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Abstract For a Markov chain, both the detailed balance condition and the cycle
Kolmogorov condition are algebraic binomials. This remark suggests to study revers-
ible Markov chains with the tool of Algebraic Statistics, such as toric statistical models.
One of the results of this study is an algebraic parameterization of reversible Markov
transitions and their invariant probability.
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1 Introduction

On a finite state space V , we consider q-reversible (quasi-reversible) Markov matrices,
i.e. Markov matrices P with elements denoted Pv→w, v,w ∈ V , such that Pv→w = 0
if, and only if, Pw→v = 0, v �= w.

The support of P is the simple graph G = (V,E ), where vw, v �= w, is an edge if,
and only if, Pv→w and Pw→v are both positive. We associate to each edge vw the two
directed arcs v → w and w → v to get a directed graph without loops (i.e. arcs from
v to v) that we denote by D = (V,A ), see Fig. 1. The neighborhood of v is N(v),
the degree of v is d(v), the set of arcs leaving v is out(v), the set of arcs entering v is
in(v).
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270 G. Pistone, M.P. Rogantin
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Fig. 1 Running example: undirected graph G and directed graph D

Viceversa, given a connected graph G = (V,E ), a Markov matrix P is q-revers-
ible with structure G if the following two conditions hold: Pv→w = 0 if vw /∈ E ;
Pv→w = 0 if, and only if, Pw→v = 0 for all edges vw ∈ E . Such a Markov matrix
is characterized by its restriction to non diagonal elements, that is by a mapping
P : A → R+ such that

∑
w∈N(v) Pv→w ≤ 1, v ∈ V . As we assume Pv→w = 0 if

vw /∈ E , the diagonal elements are computed as Pv→v = 1 −∑w∈N(v) Pv→w. The
support of P will be a sub-graph of G . We are going to need this detailed classification
in the following.

For any set I , we denote by R
I , respectively, R

I+, the vector space of real,
respectively, non-negative real, functions defined on I . Each element is represented
as a column array whose row’s names are the elements of the set I . An ele-
ment of R

n, n = |I |, would be a vector without row’s names. With this notation,
�(I ) = {x ∈ R

I+ :∑i∈I xi = 1
}

denotes the (flat) simplex on the index set I , while
S(I ) = {x ∈ R

I+ :∑i∈I xi ≤ 1
}

denotes the (solid) simplex over the index set I .
The set of Markov transitions P = (Pe)a∈A is parameterized by the product of

simplexes ×v∈V S(N(v)).
A Markov matrix P on V satisfies the detailed balance condition if there exists

κ(v) > 0, v ∈ V , such that

κ(v)Pv→w = κ(w)Pw→v, v,w ∈ V .

It follows that P is q-reversible and that π(v) = κ(v)/
∑

v∈V κ(v) is an invariant
probability with full support. Equivalently, the Markov chain (Xn)n≥0 with invariant
probability π and transition matrix [Pv→w], v, w ∈ V , has reversible bivariate joint
distribution

P (Xn = v, Xn+1 = w) = P (Xn = w, Xn+1 = v) , v,w ∈ V, n ≥ 0. (1)

Such a Markov chain (MC), and its transition matrix, are called reversible. Reversible
Markov Chains are relevant in Statistical Physics, e.g. in the theory of entropy pro-
duction, and in Applied Probability, e.g. the simulation method Monte Carlo Markov
Chain (MCMC). The main aim of this paper is to find useful parameterizations of the
reversible Markov matrices of a given structural graph.

In Sect. 2, we review some basics from Dobrushin et al. (1988), Kelly (1979),
Strook (2005, Ch 5), Diaconis and Rolles (2006), Hastings (1970), Peskun (1973),
and Liu (2008).
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Algebra of reversible 271

In Sect. 3, we discuss the algebraic theory prompted by the detailed balance
condition. The results pertain to the area of Algebraic Statistics (see, e.g. Pistone
et al. 2001; Drton et al. 2009; Gibilisco et al. 2010). Previous results in the same alge-
braic spirit were presented in Suomela (1979) and Mitrophanov (2004). We believe
the results here are new; some proofs depend on classical notions of graph theory that
are reviewed in some detail because of our particular context.

The discussion and the conclusions are briefly presented in Sect. 4.

2 Background

2.1 Reversible Markov process

The reversibility of the bivariate joint distribution in Eq. (1) gives a second param-
eterization of reversible Markov chains. In fact, a stochastic process (Xn)n≥0 with
state space V is 2-reversible and 2-stationary if, and only if, Eq. (1) holds. When the
process is a Markov chain, the distribution depends on the bivariate distributions only.
In particular, the process is 1-stationary: by summing over w ∈ V , we have

P (Xn = v) = P (Xn+1 = v) = π(v), v ∈ V, n ≥ 0.

Let V2 be the set of all subset of V of cardinality 2. The elements of V2 are the
edges of the full graph on V . The following parameterization of the two-dimensional
distributions has been used in Diaconis and Rolles (2006):

θv = P (Xn = v, Xn+1 = v) , v ∈ V,

θvw = P (Xn = v, Xn+1 = w) + P (Xn = w, Xn+1 = v)

= 2 P (Xn = v, Xn+1 = w) , vw ∈ V2. (2)

The number of parameters is N + (N
2

) = (N+1
2

)
; moreover it holds

1 =
∑

v,w∈V

P (Xn = v, Xn+1 = w) =
∑

v∈V

θv +
∑

vw∈V2

θvw,

hence θ = (θV , θV2) belongs to the simplex �(V ∪ V2).
Given an undirected graph G = (V,E ) such that P (Xn = v, Xn+1 = w) = 0

if vw /∈ E , then the vector of parameters θ = (θV , θE ) belongs to the convex set
�(V ∪ E ). We note that the vertices V are identified with loops of the transitions
because θv = P (Xn = v, Xn+1 = v).

The marginal probability π can be written using the θ parameters:

π(v) =
∑

w∈V

P (Xn = v, Xn+1 = w) = θv + 1

2

∑

w∈N(v)

θvw,

or, in matrix form,
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272 G. Pistone, M.P. Rogantin

π = θV + 1

2
�θE ,

where � is the incidence matrix of the graph G .

Example 1 (Running example) Consider the graph G = (V,E ) with V = {1, 2, 3, 4}
and E = {12, 23, 34, 14, 24

}
, see left side of Fig. 1. Here,

� =

⎡

⎢
⎢
⎣

12 23 34 14 24

1 1 0 0 1 0
2 1 1 0 0 1
3 0 1 1 0 0
4 0 0 1 1 1

⎤

⎥
⎥
⎦.

All π ’s are obtained this way if we admit positive probability on loops.

Proposition 1 1. The map

γ : �(V ∪ E ) � θ =
[
θV

θE

]

	−→ π = [IV
1
2�
]
[
θV

θE

]

∈ �(V )

is a surjective Markov map.
2. The image of (0, θE ), θE ∈ �(E ), is the convex hull of the half points of each

edge of the simplex �(V ) whose vertices are connected in G .

Proof 1. Each probability π is the image of θ = (π, 0E ).
2. If θV = 0, then π =∑w∈N(v)

1
2�vwθvw, where

∑
w∈N(v) θvw = 1 and �vw is the

vw-column of �. Hence, 1
2�vw is the the middle point of the v- and the w-vertex

of the simplex �(V ). 
�
Item 1 of the proposition leaves open the question of the existence of an element θ

such that θE > 0 for each π > 0. This is discussed in the next subsection. Item 2
shows that, while all π ’s can be obtained if loops are allowed (θV ≥ 0), only a convex
subset of �(V ) is obtained if we do not allow for loops (θV = 0).

2.2 From a positive π to positive transitions

Given π , the fiber γ −1(π) is contained in an affine space parallel to the subspace

ker
[
IV

1
2�
] =

{

θ ∈ R
V ∪E : θV + 1

2
�θE = 0

}

.

Each fiber γ −1(π), π > 0, contains special solutions. The solution (π, 0E ) is not of
interest because we want θE > 0. If the graph has full connections, G = (V, V2),
there is the independence solution θv = π(v)2, θvw = 2π(v)π(w).

If π(v) > 0, v ∈ V , a strictly positive solution is obtained as follows. Let d(v) be
the degree of the vertex v and define a transition probability by A(v,w) = 1/(2d(v))

123



Algebra of reversible 273

if vw ∈ E , A(v, v) = 1/2, and A(v,w) = 0 otherwise. A is the transition matrix of
a random walk on the graph G , stopped with probability 1/2. Define a probability on
V ×V with Q(v,w) = π(v)A(v,w). If Q(v,w) = Q(w, v), v,w ∈ V , we are done:
we have found a 2-reversible probability with marginal π and such that Q(v,w) > 0
if, and only if vw ∈ E . Otherwise, if Q(v,w) �= Q(w, v) for some v,w ∈ V , we turn
to the following Hastings-Metropolis construction.

Proposition 2 Let Q be a probability on V × V such that Q(v,w) > 0 if, and only
if, vw ∈ E or v = w. Write π(v) = ∑

w Q(v,w). Given f :]0, 1[×]0, 1[→]0, 1[ a
symmetric function such that f (x, y) ≤ x ∧ y, then

P(v,w) =
{

f (Q(v,w), Q(w, v)) if v �= w,

π(v) −∑w : w �=v P(v,w) if v = w.

is a 2-reversible probability on V ×V such that π(v) =∑w P(v,w) and P(v,w) > 0
if, and only if, vw ∈ E .

Proof For vw ∈ E we have P(v,w) = P(w, v) > 0, otherwise zero. As P(v,w) ≤
Q(v,w), v �= w, it follows

P(v, v) = π(v) −
∑

w : w �=v

P(v,w)

≥
∑

w

Q(v,w) −
∑

w : w �=v

Q(v,w)

= Q(v, v) > 0.

We have
∑

w P(v,w) = π(v) by construction and, in particular, P(v,w) is a proba-
bility on V × V . 
�
Remark 1 1. The proposition applies to

(a) f (x, y) = x ∧ y. This is the standard Hastings choice.
(b) f (x, y) = xy/(x + y). This was suggested by Barker.
(c) f (x, y) = xy. In fact, as y < 1, we have xy < x .

2. Given a joint probability P , the corresponding parameters

θvw = 2P(v,w) and θv = P(v, v)

are strictly positive for vw ∈ E and v ∈ V , otherwise zero. We have shown the
existence of a mapping from π in the interior of �(V ) to a vector of parameters
θ in the interior of �(V ∪ E ).

2.3 Parameterization of reversible Markov matrices

A q-reversible Markov matrix P supported on a graph G is parameterised by its non-
zero extradiagonal values Pv→w, i.e. by the elements of ×v∈V S◦(N(v)), where S◦
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274 G. Pistone, M.P. Rogantin

denotes the open solid simplex. As G is connected, the invariant probability of the
Markov matrix P is unique, therefore the joint 2-distribution is uniquely defined. If
moreover the Markov matrix is reversible, the joint 2-distribution is symmetric and
the θ parameters are computed from Eq. (2). Viceversa, given the θ ’s, the transition
matrix is given by

Pv→w = P (Xn = v, Xn+1 = w)

P (Xn = v)
= θvw

2θv +∑z∈N(v) θvz
. (3)

The mapping θ 	→ (Pv→w : (v → w) ∈ A ) is a rational mapping and the number of
degrees of freedom is #V + #E − 1.

Denoting 2θv + ∑
z∈D(v) θvz by κ(v), from (3), the detailed balance condition

follow:

κ(v)Pv→w = κ(w)Pw→v and
∑

v

κ(v) = 1.

2.4 A reversible Markov matrix is an auto-adjoint operator

The detailed balance condition π(v)Pv→w = π(w)Pw→v is equivalent to P being
adjoint as a linear operator on L2(π)

〈P f, g〉π = 〈 f, Pg〉π , f, g ∈ L2(π),

where 〈P f, g〉π =∑v

(∑
w Pv→w f (w)

)
g(v)π(v).

As L2(π) is isomorphic to the canonical Euclidian space R
V via the linear mapping

I : L2(π) � f 	→ diag(π)1/2 f ∈ R
V ,

where diag(π)1/2 is the diagonal matrix whose (v, v) entry is π(v)1/2, the Markov
matrix P is mapped to the symmetric matrix

S = I ◦ P ◦ I −1 = diag(π)1/2 P diag(π)−1/2.

This implies that a reversible Markov matrix is diagonalizable; in particular the left
eigenvector π and the right eigenvector 1 of P are both mapped to the eigenvector
(π(v)1/2 : v ∈ V ) of S.

Each element of the symmetric matrix S is positive if, and only if, the corresponding
element of P is positive. Each reversible Markov matrix P with invariant probability
π is parameterized by a unique symmetric matrix S.

Viceversa, let s(v,w) = s(w, v) > 0 be defined for vw ∈ E . Extend s to all pairs
v �= w, vw /∈ E by s(v,w) = 0. If

∑

w : w �=v

s(v,w)
√

π(w) ≤ √π(v), v ∈ V, (4)
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Algebra of reversible 275

we can define

S(v, v) = 1√
π(v)

⎛

⎝
√

π(v) −
∑

w �=v

s(v,w)
√

π(w)

⎞

⎠ ≥ 0

to get a symmetric non-negative matrix S = [s(v,w)], v, w ∈ V . The matrix

P = diag(π)−1/2S diag(π)1/2

has non-negative entries and it is a Markov matrix because

∑

w

Pv→w =
∑

w

π(v)−1/2s(v,w)π(w)1/2 = 1, v ∈ V .

The matrix P satisfies the detailed balance equations

π(v)Pv→w = π(v)1/2π(w)1/2s(v,w) = π(w)Pw→v.

We can rephrase the computations above as follows.

Proposition 3 The set of Markov matrices which have structure G and are reversible
with invariant probability π is parameterized by

{
Pv→w = π(v)−1/2π(w)1/2s(v,w), (v → w) ∈ A ,

Pv→v = 1 −∑w∈N(v) Pv→w

the polytope of all positive weight functions s : E → R>0 and (unnormalized) positive
probability π satisfying the inequalities (4).

2.5 Kolmogorov’s theorem

Let G = (V,E ) be a connected graph. For each closed path ω = v0v1 . . . vnv0, we
denote by r(ω) the reversed path r(ω) = v0vn . . . v1v0. The Kolmogorov’s character-
ization of reversibility based on closed paths is well known. However, we give here
a variation of the proof by Suomela (1979) as it is an introduction to the algebraic
arguments in the next section. The proof has been modified to allow null transitions. If
γ = v0v1 · · · vn−1v is any path connecting v0 to v we write Pγ to denote the product
of transitions along γ , i.e. Pγ =∏i=1,n Pvi−1→vi .

Theorem 1 (Kolmogorov’s theorem) The Markov irreducible matrix P is reversible
if, and only if, for all closed paths ω

Pω = Pr(ω). (5)
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276 G. Pistone, M.P. Rogantin

Proof Assume that the process is reversible. By multiplying together all detailed bal-
ance equations

κ(vi )Pvi →vi+1 = κ(vi+1)Pvi+1→vi , i = 0, 1, . . . n, vn+1 = v0,

and clearing the κ’s we obtain (5).
Viceversa, assume that all closed path have property (5). Fix a vertex v0 and con-

sider a generic path γ from v0 to v. First we prove that there exists a positive con-
stant κ(v), depending only on v, such that Pγ = κ(v)Pr(γ ). In fact, for any other
path γ ′ = v0v

′
1 . . . v′

n′v with the same endpoints v0 and v, γ r(γ ′) is a closed path.
Denoting by k′(v) the corresponding constant, Kolmogorov’s condition (5) implies
k(v) = k′(v). Moreover, for any vertex w connected with v, consider the path γw and
the corresponding constant k(w). We have:

Pγ Pv→w Pw→v = k(v)Prγ Pv→w Pw→v

Pγw Pw→v = k(v)Pr(γw) Pv→w

k(w)Pr(γw) Pw→v = k(v)Pr(γw) Pv→w

i.e. the detailed balance condition on w and v. 
�
In the next section, we will discuss the algebraic interpretation of Kolmogorov

condition.

3 Algebraic theory

The present section is devoted to the algebraic structure implied by the Kolmogorov’s
theorem for reversible Markov chains. We refer mainly to the textbook by Bollobás
(1998) for graph theory, and to the textbooks Cox et al. (1997) and Kreuzer and
Robbiano (2000) for computational commutative algebra. The theory of toric ideals
is treated in detail in Sturmfels (1996) and Bigatti and Robbiano (2001). General ref-
erences for algebraic methods in Stochastics are, e.g. Drton et al. (2009), Gibilisco et
al. (2010). Graver bases are presented in Sturmfels (1996) and Onn (2011).

3.1 Kolmogorov’s ideal

We denote by G = (V,E ) an undirected graph. We split each edge into two opposite
arcs to get a connected directed graph (without loops) denoted by D = (V,A ). The
arc going from vertex v to vertex w is denoted by v → w or (v → w). The graph D
is such that (v → v) /∈ A and (v → w) ∈ A if, and only if, (w → v) ∈ A . Because
of our application to Markov chains, we want two arcs on each edge, see Example 1.

The reversed arc is the image of the 1-to-1 function r : A → A defined by r(v →
w) = (w → v). A path is a sequence of vertices ω = v0v1 · · · vn such that (vk−1 →
vk) ∈ A , k = 1, . . . , n. The reversed path is denoted by r(ω) = vnvn−1 · · · v0. Equiv-
alently, a path is a sequence of inter-connected arcs ω = a1 . . . an, ak = (vk−1 → vk),
and r(ω) = r(an) . . . r(a1).
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Algebra of reversible 277

A closed path ω = v0v1 · · · vn−1v0 is any path going from a vertex v0 to itself;
r(ω) = v0vn−1 · · · v1v0 is the reversed closed path. In a closed path, any vertex can
be the initial and final vertex. If we do not distinguish any initial vertex, the equiva-
lence class of paths is called a circuit. A closed path is elementary if it has no proper
sub-closed-path, i.e. if does not meet twice the same vertex except the initial one v0.
The circuit of an elementary closed path is a cycle. We denote by C the set of cycles
of D .

Consider the commutative indeterminates P = [Pv→w], (v → w) ∈ A , and the
polynomial ring k[Pv→w : (v → w) ∈ A ], i.e. the set of all polynomials in the
indeterminates P and coefficients in the number field k.

For each path ω = a1 · · · an , where ak ∈ A , k = 1, . . . , n, we define the monomial
term Pω,

ω = a1 · · · an 	→ Pω =
n∏

k=1

Pak .

For each a ∈ A , let Na(ω) be the number of traversals of the arc a by the path ω.
Hence,

Pω =
∏

a∈A

P Na(ω)
a .

Note that ω 	→ Pω is a representation of the non-commutative concatenation of
arcs on the commutative product of indeterminates. Two closed paths associated to the
same circuit are mapped to the same monomial term because they have the same tra-
versal counts. The monomial term of a cycle is square-free because no arc is traversed
twice.

Figure 2 presents six cycles of the running example. This list of cycles is larger
than a basis of cycles in the undirected graph G , for instance {ωA, ωB}. We will see
below that all directed cycles are needed for the algebraic argument.

Definition 1 (K-ideal) The Kolmogorov’s ideal or K-ideal of the graph G is the ideal
of they ring k[Pv→w : (v → w) ∈ A ] generated by the binomials Pω − Pr(ω), where
ω is any circuit. The K-variety is the k-affine variety of the K-ideal.

Remark 2 The equivalence class of the closed path ω = v0v1v0 is, according to
our definition, a special circuit, in particular a cycle. The corresponding binomial

Fig. 2 The six cycles (not back and forth) of the graph on Fig. 1: ωA = (1 → 2)(2 → 4)(4 → 1), ωB =
(2 → 3)(3 → 4)(4 → 2), ωC = (1 → 2)(2 → 3)(3 → 2)(4 → 1), ωD = (ωA), ωE = r(ωB ), ωF =
r(ωC )
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278 G. Pistone, M.P. Rogantin

Pω − Pr(ω) is zero, because Pv0→v1 Pv1→v0 − Pv1→v0 Pv0→v1 = 0. If a closed path ω

contains v0v1v0, then Pω − Pr(ω) = Pv0→v1 Pv1→v0(Pω1 − Pr(ω1)), where ω1 is the
path obtained with the shortening v0v1v0 → v0. It follows that the Kolmogorov ideal
is generated by paths that do not show this back-and-forth behaviour. In the rest of the
paper all circuits and cycles are assumed to have this property.

Our main application concerns the real case k = R, but the combinatorial structure of
the K-ideal does not depend on the choice of a specific field. An interesting choice for
computations could be the Galois field k = Z2.

Proposition 4 (Examples of K-ideals) Let the Markov matrix P with structure G be
reversible.

1. The real vector Pv→w, (v → w) ∈ A , is a point of the intersection of the variety
of the K-ideal with S(D) = ×v∈V S(v), where

S(v) =
⎧
⎨

⎩
Pa ∈ R

out(v)
+ :

∑

a∈out(v)

Pa(w) ≤ 1

⎫
⎬

⎭
.

2. Let (Xn)n≥0 be the stationary Markov chain with transition P. Then the real vec-
tor of joint probabilities p(v,w) = P (Xn = u, Xn+1 = v) , (v → w) ∈ A , is a
point in the intersection of the K-variety and the simplex

S(A ) =
⎧
⎨

⎩
p ∈ R

A+ :
∑

a∈A

P(a) ≤ 1

⎫
⎬

⎭
.

Proof 1. It is the first part of the Kolmogorov’s theorem.
2. Let ω = v0 . . . vnv0 be a closed path. If π is the stationary probability, by mul-

tiplying the Kolmogorov’s equations by the product of the initial probabilities at
each transition, we obtain

π(v0)π(v1) · · · π(vn)Pv0→v1 · · · Pvn→v0

= π(v0)π(vn) · · · π(vn)Pv0→vn · · · Pv1→v0 ,

hence

p(v0, v1)p(v1, v2) · · · p(vn, v0) = p(v0, vn)p(vn, vn−1) · · · p(v1, v0).

However, in this case the Kolmogorov’s equations are trivially satisfied as
p(v,w) = p(w, v). 
�

The K-ideal has a finite basis because of the Hilbert’s basis theorem. Precisely, a
finite basis is obtained by restricting to cycles, which are finite in number. We under-
line that here we consider all the cycles, not just a generating set of cycles. The related
result by Mitrophanov (2004, Th. 1) is discussed in the next subsection.
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Algebra of reversible 279

Proposition 5 (Cycle basis of the K-ideal) The K-ideal is generated by the set of
binomials Pω − Pr(ω), where ω is cycle.

Proof Remember we consider only circuits without back-and-forth of the type vwv.
Let ω = v0v1 · · · v0 be a closed path which is not elementary and consider the least
k ≥ 1 such that vk = vk′ for some k′ < k. Then the sub-path ω1 between the
k′th vertex and the kth vertex is an elementary closed path and the residual path
ω2 = v0 · · · vk′vk+1 · · · v0 is closed and shorter than the original one. The arcs of ω

are in 1-to-1 correspondence with the arcs of ω1 and ω2, hence Na(ω) = Na(ω1) +
Na(ω2), a ∈ A . The procedure can be iterated and stops in a finite number of steps.
Hence, given any closed path ω, there exists a finite sequence of cycles ω1, . . . , ωl ,
such that the list of arcs in ω is partitioned into the lists of arcs of the ωi ’s. From
Pωi − Pr(ωi ) = 0, i = 1, . . . , l, it follows

Pω =
l∏

i=1

Pωi =
l∏

i=1

Pr(ωi ) = Pr(ω).


�
The K-ideal is generated by a finite set of binomials and this set has the same number
of elements as the set of undirected cycles of G . This is an involved way to prove all
stationary Markov processes on a tree are reversible (Kelly 1979, Lemma 1.5).

The cycle basis of Proposition 5 belongs to the special class of bases, namely
Gröbner bases. We refer to the textbooks Cox et al. (1997) and Kreuzer and Robbiano
(2000) for a detailed discussion. We review the basic definitions of this theory, which
is based on the existence of a monomial order �, i.e. a total order on monomial terms
which is compatible with the product. Given such an order, the leading term LT( f ) of
the polynomial f is defined. A generating set is a Gröbner basis if the set of leading
terms of the ideal is generated by the leading terms of monomials of the generating
set. A Gröbner basis is reduced if the coefficient of the leading term of each element
of the basis is 1 and no monomial in any element of the basis is in the ideal generated
by the leading terms of the other element of the basis. The Gröbner basis property
depends on the monomial order. However, a generating set is said to be a universal
Gröbner basis if it is a Gröbner basis for all monomial orders.

The finite algorithm for testing the Gröbner basis property depends on the definition
of syzygy. The syzygy of two polynomials f and g is the polynomial

Syz( f, g) = LT(g)

gcd(LT( f ), LT(g))
f − LT( f )

gcd(LT( f ), LT(g))
g.

A generating set of an ideal is a Gröbner basis if, and only if, it contains the syzygy
Syz( f, g) whenever it contains the polynomials f and g (see Cox et al. 1997, Ch 6 or
Kreuzer and Robbiano 2000, Th. 2.4.1 p. 111).

Proposition 6 (Universal G-basis) The cycle basis of the K-ideal is a reduced univer-
sal Gröbner basis.
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Proof Choose any monomial order � and let ω1 and ω2 be two cycles with ωi �
r(ωi ), i = 1, 2. Assume first they do not have any arc in common. In such a case
gcd(Pω1 , Pω2) = 1 and the syzygy is

Syz(Pω1 − Pr(ω1), Pω2 − Pr(ω2))

= Pω2(Pω1 − Pr(ω1)) − Pω1(Pω2 − Pr(ω2)) = Pω1 Pr(ω2) − Pr(ω1) Pω2 ,

which belongs to the K-ideal.
Let now α be the common part, that is gcd(Pω1 , Pω2) = Pα . The syzygy of

Pω1 − Pr(ω1) and Pω2 − Pr(ω2) is

Pω1−α Pr(ω2) − Pω2−α Pr(ω1) = Prα(Pω1−α Pr(ω2)−rα − Pω2−α Pr(ω1)−rα),

which again belongs to the K-ideal because ω1 − α + r(ω2 − α) is a cycle. In fact
ω1 −α and ω2 −α have in common the extreme vertices, corresponding to the extreme
vertices of α. Notice that α is the common part of ω1 and ω2 only if it is traversed
in the same direction by the both cycle. The previous proof does not depend on the
choice of the leading term of the binomials, therefore the Gröbner basis is universal.
The Gröbner basis is reduced because no monomial of a cycle can divide a monomial
of a different cycle. 
�
Example 2 (Running example continue) Figure 3 is an illustration of the proof. In fact,
from

P1→2 P2→4 P4→1 = P1→4 P4→2 P2→1

P1→2 P2→3 P3→4 P4→1 = P1→4 P4→3 P3→2 P2→1

it follows

P4→1 P1→2 P2→1 P1→4 (P2→3 P3→4 p4→2 − P2→4 P4→3 P3→2) = 0

which, in turn, gives the binomial of ωB if P4→1 P1→2 P2→1 P1→4 �= 0 and, therefore,
the factor Pα Pr(α) can be cleared. This is confirmed by the use of a symbolic algebraic
software such as CoCoA, see CoCoATeam (online). This computation shows that the
ωB equation does not belong to the ideal generated by the ωA, ωC equations unless we
add the condition P4→1 P1→2 P2→1 P1→4 �= 0. Notice that ωA and ωC are the cycles
obtained from the spanning tree 3 → 4 → 1 → 2.

Example 3 (Running example: Monomial basis of the quotient ring) Take any order
on vertexes, e.g. 1 ≺ 2 ≺ 3 ≺ 4, and derive a lexicographic order on arcs: 1 → 2 ≺
1 → 4 ≺ 2 → 1 ≺ 2 → 3 ≺ 2 → 4 ≺ 3 → 2 ≺ 3 → 4 ≺ 4 → 1 ≺ 4 → 2 ≺
4 → 3. Take the same order on indeterminates Pa, a ∈ A , and the lexicographic
order on monomials. We check that the leading terms of the binomials in the G-basis
are Pr(ωA), Pr(ωB ), Pr(ωC ), see Figure 2. The exponents of the leading terms of the
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Fig. 3 Running example: illustration of the proof of Proposition 6

G-basis are

A 1 → 2 1 → 4 2 → 1 2 → 3 2 → 4 3 → 2 3 → 4 4 → 1 4 → 2 4 → 3
N (r(ωA)) 0 1 1 0 0 0 0 0 1 0
N (r(ωB )) 0 0 0 0 1 1 0 0 0 1
N (r(ωC )) 0 1 1 0 0 1 0 0 0 1

Each monomial P N =∏a∈A P Na
a , N ∈ Z

A≥ , is reduced by the K-ideal to a monomial
whose exponent does not contain any of the counts in the table. E.g. P1→4 P2→1 P3→2 is
an element of the monomial basis of the quotient of the polynomial ring by the K-ideal.

3.2 Cycle and cocycle spaces

We adapt to our context some standard tools of algebraic graph theory, namely the
cycle an cocycle spaces, see e.g. (Bollobás 1998, II.3).

Let C be the set of cycles without back-and-forth. For each such cycle ω ∈ C we
define the cycle vector of ω to be z(ω) = (za(ω) : a ∈ A ), where

za(ω) =

⎧
⎪⎨

⎪⎩

+1 if a is an arc of ω,

−1 if r(a) is an arc of ω,

0 otherwise.

We observe that the definition above makes no sense for a back-and-forth, this case
being of no use for our purpose.
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Fig. 4 Example of cocycle vector. All arcs not shown take value 0

Note that zr(a)(ω) = −za(ω). If z+ and z− are the positive and the negative part
of z, respectively, then z+

a (ω) = Na(ω) and z−
a (ω) = Na(r(ω)). It follows that

Pω = P N (ω) = Pz+(ω) =∏a∈A P
z+

a (ω)
a and

Pω − Pr(ω) = Pz+(ω) − Pz−(ω). (6)

More generally, the definition can be is extended to any circuit ω by defining

za(ω) = Na(ω) − Nr(a)(ω).

The equality z+(ω) = N (ω) holds if, and only if, a ∈ ω implies r(a) /∈ ω, a ∈ A .
Let Z(D) be the cycle space, i.e. the vector space generated in R

A by the cycle
vectors.

For each proper subset B of the set of vertices, ∅ �= B � V we define the cocycle
vector of B to be u(B) = (ua(B) : a ∈ A ), with

ua(B) =

⎧
⎪⎨

⎪⎩

+1 if a exits from B,

−1 if a enters into B,

0 otherwise.

a ∈ A

See an example in Fig. 4. Note that ur(a)(B) = −ua(B).
Let U (D) be the cocycle space, i.e. the vector space generated in R

A by the cocycle
vectors. Let U be the matrix whose rows are the cocycle vectors u(B), ∅ �= B � V .
The matrix U = [ua(B)]∅�=B�V,a∈A is the cocycle matrix.

The cycle space and the cocycle space are orthogonal in R
A . In fact, for each cycle

vector z(ω) and cocycle vector u(B), we have

zr(a)(ω)ur(a)(B) = (−za(ω))(−ua(B)) = za(ω)ua(B), a ∈ A ,

so that

z(ω) · u(B) =
∑

a∈A

za(ω)ua(B) =
∑

a∈ω

za(ω)ua(B) +
∑

r(a)∈ω

za(ω)ua(B)

= 2
∑

a∈ω

za(ω)ua(B) = 2

⎡

⎣
∑

a∈ω,ua(B)=+1

1 −
∑

a∈ω,ua(B)=−1

1

⎤

⎦ = 0.
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Table 1 Running example

1 → 2 1 → 4 2 → 3 2 → 4 3 → 4 2 → 1 4 → 1 3 → 2 4 → 2 4 → 3

12 1 0 0 0 0 1 0 0 0 0
14 0 1 0 0 0 0 1 0 0 0
23 0 0 1 0 0 0 0 1 0 0
24 0 0 0 1 0 0 0 0 1 0
34 0 0 0 0 1 0 0 0 0 1
{1} 1 1 0 0 0 −1 −1 0 0 0
{2} −1 0 1 1 0 1 0 −1 −1 0
{3} 0 0 −1 0 1 0 0 1 0 −1
{4} 0 −1 0 −1 −1 0 1 0 1 1
{12} 0 1 1 1 0 0 −1 −1 −1 0
{13} 1 1 −1 0 1 −1 −1 1 0 −1
{14} 1 0 0 −1 −1 −1 0 0 1 1
{23} −1 0 0 1 1 1 0 0 −1 −1
{24} −1 −1 1 0 −1 1 1 −1 0 1
{34} 0 −1 −1 −1 0 0 1 1 1 0
{123} 0 1 0 1 1 0 −1 0 −1 −1
{124} 0 0 1 0 −1 0 0 −1 0 1
{134} 1 0 −1 −1 0 −1 0 1 1 0
{234} −1 −1 0 0 0 1 1 0 0 0
z(ωA) 1 −1 0 1 0 −1 1 0 −1 0
z(ωB ) 0 0 1 −1 1 0 0 −1 1 −1

Model matrix A and a basis of Z(D)

It is shown, for example, in the previous references that the cycle space is the orthog-
onal complement of the cocycle space for undirected graphs. In our setting, it is the
orthogonal complement relative to the subspace of vectors x such that xr(a) = −xa .
As we are interested in elements of the cycle space with integer entries, i.e. those
elements z = (za : a ∈ A ) of the cycle space that can be exponents of a monomial
Pz =∏a∈A Pza

a , we are going to use the following matrix encoding of our problem.

Definition 2 (Model matrix) Consider the matrix E = [Ee,a]e∈E ,a∈A whose ele-
ment Ee,a in position (e, a) is 1 if the arc a is one of the directions of the edge e, zero
otherwise. Let U be the cocycle matrix. The model matrix is the block matrix

A =
[

E
U

]

.

It follows Z(D) = ker A. A lattice basis of the lattice Z(D) = ker A ∩ Z
A is a linear

basis of ker A with integer entries.

The matrix A has dimension #E +#V −1. In fact E can be re-arranged as [I#E |I#E ],
with I#E the identity matrix, and U has #V − 1 linearly independent rows, the dimen-
sion of the cocycle space.

Example 4 (Running example continue) Table 1 shows the matrix A and a lattice basis
of Z(D) computed with CoCoA. The top matrix is the E matrix; the bottom matrix is
the U matrix, where three linearly independent rows are highlighted. The two bottom
row vectors are the lattice basis.
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3.3 Toric ideal

We want to show that the K-ideal is the toric ideal of the model matrix A, see Defi-
nition 2. Basic definitions and theory are in (Sturmfels, 1996, Ch 4), see also Bigatti
and Robbiano (2001).

Consider the polynomial ring Q[Pa : a ∈ A ] and the Laurent polynomial ring
Q[t±1

e , t±1
B : e ∈ E ,∅ �= B � V ], together with their homomorphism h defined by

h : Pa 	−→
∏

e

t
Ee,a
e

∏

B

tua(B)
B = t A(a). (7)

As Ee,a = Ee,r(a) for all edge e and arc a, the first factor in (7) is a symmetric function

s(v,w) =∏e t
Ee,v→w
e = s(w, v). We could write

h : Pv→w 	−→ s(v,w)
∏

B

tuv→w(B)
B . (8)

The kernel I (A) of h is called the toric ideal of A,

I (A) =
{

f ∈ Q[Pa : a ∈ A ] : f (t A(a) : a ∈ A ) = 0
}

.

The toric ideal I (A) is a prime ideal and the binomials

Pz+ − Pz−
, z ∈ Z

A , Az = 0,

are a generating set of I (A) as a Q-vector space. A finite generating set of the ideal
is formed by selecting a finite subset of such binomials. The basis we find is a Graver
basis.

We recall the definition of Graver basis as it is given in De Loera et al. (2008)
and we apply it to the cycle lattice Z(D). We introduce a partial order and its set of
minimal elements as follows.

Definition 3 (Graver basis) Let z1 and z2 be two element of the cycle lattice Z(D).

1. z1 is conformal to z2, relation denoted by z1 � z2, if the component-wise product
is non-negative (i.e. z1 and z2 are in the same quadrant) and |z1| ≤ |z2| compo-
nent-wise, i.e. z1,az2,a ≥ 0 and z1,a ≤ z2,a for all a ∈ A .

2. A Graver basis of Z(D) is the set of the minimal elements with respect to the
conformity partial order �.

Proposition 7

1. For each cycle vector z ∈ Z(D), z = ∑
ω∈C λ(ω)z(ω), λ(ω) ∈ Q, there exist

cycles ω1, . . . , ωn ∈ C and positive integers α(ω1), . . . , α(ωn), such that z+ ≥
z+(ωi ), z− ≥ z−(ωi ), i = 1, . . . , n, and

123



Algebra of reversible 285

z =
n∑

i=1

α(ωi )z(ωi ).

2. The set {z(ω) : ω ∈ C } is a Graver basis of Z(D).

Proof 1. For all ω ∈ C we have −z(ω) = z(r(ω)), so that we can assume all the
λ(ω)’s to be non-negative. Notice also that we can arrange things in such a way
that at most one of the two direction of each cycle has a non-zero coefficient. We
define

A+(z) = {a ∈ A : za > 0} , A−(z) = {a ∈ A : za < 0} ,

and consider two subgraph of D with a the set of arcs restricted to A+, A−,
respectively. We note that rA+(z) = A−(z) and rA−(z) = A+(z); in particular,
both A+(z), A−(z) are not empty. We drop from now on the dependence on z for
ease of notation.
We show first there is a cycle whose arcs are in A+. If not, if a cycle of full graph
D has one arc in A+, it would exists vertex v such that out(v) ∩ A+ = ∅ while
in(v) ∩ A+ �= ∅. Let u(v) be the cocycle vector of {v}; we derive a contradiction
to the assumption z · u(v) = 0. In fact,

z · u(v) =
∑

a∈A+

zaua(v) +
∑

a∈A−

zaua(v)

=
∑

a∈A+

zaua(v) +
∑

a∈A+

zr(a)ur(a)(v) = 2
∑

a∈A+

zaua(v) �= 0

because each of the terms zaua(v), a ∈ A+, is either 0 or equal to −za < 0 if
a ∈ in(v).
For each cycle ω1 in A+ let α(ω1) ≥ 1 be an integer such that z+−α(ω1)z+(ω1) ≥
0 and it is zero for at least one a. The vector z1 = z − α(ω1)z(ω1) belongs to the
cycle space Z(D), and moreover A+(z1) ⊂ A+(z).
By repeating the same step a finite number of times we obtain a new representation
of z in the form z =∑n

i=1 α(ωi )z(ωi ) where the support of each α(ωi )z+(ωi ) is
contained in A+. It follows

z+ =
n∑

i=1

α(ωi )z
+(ωi ) and z− =

n∑

i=1

α(ωi )z
−(ωi ). (9)

2. In the previous decomposition each z(ωi ), i = 1, . . . , n, is conformal to z. In
fact, from z+ ≥ z+(ωi ) and z− ≥ z−(ωi ), it follows zaza(ωi ) = z+

a z+
a (ωi ) −

z−
a z−

a (ωi ) ≥ 0 and |za(ωi )| = z+
a (ωi ) − z−

a (ωi ) ≤ z+
a + z−

z = |za |. Therefore
z(ωi ) � z. 
�
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Fig. 5 Running example. Cycle space

Fig. 6 Running example. Computation of the conformal representation of the z of Fig. 5

Example 5 (Running example continue) We give an illustration of the previous proof.
Consider the cycle vectors

1 → 2 2 → 1 2 → 3 3 → 2 3 → 4 4 → 3 4 → 1 1 → 4 2 → 4 4 → 2
z(ωA) = ( 1 −1 0 0 0 0 1 −1 1 −1 )

z(ωB) = ( 0 0 1 −1 1 −1 0 0 −1 1 )

z(ωC ) = ( 1 −1 1 −1 1 −1 1 −1 0 0 )

and the element of the cycle space z = z(ωA) + 2z(ωB) + 2z(ωC ), see Figure 5. We
have

z = z(ωA) + 2z(ωB) + 2z(ωC) = (3,−3, 4,−4, 4,−4, 0, 0,−1, 1)

z+ = z+(ωB) + 3z+(ωC) = (3, 0, 4, 0, 4, 0, 0, 0, 0, 1)

as it is illustrated in Fig. 6.

Theorem 2 (The K-ideal is toric)

1. The K-ideal is the toric ideal of the matrix A.
2. The binomials of the cycles form a Graver basis of the K-ideal.

Proof 1. For each cycle ω the cycle vector z(ω) belongs to Z(D). From Eq. (6),
Pz+(ω) − Pz−(ω) = Pω − Pr(ω), therefore the K-ideal is contained in the toric
ideal I (A) because of Proposition 5.
To prove the equality we must show that each binomial in I (A) belongs to the
K-ideal. From Proposition 7.1, it follows that

Pz+ − Pz− =
n∏

i=1

(Pz+(ωi ))α(ωi ) −
n∏

i=1

(Pz−(ωi ))α(ωi )

belongs to the K-ideal.
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2. The Graver basis of a toric ideal is the set of binomials whose exponents are the
positive and negative parts of a Graver basis of Z(D). From Propositions 7 and
the previous item the proof follows. 
�

3.4 Non-zero K-ideal

The knowledge that the K-ideal is toric is relevant, because the homomorphism defi-
nition in Eq. (8) provides a parametric representation of the variety. In particular, the
strictly positive Pa, a ∈ A , are given by:

Pv→w = s(v,w)
∏

B

tuv→w(B)
B

= s(v,w)
∏

B : v∈B,w/∈B

tB

∏

B : w∈B,v /∈B

t−1
B , s(v,w) > 0, tB > 0. (10)

We observe that the first set of parameters, s(v,w), is a function of the edge, while
the second set of parameters, tB , represents the deviation from symmetry. In fact, as

Pw→v = s(w, v)
∏

B

tuw→v(B)
B = s(v,w)

(
∏

B

tuv→w(B)
B

)−1

,

we have Pv→w =
(∏

B tuv→w(B)
B

)2
Pw→v , so that Pv→w = Pw→v if, and only if,

(
∏

B

tuv→w(B)
B

)2

= 1, v ∈ V .

As the rows of E are linearly independent, the s(v,w)’s parameters carry #E degrees
of freedom to represent a generic symmetric matrix. The second set of parameters is
not identifiable because the rows of the U matrix are not linearly independent. The
parameterization (10) can be used to derive an explicit form of the invariant probability.
All properties of the parameterization are collected in the following Proposition.

Theorem 3 Consider the strictly non-zero points on the K-variety.

1. The symmetric parameters s(e), e ∈ E , are uniquely determined in Eq. (10). The
parameters tB, ∅ �= B � V are confounded by ker U = {U t t = 0

}
.

2. An identifiable parameterization is obtained by taking a subset of parameters
corresponding to linearly independent rows, denoted by tB, B ⊂ S :

Pv→w = s(v,w)
∏

B⊂S : v∈B,w/∈B

tB

∏

B⊂S : w∈B,v /∈B

t−1
B . (11)
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3. The detailed balance equations, κ(v)Pv→w = κ(w)Pw→v , are verified by

κ(v) ∝
∏

B : v∈B

t−2
B . (12)

Proof 1. We have log P = Et s + U t t for P = (Pv→w : (v → w) ∈ A ), s =
(s(e) : e ∈ E ), t = (tB : ∅ �= B � V ). If Et s1 + U t t1 = Et s2 + U t t2, then
Et (s1 − s2) = 0 because the rows of E are orthogonal to the rows of U . Hence,
s1 = s2 because E has full rank. Finally, U t t1 = U t t2.

2. The sub-matrix of A formed by E and by the rows of U in S has full rank.
3. Using Eqs. (10), we have:

κ(v) s(v,w)
∏

B : v∈B,w/∈B

tB

∏

B : w∈B,v /∈B

t−1
B = κ(w) s(v,w)

∏

B : w∈B,v /∈B

tB

×
∏

B : v∈B,w/∈B

t−1
B

which is equivalent to

κ(v)
∏

B : v∈B,w/∈B

t2
B = κ(w)

∏

B : w∈B,v /∈B

t2
B .

By multiplying both terms in the equality by
∏

B : v∈B,w∈B t2
B , we obtain

κ(v)
∏

B : v∈B

t2
B = κ(w)

∏

B : w∈B

t2
B,

so that κ(v) = ∏
B : v∈B t−2

B depends only on v and satisfy the detailed balance
condition. 
�

We are now in the position of stating an algebraic version of Kolmogorov’s theorem.

Definition 4 The detailed balance ideal is the ideal of the ring

Q[κ(v) : v ∈ V, Pv→w, (v → w) ∈ A ]

generated by the polynomials

∏

v∈V

κ(v) − 1,

κ(v)Pv→w − κ(w)Pv→w, (v → w) ∈ A .

The first polynomial in the list of generators,
∏

v∈V κ(v) − 1, assures that the κ’s are
not zero.
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Theorem 4

1. A point P = [Pv→w]v→w∈A with non-zero components belongs to the variety of
the K-ideal if, and only if, there exists κ = (κ(v) : v ∈ V ) such that (κ, P) belongs
to the variety of the detailed balance ideal.

2. The detailed balance ideal is a toric ideal.
3. The K-ideal is the κ-elimination ideal of the detailed balance ideal.

Proof 1. One direction is the Kolmogorov’s theorem. The other direction is a rephras-
ing of Item 3 of Theorem 3.

2. This ideal is the kernel of the homomorphism defined by (8), i.e. Pv→w 	−→
s(v,w)

∏
B tuv→w(B)

B together with κ(v) 	→∏
B : v∈B t−2

B .
3. The elimination ideal is generated by dropping the parametric equations of the

indeterminates to be eliminated. 
�

3.5 Parameterization of reversible transitions

The parameterization in Theorem 3, Item 2, is to be compared to that in Proposition 3.
Both split the parameter space into a representation of the invariant probability and
a generic symmetric function. The latter is a special case of the former. In fact, it is
obtained by the use of the basis of the cocycle space where each B is the set containing
one vertex.

The parameterization of reversible Markov matrices is obtained by adding to the
representation in Eq. (11) the relevant inequalities. Let us check first the degrees of
freedom. As a reversible Markov matrix supported by a connected graph G is param-
eterized by the joint 2-distributions of the stationary Markov chain, the number of
degrees of freedom is #V + #E − 1, i.e. the cyclotomic number of the graph G . In the
parameterization of Proposition 3 the probability π carries #V −1 degrees of freedom,
therefore s must carry #E degrees of freedom.

Theorem 5 Let P be a matrix with supporting graph G = (V,E ). Let S be a family
of subsets of V such that the cocycle vectors u B, B ∈ S , span the cocycle space.

1. P is a reversible Markov matrix if, and only if, there exists a non-negative sym-
metric function s : V × V → R>0 which is supported on the edges E and there
exist positive parameters tB > 0, B ∈ S , such that

Pv→w = s(v,w)
∏

B∈S : v∈B,w/∈B

tB

∏

B∈S : w∈B,v /∈B

t−1
B , (v → w) ∈ A (13)

and the invariant probability is proportional to κ =∏B�v t−2
B .

2. For v ∈ V ,

∏

B�v

t−1
B ≥

∑

w∈N (v)

s(v,w)
∏

B�w

t−1
B .

3. The parameters s(e), e ∈ E and κ(v), v ∈ V , are identifiable, while the param-
eters tB, B ∈ S , are identifiable if u B, B ∈ S , is a basis of the cocycle space.
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Proof 1. It follows from (11) and (12) and

κ(w)1/2κ(v)−1/2 =
∏

B : v∈B tB
∏

B : w∈B tB
=

∏

B⊂S : v∈B,w/∈B

tB

∏

B⊂S : w∈B,v /∈B

t−1
B .

2. It follows from Eq. (13) as P is a transition probability.
3. Assume there exists two set of parameters t (i), s(i), i = 1, 2 giving the same P ,

and define t = t (1)/t (2), s = s(1)/s(2), κ(v) = κ(1)(v)/κ(2)(v). It follows

1 = s(v,w)
∏

B∈S : v∈B,w/∈B

tB

∏

B∈S : w∈B,v /∈B

t−1
B , (v → w) ∈ A ,

1 = s(w, v)
∏

B∈S : w∈B,v /∈B

tB

∏

B∈S : v∈B,w/∈B

t−1
B , (w → v) ∈ A ,

hence s(v,w)s(w, v) = s(v,w)2 = 1. In turn we get

1 =
⎛

⎝
∏

B∈S : v∈B,w/∈B

tB

∏

B∈S : w∈B,v /∈B

t−1
B

⎞

⎠

2

= κ(v)

κ(w)
.

The identifiability of the tB’s follows from

log Pv→w = log s(v,w) +
∑

B∈S

(log tB)u B .


�

Example 6 (Running example continue) An over-parameterization of two transition
probabilities of the K -variety is:

P3→4 = s(3, 4) t{3} t{1,3} t{2,3} t{1,2,3} t−1
{4} t−1

{1,4} t−1
{2,4} t−1

{1,2,4},

P4→3 = s(3, 4) t{4} t{1,4} t{2,4} t{1,2,4} t−1
{3} t−1

{1,3} t−1
{2,3} t−1

{1,2,3}.

By choosing the cocycle basis S = {{1}, {3}, {1, 2}}, we have:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κ(1) = t−2
{1} t−2

{1,2}
κ(2) = t−2

{1,2}
κ(3) = t−2

{3}
κ(4) = 1

⇐⇒

⎧
⎪⎨

⎪⎩

t{1} = κ(1)−1/2 κ(2)1/2

t{3} = κ(3)−1/2

t{1,2} = κ(2)−1/2

.
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The transition matrix parameterized by s(e), e ∈ E and tB, S ∈ S is

⎡

⎢
⎢
⎢
⎣

1 2 3 4

1 � s(1, 2) t−1
{1} 0 s(1, 4) t−1

{1} t−1
{1,2}

2 s(1, 2) t{1} � s(2, 3) t−1
{1,2} t{3} s(2, 4) t−1

{1,2}
3 0 s(2, 3) t−1

{3} t{1,2} � s(3, 4) t−1
{3}

4 s(1, 4) t{1} t{1,2} s(2, 4) t{1,2} s(3, 4) t{3} �

⎤

⎥
⎥
⎥
⎦

,

where the diagonal terms are uniquely defined if the following set of inequalities is
true

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ≥ s(1, 2)t{1,2} + s(1, 4)

1 ≥ s(1, 2)t{1}t{1,2} + s(2, 3)t{3} + s(2, 4)

1 ≥ s(2, 3)t{1,2} + s(3, 4)

1 ≥ s(1, 4)t{1}t{1,2} + s(2, 4)t{1,2} + s(3, 4)t{3}

.

4 Discussion

The algebraic analysis of statistical models of the type p ∝ t A where A is an integer
matrix has been first introduced in Geiger et al. (2006), where an implicit binomial
form of the model is derived from the monomial form.

Our analysis differs from that in two respects. First, we move backwards from the
binomial form represented by the Kolmogorov’s condition to the monomial form. Sec-
ond, we parameterize the transition probabilities, so that the normalization requires
more than one constant.

Our parameterization of a reversible Markov matrix is based on a generic weight
function s(e) on the edges e ∈ E of the structure graph G and a monomial form of
the invariant probability. When the basis of the cocycle space is given by the verte-
ces of the graph, the parameterization is identical to that the classical form Pv→w =
π(v)−1/2π(w)1/2s(v,w). The monomial form of the unnormalized invariant proba-
bility κ(v) = ∏

B∈B : v∈B t−2
B suggests the use of a family of sets B smaller than a

cocycle basis S in order to get a parsimonious statistical model. For example, if the
graph G is a square N × N grid, a coarse-grained model could use n × n sub-grids,
1 < n < N .

One distinct advantage of the implicit binomial form is its ability to fully describe
the closure of its strictly positive part, i.e. the extended exponential family. The com-
putation of a Hilbert basis of the non-negative integer kernel of the cocycle matrix
U leads to a parameterization of the extended exponential family as in Malagò and
Pistone (2010), see also Rauh et al. (2011). However, in this case the border of the
model appears to consist simply on the deletion of edges in the support graph.

It follows from general properties of toric ideals that a Graver basis is a universal
Gröbner basis and that a universal Gröbner basis is a Markov basis, Sturmfels (1996).
The Markov basis property is related with the connectedness of random walks on the

123



292 G. Pistone, M.P. Rogantin

fibers of A, see Diaconis and Sturmfels (1998) and subsequent literature on MCMC
simulation. In this case it would be a simulation of a random reversible Markov matrix.

Finally, the knowledge of a Graver basis for the K-ideal provides efficient algo-
rithms for discrete optimization, see De Loera et al. (2008), Onn (2011).
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