
Ann Inst Stat Math (2013) 65:237–267
DOI 10.1007/s10463-012-0371-z

Partial linear single index models with distortion
measurement errors

Jun Zhang · Yao Yu · Li-Xing Zhu · Hua Liang

Received: 22 August 2011 / Revised: 9 April 2012 / Published online: 20 July 2012
© The Institute of Statistical Mathematics, Tokyo 2012

Abstract We study partial linear single index models when the response and the
covariates in the parametric part are measured with errors and distorted by unknown
functions of commonly observable confounding variables, and propose a semipara-
metric covariate-adjusted estimation procedure. We apply the minimum average var-
iance estimation method to estimate the parameters of interest. This is different from
all existing covariate-adjusted methods in the literature. Asymptotic properties of the
proposed estimators are established. Moreover, we also study variable selection by
adopting the coordinate-independent sparse estimation to select all relevant but dis-
torted covariates in the parametric part. We show that the resulting sparse estimators
can exclude all irrelevant covariates with probability approaching one. A simulation
study is conducted to evaluate the performance of the proposed methods and a real
data set is analyzed for illustration.
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1 Introduction

Various semiparametric regression models have been proposed to relax model assump-
tions imposed on traditional parametric models for dealing with complex real data.
Important semiparametric regression models include partial linear models (Wahba
1984; Härdle et al. 2000), additive models (Härdle et al. 2004), partial linear single
index models (Liang et al. 2010; Carroll et al. 1997; Yu and Ruppert 2002; Xia and
Härdle 2006), and varying-coefficient models (Hastie and Tibshirani 1993; Fan and
Zhang 1999). In this article, we focus on partial linear single index models (PLSiM),
which allow retaining the ease of interpretation of parameters in multiple linear regres-
sion and the flexibility of the single index model, and can be expressed as

Y = Xτβ0 + g(Zτ θ0)+ ε, (1)

where “τ” denotes the transport operation throughout this paper, (Xτ , Zτ )τ ∈ R p ×
Rq , (β0, θ0) is an unknown vector in R p × Rq , ε is the error term with mean zero and
finite variance, and g(·) is an unknown univariate function. For the sake of identifiabil-
ity, we assume, without loss of generality, that θ0 is a unit vector and its first compo-
nent is positive, i.e., the parameter space of θ0 is � = {θ = (θ1, θ2, . . . , θq)

τ , ‖θ‖2 =
1, θ1 > 0, θ ∈ Rq}; here, ‖ · ‖2 stands for the Euclidean norm.

PLSiM are quite general and cover two important special cases, i.e., when the
dimension of Z is one, (1) become partial linear models (PLM). Relevant studies
for PLM include Chen (1988), Heckman (1986) and Speckman (1988). Härdle et al.
(2000) gave a comprehensive review for PLM. When β0 = 0, (1) are single index
models. There are various estimation procedures for single index models. See, for
example, Härdle et al. (1993), Ichimura (1993), Horowitz and Härdle (1996) among
others. Horowitz (2009) enlists various examples and illustrates the usefulness of the
single index model.

The estimation for parameters β0 and θ0 in (1) was once studied by Carroll et al.
(1997) using a backfitting algorithm. Yu and Ruppert (2002) proposed a penalized
spline estimation procedure. Xia and Härdle (2006) integrated the dimension reduction
idea and the minimum average variance estimation (MAVE, Xia et al. 2002) for model
(1). More recently, Wang et al. (2010) proposed a dimension reduction-based estima-
tion procedure under the mild assumption that covariate X has a dimension reduction
structure on the covariate Z. Their procedure requires no iteration and results in a
more efficient estimator of θ0 than those obtained by Härdle et al. (1993) and Carroll
et al. (1997). Moreover, Liang et al. (2010) proposed a profile least squares estimation
procedure.

It is well known that both prediction and inference need to be assessed during the
process of data analysis. Variable selection is then often the most important aspect
regarding accuracy of the working model. The early developments of variable selec-
tion include Akaike’s information criterion (AIC, Akaike 1973), Bayes information
criterion (BIC, Schwarz 1978), and Mallows’ C p (Mallows 1973). However, these var-
iable selection procedures encounter the problem of intensive computation and the lack
of stability as argued by Breiman (1996). To overcome these drawbacks, Tibshirani
(1996) proposed the least absolute shrinkage and selection operator (LASSO),
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Partially linear single-index models 239

and Fan and Li (2001) proposed the smoothing clipped absolute deviation penalty
(SCAD). LASSO and SCAD procedures can select variables and estimate the corre-
sponding nonzero coefficients simultaneously. One distinguishing feature of the SCAD
procedure is that it can estimate the coefficients of the selected variables with an ora-
cle property. That is, the resulting estimators perform asymptotically as efficient as if
the true model were known. Recently, variable selection for semiparametric models
has received attention. Related works include Li and Liang (2008) for the generalized
varying-coefficient partially linear model, Liang et al. (2010) for PLSiM and Wang
et al. (2011) for the generalized additive partial linear model. However, these works
focus on directly observed data.

In many applications, variables may not be directly observed but with certain con-
tamination. This is common in many disciplines, such as health science and medicine
research. Observations with measurement errors must be handled delicately to make
valid inferences. Carroll et al. (2006) gave a comprehensive survey on measurement
errors. With measurement errors, variable selection becomes much more complicated.
Liang and Li (2009) developed two variable selection procedures, penalized least
squares and penalized quantile regression for PLM with additive measurement errors,
and observed that if measurement errors were ignored, some variable selection pro-
cedures might falsely choose variables and result in the final model biased. Thus,
measurement error should be taken into account in variable selection procedures to
avoid bias and false statistical inference.

In this paper, both response Y and covariate X are distorted by certain multiplicative
distorting functions. Formally:

Ỹ = φ(U )Y, X̃ = ψ(U )X, (2)

U⊥⊥(Y, Z, X), where ⊥⊥ indicates independence, U is an observed continuous scalar
confounding variable,ψ(U ) is a p×p diagonal matrix, and diag

(
ψ1(U ), . . . , ψp(U )

)
,

where φ(·) and ψr (·) denote the unknown continuous distorting functions. The diag-
onal form of ψ(U ) implies that the confounding variable U distorts each component
of the unobserved covariate X in a multiplicative fashion (Şentürk and Müller 2005;
Şentürk and Müller 2006, 2009). This scenario is not uncommon in biomedical and
health-related studies. The collected data are often needed to adjust for some measures
like body mass index, body surface area, height or weight. For instance, in a study
of the relationship between fibrinogen and serum transferrin levels among haemodi-
alysis patients, Kaysen et al. (2002) realized that the fibrinogen and serum transferrin
levels should be normalized by dividing both response and predictors by the body
mass index (BMI). This implies a multiplicative fashion of the relationship between
unobserved primary variables and confounding variable. Şentürk and Müller (2005);
Şentürk and Müller (2006, 2009) suggested that the confounding variable affects the
primary variables through flexible multiplicative unknown functions. Such normali-
zation by division of the general distorting functions may reduce non-negligible bias
and lead to consistent estimators of the parameters of interest.

Describing the relationship between unobserved primary variables and confound-
ing variable by a varying coefficient model, Şentürk and Müller investigated some
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parametric models, such as the linear model (Şentürk and Müller 2005; Şentürk and
Müller 2006) and the generalized linear model (Şentürk and Müller 2009) using a
binning method for fitting the varying coefficient model. Recently, Cui et al. (2009)
proposed a direct plug-in estimation procedure for nonlinear regression. The direct
plug-in estimation procedure first estimates the distorting functions φ(·) and ψr (·)s
by using the local linear regression, and then estimates the unobserved predictors and
response, namely, X̂ = ψ̂−1X̃, Ŷ = Ỹ/φ̂, respectively. Further estimation is then
implemented on the estimated predictors and response. A key feature of this direct
plug-in method is that it has a more potential application and can be easily adopted in
linear, nonlinear, generalized linear models or other semiparametric models, whereas
the binning technique used by Şentürk and Müller (2005); Şentürk and Müller (2006,
2009) is designed for linear or generalized linear covariate-adjusted models.

As mentioned above, the semiparametric models have more flexibility to handle
underlying models that are unknown. However, the estimation in covariate-adjusted
semiparametric models is very challenging. This is partially owing to substantial
difficulties in fitting covariate-adjusted semiparametric models: the lack of directly
observed data and the need of estimating some infinite-dimensional parameters in
semiparametric models. In particular, the root-n consistency and asymptotic normal-
ity are more difficult to establish than those for parametric models. Furthermore,
variable selection for covariate-adjusted data needs to be developed, a fundamental
problem that has not been addressed in the literature.

We first investigate the estimation procedure of covariate-adjusted semiparamet-
ric models, namely, covariate-adjusted partial linear single index model (CAPLSiM).
We propose a new estimation procedure based on MAVE (Xia et al. 2002). Our goal
is to estimate the unknown parameters (β0, θ0) consistently based on the observed
and confounded data

{
Ỹi , X̃ i , Zi ,Ui

}n
i=1, and to further establish asymptotic normal-

ity for the proposed estimators. Moreover, studying variable selection, we propose a
sparse principle component (SPC) analysis based on the recently developed coordi-
nate-independent sparse estimation (CISE, Chen et al. 2010). We demonstrate that the
resulting SPC-based solution is selection consistent. The final sparse estimator of β0
is closely related to the first SPC. We conduct Monte Carlo simulation experiments to
assess the performance of the proposed procedures. Our simulation results show that
the proposed procedures perform well both in estimation and variable selection.

The paper is organized as follows. In Sect. 2, we propose the estimation procedure
for the parameters β0 and θ0, introduce the algorithms for computing their estimators,
and present asymptotic properties of the resulting estimators. In Sect. 3, we provide an
algorithm for variable selection and give theoretical properties. In Sect. 4, we report
the results of a simulation study and the results of an analysis of a diabetes data set.
All the technical proofs of the asymptotic results are given in the Appendix.

2 Estimation and main results

From model (2), we re-write PLSiM (1) into the following CAPLSiM:

Ỹ = X̃
τ
β0(U )+ φ(U )g(Zτ θ0)+ φ(U )ε, (3)

where β0(U ) = (
β0,1φ(U )/ψ1(U ),β0,2φ(U )/ψ2(U ), . . . ,β0,pφ(U )/ψp(U )

)τ .
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Partially linear single-index models 241

Let
{
(X̃ i , Zi ,Ui , Ỹi )

}n
i=1 be an i.i.d. sample from

(
X̃, Z,U, Ỹ

)
. When (Zτi θ0,Ui )

close to (zτ θ0, u), we have an approximation:

φ(U )g(Zτ θ0) ≈ φ(u)g(zτ θ0)+ φ(u)g′(zτ θ0)θ
τ
0(Zi − z)+ φ′(u)g(zτ θ0)(Ui − u).

Then, the resulting estimators of θ0,
{
β0(Ui )

}n
i=1,

{
φ(Ui )g(Zτi θ0)

}n
i=1,

{
φ(Ui )g′

(Zτi θ0)
}n

i=1 and
{
φ′(Ui )g(Zτi θ0)

}n
i=1 are the minimizers with respect to θ and a j , b j ,

d1 j d2 j for j = 1, . . . , n; that is,

arg min
θτ θ=1

n∑

j=1

n∑

i=1

{
Ỹi − X̃

τ

i b j −a j −d1 jθ
τ (Zi −Z j )−d2 j (Ui − U j )

}2
ωi (Z j ,U j ),

(4)

where ωi (Z j ,U j ) are some kernel weight functions. We shall discuss the choices of
the kernel weight functions in Sect. 2.1. Given θ , (4) is a local linear smoothing esti-
mation procedure. At the same time, given (a j , b j , d1 j , d2 j ), (4) is a weighted least
squares problem for θ . Consequently, minimization of (4) can be solved by an iterative
procedure; that is, iteratively estimating nonparametric component (a j , b j , d1 j , d2 j )

and parameter component θ . Note that the above minimizer estimation procedure is
similar to MAVE (Xia et al. 2002). Minimizing (4) is a quadratic programming, which
can be solved easily with simple expressions. We describe the algorithm in the next
subsection.

2.1 Algorithm for estimation

2.1.1 An initial estimator of θ0

Note that U is independent of Z, so we can choose kernel function ωi (Z j ,U j ) as
follows. ωi (Z j ,U j ) = In(Z j ,U j )Hh1(Zi − Z j )Lh2(Ui − U j )/

∑n
i=1 Hh1(Zi −

Z j )Lh2(Ui −U j ), where H(·) is a q-variate multivariate density function and Hh1(·) =
h−q

1 H(·/h1), L(·) is a univariate density function and Lh2(·) = h−1
2 L(·/h2), h1, h2

are bandwidths and In(Z j ,U j ) = I { 1
n

∑n
i=1 Hh1(Zi − Z j )Lh2(Ui − U j ) > c0c1}

for two constants c0 and c1 given in Assumption (A2); I {·} is the indictor function.
In(Z j ,U j ) is used to remove the effect of the boundary points in the support of Z and
U . Similar technique was employed in Xia and Härdle (2006). The q-variate multi-
variate density function H(·) still faces the “curse of dimensionality”, but it suffices
to provide us a consistent initial estimator for θ0.

Writeμ j = d1 jθ , M i j = (
1, X̃

τ

i , (Ui −U j ), (Zi − Z j )
τ
)τ and ωi j = ωi (Z j ,U j ).

Minimizing (4) with respect to {a j , b j , d2 j , μ j }, we obtain that, for j = 1, . . . , n,

(
â j , b̂ j , d̂2 j , μ̂ j

)τ =
{ n∑

i=1

M i j Mτ
i jωi j

}−1 n∑

i=1

M i j Ỹiωi j .
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Furthermore, let V̂ n = (μ̂1, μ̂2, . . . , μ̂n) and ς̂ be the eigenvector of V̂ n V̂
τ

n/n
corresponding to its largest eigenvalue. Recalling that the first component of θ0 is
positive, we define the initial estimator of θ0 as θ̂0,ini = sign(ς̂1)ς̂ , where ς̂1 is
the first component of ς̂ . The reason for choosing the first eigenvector ς̂ is that

μ̂ j −φ(U j )g′(Zτj θ0)θ0
P−→ 0 as n goes to infinity. In other words, μ̂i is proportional

to θ0 in probability, then the first eigenvector ς̂ is also proportional to θ0 in probability.
The theoretical justification of this conclusion will be presented in Theorem 1.

2.1.2 Estimator of θ0

To enhance the estimation efficiency, we update the kernel function ωi (Z j ,U j )

as I θn (Z j ,U j )Kh(Zτi θ − Zτj θ)Kh(Ui − U j )/
∑n

i=1 Kh(Zτi θ − Zτj θ)Kh(Ui − U j ),

where K (·) is a univariate density function, h is a bandwidth, and I θn (Z j ,U j ) =
I { 1

n

∑n
i=1 Kh(Zτi θ − Zτj θ)Kh(Ui − U j ) > c0c1}. We implement the idea in the

following steps.

Step 1. Given θ∗, let M i j,θ∗ =
(

1, X̃
τ

i , (Zi − Z j )
τ θ∗, (Ui − U j )

)τ
and ωθ

∗
i j =

I θ
∗

n (Z j ,U j )Kh(Zτi θ∗ − Zτj θ
∗)Kh(Ui − U j )/

∑n
i=1 Kh(Zτi θ∗ − Zτj θ

∗)Kh

(Ui − U j ). We obtain

(
a j,θ∗ , b j,θ∗ , d1 j,θ∗ , d2 j,θ∗

)τ =
{ n∑

i=1

M i j,θ∗ Mτ
i j,θ∗ωθ

∗
i j

}−1 n∑

i=1

M i j,θ∗ Ỹiω
θ∗
i j .

(5)

Step 2. Using
(
a j,θ∗ , b j,θ∗ , d1 j,θ∗ , d2 j,θ∗ , θ∗)τ from (5), and letting Ỹ ∗

i j = Ỹi −
a j,θ∗ − X̃

τ

i b1 j,θ∗ − d2 j,θ∗(Ui − U j ), we have

θ =
{ n∑

j=1

n∑

i=1

d2
1 j,θ∗(Zi − Z j )(Zi − Z j )

τωθ
∗

i j

}−1

×
n∑

j=1

n∑

i=1

d1 j,θ∗(Zi − Z j )Ỹ
∗
i jω

θ∗
i j . (6)

Standardize θ = sign(θ1)θ/‖θ‖2, where θ1 is the first element of θ and
sign(·) is the sign function.

We first use the initial estimator θ̂0,ini as θ∗ to obtain (a j,θ∗ , b j,θ∗ , d1 j,θ∗ , d2 j,θ∗)τ

through (5), then update the estimator of θ0 through (6). The final estimator θ̂0 can be
obtained iteratively between (5) and (6) until convergence.

2.1.3 Estimator of β0

Under the following identifiability condition that was suggested by Şentürk and Müller
(2005); Şentürk and Müller (2006)
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Partially linear single-index models 243

Eφ(U ) = 1, Eψ(U ) = Ip, (7)

where Ip is an p × p identical matrix, and the distorting effects vanish with no
average distortion, namely, EỸ = EY and E X̃ = E X . From (3) and the assump-
tion of U⊥⊥(X,Y ), Şentürk and Müller (2005) noted that, in the population level,
E
{
β0,r (U )X̃r

} = β0,r E Xr = β0,r E X̃r for r = 1, . . . , p. Under Condition (A4) in
the Appendix that E Xr s are nonzero, we know that

β0,r = Eβ0,r (U )X̃r/E X̃r . (8)

Motivated from (8), different from the binning method proposed by Şentürk and Müller
(2005) to estimate β0,r s, we propose the following estimators

β̂0,r =
n∑

j=1

X̃ j,r b̂ j,θ̂0,r

/ n∑

j=1

X̃ j,r , (9)

where b̂ j,θ̂0,r
is the r -th component of b̂ j,θ̂0

, which is obtained from steps 1 and 2, and

X̃ j,r is the r -th components of X̃ j for j = 1, . . . , n and r = 1, . . . , p.

2.2 Asymptotic results for β̂0 and θ̂0

We now present the sampling property of our proposed estimators, whose proofs are
given in the Appendix. The first theorem establishes the consistency of the initial
estimator θ̂0,ini .

Theorem 1 Under Conditions (A1)–(A3) and (A5), if h1 → 0, h2 → 0, h3
2/h1 → 0

and nhq+2
1 h2/ log n → ∞ as n → ∞, then θ0,ini

P−→ θ0.

Theorem 1 indicates that the multi-dimensional kernel H(·) can ensure obtaining
a consistent estimator of θ0, although the associated bandwidth has a slower rate than
that of the optimal bandwidth. As advocated by Xia and Härdle (2006), the MAVE
procedure coupling with such an initial estimator would eventually provide a root-n
consistent estimator of θ0.

In what follows, A⊗2 =AAτ for any vector or matrix A. Denote ξθ (t)= E(X|Zτ θ =
t) = (

ξθ,1(t), . . . , ξθ,p(t)
)

where ξθ,r (t) = E(Xr |Zτ θ = t), ςθ (t) = E
(
Z|Zτ θ = t

)
,

Sθ (t) = E
(
X⊗2|Zτ θ = t

)
, Tθ (t) = E

(
ZXτ |Zτ θ = t

)
, Wθ (t) = Sθ (t) − ξ⊗2

θ (t),

Vθ (t) = E
(
Z⊗2|Zτ θ = t

) − ς⊗2
θ (t), Fθ (Zτ θ) = diag

(
ξθ,1(Zτ θ)

E X1
, . . . ,

ξθ,p(Zτ θ)
E X p

)
.

Moreover, Lβ0 = diag
(

β0,1
E X1

, . . . ,
β0,p
E X p

)
, Dθ0 = E

[
φ(U )2

{
g′(Zτ θ0)

}2Vθ0(Z
τ θ0)

Iθ0(Z,U )
]
, where Iθ0(Z,U ) = I {(Z,U ) ∈ Z ×U , such that fZ τ θ0(Z

τ θ0) fU (U ) >

c0c1}. We now present the asymptotic distribution of θ̂0.
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Theorem 2 Under Conditions (A1)–(A8), if h → 0, nh2 → ∞, nh6 → 0 as n → ∞,√
n
(
β̂0 − β0

)
is asymptotically normal with mean 0p and covariance

�β0 = Lβ0 E
{(
φ(U )Ip − ψ(U )

){
E X⊗2}(φ(U )Ip − ψ(U )

)}
Lβ0

+σ 2 E
{
φ2(U )Fθ0(Z

τ θ0)W−1
θ0
(Zτ θ0)Fθ0(Z

τ θ0)Iθ0(Z j ,U j )
}
.

Remark 1 From the expressions of Fθ0 and Lθ0 , we need Condition (A8) that E Xr s are
all nonzeros. This is because, in the population level, the estimator of β0,r is obtained
as β0,r = E

{
X̃rβ0,r (U )

}
/E Xr , r = 1, . . . , p. This assumption was also imposed in

Şentürk and Müller (2005); Şentürk and Müller (2006) for their binning method, and
Cui et al. (2009) for their direct estimation method.

We next study the asymptotic distributions of θ̂0.

Theorem 3 Under the conditions of Theorem 2,
√

n
(
θ̂0−θ0

)
is asymptotically normal

with mean 0q and the covariance matrix �θ0 :

�θ0 = σ 2

4
D−
θ0

E
[
φ2(U )

{(
Tθ0(Z

τ θ0)−ςθ0(Z
τ θ0)ξ

τ
θ0
(Zτ θ0)

)
W−1
θ0
(Zτ θ0)

(
X−ξθ0(Z

τ θ0)
)

+(
ςθ0(Z

τ θ0)− Z
)}

g′(Zτ θ0)Iθ0(Z,U )
]⊗2

D−
θ0
,

where D−
θ0

is the generalized inverse of Dθ0 .

Remark 2 Since the term Vθ0(t) is the conditional variance of the covariate vector Z
given a linear constraint in Z, θ τ0Vθ0(Z

τ θ0)θ0 = 0. So the rank of Dθ0 and�θ0 equals
to q − 1 instead of q, and these two matrices are not invertible.

3 Variable selection for β0

From (3), we have β0(U ) = (U )β0, with, (U ) = diag
(
φ(U )
ψ1(U )

,
φ(U )
ψ2(U )

, . . . ,

φ(U )
ψp(U )

)
. In other words, β0,r (u) = β0,rφ(U )/ψr (u). Under Condition (A7), imposed

on the distorting functions φ(·) and ψr (·)s, we know that φ(u)/ψr (u)s are nonzero
on the support of U ; i.e., β0,r (u) = 0 if and only if β0,r = 0. This means selecting
the nonzero elements of β0 is equivalent to selecting nonzero components of β0(u)
or ±β0(u)/‖β0(u)‖. In this context, selection of variables is equivalent to identifying
the first sparse principal component (SPC) of β0(u)β0(u)

τ for each u on the support
of U . This motivates us to solve the variable selection problem in CAPLSiM through
finding the first SPC of E

{
β0(U )

⊗2
}
.

To get insights into the estimator of the first SPC of E
{
β0(U )

⊗2
}
, we consider an

estimator of E
{
β0(U )

⊗2
}
, constructed as

Ê
{
β0(U )

⊗2
}

= 1

n

n∑

j=1

b̂⊗2
j,θ̂0
,
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Partially linear single-index models 245

where {b̂1,θ̂0
, . . . , b̂n,θ̂0

} are the estimates obtained from steps 1 and 2. Let η̂n be an

estimator of the first principal component of E
{
β0(U )

⊗2
}

obtained by solving the
following eigen-decomposition equation:

⎧
⎨

⎩
1

n

n∑

j=1

b̂⊗2
j,θ̂0

⎫
⎬

⎭
η̂n = λ̂η̂n, (10)

where λ̂ is the largest eigenvalue of 1
n

∑n
j=1 b̂⊗2

j,θ̂0
. Note that the eigen-decomposition

(10) can be solved by minimizing a least square objective function (Li 2007):

η̂n = arg min
v

p∑

i=1

‖mi − vvτmi‖2 subject to vτ v = 1, (11)

where v is a p × 1 vector, and mi is the i th column of
{

1
n

∑n
j=1 b̂⊗2

j,θ̂0

}1/2
for i =

1, . . . , p, which satisfies
{

1
n

∑n
j=1 b̂⊗2

j,θ̂0

}1/2{
1
n

∑n
j=1 b̂⊗2

j,θ̂0

}1/2 = 1
n

∑n
j=1 b̂⊗2

j,θ̂0
. To

get a sparse solution of η̂n , we adopt the CISE idea proposed by Chen et al. (2010) as
follows.

η̆n = arg min
v

{ p∑

i=1

‖mi − vvτmi‖2 +
p∑

r=1

αr |vr |
}
, (12)

where αr ≥ 0 serves as penalty parameters. In this paper, we use absolute value func-
tion | · | to achieve variable selection. As claimed in Chen et al. (2010), one may choose
any positive convex function which is non-differentiable at the zero. The feature of
non-differentiability at zero results in shrinking some elements of η̆n to zero and con-
sequently achieving selection of variables. The choice of turning parameters αr s is
discussed in Example 2 of Sect. 4. It is worth noting that the turning parameters αr s
are not necessarily the same for all coefficients to keep important variables in the final
model. The resulting estimator η̆n is the first SPC estimator of E

{
β0(U )

⊗2
}
. After we

obtain the sparse solution η̆n through (12), the resulting sparse estimator of β0 can be
obtained as, for r = 1, . . . , p,

β̂
s
0,r =

n∑

j=1

X̃ j,r b̂ j,θ̂0,r
I {η̆n,r = 0}

/ n∑

j=1

X̃ j,r , (13)

where I {·} is the indicator function and η̆n,r is the r -th component of η̆n .

3.1 Algorithm for variable selection

With some algebraic derivations, the minimization of objective function (12) is equiv-
alent to minimization of the objective function:
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L = −v
{

1

n

n∑

i=1

b̂⊗2
j,θ̂0

}

v +
p∑

r=1

αr |vr |.

This can be achieved by using the algorithm for CISE proposed by Chen et al. (2010).
First, we adopt the local quadratic approximation proposed by Fan and Li (2001) to
overcome the non-differentiability of the absolute function | · |.

Define ρ(v) = ∑p
r=1 αr |vr |. The un-constrained first derivative of ρ(v) with

respect to the nonzero p × 1 vector v is ∂ρ(v)
∂v

= diag
(
α1|v1| , . . . ,

αp
|vp |

)
v. Following

the idea of Fan and Li (2001), the first derivative of ρ(v) around v(0) can be approxi-
mately obtained by

∂ρ(v)

∂v
≈ diag

(
α1

∣∣v(0)1

∣∣
, . . . ,

αp
∣∣v(0)p

∣∣

)

v
def= N(0)v. (14)

The second-order Taylor expansion entails that, for some constant c∗
0,

ρ(v) ≈ 1

2
vτN(0)v + c∗

0 . (15)

Next, find v(1) by minimizing the objective function:

L(1) = −vτ
{

1

n

n∑

i=1

b̂⊗2
j,θ̂0

}

v + 1

2
vτN(0)v. (16)

In fact, the minimizing problem of L(1) in (16) can be easily solved by the eigen-decom-

position problem, that is, the solution ofv(1) is the first eigenvector of
{

1
n

∑n
i=1 b̂⊗2

j,θ̂0

}
−

1
2 N(0) corresponding to its largest eigenvalue. Next, let v(1) be the starting value and
update ρ(v) in (15). Iterate (14), (15) and (16) until we find the solution for v. Let
δ be a pre-specified small positive constant (e.g. δ = 10−6), during the iteration. If∣∣v(k)r

∣∣ < δ, then the r -th element of v is removed. As for the starting value v(0), we
suggest the use of the estimator η̂n from (10). The theoretical results for η̆n are given
in Theorem 4.

3.2 Theoretical properties

Let A = {
r : β0,r = 0

}
. An = {

r : η̆n,r = 0
}
. In other words, A is the set corre-

sponding to the relevant variables of X , and An represent the set corresponding to the
variables of X selected out by the first SPC eigenvector η̆n .

Theorem 4 In addition to the conditions of Theorem 2, we have

(a) 1
n

∑n
j=1 b̂⊗2

j,θ̂0
− E

{
β0(U )

⊗2
} = OP (n−1/2).

(b) Moreover, if we let αr = α0|η̂n,r |−� for some � > 0, the turning parameter α0
satisfies α0 → 0 and α0n�/2 → ∞, then P

(
An = A

) → 1.
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Remark 3 Theorem 4(a) indicates that the estimator 1
n

∑n
j=1 b̂⊗2

j,θ̂0
is a root-n consis-

tent estimator of E{β0(U )
⊗2}. By the perturbation theory (Kato 1983), we know that

the eigenvector η̂n corresponding to its largest eigenvalue λ̂ is also root-n consistent.
Thus, we can use η̂n as the starting value v(0) in Sect. 3.1. The foregoing algorithm
works very fast basad on our numerical experience.

The reason for taking η̂n as a starting value can be intuitively explained as fol-
lows. Let η be the first principle component of E

{
β(U )⊗2

}
. Suppose the true value

β0,r = 0, then the r -th row and r -th column of E
{
β(U )⊗2

}
are zero. This means

the r -th element of η is zero, i.e., ηr = 0. As a consequence, using Theorem 4(a),
we know that the r -th element of η̂n satisfies η̂n,r = ηr + OP (n−1/2) = OP (n−1/2).

Thus, as α0n�/2 → ∞, we have αr
P→ ∞ and αr will penalize η̆n,r to 0. On the other

hand, if β0,r ′ is not zero and the corresponding eigenvector ηr ′ is not zero, we have

η̂n,r ′ = ηr ′ + OP (n−1/2) = OP (1). As α0 → 0, we have that αr ′
P→ 0 and αr ′ will not

penalize η̆n,r ′ asymptotically. Hence, we choose η̂n as our starting value to adaptively
shrink η.

4 Numerical studies

In this section, we conduct simulation studies to assess the performance of the pro-
posed methods. To estimate (β0, θ0), the Algorithm proposed in Sect. 2.1 is adopted.
We also investigate the finite sample performance of variable selection procedure in
Sect. 3.1. We then apply our methods to analyze a real data set from a diabetes study.

4.1 Simulation studies

Example 1 We generated 500 data sets consisting of n = 100, 200, 300 and 400
observations, respectively, from the model:

Y = Xτβ0 + sin(Zτ θ0)+ ε, (17)

where β0 = (3.0, 1.5, 1.5, 0.5, 0.5)τ , θ0 = (1, 1, 1)/
√

3. The model error ε follows
N (0, 0.12) and is independent of (X, Z). The covariates (X, Z)τ follow N8

(
(μX ,

μZ )
τ , �

)
with μX = (5, . . . , 5)τ , μZ = (0, 0, 0)τ and � = (

0.5|i− j |)
1≤i, j≤8. The

confounding variable U was drawn from a Uniform(1, 6), the distortion function for

the response Y is φ(U ) = (U+1)2

22.3333 , and those for the predictors X are ψr (U ) = U+r
3.5+r ,

r = 1, . . . , p. The constants in the distorting functions were chosen to ensure identi-
fiability (7).

To obtain an initial estimator θ̂0,ini , we used the standard multivariate normal
density function as the multivariate kernel H(·) and Epanechnikov kernel L(t) =
0.75(1 − t2)+. As known, the optimal bandwidth for the multivariate setting is dif-
ficult to choose. In this simulation, we used h1 = n−1/7 and h2 = n−1/5, which
meet the requirement on the bandwidths in Theorem 1. We verified that the resulting
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Table 1 Simulation results for Example 1

β̂0,1 β̂0,2 β̂0,3 β̂0,4 β̂0,5

n = 100

Bias 0.0110 0.0006 −0.0014 −0.0085 0.0015

SE 0.1094 0.0921 0.0910 0.0739 0.0832

n = 200

Bias −0.0003 −0.0012 −0.0087 −0.0043 −0.0044

SE 0.0721 0.0480 0.0525 0.0419 0.0376

n = 300

Bias 0.0075 −0.0013 −0.0023 −0.0006 −0.0021

SE 0.0544 0.0390 0.0405 0.0274 0.0274

n = 400

Bias 0.0090 0.0045 0.0004 −0.0010 −0.0011

SE 0.0467 0.0344 0.0354 0.0216 0.0213

The average bias and associated standard error for β0 in model (17)

initial values θ̂0,ini were stable when we shifted several values around the selected
bandwidths. After obtaining θ̂0,ini , we further obtained the final estimators of (β0, θ0)

by using the algorithm given in Sects. 2.1.2 and 2.1.3. We can use the Epanechnikov
kernel K (t) = 0.75(1 − t2)+. Note that the “optimal” bandwidth or order n−1/5 we
used in this stage satisfies the conditions of Theorems 2 and 3. We used the following
leave-one-out cross-validation to select bandwidth h.

Bandwidth selection For a given θ , define CV(h) = n−1 ∑n
j=1

{
Ỹ j − X̃

τ

j b
\ j
j,θ −

a\ j
j,θ

}2, where a\ j
j,θ and b\ j

j,θ are obtained through
(

a\ j
j,θ , b\ j

j,θ , d\ j
1 j,θ , d\ j

2 j,θ

)τ =
(∑n

i=1,i = j M i j,θ Mτ
i j,θω

θ
i j

)−1 ∑n
i=1,i = j M i j,θ Ỹiω

θ
i j . The bandwidth h in each step

is chosen as arg minh CV(h).
The average bias and associated standard errors of (β̂0, θ̂0) are reported in Tables 1

and 2, respectively. The estimated β̂0 are close to the true value β0, and the estimated
values of single-index θ̂0 are also close to the true value θ0 as sample size n increases.
Moreover, larger sample sizes lead to smaller standard errors of (β̂0, θ̂0). For the esti-
mation of θ0 in Table 2, we present the mean and standard errors of the angle (in
radians) between θ̂0 and θ0 in Table 2. As expected, the mean and standard errors of
the angle become smaller with the sample size. Both tables indicate that our estimation
procedure performs well.

Example 2 In this example, we simulated 500 realizations, each consisting of n = 300,
400, and 500 random samples from model (17) with β0 = (3, 2, 1.5, 0.2, 0.3, 0.15, 0,
0, 0, 0, 0, 0)τ and θ0 = (1, 1, 1)/

√
3. The covariates (X, Z)τ follow normal dis-

tribution N15
(
(μX , μZ )

τ , �
)

with μX = (5, . . . , 5)τ , μZ = (0, 0, 0)τ , and � =(
0.5|i− j |)

1≤i, j≤15. The covariates X have 12 elements and the first 6 covariates of X
are relevant to the model. We considered the following two cases:
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Table 2 Simulation results for Example 1

θ̂0,1 θ̂0,2 θ̂0,3 arccos
(
θ̂0, θ0

)

n = 100

Bias −0.0162 −0.0706 −0.0457 0.2848

SE 0.1573 0.2672 0.2229 0.3393

n = 200

Bias 0.0030 −0.0121 0.0013 0.0811

SE 0.0547 0.0588 0.0465 0.0468

n = 300

Bias 0.0027 −0.0051 −0.0004 0.0493

SE 0.0318 0.0363 0.0288 0.0274

n = 400

Bias 0.0008 −0.0013 −0.0013 0.0375

SE 0.0240 0.0264 0.0233 0.0202

The average bias and associated standard error for θ0 in model (17)

Case 1. ε follows normal distribution N (0, σ 2) with σ = 0.1, and is independent of
(X, Z).

Case 2. ε follows N
(
0, σ 2 × (|X1| + |Z1|)

)
with σ = 0.1, where X1, Z1 are the

first element of X , Z, respectively. In this setting, ε is correlated to (X, Z).

Choice of the penalty parameters α0 and� We used αr = α0|η̂n,r |−� in Theorem
4, where η̂n,r is the r -th component of η̂n , defined in (10). (α,�) are positive tuning
parameters to be selected by minimizing the BIC-type criterion (Chen et al. 2010):

f (α0,�) = −η̆τn(α0,�)

⎛

⎝1

n

n∑

j=1

b̂⊗2
j,θ̂0

⎞

⎠ η̆n(α0,�) + log n

n
(N(α0,�) − 1), (18)

where η̆n(α0,�) is the estimator through (12) for given (α0,�), N(α0,�) denotes the
number of nonzero elements of η̆n(α0,�), and log n/n is the BIC-type factor suggested
by Li (2007). The minimization of (18) can be solved by a two-dimensional grid
search. In our simulation, the range of (α0,�)was selected to be wide enough so that
the minimizer of f (α0,�) was approximately at the center of the range, and 20 × 20
grid points were set over the range of (α0,�).

In Table 3, we present summary statistics—ωu,β0 , ωc,β0 , ωo,β0 , and Medseβ0 to
assess how well our proposed method works. ωu,β0 , ωc,β0 , ωo,β0 are the fractions of
underfitted, correctly fitted and overfitted. In the case of overfitted, the labels “1”,
“2” and “≥ 3” are the fraction of models including 1, 2 and more than 2 irrelevant
covariates. Medseβ0 stands for the median of square error

∥∥β̂
s
0 − β0

∥∥2, where β̂
s
0 is

defined in (13). The label “Cβ0 ” denotes the average number of the zero coefficients
that were correctly set to zero, and the label “INβ0 ” denotes the average number of the
nonzero coefficients that were incorrectly set to zero.
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Table 3 Simulation results for Example 2: underfitted-ωu,β0 , correctly fitted-ωc,β0 , overfitted-ωo,β0 ,
median of square error-Medseβ0 , zero coefficients of β0 that were correctly set to zero-Cβ0 , and nonzero
coefficients of β0 that were incorrectly set to zero-INβ0

n ωu,β0 (%) ωc,β0 (%) ωo,β0 (%) Medseβ0 No of zeros

“1” (%) “2” (%) “≥ 3”(%) Cβ0 INβ0

Case 1.

300 13.00 75.00 12.00 0.00 0.00 0.0133 5.840 0.160

400 0.20 85.80 13.80 0.20 0.00 0.0064 5.858 0.002

500 0.00 92.60 7.40 0.00 0.00 0.0047 5.926 0.000

Case 2.

300 4.80 74.60 18.60 2.60 0.00 0.0112 5.746 0.050

400 0.20 84.40 14.00 1.20 0.20 0.0080 5.828 0.002

500 0.00 89.20 10.40 0.40 0.00 0.0049 5.888 0.000

From Table 3, we can see that the first SPC η̆n successfully distinguish zero and
nonzeros of β0 in both two cases. The values of “Cβ0 ” and “INβ0 ” are close to the true
value 6 and 0, respectively. Overall, the proportion of the model correctly fitted is over
70 %, and the proportion of underfitted and overfitted models are around 10 and 20 %.
In particular, when the sample size increases to 500, the proportion of correctly fitted
model is close to 90 % in both the cases. This indicates that our method can indeed
identify the true model consistently. Furthermore, the Medseβ0 decreases quickly with
the sample size either in homogeneous or heteroscedastic error.

4.2 An empirical example

We apply the methods to analyze a data set from a diabetes study as an illustration. In
this data set, there are 442 observations for diabetes patients with response variable
Y (a quantitative measurement of disease progression one year after baseline) and
covariates: age, sex, body mass index (BMI), average blood pressure (BP), and six
blood serum measurements about total cholesterol, density level, tension glaucoma
level, and glucose concentration denoted by TC, LDL, HDL, TCH, LTG, and GLU,
respectively. This data set was analyzed by Efron et al. (2004) via the least angle
regression (LARS). They used a linear regression model and “LARS” algorithm to
select important factors (covariates) in disease progression. To avoid model misspeci-
fication, we applied PLSiM to analyze this data set. Here, we considered BMI as the
potential confounding variable U , the six blood serum measurements and sex as X ,
and age and BP as Z.

The final estimate is θ̂0 = (0.5010,−0.8655). Thus, the single index is 0.5010
age −0.8655 BP. In addition, the first SPC estimate η̆n is (0.2502, 0.0344,−0.0366,
−0.0144, 0.2327,−0.9384, 0.0033). This indicates that all seven elements of X
should be kept in the final model. The estimates ofβ0 are (−24.4754, 1.4202,−1.3503,
−2.5827,−9.3805, 33.7842, 0.8867). Finally, we used the local linear smoother
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Fig. 1 The local linear estimator of g(·) (solid line) against estimated index 0.5010 age −0.8655 BP, along
with the associated 95 % pointwise confidence intervals (dotted lines), and a linear fitting (straight line)

method (Fan and Gijbels 1996) to estimate g(·) based on the “synthesis” data{
Ỹ j , X̃

τ

j b̂ j,θ̂0
, Zτj θ̂0

}n
j=1, and presented the estimated ĝ(·) in Fig. 1 along with the

95 % pointwise confidence intervals. For illustrative purpose, we fitted a linear regres-
sion for

{
Ỹ j − X̃

τ

j b̂ j,θ̂0
, Zτj θ̂0

}n
j=1 and displayed the straight line in Fig. 1, which is not

encapsulated in the band. We therefore considered that the a nonlinear pattern of g(·)
is more proper for this data set. We further used the test proposed by Stute and Zhu
(2005) to check whether ĝ(·) has appropriately fitted this data set. The associated value
of the test statistic is 1.4905 with p value 0.1361. This indicates that the single-index
model g(·) is appropriate for this data set.

A Appendix

In this Appendix, we present the conditions, prepare several preliminary lemmas, and
give the proofs of the main results.

A.1 Conditions

The following are the regularity conditions for our asymptotic results.

(A1) The functions ξθ (t), ςθ (t), Sθ (t), Tθ (t), Wθ (t), Vθ (t) defined in Sect. 2.2 are
three times continuously differentiable with respect to t . Their third derivatives
are uniformly Lipschitz continuous on C = {t = zτ θ : z ∈ Z ⊂ Rq , θ ∈ �},
where Z is a compact support set. Furthermore, Wθ (t) is invertible on C, and the
functions ξ(z), S(z) defined in Lemma 1 have three times bounded derivatives
on Z .
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(A2) With Probability 1, Z lies in the compact set Z , such that the marginal density
functions fZ (z) of Z and fZ τ θ (zτ θ) of Zτ θ for any ‖θ‖ = 1 have three times
bounded derivatives; For some positive constant c0, regions {z : fZ (z) > c0}
and {z : fZ τ θ (zτ θ) > c0} for all ‖θ‖ = 1 are nonempty. Moreover, there exists
a positive constant c1 such that the density function fU (u) > c1 on U : the
support of U .

(A3) g(·) has bounded, continuous third-order derivative, and is not constant on the
support C.

(A4) Eε4 < ∞, and the covariance matrix of (Xτ , Zτ )τ is positive finite. Further-
more, E X4

r < ∞, r = 1, . . . , p, E Z4
l < ∞, l = 1, . . . , q.

(A5) �β0 defined in Theorem 2 is positive definite with finite elements.
(A6) The multivariate kernel functions H(·) is a continuous and symmetric multi-

variate density function with bounded derivative and bounded support satis-
fying

∫
z2

r H(z1, . . . , zq)dzr = 0 and
∫ |zr | j H(z1, . . . , zq)dzr < ∞ for j =

1, 2, 3, r = 1, . . . , q. The kernel functions L(·), K (·) are univariate continuous
and symmetric density functions with bounded derivative and bounded sup-
port satisfying that

∫
t2L(t)dt = 0,

∫
t2 K (t)dt = 0, and

∫ |t | j L(t)dt < ∞,∫ |t | j K (t)dt < ∞ for j = 1, 2, 3. Moreover, the second derivative of K (·) is
bounded on R1.

(A7) The distorting functionsφ(u),ψr (u)s have three bounded and continuous deriv-
atives and are not equal to zero on the support of u. Moreover, Eφ4(U ) < ∞
and Eψ2

r (U ) < ∞.
(A8) E Xr , r = 1, . . . , p, are bounded away from 0.

Condition (A1) is a mild smoothness condition on the involved functions. This
condition is needed for the higher-order Taylor expansion, and entails the root-n con-
sistency of β0 and θ0. Condition (A2) entails the density functions fZ (z), fZ τ θ (zτ θ)
and fU (u) positive, and guarantees the denominators involved in the weight functions
ωi j and ωθi j in Algorithms are not equal to 0, as long as n is large enough. Condition
(A3) is a mild smoothness condition on the function g(·), also used by Liang et al.
(2010) and Xia and Härdle (2006). Conditions (A4)–(A5) are essential for the asymp-
totic results of the estimators of β0 and θ0. Condition (A6) is a common assumption
for nonparametric kernel smoothing. Condition (A7) is the condition imposed on the
distorting functions. Analogous to condition (A1), the first statement of Condition
(A7) is related to smoothness of the φ(u) andψr (u)s. The second statement of Condi-
tion (A7) is a common condition on φ(u) andψr (u)s in the covariate-adjusted models
(Şentürk and Müller 2005; Şentürk and Müller 2006, 2009). In particular, this condi-
tion ensures the availability of variable selection of β0 by way of selecting nonzero
component of β0(u). The finiteness of Eφ4(U ) is used for asymptotic results of �θ0 .
Moreover, Eψ2

r (U ) < ∞ guarantees E
{
β0(U )β

τ
0(U )

}
< ∞. Condition (A8) is nec-

essary in the study of covariate-adjusted models. In order to estimate β0, E Xr is used
in the denominator of the proposed estimators in the population level; see (8). This
technical condition is also needed in the binning method (Şentürk and Müller 2005;
Şentürk and Müller 2006, 2009), and the direct plug-in estimation (Zhang et al. 2012;
Cui et al. 2009).
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A.2 Technical lemmas

Lemma 1 Let (S1, T1), . . . , (Sn, Tn) be i.i.d. random vectors, where Ti s are scalar
random variables and Si s are l-dimensional random vectors. Assume further that
E |T |r < ∞ and the sups

∫ |t |r f (s, t)dt < ∞, where f denote the joint density func-
tion of (S, T ). Let K o(·) be a bounded positive l-dimensional kernel function with
bounded support, satisfying Lipschitz condition. Then

sup
s∈D

∣∣∣∣
∣
n−1

n∑

i=1

{K o
h∗(Si − s)Ti − E[K o

h∗(Si − s)Ti ]}
∣∣∣∣
∣
= OP

(
{nhl∗/ log(n)}−1/2

)
,

provided that the bandwidth h∗ → 0 and n2ε−1hl∗ → ∞ for some ε < 1 − r−1.

Proof This follows a direct result of Mack and Silverman (1982).

��
We introduce the following notation: ζL = ∫

v2 L(v)dv, ρr = ∫
z2

r H(z1, . . . , zq)

dz1 . . . dzq for r = 1, . . . , q, κ = diag(ρ1, . . . , ρq). For j = 1, . . . , n, ξ(Z j ) =(
ξ1(Z j ), . . . , ξp(Z j )

)τ where ξr (·) = E(Xr |Z = ·) for r = 1, . . . , p, S(Z j ) =(
sl,t (Z j )

)
1≤l,t≤p with sl,t (·) = E(Xl Xt |Z = ·).

Moreover, let I (Z j ,U j ) = I { fZ (Z j ) fU (U j ) > c0c1}, I θ (Z j ,U j )= I { fZ τ θ (Zτj θ)

fU (U j ) > c0c1}, and I θ0(Z j ,U j )= I { fZ τ θ0(Z
τ
j θ0) fU (U j ) > c0c1}. Here I {·} is the

indicator function, fZ (·) is the marginal density of Z, fZ τ θ (·), fZ τ θ0(·) is the marginal
density function of Zτ θ , Zτ θ0, respectively. Let Ui j = Ui − U j , Zi j = Zi − Z j in
the following, and

ωi j = In(Z j ,U j )Hh1(Zi j )Lh2(Ui j )∑n
i=1 Hh1(Zi j )Lh2(Ui j )

, ωθi j = I θn (Z j ,U j )Kh(Zτi j )Kh(Ui j )
∑n

i=1 Kh(Zτi jθ)Kh(Ui j )
,

where In(Z j ,U j ) = I { 1
n

∑n
i=1 Hh1(Zi j )Lh2(Ui j ) > c0c1}, I θn (Z j ,U j ) =

I { 1
n

∑n
i=1 Kh(Zτi jθ)

Kh(Ui j ) > c0c1}. Analogous to ωθi j , we further define ωθ̂0
i j and ωθ0

i j by substituting θ

with θ̂0 and θ0.
Let δn = max{h4

1, h4
2} + log n/nhq

1h2, we have the following asymptotic results.

Lemma 2 Under Conditions (A1)–(A3) and (A6)–(A7), uniformly in j , we have

n∑

i=1

X̃ iωi j = ψ(U j )ξ(Z j )I (Z j ,U j )+ OP
(
δ

1/2
n

)
1p,

n∑

i=1

X̃ iUi jωi j = OP
(
h2

2 + h2δ
1/2
n

)
1p,

n∑

i=1

U 2
i jωi j = h2

2 I (Z j ,U j )
{
ζL + OP

(
δ

1/2
n

)}
,

n∑

i=1

Ui jωi j = OP
(
h2

2 + h2δ
1/2
n

)
,
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n∑

i=1

X̃ i X̃
τ

i ωi j = ψ(U j )S(Z j )ψ(U j )I (Z j ,U j )+ OP
(
δ

1/2
n

)
1p1τp,

n∑

i=1

Z⊗2
i j ωi j = h2

1 I (Z j ,U j )
{
κ + OP

(
δ

1/2
n

)
1q1τq

}
,

n∑

i=1

Ui j Zi jωi j = OP
(
h2

1h2
2 + h1h2δ

1/2
n

)
1q ,

n∑

i=1

Zi jU
2
i jωi j = OP

(
h2

1h2
2 + h1h2

2δ
1/2
n 1q

)
,

n∑

i=1

Zi j (Zτi jθ0)
2ωi j = OP

(
h4

1 + δ
1/2
n h3

1

)
1q ,

n∑

i=1

X̃ i Zτi jωi j = OP
(
h2

1 + h1δ
1/2
n

)
1p1τq ,

n∑

i=1

Zi j (Zτi jθ0)Ui jωi j = OP
(
h2

1h2
2 + h2

1h2δ
1/2
n

)
1q ,

n∑

i=1

Zi jωi j = OP
(
h2

1 + h1δ
1/2
n

)
1q ,

n∑

i=1

ωi j Zi j X̃
τ

i

{
(Ui )−(U j )

}

= OP
(
h2

1h2
2 + h1h2δ

1/2
n

)
1q .

Proof We only prove the last equation. The rest can be justified in a similar way and
thus we omit their proofs. Let Zsi j = Zsi − Zsj , s = 1, . . . , q. By the definition of
ωi j , we have that

n∑

i=1

ωi j Zsi j X̃ri
{
φ(Ui )/ψr (Ui )− φ(U j )/ψr (U j )

}

=
1
n

∑n
i=1 Hh1(Zi j )Lh2(Ui j )Zsi j Xri

{
φ(Ui )− φ(U j )

ψr (U j )
ψr (Ui )

}
In(Z j ,U j )

1
n

∑n
i=1 Hh1(Zi j )Lh2(Ui j )

def= Vn1 In(Z j ,U j )

Vn2
.

Step 1. Consider the denominator Vn2. By directly using Lemma 1, we have

sup
(z,u)∈Z×U

∣∣∣∣∣
n−1

n∑

i=1

[Hh1(Zi − z)Lh2(Ui − u)− E{Hh1(Zi − z)Lh2(Ui − u)}]
∣∣∣∣∣

= OP
(√

log n/nhq
1h2

)
, (19)
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Using the technique of change-of-variable and Taylor expansion, we have

E[Hh1(Zi − z)Lh2(Ui − u)] = fZ (z) fU (u)+ O(h2
1 + h2

2). (20)

Together with (19) and (20), it follows that Vn2 = fZ (Z j ) fU (U j )+ OP (δ
1/2
n ).

Step 2. Consider Vn1. Similar to the analysis for Vn2, by using Lemma 1, we only
need to calculate the following mean function. Firstly, note that

∫
H(ω)ωsdω = 0. It

follows that

h−2
1 E

{
Hh1(Z−z)(Zs −zs)ξr (z)

}=h−1
1

∫
H(ω)ωs

{
ξr (z)+h1ω

τ ∂ξr (z)/∂z+O(h2
1)
}

×{
fZ (z)+ h1ω

τ ∂ fZ (z)/∂z + O(h2
1)
}
dω = O(1 + h2

1). (21)

Secondly, similar to (21), by the Taylor expansion of φ(u + h2t), ψr (u + h2t) and∫
L(t)tdt = 0, we have E

[
Lh2(U − u) {φ(U )− φ(u)ψr (U )/ψr (u)}

] = O(h2
2 +

h4
2). Thus, U⊥⊥Z entails that

E
[
(nh1h2)

−1
n∑

i=1

Hh1(Zi − z)Lh2(Ui − u)(Zsi − zs)Xri {φ(Ui )

− φ(u)ψr (Ui )/ψr (u)}
]

= O(h1h2 + h3
1h2 + h1h3

2). (22)

Together with Lemma 1 and (22), we have Vn1 = OP

(
h2

1h2
2 + h4

1h2
2 + h2

1h4
2 +

h1h2

√
log n/nhq

1h2

)
. From (20) and Lemma 1, as h1→0, h2 → 0,

nhq
1 h2

log n → ∞, we

have 1
n

∑n
i=1 Hh1(Zi j )Lh2(Ui j )

P−→ fZ (Z j ) fU (U j ), so In(Z j ,U j )
P−→ I (Z j ,U j )

and Vn2 = fZ (Z j ) fU (U j )+ OP (δ
1/2
n ). As a consequence, together with the asymp-

totic results of Vn1 and Vn2, we complete the proof.

Let δθ = ‖θ − θ0‖ and δ′n = h4 + log n
nh2 . Denote ζK = ∫

t2 K (t)dt .

Lemma 3 Under Conditions (A1)–(A3) and (A6)–(A7), uniformly in j , we have

n∑

i=1

U 2
i jω

θ
i j = h2{ζK + OP (δθ + δ

′1/2
n )

}
I θ0(Z j ,U j ),

n∑

i=1

Ui jω
θ
i j = OP

(
h2 + h2δθ + hδ

′1/2
n

)
,

n∑

i=1

X̃ iω
θ
i j = ψ(U j )ξθ0(Z

τ
j θ0)I

θ0(Z j ,U j )+ OP (δθ + δ
′1/2
n ),

n∑

i=1

X̃ iUi jω
θ
i j = OP

(
h2+h2δθ+hδ

′1/2
n

)
,

n∑

i=1

X̃ i Zτi jθω
θ
i j = OP

(
h2+h2δθ+hδ

′1/2
n

)
,
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n∑

i=1

X̃ i X̃
τ

i ω
θ
i j = ψ(U j )Sθ0(Z

τ
j θ0)ψ(U j )I

θ0(Z j ,U j )+ OP (δθ + δ
′1/2
n ),

n∑

i=1

Zτi jθω
θ
i j = OP

(
h2+h2δθ+hδ

′1/2
n

)
,

n∑

i=1

Ui j Zτi jθω
θ
i j = OP

(
h4+h4δθ+h2δ

′1/2
n

)
,

n∑

i=1

θ τ Z⊗2
i j θωθi j = h2{ζK + OP (δθ + δ

′1/2
n )

}
I θ0(Z j ,U j ).

Proof The proof is similar to those of Lemma 2. We omit the details. ��

A.3 Proof of Theorem 1

Denoteϒ j =
(
â j , b̂τj , d̂2 j , μ̂

τ
j

)τ−
{
φ(U j )g(Zτj θ0),β0(U j )

τ , φ′(U j )g(Zτj θ0), φ(U j )

g′(Zτj θ0)θ
τ
0

}τ
and π = (0q×(p+2), Iq). We only need to show that πϒ j = oP (1),

j = 1, . . . , n. Let

�Ỹ i j = X̃
τ

i

{
β̃0(Ui )− β̃0(U j )

} + {
φ(Ui )g(Zτi θ0)− φ(U j )g(Zτj θ0)

−φ′(U j )g(Zτj θ0)Ui j − φ(U j )g
′(Zτj θ0)Zτi jθ0

} + φ(Ui )εi

= �Ỹ
(1)
i j +�Ỹ

(2)
i j +�Ỹ

(3)
i j .

In fact, we have

ϒ j =
{

n∑

i=1

M i j Mτ
i jωi j

}−1 n∑

i=1

M i j
{
�Ỹ

(1)
i j +�Ỹ

(2)
i j +�Ỹ

(3)
i j

}
ωi j

def= ϒ
(1)
j

+ϒ(2)j + ϒ
(3)
j .

In the following, we show that the three terms πϒ
(1)
j , πϒ

(2)
j and πϒ

(3)
j are oP (1).

Step 1.1 Investigate
∑n

i=1 M i j Mτ
i jωi j . Let �n = diag

(
Ip+1, 1/h2, 1/h1 × Iq

)
.

Lemma 2 entails

n∑

i=1

{
�n M i j Mτ

i j�n
}
ωi j = ℵ j I (Z j ,U j )+ OP (δ

1/2
n )1p+q+21τp+q+2, where,

ℵ j = diag(� j , ζL , κ) with � j =
(

1 ξτ (Z j )ψ(U j )

ψ(U j )ξ(Z j ) ψ(U j )S(Z j )ψ(U j )

)
. Thus, we have

n∑

i=1

M i j Mτ
i jωi j = �−1

n

{ℵ j I (Z j ,U j )+ OP (δ
1/2
n )1p+q+21τp+q+2

}
�−1

n . (23)
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Step 1.2 Consider ϒ(1)j . Using (23), Lemma 2 and the definition of π , we can have

πϒ
(1)
j = h−1

1 κ−1 I (Z j ,U j )

n∑

i=1

ωi j (Zi j/h1)[X̃
τ

i {(Ui )−(U j )}β0]

×
(

1 + OP

(
δ

1/2
n

))

= OP

(
h2

2 + δ
1/2
n h2/h1

)
1q . (24)

Step 1.3 Consider ϒ(2)j . By using Taylor expansion and Lemma 2, we obtain that

πϒ
(2)
j = I (Z j ,U j )

h1κ

n∑

i=1

ωi j (Zi j/h1)
[1

2
φ(U j )g

′′(Zτ θ0){Zτi jθ0}2

+φ′(U j )g
′(Zτ θ0)Ui j Zτi jθ0 + 1

2
φ′′(U j )g(Zτ θ0)U

2
i j

]

×
(

1 + OP

(
δ

1/2
n

))
= OP

(
h2

1 + h2
2 + δ

1/2
n h2

2/h1

)
1q . (25)

Step 1.4 Consider ϒ(3)j . Note that E
{ 1

n

∑n
i=1 Hh1(Zi j )Lh2(Ui j )Zi jφ(Ui )εi

} = 0,

and, for s = 1, . . . , q, E
[{

n−1 ∑n
i=1 Hh1(Zi j )Lh2(Ui j )Zsi jφ(Ui )εi

}2∣∣Z j
] = OP

(√
h2

1/nhq
1h2

)
. Thus, we have

πϒ
(3)
j = I (Z j ,U j )

h1κ

n∑

i=1

ωi j (Zi j/h1)φ(Ui )εi (1 + OP (δ
1/2
n )) = OP

(√
1/nhq+2

1 h2
)
.

(26)

Thus, from (24), (25) and (26), if h1 → 0, h2 → 0, h3
2/h1 → 0 and nhq+2

1 h2/ log n →
∞, then πϒ

(1)
j , πϒ

(2)
j and πϒ

(3)
j are all oP (1). As a consequence, we have πϒ j =

oP (1) and then μ̂ j − φ(U j )g′(Zτj θ0)θ0
P−→ 0. Denote cn0 = 1

n

∑n
j=1

(
φ(U j )g′(Zτj

θ0)
)2. We have

n−1V̂ n V̂
τ

n − cn0θ0θ
τ
0

P−→ 0q×q . (27)

As the first eigenvector of θ0θ
τ
0 corresponding to its largest eigenvalue is θ0 or −θ0,

consequently (27) and the perturbation theory (Kato 1983) yield θ̂0,ini
P−→ θ0. We

complete the proof. ��

A.4 Proof of Theorem 2

We split the proof into several steps to enhance the readability. Write

ϒ j,θ̂0

def= (
â j,θ̂0

, b̂τ
j,θ̂0
, d̂1 j,θ̂0

, d̂2 j,θ̂0

)τ − {
φ(U j )g(Zτj θ0), β̃0(U j )

τ ,

φ(U j )g
′(Zτj θ0), φ

′(U j )g(Zτj θ0)
}τ
.
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Similar to handling ϒ j , we decompose ϒ j,θ̂0
as follows

ϒ j,θ̂0
=

(
n∑

i=1

M i j,θ̂0
Mτ

i j,θ̂0
ω
θ̂0
i j

)−1 n∑

i=1

M i j,θ̂0

{
�Ỹ

(1)
i j +�Ỹ

(2)
i j,θ̂0

+�Ỹ
(3)
i j

}
ω
θ̂0
i j

def= ϒ
(1)
j,θ̂0

+ϒ
(2)
j,θ̂0

+ϒ
(3)
j,θ̂0
,

where �Ỹ
(2)
i j,θ̂0

= φ(Ui )g(Zτi θ0)− φ(U j )g(Zτj θ0)− φ′(U j )g(Zτj θ0)Ui j − φ(U j )g′

(Zτj θ0)Zτi j θ̂0. Let π∗ = (0p×1, Ip, 0p×1, 0p×1), thus b̂ j,θ̂0
− β̃0(U j ) = π∗ϒ j,θ̂0

=
π∗ϒ(1)

j,θ̂0
+ π∗ϒ(2)

j,θ̂0
+ π∗ϒ(3)

j,θ̂0
. Let er be a p × 1 vector with the r th position 1 and 0

elsewhere, r = 1, . . . , p. We can further have

b̂ j,θ̂0,r
− β̃0,r (U j ) = eτr {b̂ j,θ̂0

− β̃0(U j )} = eτr
(
π∗ϒ(1)

j,θ̂0
+ π∗ϒ(2)

j,θ̂0
+ π∗ϒ(3)

j,θ̂0

)
.

(28)

Let ¯̃Xr = n−1 ∑n
j=1 X̃ j,r . Recall that β̃0,r (U j ) = β0,r

φ(U j )

ψr (U j )
, X̃ j,r = X j,rψr (U j )

and β̂0,r = n−1∑n
j=1 X̃ j,r b̂ j,θ̂0,r

/
¯̃Xr . So that,

β̂0,r − β0,r = n−1
n∑

j=1

X̃ j,r
{
β̃0,r (U j )− β0,r

}
/

¯̃Xr

+n−1
n∑

j=1

X̃ j,r
{
b̂ j,θ̂0,r

− β̃0,r (U j )
}
/

¯̃Xr

def= A(1)β0
+ A(2)β0

.

Step 2.1 Consider A(2)β0
. Using expression (28), we re-write A(2)β0

as follows.

A(2)β0
= eτr

1

n

n∑

j=1

X̃ j,rπ
∗ϒ(1)

j,θ̂0
/

¯̃Xr + eτr
1

n

n∑

j=1

X̃ j,rπ
∗ϒ(2)

j,θ̂0
/

¯̃Xr

+eτr
1

n

n∑

j=1

X̃ jrπ
∗ϒ(3)

j,θ̂0
/

¯̃Xr

def= A(2)β0
[1] + A(2)β0

[2] + A(2)β0
[3].

Let �n,h = diag
(
Ip+1, 1/h, 1/h

)
. By using Lemma 3, we obtain that

∑n
i=1

(
�n,h

M i j,θ̂0
Mτ

i j,θ̂0
�n,h

)
ω
θ̂0
i j = ℵ j,θ0 I θ0(Z j ,U j ) + OP

(
δ
θ̂0

+ δ
′1/2
n

)
1p+31τp+3, where

ℵ j,θ0 = diag(� j,θ0 , ζK I2) with
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� j,θ0 =
(

1 ξτθ0
(Zτj θ0)ψ(U j )

ψ(U j )ξθ0 (Z
τ
j θ0) ψ(U j )Sθ0 (Z

τ
j θ0)ψ(U j )

)
.

Thus, we have
∑n

i=1 M i j,θ̂0
Mτ

i j,θ̂0
ω
θ̂0
i j =�−1

n,h

{
ℵ j,θ0 I θ0(Z j ,U j )+OP (δθ̂0

+δ′1/2
n )1p+3

1τp+3

}
�−1

n,h .

Step 2.1.1 Consider A(2)β0
[1]. Recalling the definition of π∗, as h → 0, nh2 → ∞ and

θ̂0
P−→ θ0, we have OP

(
δ
θ̂0

+δ′1/2
n

)=oP (1), and A(2)β0
[1]=eτr

1
n

∑n
j=1 X̃ j,r (0p×1, Ip)

{
�−1

j,θ0
+ oP (1)

}∑n
i=1(1, X̃

τ

i )
τ
[
X̃
τ

i

{
β̃0(Ui )− β̃0(U j )

}]
ω
θ̂0
i j /

¯̃Xr . Note that

�−1
j,θ0

=
(

1+ξτθ0
(Zτj θ0)W−1

θ0
(Zτj θ0)ξθ0(Z

τ
j θ0), −ξτθ0

(Zτj θ0)W−1
θ0
(Zτj θ0)ψ(U j )

−1

−ψ(U j )
−1W−1

θ0
(Zτj θ0)ξθ0(Z

τ
j θ0), ψ(U j )

−1W−1
θ0
(Zτj θ0)ψ(U j )

−1

)

.

(29)

From (29), we have

A(2)β0
[1] = eτr

⎡

⎣ 1

n

n∑

j=1

n∑

i=1

X̃ j,rψ(U j )
−1W−1

θ0
(Zτj θ0)ψ(U j )

−1 X̃ i X̃
τ

i

{
β̃0(Ui )− β̃0(U j )

}
ω
θ̂0
i j

− 1

n

n∑

j=1

n∑

i=1

X̃ j,rψ(U j )
−1W−1

θ0
(Zτj θ0)ξθ0 (Z

τ
j θ0)X̃

τ

i

{
β̃0(Ui )− β̃0(U j )

}
ω
θ̂0
i j

⎤

⎦
/

¯̃Xr

def= eτr (B
[1]
β0

− B[2]
β0
)/

¯̃Xr .

Similar to Vn2 in Lemma 2, I θn (Z j ,U j )
P−→ I θ0(Z j ,U j ). For eτr B[2]

β0
, we use projec-

tion of U-statistics (See Serfling 1980, Section 5.3.1). For any θ ∈ {
θ : ‖θ − θ0‖2 ≤

c0n−1/2
}
,

eτr
n

n∑

j=1

n∑

i=1

X̃ j,rψ(U j )
−1W−1

θ (Zτj θ)ξθ (Z
τ
j θ)X̃

τ

i

{
β̃0(Ui )− β̃0(U j )

}
ωθi j

=
n∑

i=1

eτr
2n

W−1
θ (Zτi θ)ξθ (Zτi θ)

{
X i,rξ

τ
θ (Z

τ
i θ)− ξθ,r (Zτi θ)Xτ

i

}
ψ(Ui )

′(Ui )β0

×{ f ′
U (Ui )/ fU (Ui )}h2 I θ0(Z j ,U j )+ OP

(
h3) + oP

(
n−1/2)

= OP
(
n−1/2h2 + h3), (30)

where ′(u) = diag
{(

φ(u)
ψ1(u)

)′
, . . . ,

(
φ(u)
ψ1(u)

)′}
. The fact that E

{
X i,r ξ

τ
θ (Z

τ
i θ) − ξθ,r

(Zτi θ)Xτ
i |Zτi θ

} = 0 was used in the last step above. If h → 0 and nh6 →
0, the right-hand side of (30) is oP

(
n−1/2

)
. By using the Taylor expansion for

W−1
θ0
(Zτj θ0)ξθ0(Z

τ
j θ0) around θ̂0, together with (30), we have B[2]

β0
= oP (n−1/2).
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Using an analysis similar to B[2]
β0

, we can show that B[1]
β0

= oP (n−1/2). Using the fact

that ¯̃Xr = 1
n

∑n
j=1 X̃ j,r = E Xr , a.s., we obtain that A(2)β0

[1] = oP (n−1/2).

Step 2.1.2 Consider A(2)β0
[2] and A(2)β0

[3]. Similar to A(2)β0
[1], we can have A(2)β0

[2] =
oP (n−1/2).

Together with ¯̃Xr −E Xr = OP (n−1/2), A(2)β0
[1]=oP (n−1/2), A(2)β0

[2]=oP (n−1/2),

and using the projection of U-statistics to A(2)β0
[3], we can have

A(2)β0
= eτr

nE Xr

n∑

j=1

φ(U j )ξθ0,r (Z
τ
j θ0)W−1

θ0
(Zτj θ0)

{
X j − ξθ0(Z

τ
j θ0)

}
I θ0(Z j ,U j )εi

+oP (n
−1/2). (31)

Step 2.2 From expression A(1)β0
and the asymptotic expression (31), we have

β̂0,r − β0,r = 1

nE Xr

n∑

j=1

X̃ j,r
{
β̃0,r (U j )− β0,r

}

+ eτr
nE Xr

n∑

j=1

φ(U j )ξθ0,r (Z
τ
j θ0)W−1

θ0
(Zτj θ0)

{
X j − ξθ0(Z

τ
j θ0)

}
I θ0(Z j ,U j )εi

+oP (n
−1/2). (32)

Write Fi,θ0(Z
τ
i θ0) = diag

(
ξθ0,1(Z

τ
i θ0)/E X1, . . . , ξθ0,p(Z

τ
i θ0)/E X p

)
. It follows

from (32) that

√
n
(
β̂0 − β0

) = 1√
n

n∑

j=1

[
Lβ0

{
φ(U j )Ip − ψ(U j )

}
X j + φ(U j )Fj,θ0 (Z

τ
j θ0)W−1

θ0
(Zτj θ0)

×{
X j − ξθ0 (Z

τ
j θ0)

}
I θ0 (Z j ,U j )ε j

]
+ oP (1)

L−→ N (0p, �β0 ),

where Lβ0 is defined in Theorem 2. We complete the proof. ��

A.5 Proof of Theorem 3

Let e1 = (
1, 01×(p+2)

)τ , e2 = (
01×(p+1), 1, 0

)τ and e3 = (
01×(p+2), 1

)τ , and

let π∗∗ = (
e1, e2, e3

)τ . We have π∗∗ϒ j,θ̂0
= {

â j,θ̂0
− φ(U j )g(Zτj θ0), d̂1 j,θ̂0

−
φ(U j )g′(Zτj θ0), d̂2 j,θ̂0

− φ′(U j )g(Zτj θ0)
}τ
, and

â j,θ̂0
− φ(U j )g(Zτj θ0) = {

1 + ξτθ0
(Zτj θ0)W−1

θ0
(Zτj θ0)ξθ0(Z

τ
j θ0)

}

×
n∑

i=1

{
�Ỹ

(1)
i j +�Ỹ

(2)
i j,θ̂0

+�Ỹ
(3)
i j

}
ω
θ̂0
i j , (33)
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d̂1 j,θ̂0
− φ(U j )g

′(Zτj θ0) = ζ−1
K

n∑

i=1

(Zτi j θ̂0/h2)
{
�Ỹ

(1)
i j +�Ỹ

(2)
i j,θ̂0

+�Ỹ
(3)
i j

}
ω
θ̂0
i j ,

(34)

d̂2 j,θ̂0
− φ′(U j )g(Zτj θ0) = ζ−1

K

n∑

i=1

(Ui j/h2)
{
�Ỹ

(1)
i j +�Ỹ

(2)
i j,θ̂0

+�Ỹ
(3)
i j

}
ω
θ̂0
i j .

(35)

Thus, letting Ỹ ∗∗
i j = Ỹi − â j,θ̂0

− X̃
τ

i b̂ j,θ̂0
− d̂2 j,θ̂0

Ui j , we have

n−1
n∑

i=1

n∑

j=1

d̂1 j,θ̂0
Zi j Ỹ

∗∗
i j ω

θ̂0
i j = n−1

n∑

i=1

n∑

j=1

d̂2
1 j,θ̂0

Z⊗2
i j θ0 + Dn1 + Dn2, (36)

where Dn1 = 1
n

∑n
j=1

∑n
i=1 d̂1 j,θ̂0

Zi jφ(Ui )εiω
θ̂0
i j and

Dn2 = n−1
n∑

j=1

n∑

i=1

[{
φ(U j )g(Zτj θ0)− â j,θ̂0

} + X̃
τ

i

{
β̃0(Ui )− β̃0(U j )

}

+X̃
τ

i

{
β̃0(U j )− b̂ j,θ̂0

} + {
φ(Ui )g(Zτi θ0)−φ(U j )g(Zτj θ0)

− d̂2 j,θ̂0
Ui j − d̂1 j,θ̂0

Zτi jθ0
}]

d̂1 j,θ̂0
Zi jω

θ̂0
i j

def=
4∑

t=1

Dn2[t].

From (36), we have
√

n
(
θ̂0−θ0

)
= √

n
{

1
n

∑n
i=1

∑n
j=1 d̂2

1 j,θ̂0
Z⊗2

i j ω
θ̂0
i j

}−
(Dn1+Dn2).

Step 3.1 Investigate 1
n

∑n
i=1

∑n
j=1 d̂2

1 j,θ̂0
Z⊗2

i j ω
θ̂0
i j . First, we derive the order of d̂1 j,θ̂0

−
φ(U j )g′(Zτj θ0). From (34), similar to (25), we use the results of Lemma 3 and obtain
that

ζ−1
n∑

i=1

(Zτi j θ̂0/h2)
{
�Ỹ

(1)
i j +�Ỹ

(2)
i j

}
ω
θ̂0
i j = OP

(
h2δ

θ̂0
+ δ

′1/2
n

)
. (37)

E
[
h−1 K ′(Zτi jθ0/h

)
Kh(Ui j )Zi j

∣
∣Zτj θ0,Ui

] = {
fZ τ θ0(Z

τ
j θ0) fU (U j )ς

′
θ0
(Zτj θ0)

∫
t K ′

(t)dt
}
h + OP(h3), then, Lemma 1 and the Taylor expansion of Kh

(
Zτi j θ̂0

)
at θ0 entail

that

n−1
n∑

i=1

Kh
(
Zτi j θ̂0

)
Kh(Ui j ) = fZ τ θ0(Z

τ
j θ0) fU (U j )

+ (nh)−1
n∑

i=1

K ′
h

(
Zτi jθ0

)
Kh(Ui j )(Zτi jδθ̂0

)

+ OP
(
δ

′1/2
n

)= fZ τ θ0(Z
τ
j θ0) fU (U j )+OP

(
δ

′1/2
n +δ

θ̂0
). (38)
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Moreover, similar to the analysis of Theorem 3 (Fan and Gijbels 1996, pp. 101–103),
we have (nh2)−1 ∑n

i=1 Zτi jθ0φ(Ui )εi Kh
(
Zτi jθ0

)
Kh(Ui j ) = OP (

√
1/nh4), and we

can also have that (nh2)−1 ∑n
i=1 Zi jφ(Ui )εi Kh

(
Zτi jθ0

)
Kh(Ui j ) = OP (

√
1/nh4).

Together with (38), we can have

ζ−1
K

n∑

i=1

(Zi j θ̂0/h2)�Ỹ
(3)
i j ω

θ̂0
i j = OP (

√
1/nh4) = OP

(
δ

′1/2
n /h

)
. (39)

(37) and (39) indicate that d̂1 j,θ̂0
− φ(U j )g′(Zτj θ0) = OP

(
δ
θ̂0

+ δ
′1/2
n /h

)
. As

a consequence, the condition h → 0, nh4/ log n → ∞ and θ̂0
P−→ θ0

ensure that d̂1 j,θ̂0
− φ(U j )g′(Zτj θ0) = oP (1) for j = 1, . . . , n. By using

the projection of U-statistics, we have 1
n

∑n
i=1

∑n
j=1

{
φ(U j )g′(Zτj θ)

}2 Z⊗2
i j ω

θ
i j =

2
n

∑n
j=1

{
φ(U j )g′(Zτj θ)

}2Vθ (Zτj θ)I θn (Z j ,U j ) + oP (1). Together with (38), we

obtain I θ̂n (Z j ,U j )
P−→ I θ0(Z j ,U j ) and

n−1
n∑

i=1

n∑

j=1

d̂2
1 j,θ̂0

Z⊗2
i j ω

θ̂0
i j

P−→2E
[
φ(U )2

{
g′(Zτ θ0)

}2V(Zτ θ0)Iθ0(Z,U )
] def= Dθ0 .

(40)

Step 3.2 Consider Dn1. Similar to the analysis of (40), the projection of U-statistics
and Taylor expansion at θ0 entail that

Dn1 = n−1
n∑

j=1

I θ0(Z j ,U j )g
′(Zτj θ0)φ

2(U j )
{
ςθ0(Z

τ
j θ0)− Z j

}
ε j + oP (n

−1/2).

Step 3.3 Consider Dn2 in several sub-steps. In the following, we show that Dn2[3]
asymptotically follows a normal distribution, and further show that Dn2[1], Dn2[2]
and Dn2[4] are all oP (n−1/2).

Step 3.3.1 Deal with Dn2[3]. Using d̂1 j,θ̂0
− φ(U j )g′(Zτj θ0) = OP

(
δ
θ̂0

+ δ
′1/2
n

)
in

step 3.1, we have

Dn2[3] = n−1
n∑

j=1

n∑

i=1

φ(U j )g
′(Zτj θ0)Zi j X̃

τ

i

{
β̃0(U j )− b̂ j,θ̂0

}
ω
θ̂0
i j + DR

n2[3]

def= DM
n2[3] + DR

n2[3].

From Lemma 3, we know that
∑n

i=1 Zi j X̃ iω
θ
i j = {

Tθ (Zτj θ)− Z jξ
τ
θ (Z

τ
j θ)

}
ψ(U j )I θ

(Z j ,U j )+ OP (δ
′1/2
n ).Moreover, using arguments similar to those for A(2)β0

[1] in step
2.1.1, we have
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n−1
n∑

j=1

I θ0(Z j ,U j )φ(U j )g
′(Zτj θ0)

{
Tθ0(Z

τ
j θ0)− Z jξ

τ
θ0
(Zτj θ0)

}
ψ(U j )

×{
π∗ϒ(1)

j,θ̂0
+ π∗ϒ(2)

j,θ̂0

} × (
Iq +OP (δθ̂0

)+ OP (δ
′1/2
n )

)=oP (n
−1/2). (41)

Thus, together with (28) and (41), similar to A(2)β0
[3] in step 2.1.3, we can obtain that

DM
n2[3] = n−1

n∑

j=1

I θ0(Z j ,U j )φ
2(U j )g

′(Zτj θ0)
{
Tθ0(Z

τ
j θ)− ςθ0(Z

τ
j θ0)ξ

τ
θ (Z

τ
j θ)

}

×W−1
θ0
(Zτj θ0)

{
X j − ξθ0(Z

τ
j θ0)

}
ε j + oP (n

−1/2). (42)

Furthermore, analogous to (41), we can have DR
n2[3] = oP (n−1/2).

Step 3.3.2 Deal with Dn2[1]. Note that Dn2[1] = 1
n

∑n
j=1 d̂1 j,θ̂0

{
φ(U j )g(Zτj θ0) −

â j,θ̂0

}∑n
i=1 Zi jω

θ̂0
i j , and

∑n
i=1(Zi − Z j )ω

θ̂0
i j = (

ςθ0(Z
τ
j θ0) − Z j

)
I θ0(Z j ,U j ) +

OP
(
δ
θ̂0

+ δ
′1/2
n

)
and d̂1 j,θ̂0

− φ(U j )g′(Zτj θ0) = OP
(
δ
θ̂0

+ δ
′1/2
n /h

)
. By using (33),

we can have

Dn2[1] = n−1
n∑

j=1

φ(U j )g
′(Zτj θ0){ςθ0(Z

τ
j θ0)− Z j }

×{
1 + ξτθ0

(Zτj θ0)W−1
θ0
(Zτj θ0)ξθ0(Z

τ
j θ0)

}

×
n∑

i=1

�Ỹ
(3)
i j ω

θ̂0
i j × (

1 + OP
(
δ
θ̂0

+ δ
′1/2
n /h

))
.

By Lemma 1, similar to (38), we can have
∑n

i=1�Ỹ
(3)
i j ω

θ̂0
i j = OP (δ

′1/2
n + δ

θ̂0
).

Together with E[{ςθ0(Z
τ
j θ0)−Z j }I θ0(Z j ,U j )] = 0, we have Dn2[1] = OP (n−1/2)×

OP (δ
′1/2
n + δ

θ̂0
) = oP (n−1/2).

Step 3.3.3 Deal with Dn2[2]. Similar to Dn2[1] in step 3.3.2 and B[2]
β0

in step 2.1.1,
we can have

Dn2[2] = n−1
n∑

j=1

n∑

i=1

φ(U j )g
′(Zτj θ0)Zi j X̃

τ

i

{
β̃0(Ui )− β̃0(U j )

}
ω
θ̂0
i j

×(
1 + OP

(
δ
θ̂0

+ δ
′1/2
n /h

))

= OP (h
3 + n−1/2)× (

1 + OP
(
δ
θ̂0

+ δ
′1/2
n /h

))
. (43)

Thus, from (43), as nh6 → 0, we have Dn2[2] = oP (n−1/2).

Step 3.4 Show that Dn2[4] = oP (n−1/2). Note that

{
φ(Ui )g(Zτi θ0)−φ(U j )g(Zτj θ0)

}−d̂2 j,θ̂0
Ui j −d̂1 j,θ̂0

Zτi jθ0
def= Ji j,1 − Ji j,2 − Ji j,3.

123



264 J. Zhang et al.

Thus, Dn2[4] = 1
n

∑n
j=1

∑n
i=1 d̂1 j,θ̂0

Zi j
(
Ji j,1 − Ji j,2 − Ji j,3

)
ω
θ̂0
i j . Similar to (43), as

nh6 → 0, we have n−1 ∑n
j=1

∑n
i=1 d̂1 j,θ̂0

Zi j Ji j,1ω
θ̂0
i j = oP (n−1/2). We next consider

1
n

∑n
j=1

∑n
i=1 d̂1 j,θ̂0

Zi j Ji j,2ω
θ̂0
i j . Similar to (30), we have n−1 ∑n

j=1
∑n

i=1 d̂1 j,θ̂0
(Zi−

Z j )Ji j,2ω
θ̂0
i j = oP (n−1/2). Moreover, we can also obtain n−1 ∑n

j=1
∑n

i=1 d̂1 j,θ̂0
Zi j

Ji j,3ω
θ̂0
i j = oP (n−1/2). Thus, we obtain that Dn2[4] = oP (n−1/2).

A combination of the results, Dn2[1]=oP (n−1/2) in step 3.3.2, Dn2[2]=oP (n−1/2)

in step 3.3.3, Dn2[4] = oP (n−1/2) in step 3.3.4, and (42) of Dn2[3] in step 3.3.1, indi-
cates that

Dn2 = n−1
n∑

j=1

I θ0(Z j ,U j )φ
2(U j )g

′(Zτj θ0)
{
Tθ0(Z

τ
j θ0)− ςθ0(Z

τ
j θ0)ξ

τ
θ0
(Zτj θ0)

}

×W−1
θ0
(Zτj θ0)

{
X j − ξθ0(Z

τ
j θ0)

}
ε j + oP (n

−1/2). (44)

From the asymptotic results of step 3.1, Dn1 in step 3.2 and Dn2 in step 3.3, we have

√
n
(
θ̂0 − θ0

)
= D−

θ0

1√
n

n∑

j=1

I θ0(Z j ,U j )φ
2(U j )g

′(Zτj θ0)
[(
ςθ0(Z

τ
j θ0)− Z j

)

+
{
Tθ0(Z

τ
j θ0)− ςθ0(Z

τ
j θ0)ξ

τ
θ0
(Zτj θ0)

}
W−1
θ0
(Zτj θ0)

×
{

X i − ξθ0(Z
τ
j θ0)

}]
ε j + oP (n

−1/2)
L−→ N

(
0q×1, �θ0

)
.

Theorem holds as claimed. ��

A.6 Proof of Theorem 4

Step 4.1 To prove the theorem, we first show 1
n

∑n
j=1 b̂⊗2

j,θ̂0
− Eβ0(U )

⊗2 =
OP (n−1/2).

n−1
n∑

j=1

b̂⊗2
j,θ̂0

− Eβ0(U )
⊗2 = n−1

n∑

j=1

{
b̂ j,θ̂0

− β0(U j )
}
βτ0(U j )

+n−1
n∑

j=1

β0(U j )
{
b̂ j,θ̂0

− β0(U j )
}τ

+
⎧
⎨

⎩
n−1

n∑

j=1

β0(U j )
⊗2 − Eβ0(U )

⊗2

⎫
⎬

⎭

+n−1
n∑

j=1

{
b̂ j,θ̂0

− β0(U j )
}⊗2

def= Mn1 + Mn2 + Mn3 + Mn4.
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Similar to A(2)β0
in step 2.1, we can show that Mn1 = OP (n−1/2), Mn2 = OP (n−1/2).

Furthermore, the elements of Mn3 are i.i.d random variables. The weak law of large
numbers means Mn3 = OP (n−1/2). In a similar way to Dn2 in step 3.3, we can show
Mn4 = oP (n−1/2). Thus, 1

n

∑n
j=1 b̂⊗2

j,θ̂0
− Eβ0(U )

⊗2 = OP (n−1/2).

Step 4.2 Without loss of generality, we assume that the first p0 predictors
{X1, X2, . . . , X p0} are relevant. In other words,

{
β0,1,β0,2, . . . ,β0,p0

}
are nonzero.

We further assume that all the elements of the first principal of Eβ0(U )
⊗2 are non-

zero. In such a setting, we first show that there exists an r > p0, such that η̆n,r = 0.
Suppose that η̆n,r are nonzero for r > p0, then, by the proof of Theorem 2 in Chen
et al. (2010), η̆n satisfies the following equation:

2Nn

⎧
⎨

⎩
n−1

n∑

j=1

b̂⊗2
j,θ̂0

⎫
⎬

⎭
η̆n = Nn�n, (45)

where Nn = Ip − η̆n η̆
τ
n and �n = (

α1sign(η̆n,1), α2sign(η̆n,2), . . . , αpsign(η̆n,p)
)τ .

Note that η̆n is the eigenvector of η̆n η̆
τ
n corresponding to its eigenvalue 1. Let

(l1, l2, . . . , l p−1) be the eigenvectors of η̆n η̆
τ
n corresponding to its eigenvalues 0.

Thus, (η̆n, l1, . . . , l p−1) is an independent basis of the space R p. Using this inde-

pendent basis, there exists two sequences of constants {ar }p−1
r=0 and {a′

r }p−1
r=0 such that

{ 1
n

∑n
j=1 b̂⊗2

j,θ̂0

}
η̆n = a0η̆n + ∑p−1

r=1 ar lr and �n = a′
0η̆n + ∑p−1

r=1 a′
r lr . Combining

them with (45), we have 2
{

n−1 ∑n
j=1 b̂⊗2

j,θ̂0

}
η̆n − 2a0η̆n = �n − a′

0η̆n, from which

and the expression of �n ,

η̆τn�n =
p0∑

r=1

αr |η̆n,r |+
p∑

r=p0+1

αr |η̆n,r |=2η̆τn

⎧
⎨

⎩
n−1

n∑

j=1

b̂⊗2
j,θ̂0

⎫
⎬

⎭
η̆n −(2a0−a′

0). (46)

Letλmax

(
1
n

∑n
j=1 b̂⊗2

j,θ̂0

)
,λmax

(
Eβ0(U )

⊗2
)

be the largest eigenvalues of 1
n

∑n
j=1 b̂⊗2

j,θ̂0

and Eβ0(U )
⊗2, respectively. From the result of step 4.1, 1

n

∑n
j=1 b̂⊗2

j,θ̂0
−Eβ0(U )

⊗2 =
OP (n−1/2), which means

∣∣∣∣
∣∣
λmax

⎛

⎝n−1
n∑

j=1

b̂⊗2
j,θ̂0

⎞

⎠ − λmax
(
Eβ0(U )

⊗2)
∣∣∣∣
∣∣
= OP (n

−1/2). (47)

Thus, (47) entails that η̆τn
{

1
n

∑n
j=1 b̂⊗2

j,θ̂0

}
η̆n ≤ λmax

(
1
n

∑n
j=1 b̂⊗2

j,θ̂0

)
= OP (1).

Together with the assumption that α0 → 0 and that αr = α0|η̂n,r |−� = OP (α0) =
oP (1) for r ≤ p0. We have that maxr≤p0{αr } → 0. From (46), we further obtain that
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p∑

r=p0+1

αr |η̆n,r | = 2η̆τn

⎧
⎨

⎩
n−1

n∑

j=1

b̂⊗2
j,θ̂0

⎫
⎬

⎭
η̆n − (2a0 − a′

0)+ oP (1). (48)

Thus, (48) together with the assumption that α0n�/2 → ∞, then we obtain that

αr = α0|η̂n,r |−� P→ ∞, minr>p0{αr } P→ ∞. Then, together with (47), we obtain that

min
r>p0

{|η̆n,r |
} ≤

∑p
r=p0+1 αr |η̆n,r |
minr>p0{αr } = OP

(
2η̆τn

{
n−1

n∑

j=1

b̂⊗2
j,θ̂0

}
η̆n

−(2a0 − a′
0)+ oP (1)

)
/α0n�/2

= OP

(
λmax

(
Eβ0(U )

⊗2) − (2a0 − a′
0)+ oP (1)

)
/α0n�/2 = oP (1).

Because we have assumed above that all the η̆n,r are nonzero for r > p0, it leads to

1 = sign
(

minr>p0{|η̆n,r |}
)

= sign
(
oP (1)

) P−→ 0, a contradiction. This means that

there exists at least r0 > p0 such that η̆n,r0 = 0 with probability 1. We can further
confirm that η̆n,r = 0 for all r > p0 with probability 1. This confirmation can be
proved in a way similar to the proof of Theorem 2 in Chen et al. (2010). ��
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