen-decomposition equation:
. n ns

where A is the largest eigenvalue of % Z?:l I;‘.X’go. Note that the eigen-decomposition

(10) can be solved by minimizing a least squafe objective function (Li 2007):

p
fn = argminz lm; — vvTm;||> subjectto viv =1, (11)
v

i=1

N 1/2

where v is a p x 1 vector, and m; is the ith column of {% pI b% ] fori =
»Y0
R 1/2 R 1/2 R
. . 1 n ®2 1 n ®2 1 n ®2
1, ..., p, which satisfies {Z 2 b,i,éo} {Z 2o bj,éo} =, 200 bj,éo' To
get a sparse solution of 7j,, we adopt the CISE idea proposed by Chen et al. (2010) as
follows.

p p
Mn =argrr§n[2||m,- —vvfmi||2+2ar|vr|}, (12)
r=I1

i=1

where «, > 0 serves as penalty parameters. In this paper, we use absolute value func-
tion |- | to achieve variable selection. As claimed in Chen et al. (2010), one may choose
any positive convex function which is non-differentiable at the zero. The feature of
non-differentiability at zero results in shrinking some elements of 1, to zero and con-
sequently achieving selection of variables. The choice of turning parameters o, s is
discussed in Example 2 of Sect. 4. It is worth noting that the turning parameters «,s
are not necessarily the same for all coefficients to keep important variables in the final
model. The resulting estimator 7, is the first SPC estimator of E { Bo(U )®2}. After we
obtain the sparse solution 7, through (12), the resulting sparse estimator of 8 can be
obtained as, forr =1, ..., p,

n n
AS = ~ o =
Bor =D Kby s # 01/ D X, (13)
j=1 j=1
where I{-} is the indicator function and 7, , is the r-th component of 7,,.

3.1 Algorithm for variable selection

With some algebraic derivations, the minimization of objective function (12) is equiv-
alent to minimization of the objective function:
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o
— - ®2
L= v[n .ElijéO]v+ Elar|vr|.
= r=

This can be achieved by using the algorithm for CISE proposed by Chen et al. (2010).
First, we adopt the local quadratic approximation proposed by Fan and Li (2001) to
overcome the non-differentiability of the absolute function | - |.

Define p(v) = Zle oy |vy|. The un-constrained first derivative of p(v) with

respect to the nonzero p x 1 vector v is ) diag( & s ﬁ—”‘)v Following
P

v W 5o
the idea of Fan and Li (2001), the first derivative of p(v) around v?) can be approxi-
mately obtained by

dp(v) 1 o] op def +(0)
™ ~ diag W,..., v(0)| v = NV, (14)
1 p

The second-order Taylor expansion entails that, for some constant cg,

1
p(v) ~ EUTN<0>U+C3. (15)

Next, find v(!) by minimizing the objective function:

l — ~ 1
£ =t 1257592 Ly —y'NOy, (16)
n J+60 2

1=

In fact, the minimizing problem of £! in (16) can be easily solved by the eigen-decom-

position problem, thatis, the solution of v (1 is the first eigenvector of { }l > l;‘?go } -

%N(O) corresponding to its largest eigenvalue. Next, let v(!) be the starting value and
update p(v) in (15). Iterate (14), (15) and (16) until we find the solution for v. Let
8 be a pre-specified small positive constant (e.g. § = 107°), during the iteration. If
|v,(k)| < 8, then the r-th element of v is removed. As for the starting value 1@ we
suggest the use of the estimator 7),, from (10). The theoretical results for 7,, are given
in Theorem 4.

3.2 Theoretical properties

Let A = {r: By, # 0}. Ay = {r : iiar # 0}. In other words, A is the set corre-
sponding to the relevant variables of X, and .4, represent the set corresponding to the
variables of X selected out by the first SPC eigenvector 7,,.

Theorem 4 In addition to the conditions of Theorem 2, we have

@ 3 X1 55— E{Bo@)®) = 0p(n™').
(b) Moreover; if we let o = ool |~ for some w > O, the turning parameter o
satisfies ag — 0 and agn™/* — oo, then P(.A,, = A) — 1.

@ Springer



Partially linear single-index models 247

Remark 3 Theorem 4(a) indicates that the estimator % Z’}zl 5@2 is a root-n consis-
7.0

tent estimator of E{f,(U )®2}. By the perturbation theory (Kato 1983), we know that
the eigenvector 7, corresponding to its largest eigenvalue X is also root-n consistent.
Thus, we can use 7, as the starting value v® in Sect. 3.1. The foregoing algorithm
works very fast basad on our numerical experience.

The reason for taking 7, as a starting value can be intuitively explained as fol-
lows. Let 1 be the first principle component of E {ﬂ(U )®2}. Suppose the true value
By, = 0, then the r-th row and r-th column of E {ﬂ v )®2} are zero. This means
the r-th element of 7 is zero, i.e., n, = 0. As a consequence, using Theorem 4(a),
we know that the r-th element of 7, satisfies 7, , = n, + Op n~ Y% = 0p(n~1?).

P . .
Thus, as oconw/2 — 00, we have o, — oo and o, will penalize 7, , to 0. On the other
hand, if B, is not zero and the corresponding eigenvector 7, is not zero, we have

Nnrt = Ny + Op(n~17%) = Op(1). Asag — 0, we have that o, £ 0and o, will not
penalize 1, ,» asymptotically. Hence, we choose 7, as our starting value to adaptively
shrink 7.

4 Numerical studies

In this section, we conduct simulation studies to assess the performance of the pro-
posed methods. To estimate (8, 6¢), the Algorithm proposed in Sect. 2.1 is adopted.
We also investigate the finite sample performance of variable selection procedure in
Sect. 3.1. We then apply our methods to analyze a real data set from a diabetes study.

4.1 Simulation studies

Example 1 We generated 500 data sets consisting of n = 100, 200, 300 and 400
observations, respectively, from the model:

Y = X" Bo + sin(Z70g) + &, (17)

where 8, = (3.0, 1.5,1.5,0.5,0.5)%, 00 = (1, 1, l)/\/g. The model error ¢ follows
N, 0.1%) and is independent of (X, Z). The covariates (X, Z)* follow Ng((,ux,
1z)7, T) with pux = (5,...,5)%, uz = (0,0,0)7 and X = (0.5 /1) The

1<i,j<8
confounding variable U was drawn from a Uniform(1, 6), the distortion function for
. U+1)2 .
the response Y is ¢ (U) = 52;33)3, aqd thqse for thg predictors X are ¢, (U) = 3[],5%,
r =1, ..., p. The constants in the distorting functions were chosen to ensure identi-

fiability (7).

To obtain an initial estimator 630,,-,,,', we used the standard multivariate normal
density function as the multivariate kernel H(-) and Epanechnikov kernel L(t) =
0.75(1 — ¢%)4. As known, the optimal bandwidth for the multivariate setting is dif-
ficult to choose. In this simulation, we used #; = n~'/7 and hy = n—'/°, which
meet the requirement on the bandwidths in Theorem 1. We verified that the resulting
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Table 1 Simulation results for Example 1

Bo,1 Bo,2 Bo,3 Bo,a Bo.s

n =100

Bias 0.0110 0.0006 —0.0014 —0.0085 0.0015

SE 0.1094 0.0921 0.0910 0.0739 0.0832
n =200

Bias —0.0003 —0.0012 —0.0087 —0.0043 —0.0044

SE 0.0721 0.0480 0.0525 0.0419 0.0376
n = 300

Bias 0.0075 —0.0013 —0.0023 —0.0006 —0.0021

SE 0.0544 0.0390 0.0405 0.0274 0.0274
n =400

Bias 0.0090 0.0045 0.0004 —0.0010 —0.0011

SE 0.0467 0.0344 0.0354 0.0216 0.0213

The average bias and associated standard error for B() in model (17)

initial values éo,im- were stable when we shifted several values around the selected
bandwidths. After obtaining éOJ ni» we further obtained the final estimators of (8, o)
by using the algorithm given in Sects. 2.1.2 and 2.1.3. We can use the Epanechnikov
kernel K (1) = 0.75(1 — 1?)4. Note that the “optimal” bandwidth or order n=15 we
used in this stage satisfies the conditions of Theorems 2 and 3. We used the following
leave-one-out cross-validation to select bandwidth A.

Bandwidth selection For a given 6, define CV(h) = n! Z?:l {1?/- — X;b)Je —
a}j@}z, where a]\fé and b>]9 are obtained through (aj\’jé, b>’j9, dl\;,e’ dz\j e)r =
(Z?:Li#j Mij,ng.’j’gw?j) 1 Z;’Il,i#j Mij g f’ia)?j. The bandwidth 4 in each step
is chosen as arg miny, CV(h).

The average bias and associated standard errors of (B 0> 90) are reported in Tables 1
and 2, respectively. The estimated /§0 are close to the true value B, and the estimated
values of single-index @0 are also close to the true value @ as sample size n increases.
Moreover, larger sample sizes lead to smaller standard errors of ([90, 90). For the esti-
mation of f in Table 2, we present the mean and standard errors of the angle (in
radians) between 90 and @ in Table 2. As expected, the mean and standard errors of
the angle become smaller with the sample size. Both tables indicate that our estimation
procedure performs well.

Example 2 Inthis example, we simulated 500 realizations, each consisting of n = 300,
400, and 500 random samples from model (17) with 8, = (3,2, 1.5, 0.2, 0.3, 0.15, 0,
0,0,0,0,0)" and 6y = (1,1, 1)/\/§. The covariates (X, Z)* follow normal dis-
tribution N15((,ux, wz)®, E) with ux = (5,...,57% uz = (0,0,0)", and ¥ =
(O.S'i_j |) 1<i.j<15" The covariates X have 12 elements and the first 6 covariates of X
are relevant to the model. We considered the following two cases:
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Table 2 Simulation results for Example 1

60.1 002 60.3 arccos (éo, 00)

n =100

Bias —0.0162 —0.0706 —0.0457 0.2848

SE 0.1573 0.2672 0.2229 0.3393
n =200

Bias 0.0030 —0.0121 0.0013 0.0811

SE 0.0547 0.0588 0.0465 0.0468
n =300

Bias 0.0027 —0.0051 —0.0004 0.0493

SE 0.0318 0.0363 0.0288 0.0274
n =400

Bias 0.0008 —0.0013 —0.0013 0.0375

SE 0.0240 0.0264 0.0233 0.0202

The average bias and associated standard error for 6 in model (17)

Case 1. ¢ follows normal distribution N (0, %) with o = 0.1, and is independent of
X, 2).

Case 2. ¢ follows N(O, o2 x (X1 + |Z1|)) with 0 = 0.1, where X, Z; are the
first element of X, Z, respectively. In this setting, ¢ is correlated to (X, Z).

Choice of the penalty parameters ag and w ~ We used o = a7, |~ in Theorem
4, where 1), , is the r-th component of 7, defined in (10). (@, &) are positive tuning
parameters to be selected by minimizing the BIC-type criterion (Chen et al. 2010):

n

y 1 ~22 ) o
f@0, @) = =ip 0.0 P Zb%o (e, @) T
=1

logn

p, N,y — D, (18)

where 7,(4,, ) 18 the estimator through (12) for given (g, @), N(qy,») denotes the
number of nonzero elements of 7, («(, ), and log n/n is the BIC-type factor suggested
by Li (2007). The minimization of (18) can be solved by a two-dimensional grid
search. In our simulation, the range of («g, @) was selected to be wide enough so that
the minimizer of f(«g, @) was approximately at the center of the range, and 20 x 20
grid points were set over the range of («g, @ ).

In Table 3, we present summary statisticSs—amy, gy, @c, gy> @Wo,py> and Medseg, to
assess how well our proposed method works. wy, gy, e, gy, ®o,p, are the fractions of
underfitted, correctly fitted and overfitted. In the case of overfitted, the labels “17,
“2” and “> 3” are the fraction of models including 1, 2 and more than 2 irrelevant
covariates. Medseg, stands for the median of square error || [zf) — /30| 2, where /Ai(s) is
defined in (13). The label “Cg,” denotes the average number of the zero coefficients
that were correctly set to zero, and the label “INg,” denotes the average number of the
nonzero coefficients that were incorrectly set to zero.
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Table 3 Simulation results for Example 2: underfitted-w, g, correctly fitted-w. g, overfitted-w, g,
median of square error—Medsef;O, zero coefficients of B that were correctly set to zero—Cﬂo, and nonzero
coefficients of B that were incorrectly set to zero-INg,

n @y, B, (%) ¢,y (%) o, 8, (%) Medseg, No of zeros
V(%)  “27 (%)  “=3"(%) Cg, INg,
Case 1.
300  13.00 75.00 12.00 0.00 0.00 0.0133 5.840  0.160
400 0.20 85.80 13.80 0.20 0.00 0.0064 5.858  0.002
500 0.00 92.60 7.40 0.00 0.00 0.0047 5.926  0.000
Case 2.
300 4.80 74.60 18.60 2.60 0.00 0.0112 5.746  0.050
400 0.20 84.40 14.00 1.20 0.20 0.0080 5.828  0.002
500 0.00 89.20 10.40 0.40 0.00 0.0049 5.888  0.000

From Table 3, we can see that the first SPC 7,, successfully distinguish zero and
nonzeros of B in both two cases. The values of “Cg,” and “INg,” are close to the true
value 6 and 0, respectively. Overall, the proportion of the model correctly fitted is over
70 %, and the proportion of underfitted and overfitted models are around 10 and 20 %.
In particular, when the sample size increases to 500, the proportion of correctly fitted
model is close to 90 % in both the cases. This indicates that our method can indeed
identify the true model consistently. Furthermore, the Medseg, decreases quickly with
the sample size either in homogeneous or heteroscedastic error.

4.2 An empirical example

We apply the methods to analyze a data set from a diabetes study as an illustration. In
this data set, there are 442 observations for diabetes patients with response variable
Y (a quantitative measurement of disease progression one year after baseline) and
covariates: age, sex, body mass index (BMI), average blood pressure (BP), and six
blood serum measurements about total cholesterol, density level, tension glaucoma
level, and glucose concentration denoted by TC, LDL, HDL, TCH, LTG, and GLU,
respectively. This data set was analyzed by Efron et al. (2004) via the least angle
regression (LARS). They used a linear regression model and “LARS” algorithm to
select important factors (covariates) in disease progression. To avoid model misspeci-
fication, we applied PLSiM to analyze this data set. Here, we considered BMI as the
potential confounding variable U, the six blood serum measurements and sex as X,
and age and BP as Z.

The final estimate is 90 = (0.5010, —0.8655). Thus, the single index is 0.5010
age —0.8655 BP. In addition, the first SPC estimate 7j,, is (0.2502, 0.0344, —0.0366,
—0.0144, 0.2327, —0.9384, 0.0033). This indicates that all seven elements of X
should be keptin the final model. The estimates of 8, are (—24.4754, 1.4202, —1.3503,
—2.5827, —9.3805, 33.7842, 0.8867). Finally, we used the local linear smoother
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Fig.1 The local linear estimator of g(-) (solid line) against estimated index 0.5010 age —0.8655 BP, along
with the associated 95 % pointwise confidence intervals (dotted lines), and a linear fitting (straight line)

method (Fan and Gijbels 1996) to estimate g(-) based on the “synthesis” data
{Yj, Xjéj,éo’ Z§éo};:1, and presented the estimated g(-) in Fig. 1 along with the
95 % pointwise confidence intervals. For illustrative purpose, we fitted a linear regres-
sion for {¥; — X jl;j o’ Z;éo}:le and displayed the straight line in Fig. 1, which is not
encapsulated in the band. We therefore considered that the a nonlinear pattern of g(-)
is more proper for this data set. We further used the test proposed by Stute and Zhu
(2005) to check whether g(-) has appropriately fitted this data set. The associated value
of the test statistic is 1.4905 with p value 0.1361. This indicates that the single-index
model g(-) is appropriate for this data set.

A Appendix

In this Appendix, we present the conditions, prepare several preliminary lemmas, and
give the proofs of the main results.

A.1 Conditions

The following are the regularity conditions for our asymptotic results.

(A1) The functions &y(1), ¢p(t), Se(t), Tg(t), Wy (1), Vg(t) defined in Sect. 2.2 are
three times continuously differentiable with respect to 7. Their third derivatives
are uniformly Lipschitz continuouson C = {t =770 : z € Z C RY,0 € O},
where Z is a compact support set. Furthermore, Wj (¢) is invertible on C, and the
functions £(z), S(z) defined in Lemma 1 have three times bounded derivatives
on Z.
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(A2) With Probability 1, Z lies in the compact set Z, such that the marginal density
functions fz(z) of Z and fz:9(z70) of Z'0 for any ||@]| = 1 have three times
bounded derivatives; For some positive constant ¢y, regions {z : fz(z) > co}
and {z : fz19(z70) > co} for all ||@| = 1 are nonempty. Moreover, there exists
a positive constant c¢; such that the density function fy(u) > c; on U: the
support of U.

(A3) g(-) has bounded, continuous third-order derivative, and is not constant on the
support C.

(A4) E&* < 00, and the covariance matrix of (X7, Z7)7 is positive finite. Further-
more,EXf <00, Fr = 1,...,p,EZ;L <oo,l=1,...,q.

(A5) Xg, defined in Theorem 2 is positive definite with finite elements.

(A6) The multivariate kernel functions H(-) is a continuous and symmetric multi-
variate density function with bounded derivative and bounded support satis-
fying [22H(z1,...,2¢)dz, # Oand [|z,[VH(z1,...,24)dz, < 00 for j =
1,2,3,r =1,...,q. The kernel functions L(-), K (-) are univariate continuous
and symmetric density functions with bounded derivative and bounded sup-
port satisfying that [ 12L(t)dt # 0, [t?K (t)dt # 0, and [ |t|/L(t)dt < oo,
f |t|jK(t)dt < oo for j = 1, 2, 3. Moreover, the second derivative of K (-) is
bounded on R!.

(A7) The distorting functions ¢ («), ¥, (u)s have three bounded and continuous deriv-
atives and are not equal to zero on the support of u. Moreover, E¢*(U) < 00
and EY2(U) < oo.

(A8) EX,,r =1,..., p, are bounded away from 0.

Condition (A1) is a mild smoothness condition on the involved functions. This
condition is needed for the higher-order Taylor expansion, and entails the root-n con-
sistency of B and 0. Condition (A2) entails the density functions f7(z), fzz9(z"8)
and fy (u) positive, and guarantees the denominators involved in the weight functions
w;j and w?. in Algorithms are not equal to 0, as long as n is large enough. Condition
(A3) is a mild smoothness condition on the function g(-), also used by Liang et al.
(2010) and Xia and Hirdle (2006). Conditions (A4)—(AS5) are essential for the asymp-
totic results of the estimators of 8 and 6. Condition (A6) is a common assumption
for nonparametric kernel smoothing. Condition (A7) is the condition imposed on the
distorting functions. Analogous to condition (A1), the first statement of Condition
(A7) is related to smoothness of the ¢ (1) and ¥, (u)s. The second statement of Condi-
tion (A7) is a common condition on ¢ (1) and ¥, (u)s in the covariate-adjusted models
(Sentiirk and Miiller 2005; Sentiirk and Miiller 2006, 2009). In particular, this condi-
tion ensures the availability of variable selection of B, by way of selecting nonzero
component of B (u). The finiteness of E ¢4(U ) is used for asymptotic results of Zg,.
Moreover, El//,Z(U) < 00 guarantees E{ﬂO(U)ﬁS (U)} < 00. Condition (AS8) is nec-
essary in the study of covariate-adjusted models. In order to estimate f8, E X, is used
in the denominator of the proposed estimators in the population level; see (8). This
technical condition is also needed in the binning method (Sentiirk and Miiller 2005;
Sentiirk and Miiller 2006, 2009), and the direct plug-in estimation (Zhang et al. 2012;
Cui et al. 2009).
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A.2 Technical lemmas

Lemma 1 Let (Sy, T1), ..., (Sy, Ty) be i.i.d. random vectors, where T;s are scalar
random variables and S;s are [-dimensional random vectors. Assume further that
E|T|" < oo and the sup; [ |t|” f (s, t)dt < oo, where f denote the joint density func-
tion of (S, T). Let K°(-) be a bounded positive l-dimensional kernel function with
bounded support, satisfying Lipschitz condition. Then

sug no! Z{Kg*(S,- — )T — E[K} (Si — s)Tl-]}‘ = 0p ({nhi/]og(n)}—l/z) ’
s€ i=1

provided that the bandwidth h, — 0 and nze_]hfk — 00 for some € < 1 — rL

Proof This follows a direct result of Mack and Silverman (1982).

O

We introduce the following notation: ¢, = [v2L(v)dv, p, = [22H (21, ..., 24)
dzy...dzg forr = 1,...,q, k = diag(p1,...,p04). For j = 1,...,n,8(Z;) =
(El(Zj),...,Ep(Zj))T where () = E(X,|Z = )forr = 1,...,p, S(Z}) =
(51.0(Z)) 2y, With s1.0() = EX(|Z = ).

Moreover, letI(Zj, Uj) = I{fZ(Zj)fU(Uj) > C()C]}, Ig(Zj, Uj):]{fzrg(Z§0)
fU(Uj) > C()Cl}, and 100 (Zj, Uj)ZI{ergo(ZEO())fU(Uj) > C()Cl}. Here I{} is the
indicator function, f7(-) is the marginal density of Z, fz74(-), f774,(-) is the marginal
density function of Z70, Z" 0y, respectively. Let U;; = U; — U}, Z;j = Z; — Z; in
the following, and

o WZ UpH Zi) L Uy) I)(Zj, Up)Kn(Z]) Kn(Uij)
YL Hn ZipL W) Y Y Kn(ZE0) KUy

where 1,(Z;.U;) = NI Hy(Zij)Ln,(Uij) > cocr}, I5(Z;.Uj) =
14, Xy Kn(Z;0)
K, (Uij) > coc1}. Analogous to wigj, we further define a)lejo and a)?j‘? by substituting 6

with 8¢ and 0.
Let 8, = max{h?, h‘z‘} + log n/nh‘fhz, we have the following asymptotic results.

Lemma 2 Under Conditions (A1)—(A3) and (A6)—(AT), uniformly in j, we have

n
~ 2
> Xiwi; = wUNEEZHIZ;. U + 0p(8:°)1,,
i=1
A 1/2
ZXiUijwij = OP(h% +h25n/ )11%

i=1

“ n
2 Ujei = W12, Upfee+ 0p(3:7)}. D Uijory = Op (3 + hati”).
i=1

i=1
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fo [ = YWUHNSZ)YWUHNIZ;, Uj) + 0p (8,2 1,17,
ZZ,. wij = 3 1(Z;, Up{ic + 0p(83%) 1417 ),

Z UijZijwij = Op (h3h3 + hihasy*)1,,
i=1

n
> ZiUkwi; = 0p(3h3 + hihdsy 1),
i=1

4 1/2,3
Zz,](z,joo) wij = Op(h]+8,"h})1g,

i=1
n

> XiZiwi; = 0p(h] + 8, ?)1,17,
i=1

n
n
T
Zzlja)lj = Op(h +h181/2 lg, Za)z‘jZin,» {EW) - EW))}

i=1 i=1
= 0p(3h3 + hihady)1,.

Proof We only prove the last equation. The rest can be justified in a similar way and
thus we omit their proofs. Let Z;; = Zs; — Zsj, s = 1, ..., q. By the definition of
w;j, we have that

> 0ij Zsii Xri{d U 9 (U) — $ (U /Y- (U}
i=1

L Hu (Zij) Ly, (Uij) Zsij Xri{p (U;) — f((UU’ T UDY(Z,U))
- L Hyy(Zij) Ly (Uij)

def Va1In(Z;, Uj)
Vn2 -

Step 1. Consider the denominator V,;». By directly using Lemma 1, we have

n' > [Hy (Zi — )Ly (Ui — u) — E{Hy, (Zi = 2) Ly (Ui — w)}]
i=1

= Op(y/logn/nh?h,), (19)

sup
(z,u)eZxU
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Using the technique of change-of-variable and Taylor expansion, we have
E[Hp (Zi = DL, (Ui = )] = f2(2) fu @) + O + h3). (20)

Together with (19) and (20), it follows that V,.» = fz(Z;) fu (U;) + Op(8,/%).

Step 2. Consider V,;;. Similar to the analysis for V2, by using Lemma 1, we only
need to calculate the following mean function. Firstly, note that [ H (w)wsdw = 0. It
follows that

W2 E{Hp (Z—2)(Zs—25)8 ()} =h;" / H () g {&(2) +h10" 88, (2) /dz+ 0 (h])}

x{fz(2) + M@ 3f2(2)/3z + O(hD)}dw = O(1 + h?). (1)

Secondly, similar to (21), by the Taylor expansion of ¢ (u + hat), V- (u 4 hot) and
[ Lydr = 0, we have E [Ly,,(U = u) {((U) = ¢ ) (U) /¥ w)}] = O +
hg). Thus, U 11 Z entails that

E[(nhlhz)—l ; Hy, (Zi — )Ly (Us — u)(Zsi — 25) Xy {(Uy)

— WY UD/Yr @)} | = Ohz + iz + k). (22)

Together with Lemma 1 and (22), we have V,; = Op (h%hg + hth3 + n3ng +

q
hlhz‘/logn/nhqhz) From (20) and Lemma 1, as h;—0, hp — 0, % — 00, We

have _Zl 1 Hi (Zij) Ly, (Uij) _> fz(Z;) fuUj),so I,(Z;, Uj) _> I(Z;,Uj)

and Vip = fz(Z;) fu(U;) + Op (6,1/ ). As a consequence, together with the asymp-
totic results of V,,1 and V,;2, we complete the proof.

Let 8y = [0 — 60| and 8, = h* + 4 Denote ¢x = [ 12K (1)dt.
Lemma 3 Under Conditions (A1)—(A3) and (A6)—(AT), uniformly in j, we have

n

> VR, = h ek + 0p o+ 8, "H}N(Z;. U,

i=1

Zu,jwu = 0p(h® +h%89 + hs,"?),
i=1

Z = V(U (Z500) I (Z;.Uj) + Op (3 + 5,7,

2

ZX Usjol; = Op (W2 +1289+hs,” ZX Z500], = Op (W2 +h%86+h3, "),
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"1/2

=Y (U))Say(Z500)Y (UNI™(Z;, Uj) + Op(89 +8,"°),

M .
qu
?t’

n
Z Z500f. = Op (41286 +h8, %), > Uy ZE00f, = Op (h*+1*55+h5,%),
Zo 28200, = h*{tx + 0p (89 + 8, )} 1%(Z;. U)).
Proof The proof is similar to those of Lemma 2. We omit the details. O

A.3 Proof of Theorem 1

Denote Y = (a;, b%, daj, 1)" — {¢<U,-)g<z;oo>, Bo(U))T. &' (Up&(Z500), ¢(U))

T
g’(Z}Oo)Og} and 7 = (Ogx(p+2), Iy). We only need to show that zY; = op(1),
j=1,...,n Let

AY i = X[ {Bo(Ui) — BoUp} + {6 (U (Z]80) — ¢ (U)g(Z58)
—¢'(U)Z(Z500)Uij — p(U;)g (Z500)Z];00} + ¢ (Ui )ei
= a7y +ar? +ary).

In fact, we have

n -1 n
M 5@ 5O kel (1
TJ-:[ZMU-M;,@,-J-] D M{AY + AY 4+ AT Yo = T

i=1 i=l1

2 (3)
+Tj +Tj .

In the following, we show that the three terms nT(.l), nT(.z) and nT(.3) are op(1).

Step 1.1 Investigate Zl 1M,jM wij. Let Ty = dlag( pirt, 1/ ho, 1/ hy x 1 )
Lemma 2 entails

n

1/2
S ATM M T Yoy = R71(Z;, Ujp) + 0p(8) )1 prgeallygin. Where,
i=1

C— di ) ; L 1 ENZ Y (U))
Rj =diag(A;, ¢, k) with Aj = (W(Uj)E(Zj) W(Uj)S](Zj)w](Uj))' Thus, we have

n

_ 1/2 _
> MM =T R TZ U + 0p6) ) prgaal by n}Th . (23)
i=1
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Step 1.2 Consider T](.l). Using (23), Lemma 2 and the definition of r, we can have

n-T](.l) = hl_lK_ll(Zj, Uj) Zwij(zij/hl)[X;{E(Ui) — E(U)}Bol
i=l1

(1 +0p (51/2))

_ op( 1/2h2/h1) (24)
Step 1.3 Consider TJ(.Z). By using Taylor expansion and Lemma 2, we obtain that

s 1(Zj,U)) — 1 gt .
wrf) = =S Ewij(zi,»/hl)[ywj)g (Z700)(Z];00)?
UG ZT00) U 200 + 30" (U2 00) U
x (1400 (8/%) = 0p (R + 13+ 803 /m) 1, @9)

Step 1.4 Consider Tj(.?’). Note that E{% > Hn(Zij)Lin, (Ui Zij¢(Upei} = 0,
— 2

and, for s = 1,...,q, E[{n"" 21| Hp,(Zij)Lp,Uij) Zsij¢p(Upei} |Z;] =

(,/h%/nh’fhz). Thus, we have

1(Z;,U
) = 1219 E )szj(zzj/hl)¢(U i1+ 04 = 0p (1/nh 1 Fh2).

i=1
(26)

Thus, from (24), (25) and (26),if h; — 0,hy — 0, k> 3/ h1 — Oandnhq+ hz/logn —
00, then JrT](.l), T(z) and nT( ) are all 0p(1) As a consequence, we have 1 Y; =
op(l)andthen i; —p(U;)g’ (2700)00 %, 0. Denote Cno = Z] 1 (¢>(U Vg (ZT
00))2. We have

n VLV = a8 —> 0y 27)

As the first eigenvector of 0 corresponding to its largest eigenvalue is 6 or —6o,

consequently (27) and the perturbation theory (Kato 1983) yield éo, ini LN 0. We
complete the proof. O

A.4 Proof of Theorem 2

We split the proof into several steps to enhance the readability. Write

def

Tj,éo = (&j,éo’ b;’éoa dlj,éo d2j 90) {¢(U )g(ZTGO) ﬁO(Uj)T

$W))g (Z500). ¢ (UNg(Z500)}".
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Similar to handling Y;, we decompose Tl. 4, 38 follows

n
N - MFT (1 (2) =)\ 6
Yia = (ZMU,% ij.0 u) ZMl,aO{AY +AY T AY G o)
i=1
def (1) 2) (3)
= T A T ’ T
J:00 + J:00 + j.bo’
=(2) )
where AY "o = ¢(Ug(Z]00) — ¢ (U)8(Z500) — ¢'(U;)g(Z500)Uij — (U)g
(ZEOO)Z;'OO Letr* = (Opxla Ip, Opxla Opxl) thus [; ﬁO(U]) — JI*T] 5 =

JI*TJ(,I; + n*T/(,zg +r *T(3) Lete, bea p x 1 vector w1th the rth position 1 and 0
»U0 J-90 0o
elsewhere,r =1, ..., p. We can further have

)] 2 3)
= BorU)) = €ftby 5, — BoUp) = €f (x™ X5 + 2T 5 47 5).
8)

_ U ~
Let X, = n~' 3", X, Recall that By, (U;) = ﬂmf((u",.)y X=X, 9.U)
and :BO,r =n lzj':1 Xj”bj,éo,r/xr' So that,

n -
ﬁO,r - ﬂO,r =n"! ZXAI'J’{ﬂO,r(U.I') - ﬂO,V}/Xr
=1
n _
+n_l Z str{bj,éo,r - ﬁO,r(U])}/Xr
=1

def (1) @)

Aﬁ() + Aﬂo )

Step 2.1 Consider A;ZO). Using expression (28), we re-write A/%) as follows.

l < - z 1 < - =
AY = ef > Xj,,n*Y](_‘QEO/X, t+ef - ZX,-,,;:*TJQQEO/X,
j=1 ' j=1 ’
1 & _
T v oxn(3) v
tef > Xjpm X
j=1
def
= AR+ AR 21+ AR 3],
Let 'y, = diag(Ip41, 1/h, 1/h). By using Lemma 3, we obtain that >/, (F,,,h

O 12
Mij,éoij’éOFn,h)wj}) = RNjpl%(Z;,U) + 0p(5 + 5 )1p+31p+3» where
Rjg, = diag(Aj g, ¢k 1) with
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e £ (Z500)y(U))
700 =\ wWU)eg, (2500) ¥ (UHSOZT00)WU)) )

Thus, wehave 371_ My 5 M7 . oft =T {80 10(Z;, Up+0p 03,4811 s
AN Lo

Step 2.1.1 Consider A/%) [1]. Recalling the definition of &*, as h — 0, nh? — oo and
80 —> 69, wehave Op (35, +6,"")=0p (1. and AQ [11=ef L 3" X}, (0p1.1,)
(A4 +or(D} S0 (LX) [X] {Bo(U) — Bo(Up} |/ X, . Note that

J:6o

AT =

(1+§50(Z§00)W901(2500)590(2500), —ego(z;oo)wgo%z;oo)w(uj)‘)
J:6o —

—Y (U)W, [(Z500)E0,(Z500), ¥ (U)W, [(Z500)9 (U™
(29)

From (29), we have

1 n n B o 5 .
AP = ef [nzzxj,rw(v,-)‘W%%z;ao)w(v,»)‘xixi {BoU) — Bo(Up}e?

j=1i=1
—% E;x U™ W N (Z500)80,(Z500) X, {Bo(Ui) — BO(U,o}w?;?} / X,

Bl - B2,
Similar to V,;» in Lemma 2, I,? (Z;,U)) i> 1% (Z;,U;).Foref B/[Si], we use projec-

tion of U-statistics (See Serfling 1980, Section 5.3.1). For any 0 € {0 210 —0oll2 <
—1/2}
Con b

%r Z z Xj,rW(Uj)—IW@—l(Z}O)EQ(ZEO)XE{BO(UI') - Bo(Uj)}wf,
J=1i=1
=2 %We_l (Z70)60(Z70){X, 5 (Z]0) — &0 - (Z]0)X ]}y (Ui) E'(Ui) By
i—1

<A fy U/ fu UM IP(Zj, Uj) + Op (h*) + 0p (n~1/?)
= 0p(n 21 + 1), (30)

/ /
where 2/0) = diag{(£4) ... (£9) |. The fact that E{X; & (Z]6) — &,/

(ZF0)XT|ZF0} = 0 was used in the last step above. If ~ — 0 and nh® —
0, the right-hand side of (30) is op (n_l/ 2). By using the Taylor expansion for
WQ_OI(Z;OO)EQO(Z;%) around éo, together with (30), we have Bg)] = op(n~1/?).
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Us1ng an analys1s similar to BY ], we can show that Bl[gl] = op(n~'/?). Using the fact

that X, = 4 3"_, X, = EX,, a.s., we obtain that A/(go)[l] =op(n~1/?).
Step 2.1.2 Consider A’[2] and Af[3]. Similar to Af;'[1], we can have Af[2] =
op(n=Y?). )

Together with X, —EX, = Op(n~"/2), A [11=0p(n~'/%), AP [2]=0p (n~/?),

and using the projection of U-statistics to A/(so) [3], we can have

ef z T — T T
Ay = D WUk (ZT00)Wy | (Z560){X ) — &6, (Z360)} 1" (Z;. U))e
r j=1
opn~1). (31)

Step 2.2 From expression Ago) and the asymptotic expression (31), we have

« 1 no .
Bo,—Bo,= ZEX. jZ_;Xj,r{ﬂO,r(Uj) - Bo.r}

DVea.r (Z200)W, | (Z500){X j — £g,(Z500)}I™(Z;. U))e;
+op(n~1?). (32)

Write Fjg,(Z700) = diag(Ego,l(Zl?Go)/EXl,...,éeo,p(Zi’Oo)/EXp). It follows
from (32) that

Vn(Bo — Bo) = f Z [Lﬂo dWUNL, — Y (UHYX; +¢UjF eO(Z’0o)W9‘01(Z’00)
x{X; —sgo(zjoo)}l%(zj, Uj)ej] +op(1) N N0, Zg,).

where Lg, is defined in Theorem 2. We complete the proof. O

A.5 Proof of Theorem 3

Let e; = (1,01x(p42) s €2 = (O1x(p+1).1.0)" and e3 = (O1x(p12).1)", and
let 7% = (e, e2,e3)". We have Y0 = (a5, — ¢WUNE(ZT00).d,; 4 —

$U)E (Z300),dy; 5 — ¢’ U)8(Z3600)}", and
— p(WU)E(Z00) = {1+ & (Z700W, ' (Z760)€4,(Z7600)}

n
O 1 A7 4 A7)l
XZ{AY + AT+ AT ok, (33)
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_ M, @ N6
dy; 4~ #WUNg (Zfao)_;Klz(z Bo/mH|av) +av 7+ A7),
i=1
(34)
_ ) <2> -(3)
dy; g, — &' (U)g(Z569) _§KIZ(U,]/h ){AY + AV AT } 9]0
i=1
(35)
Thus, letting 17;;* =Y, - &j,éo — )N(;Ej’éo dzj é U;j, we have
n n
- 0 -1 52 ®2
szlj(?ozllytj* i=n zzdlj,éozij 0o + Dp1 + Dy2,  (36)
i=1 j=1 i=1j=1
where D, = Z, > 1d1j % ,]¢>(Ul)s,a> and
n n
=17 > ({0 W80 — ;5 ) + X {BoU) - Bo(U))
j=1i=1
+X[{BoU)j) = b, 5.} + {6 (WUig(Z]00)—p (U8 (Z780)
- - h
dz, bo dlj,éoZifjoo}]dlj,éozijwi;)
def
= Z Dinlt].
t=1
From(36),wehaveﬁ(@o—00) = f{n > 12 1] N Szw?]@} (Dp1+Dp2).

Step 3.1 Investigate % > 27:1 d2 3 Z®2 w;; - First, we derive the order of d1 b

1) (Uj)g/(Z;Ho). From (34), similar to (25), we use the results of Lemma 3 and obtain
that

n
n | 5
é.—l Z(Z,-rj(’o/hz AY( ) n AY( )} fo _ (h2590 18 1/2) 37)

E[h™'K'(Z];00/ h) Kn(Uij)Zij|Z%00, U] = { fz:0,(Z500) fu (U} 4, (Z%80) [ 1K’
(t)d t}h + Op(h3), then, Lemma 1 and the Taylor expansion of Ky, (Zifjﬂo) at f entail
that

‘ZKh Z5,00)Kn(Uij) = fz76,(Z00) fu (U)

-|-(nh)_1 ZK;I(ijoo)Kh(Uu)(Z,, 90)
i=1

+0p (527%) = fzra,(Z500) f (U )+ Op (5,7 +5;,). (38)
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Moreover, similar to the analysis of Theorem 3 (Fan and Gijbels 1996, pp. 101-103),
we have (nh*)~' 31_, ZF,00¢ (Uiei K (Z];00)Kn(Uij) = Op(y/1/nh*), and we

can also have that (nh?)~ IZ, 1 ,-jqb(Ui)a,-Kh(Zi’jOo)Kh(Uij) = 0p(/1/nh%).
Together with (38), we can have

lZ(Z,,ao/h VAT o = 0p(J1/ni®) = 0p (5,7 /1).  (39)

/2

(37) and (39) indicate that dl]@ — ¢>(Uj)g’(Z§00) = 0p(<‘5 + 4, /h). As

a consequence, the condition 7 — 0, nh*/logn — oo and 00 LN 0o
ensure that dlj,éo — qb(Uj)g’(Z;O()) = op(l) for j = 1, ,n. By using

the projection of U-statistics, we have %Z[ h Z/ I {¢(U g (ZTO)} Z®2 9 =
. {¢(U,~)g’(z§0)}2vg(Zjo)l,f(zj, Uj) + op(l). Together with (38), we
obtain 19 (Z;, U;) 2> 1(Z;, U;) and

_1 ZZ 1, 9 Z®2 90 2E[d)(U)2{g/(ZTOO)}ZV(Z‘[oo)I@o(Z’ U)] def ,D90
i=1 j=1
(40)

Step 3.2 Consider D,;;. Similar to the analysis of (40), the projection of U-statistics
and Taylor expansion at @ entail that

Dy =n"" Y 1%(Z;, Ujg (Z5800¢° Up{se (Z500) — Zj}ej +op(n'12).
j=1

Step 3.3 Consider D,;» in several sub-steps. In the following, we show that D,;»[3]
asymptotically follows a normal distribution, and further show that D,»>[1], D,»[2]
and D,»[4] are all op(n~1/?).

Step 3.3.1 Deal with D,2[3]. Using d, ; 5 — ¢ (U;)g'(Z%00) = Op (85 + 8 /%) in
step 3.1, we have

DBl = n 'S 6 Wg (20002 X[ {BoU)) — b, Yot + D3]

j=li=l1

< pM3]+ DR [3].

From Lemma 3, we know that >, Z,»,Xiwfj = {7@(2;0) —Z;&f (Z;0)}¢(U,~)19

(Z;,Uj)+ Op (8;1]/ 2). Moreover, using arguments similar to those for A;(B%)) [1]in step
2.1.1, we have
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n=! D I(Z;, UpU))E (Z500){Ta,(Z5600) — Z &5, (Z560)}¥ (U))
j=1

"/2 _
)T 4w} x (I +0p(85) + 030 )) =0p™'2). @D)

Thus, together with (28) and (41), similar to A [3] in step 2.1.3, we can obtain that

n
BI31 =0 D 102, UpSRWU G Z300)| Ta(Z250) — 6 (2300085 (Z7))
j=1

Wy (Z500){X ; — £, (Z500) }e; + op(n™'/?). (42)
Furthermore, analogous to (41), we can have D S[3]1=0 p(n=1/?%).
Step 3.3.2 Deal with D,>[1]. Note that D,»[1] = % Z?Zl dlj’éo{qb(Uj)g(Z;Go) —
Q) S0 1zi,-a)lé]f’, and Y, (Zi — Z)ol? = (cu(2700) — Z,)1%(Z,,U)) +
0p (5, + 8,77 and d, ; 5 — (U))g'(Z300) = Op (35, + 8,2/ h). By using (33),

we can have

D11 =n"">" ¢ (U)g (Z00){s0,(Z}00) — Z;}
j=1

x {1+ 6, (Z300W,, (23806, (Z5680))

XZAY” D (14 0p (85 + 8.2/ 1)).

By Lemma 1, similar to (38), we can have >, AY(3) 90 = 0,6, + 85,)-
Together with E[{cg,(2500)—Z;}1%(Z, U;)] =0, Wehave D,,z[l] =0p(n~1"?)x
0p6)7 +85) = 0p(™'1?).

Step 3.3.3 Deal with D,[2]. Similar to D,[1] in step 3.3.2 and Bjj) in step 2.1.1,
we can have

n n A
j=1i=1
"1/2
X (14 0p (85 +8,""/h))
= 0p(h® +n7"?) x (1 + Op (85, + 8,;1/2/}1))_ 43)
Thus, from (43), as nh® — 0, we have D2[2] = op(n~1/2).

Step 3.4 Show that D,»[4] = op(n~'/?). Note that

45 def
{¢(Ut)g(zr00) ¢(U/)g(2100)} 2] 90U j dlj,@o 00 = Jt/ 11— th 2= Jz/ 3.
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Thus, D,»[4] = % leq‘:l Z?:l dA]j,éOZij (Jij,l —Jij2 — Jij*3)a)l'0j(}' Similar to (43), as
nh® = 0, we have n ! Z;’»:l > dAlj,éOZij Jijyla)?]‘? = op(n~1/2). We next consider
% Z?:l > dAlj,éOZij J,'jyga)f;’. Similarto (30), we have n ! Z?:] > 521.,‘,550(21'—
Z./)J[j,gw?;) = op(n~1/2). Moreover, we can also obtain n~! Z?Zl > cf]j,éOZ,'j

J,-,-,3wl.9]9 = op(n~1/2). Thus, we obtain that D,2[4] = op(n~1/?).

A combination of the results, D,2[1]1=0p (n~1/?) instep 3.3.2, D,n[2]=0p (n~1/?)
instep 3.3.3, Dy2[4] = op(n~'/?) in step 3.3.4, and (42) of D,»[3] in step 3.3.1, indi-
cates that

Dy =n"" D 1%(Z;, Up$*(U))g' (Z500){Ts,(Z300) — 50, (Z00)€5, (Z560)}
j=I1

XWQ_OI(Z;(’O){X]‘ — &,(Z500) )¢ +op(n~17?). (44)

From the asymptotic results of step 3.1, D, in step 3.2 and D,;» in step 3.3, we have

n

N 1
Jit(8o—00) = Dy 2102, UG U))8 (Z500)] (500 (Z380) — Z,)

j=l1
+{ T (Z300) — (230065, (2300 )WV (Z560)

x{Xi — & (300 &) +0p (172 > N (01, ay)-

Theorem holds as claimed. O

A.6 Proof of Theorem 4
Step 4.1 To prove the theorem, we first show %Z?:l 5% — EﬂO(U)®2 =
sY0
Op(n~17?).
n n
w65 — EBoU)®? = n7' 3 {b; 5 — Bo(UNIBGWU))
j=l1 j=1

+n' D BoWUND; 4, — BoU))'

j=1

+ 407D Bo(UNE* — EBy(U)®?

j=1
n
0 3 {b 4, — BoUNYT
j=1
def

= nl + Mn2 + Mn3 + Mn4~
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Similar to A‘%) in step 2.1, we can show that M,;; = OP(n_l/z), M, = Op(n_l/z).
Furthermore, the elements of M, 3 are i.i.d random variables. The weak law of large

numbers means M,3 = Op(n~— l/2) In a similar way to D,;> in step 3.3, we can show
My =o0p(n~"/%). Thus, 1 3| b®2 — EBo(U)®2 = 0p(n—'/?).

Step 4.2 Without loss of generality, we assume that the first pg predictors
{X1, X2, ..., X} are relevant. In other words, {ﬂO,l’ Boos---s ﬂO,po} are NONZero.
We further assume that all the elements of the first principal of Eg,(U)®? are non-
zero. In such a setting, we first show that there exists an r > po, such that 7, , = 0.
Suppose that 1, are nonzero for r > po, then, by the proof of Theorem 2 in Chen
et al. (2010), 7, satisfies the following equation:

n

-1 r®2 >

™! D6 Vi = Nuon. (45)
—

where N, = I, — 77 and 0, = (ct1sign(in,1), e2sign(iin,2), . - . . epsign(in, )"
Note that 7, is the eigenvector of 7,7} corresponding to its eigenvalue 1. Let
(l1,12,...,1p—1) be the eigenvectors of naNy corresponding to its eigenvalues 0.
Thus, (7,4, 11, ..., lp—1) is an independent basis of the space RP. Using this inde-

pendent basis, there exists two sequences of constants {ar}P

~®2 1~ y -1
{% 21}:1 b?;{)}nn = aphiy + >0~} al, and g, = aji, + Zr:l all,. Combining
them with (45), we have 2{ RN }nn — 2apify = 0n — aliin, from which

and the expression of g,

o and {a; } -0 ! such that

Po P
ﬁ;Qn=Z%ar|ﬁn,r|+ Z+lar|ﬁn,r|=2ﬁ; *‘wao iin— (2a0—aj). (46)
r= r=po

1 £ ®2 2 - 1 £ ®2

Let Amax (; > bj,éo) , omax (EBo(U)®?) be the largest elgenva}ues of ;, 2, bj,éo

and E B(U)®2, respectively. From the result of step 4.1, 1 > b‘?; —EBy(U)®? =
J:v0

Op (n’l/z), which means

dmax [ 171 D% ) = dmax (EBo(U)®?) | = Op(n™'72). (47)

Thus, (47) entails that 77 {% - b® }nn < A (% >t B;ﬁz’; ) — 0p(D).
>0

Together with the assumption that ¢ —> 0 and that o, = |7y~ = Op(ag) =

op(l) for r < po. We have that max, <, {a,} — 0. From (46), we further obtain that
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P n
o v -1 r®2 -
2 rlibnrl =21 yn=t 36T Hin = Qao—ap) +op(D. (48)
r=po+l1 j=1

w/2

Thus, (48) together with the assumption that «gn — 00, then we obtain that

A i P . P . .
o = ao|fy,r|”% — 00, min, - p{a,} — 00. Then, together with (47), we obtain that

. o Zfzpo+l arlﬁn,rl O " ~2 |«
min {|77n,r|} <— = Op(znn {n Zb'é }nn
r>po min, > p, {o } P Jj-b0

—Qag — ag) +op(1)) faon™?

= 0 (humax (EBo(U)®2) = Qao — ap) + 0p (1) faon™"? = 0p(1).

Because we have assumed above that all the 7, , are nonzero for r > po, it leads to
. . o . P .. .
1= 51gn(m1nr>p0{|nn,r|}) = 51gn(0p(1)) — 0, a contradiction. This means that

there exists at least ro > po such that 7, ,, = 0 with probability 1. We can further
confirm that 7, , = O for all » > pg with probability 1. This confirmation can be
proved in a way similar to the proof of Theorem 2 in Chen et al. (2010). O
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