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Abstract The adaptive lasso is a model selection method shown to be both consistent
in variable selection and asymptotically normal in coefficient estimation. The actual
variable selection performance of the adaptive lasso depends on the weight used. It
turns out that the weight assignment using the OLS estimate (OLS-adaptive lasso) can
result in very poor performance when collinearity of the model matrix is a concern.
To achieve better variable selection results, we take into account the standard errors
of the OLS estimate for weight calculation, and propose two different versions of the
adaptive lasso denoted by SEA-lasso and NSEA-lasso. We show through numerical
studies that when the predictors are highly correlated, SEA-lasso and NSEA-lasso
can outperform OLS-adaptive lasso under a variety of linear regression settings while
maintaining the same theoretical properties of the adaptive lasso.

Keywords BIC · Model selection consistency · Solution path · Variable selection

1 Introduction

Reliable variable selection is an important problem in statistical learning. In solving
problems with a number of possible predictors, it is desirable for a variable selec-
tion method to produce a parsimonious model that describes the pattern of the data
well. Exhaustive subset selection with traditional information criteria with possible

W. Qian (B) · Y. Yang
School of Statistics, The University of Minnesota, 313 Ford Hall, 224 Church Street SE,
Minneapolis, MN 55455, USA
e-mail: weiqian@stat.umn.edu

Y. Yang
e-mail: yyang@stat.umn.edu

123



296 W. Qian, Y. Yang

modifications can generate sparse results, but it is not computationally feasible when
the number of predictors is large.

The lasso (Tibshirani 1996) is a popular approach for achieving sparse model selec-
tion. Suppose, we have data from the linear model

y = Xβ + ε,

where y = (y1, y2, . . . , yn)T is the centered response vector, X = (x1, . . . , xp)

is the n × p model matrix, xi’s (i = 1, 2, . . . , p) are predictor vectors, β =
(β1, β2, . . . , βp)

T is the coefficient vector and ε = (ε1, ε2, . . . , εn)T is a vector of
i.i.d random variables with mean 0 and variance σ 2. Also assume that the predictors
are scaled, meaning that for each column vector, the mean is 0 and the l2-norm is

√
n.

The lasso estimate is defined by

β̂(lasso) = arg min
β

‖y − Xβ‖2
2 + λ

p∑

i=1

|βi |,

where ‖·‖2 is the l2 norm and ‖·‖1 is the l1 norm. The regularization parameter λ

continuously shrinks the coefficient estimates towards zeros as λ increases from zero
to a large value, resulting in a solution path from the full model to the null model.
Both variable selection and coefficient estimation can be achieved efficiently by algo-
rithms such as a modification of LARS (Osborne et al. 2000; Efron et al. 2004) or the
pathwise coordinate descent (Friedman et al. 2010).

It is also well known that variable selection by the lasso can be inconsistent (Zou
2006; Meinshausen and Bühlmann 2006; Zhao and Yu 2006). Various nonconvex
regularization methods (e.g., Fan and Li 2001; Zhang 2010) are proposed to ensure
variable selection consistency, but they can be computationally more challenging than
the lasso. Methods with nonzero threshold to improve the lasso or stepwise selection
that remove variables with estimated coefficients smaller than a threshold can improve
selection of important variables when the threshold is chosen suitably (Zhang 2011a,b).

Among various regularization methods with variable selection consistency, in
this work, we are interested in the adaptive lasso proposed by Zou (2006), which
assigns data-dependent weights to the l1 penalty components. Suppose β̂ is a

√
n-

consistent estimate of β and define a weight vector w = (w1, w2, . . . , wp)
T =

( 1
|β̂1|γ , 1

|β̂2|γ , . . . , 1
|β̂p |γ )T , where γ is some positive constant. The adaptive lasso esti-

mate is defined by

β̂(adaptive lasso) = arg min
β

‖y − Xβ‖2
2 + λ

p∑

i=1

wi |βi |.

It has been shown that the adaptive lasso can achieve both consistency in variable
selection and asymptotic normality in coefficient estimation.

An important question on the adaptive lasso is how to choose the weight. In prac-
tice, the adaptive lasso usually uses β̂(ols) as a convenient

√
n-consistent estimate to
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calculate the weight vector. We denote this weight selection method by OLS-adaptive
lasso. OLS-adaptive lasso works well when the initial estimator β̂(ols) is reasonably
reliable for small or zero coefficients. However, as will be seen later, when the pre-
dictors are correlated and the sample size is not large relative to p, OLS can give
poor coefficient estimation, making the weight unstable and the performance of the
adaptive lasso unreliable. Thus, it is desirable to have a weight in the adaptive lasso
that can adjust for this instability.

In this article, we introduce the standard error adjusted adaptive lasso (SEA-lasso),
a new version of the adaptive lasso, which incorporates the standard errors of OLS
estimate into the weight. To further improve the performance of SEA-lasso, we pro-
pose a two-stage model selection method denoted by NSEA-lasso. Numerical results
show that SEA-lasso and NSEA-lasso can perform better than OLS-adaptive lasso
under a variety of settings. We also propose an empirical index to help decide whether
SEA-lasso and NSEA-lasso should be used in practice. In addition, the consistency
and asymptotic normality of SEA-lasso are established.

The rest of the paper is organized as follows. In Sect. 2, we introduce the nota-
tion and motivation for SEA-lasso. In Sect. 3, we provide numerical results on model
selection performance of SEA-lasso and NSEA-lasso, and explain why they can out-
perform OLS-adaptive lasso when high correlations exist among the predictors. We
give concluding remarks in Sect. 4, and leave all theorems and technical proofs to the
Appendix.

2 SEA-lasso

2.1 Definition

Throughout the paper, we assume p < n. Unless stated otherwise, p is fixed. Without
loss of generality, assume that β = (β1, . . . , βq , βq+1, . . . , βp)

T for some q ≤ p,
β j �= 0 for j = 1, . . . , q and β j = 0 for j = q + 1, . . . , p. Let Cn = 1

n XT X and
further assume that Cn → C, where both Cn and C are nonsingular. The matrix C can
be partitioned as

C =
(

C11 C12
C21 C22

)
,

where C11 is a q × q matrix. Define an empirical value κ = log λmax(Cn)
λmin(Cn)

, where
λmax(Cn) and λmin(Cn) are the maximum and minimum eigenvalues of Cn , respec-
tively. We call κ the condition index of the model matrix. Note that κ can be large
even if the pairwise correlations of the predictors are low.

Let β̂(ols) = (β̂(ols)1, β̂(ols)2, . . . , β̂(ols)p)
T be the vector of OLS estimate,

s = (s1, s2, . . ., sp)T be the standard error vector of OLS estimate, and w =
(w1, w2, . . . , wp)

T be the standard error adjusted weight vector where wi =
sγ

i /β̂(ols)γi (i = 1, 2, . . . , p). For simplicity, we choose γ = 1 from now on, unless
stated otherwise. Then, define the SEA-lasso estimate by
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β̂
∗ = arg min

β
‖y − Xβ‖2

2 + λn

p∑

i=1

wi |βi |. (1)

The computation of β̂
∗

can be achieved by Algorithm 1 of Zou (2006), where a
modified LARS algorithm (Osborne et al. 2000; Efron et al. 2004) is used to estimate
the coefficients.

The motivation for choosing the standard error adjusted weight is from a straight-
forward intuition. If β j = 0, we want to assign a big value to the corresponding weight
w j , which can be achieved if β̂(ols) j is close to zero. But in reality, when p is not
small relative to n and some predictors are highly correlated, a large OLS standard
error can result in a poor OLS estimate, and β̂(ols) j can be far away from zero, leading
to an under-penalized l1 term. One possible improvement would be to multiply this
term by the OLS standard error. Our simulation shows that when the true model is
highly sparse (q � p), this new weight assignment strategy works well on average
compared with OLS-adaptive lasso.

2.2 Consistency of SEA-lasso

Zou (2006) has shown that the adaptive lasso has an oracle property (Fan and Li 2001),
which includes both consistency in variable selection and asymptotically normal in
coefficient estimation. Define that A = {1, . . . , q} and A∗

n = { j : β̂∗
j �= 0, j =

1, . . . , p}. Then, we can show by adapting the proof of Zou (2006) that with a proper
choice of λn and holding the number of predictors fixed, SEA-lasso maintains the same
property (see the Appendix). In fact, we will also see in the Appendix that under some
additional assumptions, consistency can be extended to situations where the number
of predictors grows with the sample size.

2.3 Tuning parameter selection with Bayesian information criterion

For the SEA-lasso estimate by applying Algorithm 1 of Zou (2006), we need to choose
the tuning parameter λn . Cross validation is a natural choice. However, for consistency
in selection, the data splitting ratio is critically important, and the delete one cross-val-
idation or fixed proportion k-fold cross validation is known to be inconsistent (Shao
1993; Yang 2007). Some recent work turns to BIC for finding a good λn for the purpose
of achieving consistency (see, e.g., Wang et al. 2007; Wang and Leng 2007). Zou et
al. (2007) also suggest using BIC as model selection criterion when the sparsity of the
model is the primary concern. They also point out that the optimal λn is achieved at
one of the transition points in the solution path, which further simplifies the optimiza-
tion procedure. Thus, in the following selection procedure, we employ BIC to select
a model on the solution path.

Selection Procedure 1 (Identify the optimal model from the solution path by BIC)
Calculate the BIC values at transition points of the solution path, and to identify the
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optimal model with the minimum BIC value:

BIC(μ̂λ) = log
(‖y − μ̂λ‖2

2

n

)
+ log n

n
d̂ f (μ̂λ),

where μ̂λ is the model fit at one of the transition points and d̂ f (μ̂λ) is the degree of
freedom. By Efron’s conjecture (Efron et al. 2004; Zou et al. 2007), d̂ f (μ̂λ) can be
replaced by the number of nonzero estimates immediately before the transition point.

2.4 NSEA-lasso

Our simulation shows that although SEA-lasso works well when the true model is
highly sparse (q � p), SEA-lasso does not necessarily have better model selection
performance when q is close to p, possibly due to over-penalization of the nonzero
coefficient terms. To achieve better model selection results, we design a two-stage
procedure NSEA-lasso. The numerical results show that when the condition index
κ is greater than 10, NSEA-lasso generally performs better than OLS-adaptive lasso
regardless of the sparsity of the true model. We will also give a heuristic explanation
on the improvement of NSEA-lasso over SEA-lasso with a simple numerical example
in Sect. 3.2.

Next, we introduce NSEA-lasso, a two-stage model selection procedure.

Stage 1 (weight computation)

1. Use the lasso to obtain a solution path, from which a preliminary model is selected
by Selection Procedure 1. Let β̂1 = (β̂11, . . . , β̂1p) be the lasso estimate of this
model, and define A1 = { j : β̂1 j �= 0, j = 1, . . . , p}.

2. Sort the elements in s with descending order, and denote such rearranged OLS-
standard error vector by s(1) = (st1, st2 , . . . , stp ), where t1, t2, . . . , tp are the
corresponding subscripts in s, and st1 ≥ st2 ≥ · · · ≥ stp .

3. Based on the preliminary model and the rearranged OLS-standard error obtained
in the previous steps, compute the weight vector w = (w1, w2, . . . , wp) for the
adaptive lasso as follows. For i = 1 to p:
(a) Let s(i)

max and s(i)
min be the maximum (first) and the minimum (last) elements

in s(i), respectively. Then,

wti =
{

s(i)
max/β̂(ols)ti , if ti /∈ A1,

s(i)
min/β̂(ols)ti , if ti ∈ A1.

(b) Delete the first element in s(i) if ti /∈ A1, and delete the last element other-
wise. Define the remaining elements in s(i) to be s(i+1), a (p−i)-dimensional
vector. Like s(i), elements in s(i+1) are in the descending order.

Stage 2 (the adaptive lasso) Based on the weight vector w obtained in Stage 1,
compute the NSEA-lasso estimate by Algorithm 1 of Zou (2006).
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Both NSEA-lasso and SEA-lasso use OLS-standard error s to adjust the weight.
The difference is that, based on the preliminary model A1 by the lasso, NSEA-lasso
chooses a permutation of elements in s for the weight computation. Intuitively, given
a coefficient βi and i /∈ A, we should choose an element in s with a relatively large
value to compute wi so as to put more weight on the l1 penalty term. On the other hand,
if i ∈ A, we should choose an element in s with a relatively small value. We use this
intuition to design the step 3 of Stage 1 in NSEA-lasso procedure. Starting with the
coefficient βt1 , which has the biggest OLS-standard error, we find the maximum ele-
ment s(1)

max in s(1), and assign the weight wt1 to be s(1)
max/β̂(ols)t1 if t1 /∈ A1. Otherwise,

we find the minimum element s(1)
min in s(1), and assign wt1 to be s(1)

min/β̂(ols)t1 . Next,
we consider βt2 , the coefficient with the second largest OLS-standard error. Since one
element in s(1) has been selected for calculating wt1 , we define a new standard error
vector s(2) by deleting this element from s(1). Assign the weight wt2 to be s(2)

max/β̂(ols)t2

if ti /∈ A1, and s(2)
min/β̂(ols)t2 otherwise. Continue with the process until all the ele-

ments in w are computed. Here, we use A1 as a practical guess on whether or not a
coefficient is zero in the true model. Like OLS-adaptive lasso and SEA-lasso, we can
apply Algorithm 1 of Zou (2006) to obtain the solution path for NSEA-lasso, and apply
Selection Procedure 1 to find the optimal model. A simple R package for computing
SEA-lasso and NSEA-lasso estimates is available upon request.

It is worth pointing out that the oracle property of SEA-lasso still holds when the
OLS standard error vector s for weight computation is replaced by any permutation
of its elements. Thus, under the same conditions used for SEA-lasso, NSEA-lasso is
also consistent.

3 Numerical studies

This section gives numerical examples to illustrate the performance of SEA-lasso
and NSEA-lasso on model selection. In the first subsection, we use model matrices
from randomly generated covariance structures to quantitatively evaluate the effects
of weight selection on the performance of the adaptive lasso. In the second subsection,
we use a simple example to explain why NSEA-lasso is proposed as an improvement
over SEA-lasso for variable selection. In the third subsection, we propose the use of
the condition index κ as a practical indicator on whether SEA-lasso and NSEA-lasso
should be considered for model selection. The fourth subsection evaluates the model
selection performance with model matrices generated from some special covariance
structures. In the last two subsections, we apply SEA-lasso and NSEA-lasso to two
real data sets, the diabetes data set and the Boston housing data set.

3.1 Effects of weighting on the performance of the adaptive lasso

We start exploring the effects of weighting on the adaptive lasso by looking at the
performance of OLS-adaptive lasso and SEA-lasso. Take p = 30, q = 4, n = 200,
β = (2, 1, 3, 2, 0, . . . , 0)T , σ 2 = 9. Then, we generate 250 model matrices by repeat-
ing the following procedure: sample a p × p covariance matrix S from Wishart(p, Ip)
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Fig. 1 Performance of OLS-adaptive lasso. y-axis: (left panel) PCT (OLS-adaptive lasso); (right panel)
C̄(OLS-adaptive lasso). x-axis: −κ

where Ip is the p-dimensional identity matrix, generate an n × p model matrix X by
sampling from Np(0, S), and scale X so that for each column vector, the mean is 0 and
l2 norm is

√
n. Such generated model matrices can give us a variety of designs, and

have been used by Zhao and Yu (2006) to illustrate the model selection performance
of the lasso.

For each model matrix, generate 100 data sets by y = Xβ + ε, where ε ∼
N (0, σ 2 In). Then, compute the solution paths using OLS-adaptive lasso and SEA-
lasso. If a solution path contains a model with identical nonzero and zero terms to the
true model, we say the true model is found in the solution path. In addition, we use
Selection Procedure 1 to find the optimal model from the solution path, and record the
value C , the number of zero coefficients correctly estimated as zero, and the value I C ,
the number of nonzero coefficients incorrectly estimated as zero. After the simulation
for the 100 data sets, compute (κ, PCT, C̄, ¯I C), where κ is the condition index for
model matrix X, PCT is the percentage of runs that find the true model, C̄ is the
average of C’s and ¯I C is the average of I C’s.

The simulation results of OLS-adaptive lasso are given in Fig. 1. Not surprisingly,
since the condition index κ is an indicator of the collinearity problem (Belsley et al.
1980), both PCT and C̄ drop dramatically as κ increases. Figure 2 shows the compar-
ison of performance between SEA-lasso and OLS-adaptive lasso. Clearly, SEA-lasso
improves over OLS-adaptive lasso in terms of both PCT and C̄ when κ have large
values.

3.2 Rationalization of SEA-lasso and NSEA-lasso

To understand when and why SEA-lasso is favored over OLS-adaptive lasso, consider
the following simple example. Let p = 30, q = 3, n = 50, β = (2, 1, 3, 0, . . . , 0)T

and ε ∼ N (0, σ 2 In). Generate an n × p model matrix X by taking a sample of size n
from Np(0, �), where � is a p × p covariance matrix. Then, scale the model matrix
as before. We consider two cases for � and σ 2:
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Fig. 2 Comparison of PCT (left panel) and C̄ (right panel) between SEA-lasso and OLS-adaptive lasso.
x-axis: −κ

Table 1 Model selection results
for simplified models with
highly correlated predictors

Case (a) (b)

κ 6.5 6.5

PCT

OLS-adaptive lasso 0.84 0.46

SEA-lasso 0.96 0.16

NSEA-lasso 0.91 0.54

C̄

OLS-adaptive lasso 24.99 (0.32) 25.79 (0.25)

SEA-lasso 25.43 (0.26) 25.10 (0.28)

NSEA-lasso 24.97 (0.30) 25.81 (0.20)

¯I C

OLS-adaptive lasso 0.02 (0.01) 0.58 (0.05)

SEA-lasso 0.03 (0.02) 0.75 (0.07)

NSEA-lasso 0.02 (0.01) 0.53 (0.05)

Case (a): All the diagonal entries of � have value 1, �4,5 = �5,4 = 0.99 and all
the remaining entries take value 0. Assume σ 2 = 2.25.

Case (b): All the diagonal entries of � have value 1, �1,2 = �2,1 = 0.99 and all
the remaining entries take value 0. Assume σ 2 = 0.25.

For each case, generate 100 simulated response vectors by y = Xβ + ε, and compute
(PCT , C̄ , ¯I C) by OLS-adaptive lasso, SEA-lasso and NSEA-lasso with procedures
described in Sect. 3.1. The results are summarized in Table 1 (numbers in the paren-
theses are the standard errors).

In both the cases, only two predictors are highly correlated while the other pairs
are independent. For case (a), the large elements in the OLS standard error vector are
corresponding to the zero coefficient terms. As a result, SEA-lasso correctly penal-
izes more on these terms. As expected, SEA-lasso achieves higher PCT than adap-
tive lasso in case (a). On the other hand, OLS-adaptive lasso performs better than
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SEA-lasso in case (b). This is because the high correlation occurs between two pre-
dictors that correspond to nonzero coefficient terms, and SEA-lasso incorrectly puts
more weight on these two terms. NSEA-lasso can avoid the drawback of SEA-lasso
by rearranging the OLS standard error vector for the weight computation. Indeed, as
shown in Table 1, although SEA-lasso does not give satisfactory PCT in case (b),
NSEA-lasso still performs well compared to OLS-adaptive lasso. In the second part of
the Appendix, we will show in detail how NSEA-lasso rearranges the OLS standard
error vector and improves the weight assignment.

3.3 NSEA-lasso and the condition index

In the previous subsection, we used a simple example to give a heuristic explanation
on why NSEA-lasso can work well even when SEA-lasso cannot. In this subsection,
we will see the general applicability of NSEA-lasso under a variety of true model
scenarios. Consider the following two sets of true models, each set having four cases:

Set A

Case 1A: p = 30, q = 4, n = 200, β = (2, 1, 3, 2, 0, . . . , 0)T , σ 2 = 0.25;
Case 2A: p = 30, q = 10, n = 200, β = (2, 2, . . . , 2, 0, . . . , 0)T , σ 2 = 0.25;
Case 3A: p = 30, q = 16, n = 200, β = (2, 2, . . . , 2, 0, . . . , 0)T , σ 2 = 0.25;
Case 4A: p = 12, q = 4, n = 200, β = (2, 1, 3, 2, 0, . . . , 0)T , σ 2 = 0.09.

Set B

Case 1B: p = 30, q = 4, n = 200, β = (2, 1, 3, 2, 0, . . . , 0)T , σ 2 = 9;
Case 2B: p = 30, q = 10, n = 200, β = (2, 2, . . . , 2, 0, . . . , 0)T , σ 2 = 25;
Case 3B: p = 30, q = 16, n = 200, β = (2, 2, . . . , 2, 0, . . . , 0)T , σ 2 = 25;
Case 4B: p = 12, q = 4, n = 200, β = (2, 1, 3, 2, 0, . . . , 0)T , σ 2 = 9.

Clearly, compared with set A, cases in set B have large σ 2, thereby relatively small
Signal/Noise ratio. Cases in each set have different sparsity and different number of
predictors in the true model, and we want to use them to explore the performance
of NSEA-lasso. For each of the true model scenarios, we compute (κ, PCT, C̄, ¯I C)

the same way as described in Sect. 3.1 except that the solution path is computed by
NSEA-lasso. Figures 3 and 4 compare the C̄ and ¯I C values between NSEA-lasso and
OLS-adaptive lasso for the four cases in set A, while Figs. 5 and 6 compare the C̄ and
¯I C values for the four cases in set B. From Fig. 3, we can see that when κ is close

to 10 or larger, NSEA-lasso performs better in terms of C̄ . Interestingly, Figs. 3 and
4 also show that NSEA-lasso can enjoy both higher C̄ and lower ¯I C than OLS-adap-
tive lasso, meaning that NSEA-lasso is often capable of excluding more zero terms
from and including more nonzero terms to the set of selected variables at the same
time. As for models with smaller Signal/Noise ratio, we can see from Figs. 5 and
6 that NSEA-lasso still outperforms OLS-adaptive lasso in C̄ , but its superiority in
¯I C is much weakened or disappeared in cases 2 and 3, respectively. Our simulations

under many other true model scenarios also show the advantage of NSEA-lasso over
OLS-adaptive lasso in model selection when κ is large.

123



304 W. Qian, Y. Yang

−20 −15 −10

0
2

4
6

8
10

Case 1

−− κκ

C
( N

S
E

A
−−

l a
s s

o)
−

C
(O

L S
−−

a d
ap

tiv
e

la
ss

o)

−20 −15 −10

−
1

0
1

2
3

4
5

Case 2

−− κκ

C
(N

S
E

A
−−

la
ss

o )
−

C
(O

L S
−−

a d
ap

tiv
e

la
ss

o)

−20 −15 −10

−
1

0
1

2
3

4

Case 3

−− κκ

C
( N

S
E

A
−−

l a
s s

o)
−

C
(O

L S
−−

a d
ap

tiv
e

la
ss

o)

−20 −15 −10 −5

−
0.

5
0.

0
0.

5
1.

0
1.

5

Case 4

−− κκ

C
(N

S
E

A
−−

la
ss

o )
−

C
(O

L S
−−

a d
ap

tiv
e

la
ss

o)

Fig. 3 Comparison of C̄ between NSEA-lasso and OLS-adaptive lasso for set A. y-axis: C̄(NSEA-lasso)
−C̄(OLS-adaptive lasso). x-axis: −κ

As described in NSEA-lasso procedure, the first stage of NSEA-lasso involves the
selection of a preliminary model by the lasso. Due to the unreliability of the OLS
weights when κ is large, the lasso turns out to be less vulnerable to collinearity prob-
lem than OLS-adaptive lasso. We can repeat the computation of (κ , PCT , C̄ , ¯I C) for
case 1A using the lasso and OLS-adaptive lasso to obtain the respective solution paths.
The difference of PCT values between the lasso and OLS-adaptive lasso is plotted in
Fig. 7.

It is interesting to note from Fig. 7 that OLS-adaptive lasso can win when κ is
small, but the lasso clearly outperforms OLS-adaptive lasso when κ is well above 10.
Therefore, in cases of high collinearity, the lasso can provide us with a reasonable
initial guess on what variables may be included in the true model. To confirm our
speculation that the preliminary model selection by the lasso is critical to the success
of NSEA-lasso, we slightly modify the first step of the stage 1 in the NSEA-lasso
procedure and select a preliminary model by OLS-adaptive lasso instead of the lasso.
As suspected, such a modified NSEA-lasso procedure completely loses its advantage
over OLS-adaptive lasso (the numerical results are not included in this article).

Based on the observations described above, we propose the use of the condition
index κ as an empirical guide on how to choose the weight vector for the adaptive
lasso. If κ is less than 10, we can simply apply OLS-adaptive lasso for model selection;
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Fig. 4 Comparison of ¯I C between NSEA-lasso and OLS-adaptive lasso for set A. y-axis: ¯I C(NSEA-lasso)
− ¯I C(OLS-adaptive lasso). x-axis: −κ

if κ is close to 10 or even larger than 10, we consider using SEA-lasso or NSEA-lasso
to achieve more reliable selection results.

3.4 Models with special covariance structures

In this subsection, we evaluate the performance of SEA-lasso and NSEA-lasso on
models with some special predictor covariance structures. Consider this model setting:
p = 100, q = 15, n = 200, β = (2, 2, . . . , 2, 0, . . . , 0)T , σ 2 = 9, ε ∼ N (0, σ 2 In).
An n × p model matrix X is generated by sampling from Np(0, �), where � is a
p × p covariance matrix with one of the following structures:

Case 1 (compound symmetry): �i,i = 1, �i, j = 0.5 for i �= j .
Case 2 (power decay): �i, j = 0.5|i− j |.
Case 3 (banded): �i,i = 1, �i,i+1 = �i+1,i = 0.5, all the other entries are 0.

Then, we generate 100 simulated responses by y = Xβ + ε. For each of the three
cases, compute (PCT, C̄, ¯I C) by OLS-adapitve lasso, SEA-lasso and NSEA-lasso
with procedures described in Sects. 3.1 and 3.2. The results are summarized in Table 2.

Interestingly, the banded correlation case has a condition index close to 10, and the
performance of SEA-lasso and NSEA-lasso is indeed better than OLS-adaptive lasso.
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Fig. 5 Comparison of C̄ between NSEA-lasso and OLS-adaptive lasso for set B. y-axis: C̄(NSEA-lasso)
−C̄(OLS-adaptive lasso). x-axis: −κ

On the other hand, the compound symmetry and power decay correlation have smaller
condition indices, and all the three adaptive lasso methods work well. As we will see
from the following real data examples, unlike these special covariance structure cases,
it is not unusual to encounter data sets with high condition indices, making SEA-lasso
and NSEA-lasso attractive alternatives to OLS-adaptive lasso in practice.

3.5 Diabetes data example

In this example, we carry out a simulation study using the diabetes data set from the
“Least Angle Regression” paper (Efron et al. 2004). This data set has one response and
ten baseline predictors measured on 442 diabetes patients. These baseline predictors
include age, sex, body mass index (bmi), average blood pressure (bp) and six blood
serum measurements (tc, ldl, hdl, tch, ltg, glu). We use y to represent the response vector
and use x1, x2, . . ., x10 to represent the baseline predictor vectors. The baseline model
matrix X1 is comprised of these ten baseline predictor vectors. Besides these baseline
predictors, we can also include the quadratic terms and interaction terms to generate
an expanded model matrix X2. This expanded model matrix contains 64 predictors,
including 10 baseline predictors, 45 interactions and 9 squares. The square term of x2 is
not included because it is a dichotomous variable. All the column vectors in X1 and X2
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Fig. 6 Comparison of ¯I C between NSEA-lasso and OLS-adaptive lasso for set B. y-axis: ¯I C(NSEA-lasso)
− ¯I C(OLS-adaptive lasso). x-axis: −κ

Fig. 7 Comparison of PCT
between the lasso and
OLS-adaptive lasso for case 1A.
y-axis: PCT (lasso)
−PCT (OLS-adaptive lasso).
x-axis: −κ
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are scaled as before, and the response y is centered. The t tests based on simple linear
regression of y on X1 show that x2, x3, x4 and x9 have significant estimated coefficients.
Thus, in the simulation we generate the true mean by μ = β2x2 +β3x3 +β4x4 +β9x9,
where (β2, β3, β4, β9) = (−6.011, 26.743, 19.468, 23.813), the OLS estimate of y
on (x2, x3, x4, x9). Let ε = y − μ and generate 100 simulated response vectors ỹ
from ỹ = μ + ε̃, with components of ε̃ a random sample, with replacement, from
components of ε. Using either (X1, ỹ) or (X2, ỹ), compute (κ, PCT, C̄, ¯I C) by
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Table 2 Model selection results for models with special predictor covariance structures

Case Compound symmetry Power decay Banded

κ 7.0 4.7 9.8

PCT

OLS-adaptive lasso 0.91 0.99 0.01

SEA-lasso 0.91 0.99 0.01

NSEA-lasso 0.93 0.99 0.03

C̄

OLS-adaptive lasso 83.66 (0.16) 83.68 (0.19) 79.94 (0.44)

SEA-lasso 83.52 (0.17) 83.60 (0.19) 82.83 (0.24)

NSEA-lasso 83.68 (0.15) 83.55 (0.20) 81.51 (0.25)

¯I C

OLS-adaptive lasso 0.01 (0.01) 0.00 (0.00) 4.45 (0.20)

SEA-lasso 0.01 (0.01) 0.01 (0.01) 4.18 (0.18)

NSEA-lasso 0.00 (0.00) 0.00 (0.00) 3.63 (0.20)

Table 3 Simulation results from diabetes data and Boston housing data

Model matrix Diabetes Boston housing

Baseline (X1) Expanded (X2) expanded (XT )

p 10 64 103

q 4 4 13

κ 6.2 17.2 15.9

PCT

OLS-adaptive lasso 0.43 0.00 0.00

SEA-lasso 0.74 0.23 0.00

NSEA-lasso 0.67 0.34 0.00

C̄

OLS-adaptive lasso 5.62 (0.06) 54.21 (0.23) 83.67 (0.21)

SEA-lasso 5.89 (0.03) 57.38 (0.30) 83.85 (0.28)

NSEA-lasso 5.78 (0.04) 59.39 (0.09) 87.78 (0.13)

¯I C

OLS-adaptive lasso 0.63 (0.06) 1.39 (0.06) 12.03 (0.06)

SEA-lasso 0.48 (0.06) 0.72 (0.07) 9.43 (0.16)

NSEA-lasso 0.58 (0.06) 0.75 (0.06) 9.26 (0.12)

OLS-adaptive lasso, SEA-lasso and NSEA-lasso with procedures described in
Sects. 3.1 and 3.2. The results are summarized in Table 3. As expected, for the expanded
model matrix (κ > 10), we can see that SEA-lasso and NSEA-lasso perform better
than OLS-adaptive lasso.
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3.6 Boston housing data example

The Boston housing data set (Harrison and Rubinfeld 1978) has 506 observations
for each census district of the Boston metropolitan area. The response y is median
value of owner-occupied homes, and the data set includes 13 baseline predictors
x1, x2, . . . , x13. Following the transformations proposed by Härdle and Simar (2007),
we transform the original data by y∗ = log(y), x∗

1 = log(x1), x∗
2 = x2/10,

x∗
3 = log(x3), x∗

4 = x4, x∗
5 = log(x5), x∗

6 = log(x6), x∗
7 = x2.5

7 /10000, x∗
8 = log(x8),

x∗
9 = log(x9), x∗

10 = log(x10), x∗
11 = exp(0.4 × x11)/1000, x∗

12 = x12/100 and
x∗

13 = √
x13.

Like the diabetes example, we consider the quadratic terms and interaction terms,
and expand the transformed data set to the model matrix XT . This expanded model
matrix contains 103 predictors, including 13 baseline predictors, 78 interactions and
12 squares. The square term of x∗

4 is not included because it is binary. Like before,
column vectors of XT are scaled, and the transformed response vector y is centered. In
our simulation, the true mean vector μ is μ = XT β, where β is obtained by running
the lasso on (XT , y) for 13 steps. The number of nonzero elements in β is also 13. Let
ε = y −μ. Then, 100 simulated response vectors y∗ are generated from y∗ = μ+ ε∗,
with components in ε∗ a random sample, with replacement, from components of ε.
Use (XT , y∗) to compute (κ, PCT, C̄, ¯I C) by OLS-adaptive lasso, SEA-lasso and
NSEA-lasso with procedures described in Sects. 3.1 and 3.2. The results summarized
in Table 3 show that NSEA-lasso performs the best among the three adaptive lasso
methods in terms of C̄ and ¯I C .

4 Further extensions

In the previous sections, we have discussed the performance of SEA-lasso and NSEA-
lasso under the settings of fixed number of predictors. In many practical problems,
we may encounter situations in which it is more realistic to take p → ∞ as n → ∞.
Huang et al. (2008) have shown that under appropriate conditions, the oracle property
holds for the adaptive lasso. By employing the technique used by Zou and Zhang
(2009), we can specifically show that under some regularity conditions, the consis-
tency of SEA-lasso still holds when p → ∞ but p < n (See the Appendix).

For problems that involves p > n, we cannot use OLS estimate for weight com-
putation. One alternative is to use the l2-penalized estimate and the corresponding
standard error. It remains an interesting work to study its asymptotic property under
these high-dimensional settings.

5 Appendix

The first part of the Appendix includes the theorems of SEA-lasso and their proofs.
The second part is a continued discussion on the example in Sect. 3.2.

123



310 W. Qian, Y. Yang

5.1 Theorems and proofs

This part of the Appendix contains three theorems. Theorem 1 shows that when p is
fixed, the oracle property holds for SEA-lasso under some regularity conditions. With
some additional conditions, Theorems 2 and 3 extend the oracle property of SEA-lasso
to situations where p → ∞ and p < n.

Theorem 1 Let β̂
∗
A and βA be the vectors consisting of the corresponding compo-

nents in β̂
∗

and β, respectively. Suppose that λn/n → 0 and λn/
√

n → ∞. Then, the
SEA-lasso estimate satisfies the following properties:

1. Consistency: limn→∞ P(A∗
n = A) = 1;

2. Asymptotic normality:
√

n(β̂
∗
A − βA)

d−→ N(0, σ 2C−1
11 ).

Since limn→∞
√

ns j → some constant, j = 1, . . . , p, the proof of Theorem 1 can
be immediately obtained by rescaling λn in Theorem 2 of Zou (2006). We omit its
proof.

Next, we show the oracle property of SEA-lasso with a diverging number of pre-
dictors in Theorem 2.

Theorem 2 Assume the following conditions:

(a) Define λmin(M) and λmax(M) to be the minimum and maximum eigenvalues of
matrix M. Assume

0 < b ≤ λmin

(1

n
XT X

)
≤ λmax

(1

n
XT X

)
≤ B

and equivalently,

0 < d ≤ λmin(n(XT X)−1) ≤ λmax(n(XT X)−1) ≤ D;

(b) limn→∞
maxi=1,2,...,n

∑p
j=1 x2

i j
n = 0;

(c) E |ε|2+δ < ∞ for some δ > 0;
(d) limn→∞ log(p)

log(n)
= ν for some 0 ≤ ν < 1;

(e)

lim
n→∞

λn

n
1+γ

2

= 0, lim
n→∞

λn

n
ν(1+γ )+1

2

= ∞;

(f)

lim
n→∞

( n
1+γ

2√
pλn

) 1
γ
(min

j∈A
|β∗

j |) = ∞.

Then, the SEA-lasso estimate β̂
∗

satisfies:

1. Consistency: limn→∞ P(A∗
n = A) = 1;

2. Asymptotic normality: αT �
1/2
A (β̂

∗
A − βA)

d−→ N(0, σ 2),

where �A = XT
AXA and α is a vector of norm 1.
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It should be pointed out that the condition ( f ) on the minimal nonzero coefficients
is sufficient for the adaptive lasso methods, but is certainly not the weakest possible.
Indeed, weaker conditions are obtained for other methods for selection consistency
or selection of important features (see, e.g., Zhang 2010, 2011a,b).

To prove Theorem 2, we need to first show Theorem 3.

Theorem 3 Let w j = sγ
j

β̂(ols)γj
and write β∗ = (β∗

A, 0). Define

β̃
∗
A = arg min

β
‖y − XAβ‖2

2 + λn

∑

j∈A
w j |β j |.

Then, under conditions (a), (d), (e) and ( f ),

lim
n→∞ P((β̃

∗
A, 0) = β̂

∗
) = 1.

Proof of Theorem 3 We need to show that (β̃
∗
A, 0) satisfies the KKT conditions of (1)

with probability tending to 1. It suffices to show

P(∃ j ∈ Ac, |−2xT
j (y − XAβ̃

∗
A)| > λnw j ) → 0.

Let η = min j∈A|β∗
j | and η̂ = min j∈A|β̂(ols) j |. We note that

P(∃ j ∈ Ac, |−2xT
j (y − XAβ̃

∗
A)| > λnw j )

≤
∑

j∈Ac

P(|−2xT
j (y − XAβ̃

∗
A)| > λnw j , η̂ > η/2) + P(η̂ ≤ η/2)

and

P(η̂ ≤ η/2) ≤ P(‖β̂(ols) − β∗‖2 ≥ η/2) ≤ E(‖β̂(ols) − β∗‖2
2)

η2/4
.

Then, by Theorem 3.1 of Zou and Zhang (2009),

P(η̂ ≤ η/2) ≤ 16
Bpnσ 2

b2n2η2 . (2)

Moreover, let M = ( λn

n
γ+2

2
)

1
1+γ , and we have
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∑

j∈Ac

P(|−2xT
j (y − XAβ̃

∗
A)| > λnw j , η̂ > η/2)

≤
∑

j∈Ac

P(|−2xT
j (y − XAβ̃

∗
A)| > λnw j , η̂ > η/2, |β̂(ols)| ≤ M)

+
∑

j∈Ac

P(|β̂(ols)| > M)≤
∑

j∈Ac

P(|−2xT
j (y − XAβ̃

∗
A)| >

λnd
γ
2 σγ

n
γ
2 Mγ

, η̂ > η/2)

+
∑

j∈Ac

P(|β̂(ols)| > M) ≤ 4M2γ nγ

λ2
ndγ σ 2γ

E

⎛

⎝
∑

j∈Ac

|xT
j (y − XAβ̃

∗
A)|2 I (η̂ > η/2)

⎞

⎠

+ 1

M2 E(‖β̂∗ − β̂(ols)‖2) ≤ 4M2γ nγ

λ2
ndγ σ 2γ

E

⎛

⎝
∑

j∈Ac

|xT
j (y − XAβ̃

∗
A)|2 I (η̂ > η/2)

⎞

⎠

+ 4Bpnσ 2

b2n2 M2 . (3)

By the model assumption, we have

∑

j∈Ac

|xT
j (y − XAβ̃

∗
A)|2

=
∑

j∈Ac

|xT
j (XAβ∗

A − XAβ̃
∗
A) + xT

j ε|2

≤ 2BnBn‖β∗
A − β̃

∗
A‖2

2 + 2
∑

j∈Ac

|xT
j ε|2,

which gives us the inequality

E

⎛

⎝
∑

j∈Ac

|xT
j (y − XAβ̃

∗
A)|2 I (η̂ > η/2)

⎞

⎠

≤ 2B2n2 E(‖β∗
A − β̃

∗
A‖2

2 I (η̂ > η/2)) + 2Bnpσ 2. (4)

Define β̃A(ols) = arg minβ‖y−XAβ‖2
2. Then by following the argument in the proof

of Theorem 3.1 of Zou and Zhang (2009), we obtain that

E(‖β∗
A − β̃

∗
A‖2

2 I (η̂ > η/2))

≤ 2E(‖β∗
A − β̃A(ols)‖2

2) + 2E(‖β̃A(ols) − β̃
∗
A‖2

2 I (η̂ > η/2))

≤ 4|A|λmax(XT
AXA)σ 2 + 2λ2

n E(
∑

j∈A w2
j I (η̂ > η/2))

b2n2

≤ 4
nBpσ 2 + λ2

n Dγ pσ 2γ

nγ (
η
2 )−2γ

b2n2 . (5)

123



Model selection via standard error adjusted adaptive lasso 313

Combining (2), (3), (4) and (5), we obtain that

∑

j∈Ac

P(|−2xT
j (y − XAβ̃

∗
A)| > λnw j , η̂ > η/2)

≤ 4M2γ nγ

λ2
ndγ σ 2γ

(
8B2n2 nBpσ 2 + λ2

n Dγ pσ 2γ (η/2)−2γ

nγ

b2n2 + 2Bnpσ 2
)

+ 4Bpnσ 2

b2n2 M2

+ 16Bpnσ 2

b2n2η2
�=K1 + K2 + K3.

It follows that

K1 = O
( M2γ nγ+1 p

λ2
n

)
= O

(( λn

n
1+γ

2

n((1−ν)(1+γ )−1)/2
)− 2

1+γ
)

→ 0,

K2 = O
( p

n

( λn

n
γ+2

2

)− 2
1+γ

)
→ 0,

and
K3 = O

( p

nη2

)
→ 0. (6)

Here, K3 → 0 holds since

p

nη2 = 1

η2
(

n(1+γ )/2√
pλn

)2/γ

( p

n

(n(γ+2)/2

λn

) 2
1+γ

) 1+γ
γ 1

p2/γ
.

Thus, the proof of Theorem 3 is complete. ��

Proof of Theorem 2 From Theorem 3, we already showed that SEA-lasso estimate is
equal to (β̃

∗
A, 0) with probability tending to 1. To show the consistency, it suffices to

prove
P(min

j∈A
|β̃∗

j | > 0) → 1.

By the fact that
∑

j∈A w2
j ≤ Dγ pσ 2γ

nγ η̂2γ , we can follow the proof of Theorem 3.3 of Zou
and Zhang (2009) to obtain that

min
j∈A

|β̃∗
j | > min

j∈A
|β̃(ols) j | − λn Dγ /2√pσγ

nγ /2bnη̂γ
.

Note that
min
j∈A

|β̃(ols) j | > min
j∈A

|β∗
j | − ‖β̃A(ols) − β∗

A‖2.
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Following (5), we can show that

E‖β̃A(ols) − β∗
A‖2

2 ≤ 4nBpσ 2

b2n2 = O
( p

n

)
.

Thus, ‖β̃A(ols) − β∗
A‖2 =

√
p
n Op(1).

Moreover,
λn Dγ /2√p

nγ /2bnη̂γ
= Dγ /2

√
n

(n
γ+1

2 ηγ

√
pλn

)−1(η

η̂

)
.

From (2), it is easy to see that

P
(η

η̂
≥ 2

)
≤ O

( p

nη2

)
.

Since we already show p
nη2 → 0,

(
η

η̂

)γ = Op(1).

Therefore,
λn Dγ /2√p

nγ /2bnη̂γ
= o

( 1√
n

)
Op(1). (7)

Hence, we have

min
j∈A

|β̃∗
j | > min

j∈A
|β∗

j | −
√

p

n
Op(1) − o

( 1√
n

)
Op(1),

and
P(min

j∈A
|β̃∗

j | > 0) → 1.

To prove asymptotic normality, we only need to follow the steps in the second half of
the proof for Theorem 3.3 of Zou and Zhang (2009). Thus, we omit its proof here.

��

Table 4 Solution paths of one
repetition for case (a), first 10
steps

Step Lasso OLS-adaptive lasso SEA-lasso NSEA-lasso

1 3 3 1 3

2 1 1 3 1

3 2 4 2 2

4 22 2 21 21

5 6 21 7 7

6 13 12 14 14

7 21 7 12 12

8 14 14 22 22

9 7 22 8 8

10 12 8 29 29
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Table 5 OLS-estimate and
OLS-standard error vectors of
one repetition for case (a)

Predictor β̂(ols) OLS-std.err. Rearranged std.err.
by NSEA-lasso

1 2.7937 0.3635 0.2960

2 0.6427 0.3068 0.3008

3 2.4531 0.4065 0.2848

4 −2.6876 2.1762 2.1762

5 2.7336 2.1647 2.1647

6 −0.2030 0.3569 0.3711

7 −0.5310 0.3527 0.3569

8 0.6802 0.3443 0.3527

9 0.1012 0.3138 0.3279

10 −0.4104 0.5396 0.5396

11 0.3970 0.3522 0.3553

12 −0.8288 0.4143 0.4143

13 −0.0089 0.3874 0.3899

14 0.3634 0.3255 0.3337

15 0.2614 0.2848 0.3040

16 0.2991 0.3060 0.3255

17 0.0927 0.3899 0.4050

18 0.1112 0.2960 0.3060

19 0.1818 0.3418 0.3443

20 0.1270 0.3337 0.3418

21 −0.5628 0.3040 0.3138

22 −0.4245 0.4174 0.4174

23 0.2021 0.3553 0.3635

24 0.2241 0.3360 0.3426

25 0.4055 0.3279 0.3360

26 0.3275 0.3711 0.3874

27 −0.2947 0.4050 0.4065

28 0.3367 0.3008 0.3068

29 0.5872 0.3426 0.3522

30 0.2160 0.4315 0.4315

5.2 A continued discussion on the example in Section 3.2

This part of the Appendix is a continued discussion on the example shown in Sect. 3.2.
We have observed that compared with OLS-adaptive lasso, SEA-lasso performs well
in case (a), but not in case (b). NSEA-lasso, on the other hand, delivers good results in
both cases. In the effort to further understand these results, we examine one of the 100
repetitions in detail by looking at the solution path, OLS estimate and OLS standard
error.
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Table 6 Solution paths of one
repetition for case (b), first 10
steps

Step Lasso OLS-adaptive lasso SEA-lasso NSEA-lasso

1 1 3 3 1

2 3 1 1 3

3 2 2 28 2

4 28 28 18 28

5 7 18 29 18

6 20 29 25 29

7 18 25 7 7

8 4 7 23 25

9 29 23 11 23

10 24 26 10 20

For case (a), the solution paths by the lasso, OLS-adaptive lasso, SEA-lasso and
NSEA-lasso from one repetition are listed in Table 4 (only show 10 steps). Both of
the solution paths by SEA-lasso and NSEA-lasso include the true model while OLS-
adaptive lasso does not. This result can be understood by looking at the weight vectors.
Table 5 lists the OLS estimate β̂(ols) as well as the OLS-standard error vector used
by SEA-lasso and the rearranged standard error vector used by NSEA-lasso. Due to
the high correlation between predictor 4 and predictor 5, β̂(ols)4 and β̂(ols)5 have
much larger absolute values than that of other nonimportant terms, leading to under-
penalization in OLS-adaptive lasso. Therefore, it is helpful to adjust the weight and
use the standard error vectors to put more weight on l1 penalty terms of predictor 4
and predictor 5.

Different from case (a), high correlation occurs between predictor 1 and predic-
tor 2 in case (b). Both of the two predictors are corresponding to nonzero terms.
The solution paths from one repetition are listed in Table 6 (only show 10 steps).
The solution path of SEA-lasso misses the true model while all the other three paths
contain the true model. Therefore, SEA-lasso can perform poorer than OLS-adap-
tive lasso in this case. This is not a surprising result if we look at the OLS-stan-
dard error vectors shown in Table 7. Due to high correlation, the first two elements
in OLS-standard error vector have large values. Applying this standard error vec-
tor directly for weight calculation in SEA-lasso results in over-penalization of the
nonzero terms. Interestingly, the lasso correctly includes the first two terms into the
preliminary model, and advises NSEA-lasso to rearrange the OLS-standard error vec-
tor. As shown in Table 7, the first two elements in the rearranged standard error
vector no longer have the largest values; instead, the largest values are now in posi-
tions 10 and 30, both of which are corresponding to zero terms. This observation
explains why NSEA-lasso performs well in this case even though SEA-lasso does
not.
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Table 7 OLS-estimate and
OLS-standard error vectors of
one repetition for case (b)

Predictor β̂(ols) OLS-std.err. Rearranged std.err.
by NSEA-lasso

1 2.4292 0.7216 0.0987

2 0.6795 0.7254 0.0949

3 2.9439 0.1023 0.1085

4 0.0032 0.1355 0.1003

5 0.1135 0.1212 0.1300

6 −0.1129 0.1190 0.1291

7 0.0778 0.1176 0.1013

8 0.0145 0.1148 0.1190

9 0.0097 0.1046 0.1148

10 −0.1436 0.1799 0.7254

11 0.0887 0.1174 0.1212

12 −0.1083 0.1381 0.1438

13 −0.0473 0.1291 0.1355

14 0.0455 0.1085 0.1174

15 0.0508 0.0949 0.1120

16 −0.0050 0.1020 0.1142

17 0.0676 0.1300 0.1381

18 −0.1623 0.0987 0.1112

19 0.0741 0.1139 0.1184

20 −0.0646 0.1112 0.1046

21 −0.0082 0.1013 0.1139

22 −0.0258 0.1391 0.1799

23 0.1278 0.1184 0.1237

24 −0.0224 0.1120 0.1023

25 0.1348 0.1093 0.1176

26 0.1409 0.1237 0.1350

27 −0.0254 0.1350 0.1391

28 0.1402 0.1003 0.1093

29 0.1513 0.1142 0.1020

30 0.0548 0.1438 0.7216
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