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Abstract In this paper, we give an explicit and algorithmic description of Graver
basis for the toric ideal associated with a simple undirected graph and apply the basis
for testing the beta model of random graphs by Markov chain Monte Carlo method.
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1 Introduction

Random graphs and their applications to the statistical modeling of complex networks
have been attracting much interest in many fields, including statistical mechanics,
ecology, biology and sociology (e.g. Newman 2003; Goldenberg et al. 2009). Statis-
tical models for random graphs have been studied since Solomonoff and Rapoport
(1951) and Erdős and Rényi (1960) introduced the Bernoulli random graph model.
The beta model generalizes the Bernoulli model to a discrete exponential fam-
ily with vertex degrees as sufficient statistics. The beta model was discussed by
Holland and Leinhardt (1981) in the directed case and by Park and Newman (2004),
Blitzstein and Diaconis (2010) and Chatterjee et al. (2011) in the undirected case. The
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192 M. Ogawa et al.

Rasch model (Rasch 1980), which is a standard model in the item response theory,
is also interpreted as a beta model for undirected complete bipartite graphs. In this
article, we discuss the random sampling of graphs from the conditional distribution in
the beta model when the vertex degrees are fixed.

In the context of social network, the vertices of the graph represent individuals and
their edges represent relationships between individuals. In the undirected case, the
graphs are sometimes restricted to be simple, i.e., no loops or multiple edges exist. The
sample size for such cases is at most the number of edges of the graph and is often small.
The goodness of fit of the model is usually assessed by large sample approximation of
the distribution of a test statistic. When the sample size is not large enough, however, it
is desirable to use a conditional test based on the exact distribution of a test statistic. For
the general background on conditional tests and Markov bases, see Drton et al. (2009).

Random sampling of graphs with a given vertex degree sequence enables us to
numerically evaluate the exact distribution of a test statistics for the beta model.
Blitzstein and Diaconis (2010) developed a sequential importance sampling algo-
rithm for simple graphs which generates graphs through operations on vertex degree
sequence. In this article, we construct a Markov chain Monte Carlo algorithm for sam-
pling graphs by using the Graver basis for the toric ideal arising from the underlying
graph of the beta model.

A Markov basis (Diaconis and Sturmfels 1998) is often used for sampling from dis-
crete exponential families. Algebraically, a Markov basis for the underlying graph of
the beta model is defined as a set of generators of the toric ideal arising from the under-
lying graph of the beta model. A set of graphs with a given vertex degree sequence
is called a fiber for the underlying graph of the beta model. A Markov basis for the
underlying graph of the beta model is also considered as a set of Markov transition
operators connecting all elements of every fiber. Petrović et al. (2010) discussed some
properties of the toric ideal arising from the model of Holland and Leinhardt (1981)
and provided Markov bases of the model for small directed graphs. Properties of toric
ideals arising from a graph have been studied in a series of papers by Ohsugi and Hibi
(1999a,b, 2005).

The Graver basis is the set of primitive binomials of the toric ideal. Applications
of the Graver basis to integer programming are discussed in Onn (2010). Since the
Graver basis is a superset of any minimal Markov basis, the Graver basis is also a
Markov basis, and therefore, connects every fiber. When the graph is restricted to be
simple, however, a Markov basis does not necessarily connect all elements of every
fiber. A recent result by Hara and Takemura (2010) implies that the set of square-free
elements of the Graver basis connects all elements of every fiber of simple graphs
with a given vertex degree sequence. Thus, if we have the Graver basis, we can sample
graphs from any fiber, with or without the restriction that graphs are simple, in such a
way that every graph in the fiber is generated with positive probability.

In the sequential importance sampling algorithm of Blitzstein and Diaconis (2010),
the underlying graph for the model was assumed to be complete, i.e., all the edges have
positive probability. In our approach, we can allow that some edges are absent from
the beginning (structural zero edges in the terminology of contingency table analysis),
such as the bipartite graph for the case of the Rasch model. In fact, the Graver basis for
an arbitrary graph is obtained by restriction of the Graver basis for the complete graph
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Graver basis for an undirected graph and its application 193

to the existing edges of G (cf. Proposition 4.13 of Sturmfels 1996). Moreover our
algorithm can be applied not only for sampling simple graphs but also for sampling
general undirected graphs without substantial adjustment. These are the advantages
of the Graver basis.

The Graver basis for small graphs can be computed by a computer algebra system
such as 4ti2 (4ti2 team). For even moderate-sized graphs, however, it is difficult to
compute the Graver basis via 4ti2 in a practical amount of time. In this article, we first
provide a complete description of the Graver basis for an undirected graph. In general,
the number of elements of the Graver basis is too large. Therefore, we construct an
adaptive algorithm for sampling elements from the Graver basis, which is enough for
constructing a connected Markov chain over any fiber. The recent paper of Reyes et al.
(2012) discusses the Graver basis for an undirected graph and gives a characterization
of the Graver basis. We give a new description of the Graver basis, which is more
suitable for sampling elements from the Graver basis.

The organization of this paper is as follows. In Sect. 2, we give a brief review on
some statistical models for random graphs and clarify the connection between the
models and toric ideals arising from graphs. In Sect. 3, we provide an explicit descrip-
tion of the Graver basis for the toric ideal associated with an undirected graph. Section
4 gives an algorithm for random sampling of square-free elements of the Graver basis.
In Sect. 5, we apply the proposed algorithm to some data sets and confirm that it works
well in practice. We conclude the paper with some remarks in Sect. 6.

2 The beta model of random graphs

In this section, we give a brief review of the beta model for undirected graphs according
to Chatterjee et al. (2011).

Let G be an undirected graph with n vertices V (G) = {1, 2, . . . , n}. Here, we
assume that G has no loop. Let E = E(G) be the set of edges. For each edge {i, j} ∈ E ,
let a non-negative integer xi j be the weight for {i, j} and denote x = {xi j | {i, j} ∈ E}.
x is considered as an |E | dimensional integer vector. We assume that an observed
graph H is generated by independent binomial distribution B(ni j , pi j ) for each edge
{i, j} ∈ E , i.e., xi j ∼ B(ni j , pi j ) with

pi j := eβi +β j

1 + eβi +β j
= αiα j

1 + αiα j
, αi = eβi .

Then the probability of H is described as

P(H) ∝
∏

{i, j}∈E

p
xi j
i j (1 − pi j )

ni j −xi j

= 1∏
{i, j}∈E (1 + αiα j )

ni j

∏

{i, j}∈E

(αiα j )
xi j

=
∏

i∈V α

∑
j :{i, j}∈E xi j

i∏
{i, j}∈E (1 + αiα j )

ni j
. (1)
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The model (1) is called the beta model (Chatterjee et al. 2011). Note that if xi j = 0
then the observed graph H does not have an edge {i, j} even if {i, j} ∈ E(G) for the
underlying graph G.

This model was considered by many authors (e.g. Park and Newman 2004;
Blitzstein and Diaconis 2010; Chatterjee et al. 2011). The p1 model for random
directed graphs by Holland and Leinhardt (1981) can be interpreted as a generalization
of the beta model. When G is a complete bipartite graph, the beta model coincides with
the Rasch model (Rasch 1980). The many-facet Rasch model by Linacre (1994), which
is a multivariate version of the Rasch model, can be interpreted as a generalization of
the beta model such that G is a complete k-partite graph.

Let d1, . . . , dn be a degree sequence, i.e., di := ∑
j :{i, j}∈E xi j for each vertex i .

Denote d := (d1, . . . , dn). The sufficient statistic for (1) is d. Let A : |V |×|E | denote
the incidence matrix between vertices and edges of G. Then it is easily seen that x
and d are related as

Ax = d.

A set of graphs (without restriction to be simple) F d = {x ≥ 0 | Ax = d} with
a given degree sequence d is called a fiber for A (or for the underlying graph G).
An integer array z of the same dimension as x is called a move if Az = 0. A move
z is written as the difference of its positive part and negative part as z = z+ − z−.
Since Az = Az+ − Az−, every move is written as the difference of two graphs in
the same fiber. A finite set of moves is called a Markov basis for the incidence matrix
A if for every fiber any two graphs are mutually accessible by the moves in the set
(Diaconis and Sturmfels 1998). By adding or subtracting moves in a Markov basis,
we can sample graphs from any fiber in such a way that every graph in the fiber is
generated with positive probability. Note that xi j in the beta model (1) is restricted
as 0 ≤ xi j ≤ ni j . We denote the subset of the fiber Fd with this restriction as
Fd,n = {x | Ax = d, 0 ≤ xi j ≤ ni j , {i, j} ∈ E}.

To assess the goodness of fit of the beta model we usually utilize a large sample
approximation of the distribution of a test statistics. However, when ni j ’s are not large
enough, it is not appropriate to use the large sample approximation. Especially, as
mentioned in Sect. 1, graphs are restricted to be simple (ni j ≡ 1) in some practical
problems. For a simple graph, xi j , {i, j} ∈ E , is either zero or one. A Markov basis for
the incidence matrix A guarantees the connectivity of every fiber Fd if the restriction
that graphs are simple is not imposed. Under the restriction, however, a Markov basis
does not necessarily connect the subset Fd,1 of the fiber Fd . For example, consider the
beta model with the underlying graph G in Fig. 1 and ni j = 1 for each edge {i, j} ∈ E .
It can be shown that a set of all 4-cycles in G is a Markov basis for the incidence matrix
of G. However x and y in Fig. 1 are not mutually accessible by 4-cycles under the
restriction that graphs are simple.

For a given x, supp(x) = {e | xe > 0} denotes the set of observed edges of x. For
two moves z1, z2, the sum z1 + z2 is called conformal if there is no cancellation of
signs in z1 + z2, i.e., ∅ = supp(z+

1 ) ∩ supp(z−
2 ) = supp(z−

1 ) ∩ supp(z+
2 ). The set of

moves which can not be written as a conformal sum of two nonzero moves is called the
Graver basis. The Graver basis is known to be a Markov basis (e.g. Drton et al. 2009).
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Fig. 1 Example graphs

A move is square-free if the absolute values of its elements are 0 or 1. By the same
augment of Proposition 2.1 of Hara and Takemura (2010), we can obtain the following
proposition.

Proposition 1 The Graver basis for the underlying graph of the beta model connects
all elements of every fiber. Furthermore, the set of square-free moves of the Graver
basis connects all elements of every fiber with the restriction of simple graphs.

Proof Let x, y be two elements of the same fiber. The difference y − x is written as
a conformal sum of primitive moves:

y − x = z1 + · · · + zr (2)

where zi , 1 ≤ i ≤ r, are elements of the Graver basis. Since there is no cancella-
tion of signs on the right hand side, x + z1 + · · · + zk belongs to the same fiber for
k = 1, . . . , r . Therefore the Graver basis connects all elements of every fiber.

Suppose ni j = 1 for every {i, j} ∈ E in the setting of the beta model. It is easy to
see that each zi is square-free in (2). It means that the set of square-free moves of the
Graver basis connects all elements of every fiber with the restriction of simple graphs.


�
Therefore, it suffices to have the Graver basis to sample graphs from any fiber with

or without the restriction that graphs are simple. In the next section, we derive the
Graver basis for the underlying graph of the beta model

3 Graver basis for an undirected graph

In this section, we will give two characterizations of the Graver basis for an undirected
graph. Theorem 1 in Sect. 3.2 is the main result of this paper which gives a necessary
and sufficient condition for a element of the Graver basis as a sequence of vertices.
Proposition 3, which is used for the proof of Theorem 1, gives a characterization of the
Graver basis through recursive operations on the graph, which is of some independent
interests.

3.1 Preliminaries

Let G = (V (G), E(G)) be a simple connected graph with V (G) = {1, 2, . . . , n} and
E(G) = {e1, e2, . . . , em}. A walk connecting i ∈ V (G) and j ∈ V (G) is a finite
sequence of edges of the form
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w = ({i1, i2}, {i2, i3}, . . . , {iq , iq+1})

with i1 = i, iq+1 = j . The length of the walk w is the number of edges q of the walk.
An even (respectively, odd) walk is a walk of even (respectively, odd) length. A walk
w is closed if i = j . A cycle is a closed walk w = ({i1, i2}, {i2, i3}, . . . , {iq , i1}) with
il �= il ′ for every 1 ≤ l < l ′ ≤ q.

For a walk w, let V (w) = {i1, . . . , iq+1} denote the set of vertices appearing in w

and let E(w) = {{i1, i2}, {i2, i3}, . . . , {iq , iq+1}} denote the set of edges appearing in
w. Furthermore, let Gw = (V (w), E(w)) be the subgraph of G, whose vertices and
edges appear in the walk w.

In order to describe known results on the toric ideal IG arising from an undirected
graph G, we give an algebraic definition of IG . Let K [t] = K [t1, . . . , tn] be a poly-
nomial ring in n variables over K . We will associate each edge er = {i, j} ∈ E(G)

with the monomial tr = ti t j ∈ K [t]. Let K [s] = K [s1, . . . , sm] be a polynomial ring
in m = |E(G)| variables over K and let π be a homomorphism from K [s] to K [t]
defined by π : sr �→ tr . Then the toric ideal IG of the graph G is defined as

IG = ker(π) = { f ∈ K [s] | π( f ) = 0}.

A binomial f = u−v ∈ IG is called primitive, if there is no binomial g = u′−v′ ∈ IG ,
g �= 0, f , such that u′|u and v′|v. The Graver basis of IG is the set of all primitive
binomials belonging to IG and we denote it by G(IG). If we write the monomials u, v

as u = sx, v = s y, then u − v ∈ IG if and only if x − y is a move. Furthermore,
u − v ∈ IG is primitive if and only if supp(x) ∩ supp( y) = ∅ and x − y cannot be
written as a conformal sum of two nonzero moves.

For a given even closed walk w = (e j1 , e j2 , . . . , e j2p ), we define a binomial fw ∈
IG as

fw = f +
w − f −

w , where f +
w =

p∏

k=1

s j2k−1, f −
w =

p∏

k=1

s j2k .

An even closed walk w′ is a proper subwalk of w, if g+
w′ | f +

w and g−
w′ | f −

w hold for
the binomial g = g+

w′ − g−
w′( �= fw). Note that even if there is a proper subwalk w′

of an even closed walk w, w′ does not necessarily go along with w, i.e., the edges
of w′ may not appear as consecutive edges of w. An even closed walk w is called
primitive, if its binomial fw is primitive. Then the primitiveness of w is equivalent to
non-existence of a proper subwalk of w.

A characterization of the primitive walks of graph G, which gives a necessary
condition for a binomial to be primitive, was given by Ohsugi and Hibi (1999b).

Proposition 2 (Ohsugi and Hibi 1999b) Let G be a finite connected graph. If f ∈ IG

is primitive, then we have f = fw where w is one of the following even closed walks:

(i) w is an even cycle of G.
(ii) w = (c1, c2), where c1 and c2 are odd cycles of G having exactly one common

vertex.
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Fig. 2 Even closed walk w

(iii) w = (c1, w1, c2, w2), where c1 and c2 are odd cycles of G having no common
vertex and where w1 and w2 are walks of G both of which contain a vertex v1
of c1 and a vertex v2 of c2.

Every binomial in the first two cases is primitive but a binomial in the third case is not
necessarily primitive.

3.2 Characterization of primitive walks

In this section, we give a simple characterization of the primitive walks of a graph G
as sequences of vertices. Express an even closed walk w as a sequence of vertices:
(i1, i2, . . . , i2p, i1), where i1 ≡ i2p+1. Let #w(i) = #{1 ≤ l ≤ 2p | il = i} denote the
number of times i is visited in the walk w before it returns to the vertex i1. Consider
the following condition for the even closed walk w.

Condition 1 (i) #w(i) ∈ {1, 2} for every vertex i ∈ V (w). (ii) For every vertex
j ∈ V (w) with #w( j) = 2 and j = il = il ′ , 1 ≤ l < l ′ ≤ 2p, the closed walks
w

j
1 = (il , . . . , il ′) and w

j
2 = (il ′ , . . . , i2p, i1, . . . , il−1, il) are odd walks with V (w

j
1)∩

V (w
j
2) = { j}. (cf. Fig. 2).

Remark 1 The equation V (w
j
1) ∩ V (w

j
2) = { j} in Condition 1 means that there are

no crossing chords in Fig. 2 when adding a chord { j, j} to the figure for every vertex
j ∈ V (w) with #w( j) = 2.

Using Condition 1, we can characterize the Graver basis for a graph G as follows.

Theorem 1 A binomial f ∈ IG is primitive if and only if there exists an even closed
walk w with fw = f satisfying Condition 1.

Remark 2 It follows from the definition of primitive walks and Theorem 1 that if an
even closed walk w is primitive, every even closed walk w′ with fw′ = fw is primitive
and satisfies Condition 1.

Remark 3 As mentioned in Sect. 1, there is another characterization of Graver basis in
Theorem 3.1 of Reyes et al. (2012). It also gives a necessary and sufficient condition
for the primitiveness of even closed walks, by using some new graphical concepts such
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Fig. 3 Contraction

as “block” and “sink”. Our characterization in Theorem 1 gives a simpler description
of Graver basis, because it does not need any new graphical concepts. Furthermore, it
is more convenient in the algorithmic viewpoint: when an even closed w is given as a
sequence of vertices or edges, we can easily determine if w is primitive by checking
directly Condition 1 without distinguishing any graphical objects.

Before proving Theorem 1, we state another characterization of primitive walks
given in Proposition 3 below. In order to that, we need some more definitions on
graphs. For a walk w = (e j1 , e j2 , . . . , e jq ), let W = W (w) denote the weighted sub-
graph (V (w), E(w), ρ) of G where ρ : E(w) → Z is the weight function defined by
ρ(e) := #{l | e j2l+1 = e} − #{l | e j2l = e} for each edge e ∈ E(w). For simplicity,
we denote a weight +1 (respectively, −1) by + (respectively −) in our figures. For a
vertex i ∈ V (w), we define two kinds of degrees of vertex i :

degGw
(i) = #{e ∈ E(w) | i ∈ e},

degW (i) =
∑

e∈E(w):i∈e

|ρ(e)|.

degGw
(i) is the usual degree of i in Gw. Note that the same weighted graph W might

correspond to two different even closed walks w,w′, i.e. W (w) = W (w′). Given a
weighted graph W , we say that w spans W if W = W (w) and {e jl | l:odd} ∩ {e jl |
l:even} = ∅.

Now we define two operations, contraction and separation, on a weighted graph W .

– Let e = {i, j} ∈ E(w) be an edge with |ρ(e)| = 2, whose removal from Gw

increases the number of connected components of the remaining subgraph. Con-
traction of e is an operation as shown in Fig. 3. That is, it first replaces W by W ′ =
(V (w)\{ j}, E ′, ρ′) where E ′ consists of all edges of W contained in V (w)\{ j},
together with all edges {α, i}, where {α, j} is an edge of W different from e. Then,
it defines ρ′ by inversion of the signs of weights of edges belonging to the i-side
of W .

– Let i ∈ V (w) be a vertex with degGw
(i) = degW (i) = 4, such that the removal of

i increases the number of connected components of the remaining subgraph and
the positive side as well as the negative side of i fit to one of three cases (a)–(c)
(respectively, to the sign reverse cases) in Fig. 4. Separation of i is an operation
as shown in Fig. 4. That is, it first deletes the vertex i and all edges connected to i
on W . Then, in the case of (a), it adds a new edge {k1, k2} with weight +1. In the
case of (b), it redefines ρ({k1, k2}) := +2 and then contracts {k1, k2}, where we
assume that the contraction of {k1, k2} is possible. In the case of (c), it redefines
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(a)

(b)

(c)

Fig. 4 Separation

Fig. 5 A vertex i whose separation is not defined

ρ({k1, k2}) := 0. We call this {k1, k2} an edge with weight 0. The sign reverse
cases are defined in the same way.

Note that the separation is not defined for any vertex i with degGw
(i) = degW (i) = 4,

if i fits to none of three cases (a)–(c) in Fig. 4. The vertex i in Fig. 5 is such an example,
because its positive side fits to none of three cases (a)–(c) in Fig. 4.

Let insertion and binding be the reverse operations of contraction and separation,
respectively. With these operations, consider the following condition for an even closed
walk w = (e j1 , e j2 , . . . , e j2p ).

Condition 2 (i) {e jl | l:odd} ∩ {e jl | l:even} = ∅. Every vertex i ∈ V (w) satisfies
degW (i) ∈ {2, 4}. For every vertex i with degW (i) = 4, its removal from Gw

increases the number of connected components of the remaining subgraph.
(ii) Let W̃ be a graph obtained by recursively applying contraction and separation

of all possible edges and vertices in W . Then each connected component of W̃
is an even cycle or an edge with weight 0.

Proposition 3 For an even closed walk w, the binomial fw is primitive if and only if
w satisfies Condition 2.

We establish some lemmas to prove Proposition 3. Our proof also shows that W̃ in
Condition 2 does not depend on the order of application of contractions and separa-
tions excepting the sign inversion of weights of edges of each connected component
in W̃ .
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Fig. 6 Case that there exists a vertex j ∈ V + ∩ V −

Fig. 7 Case that there exists an edge {v+, v−}

Lemma 1 If w is a primitive walk, w satisfies (i) in Condition 2.

Proof Consider a vertex i ∈ V (w). Since w is closed, degW (i) is even. Furthermore,
since w is primitive, {e jl | l:odd} ∩ {e jl | l:even} = ∅ holds which implies that there
is no cancellation in the calculation of weight on any edge. Then, a half of the weight
degW (i)/2 is assigned as positive weights and other half degW (i)/2 is assigned as neg-
ative weights to the edges connected to i on W . Therefore, degW (i) ∈ {2, 4, 6, . . .}.
Now suppose degW (i) ≥ 6. Consider that we start from a vertex i along an edge with
positive weight and go along the walk w or its reverse until returning back to i again
for the first time. Since w is primitive, we have to come back to i along an edge with
positive weight for the first time. Let us continue along w or its reverse until returning
back to i . By the same reasoning, the last edge of this closed walk has a negative
weight. This implies that this even closed walk becomes a proper subwalk of w, a
contradiction to the primitiveness of w. Therefore, degW (i) is 2 or 4.

To prove the remaining part, let i ∈ V (w) be a vertex with degW (i) = 4 and con-
sider all closed walks on W , where the edge starting from i and the edge coming back
to i have positive weights. Let V + be the set of vertices other than i which appear in
one of these walks and V − is defined in the same way. Then V + ∪ V − ∪ {i} = V (w)

holds. First, we show V + ∩ V − = ∅. Suppose that there exists a vertex j ∈ V + ∩ V −.
Then, as shown in Fig. 6, there are two closed walks ({i, i+1 }, Γ +

1 , Γ +
2 , {i+2 , i}) and

({i, i−1 }, Γ −
1 , Γ −

2 , {i−2 , i}). This implies that we can construct a proper subwalk of w

by the combination of {i, i+k }, Γ +
k (k = 1, 2), and Γ −

l , {i−l , i}(l = 1, 2), a contradic-
tion to the primitiveness of w. Therefore V + ∩ V − = ∅. Second, suppose that the
removal of the vertex i from Gw does not increase the number of connected compo-
nents of the remaining subgraph. Then, there are vertices v+ ∈ V +, v− ∈ V − such
that {v+, v−} ∈ E(w), because V +∩V − = ∅ holds as shown above. Hence, as shown
in Fig. 7, an even closed walk ({i, i+k }, Γ +

k , {v+, v−}, Γ −
l , {i−l , i}) is a proper subwalk

of w for appropriate k, l ∈ {1, 2}, k �= l, which contradicts to the primitiveness of w.
Therefore the removal of i from Gw increases the number of connected components
of the remaining subgraph. 
�
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In the following four lemmas, we show that contraction, separation, and these
inverse operations preserve the primitiveness of an even closed walk. The proofs of
lemmas are postponed to Appendix.

Lemma 2 (Preservation of the primitiveness under contraction) Let an even closed
walk w be primitive and W̃ be the weighted graph which is obtained by a contraction
for an edge with its weight ±2 on W . Then any even closed walk w̃ spanning W̃ is
primitive.

Lemma 3 (Preservation of the primitiveness under separation) Let an even closed
walk w be primitive and W1, W2 be the weighted graphs obtained by the separation
of a vertex i . Then any even closed walks wl(l = 1, 2) spanning Wl(l = 1, 2) are
primitive or of length two with fwl = 0.

Lemma 4 (Preservation of the primitiveness under insertion) Let w be a primitive
walk and let W̃ be the weighted graph obtained by the insertion to i with degW (i) = 4
on W . Then any even closed walk w̃ spanning W̃ is primitive.

Lemma 5 (Preservation of the primitiveness under binding) Let each wl (l = 1, 2)

be a primitive walk or a closed walk with length two, and W be the weighted subgraph
obtained by binding of W1 and W2. Then any even closed walk w spanning W is
primitive.

We now give proofs of Proposition 3 and Theorem 1.

Proof (Proof of Proposition 3) Let w be a primitive walk. From Lemma 1 w satisfies
(i) in Condition 2 and every edge e with |ρ(e)| = 2 can be contracted. Furthermore,
it is easy to see that every vertex i with degW (i) = 4 can be separated after recur-
sively applying contractions of all possible edges. Therefore degW (i) = 2 holds for
every vertex i on W̃ . From Lemmas 2 and 3, each even closed walk corresponding to
the connected component of W̃ is primitive or of length two. Then, every connected
component of W̃ is an even cycle or an edge with weight 0, because from Proposi-
tion 2 every primitive walk includes a vertex i with degW (i) = 4 if it is not an even
cycle. Therefore, a primitive walk w satisfies Condition 2. Conversely, suppose an
even closed walk w satisfies Condition 2. From Proposition 2 and Lemmas 4 and 5,
w is primitive. 
�
Proof (Proof of Theorem 1) Let w be a primitive walk. From Lemma 1, #w(i) ∈ {1, 2}
holds for each vertex i ∈ V (w) and V (w

j
1) ∩ V (w

j
2) = { j} holds for each vertex j ∈

V (w) with #w( j) = 2. By the primitiveness of w, the closed walks w
j
1 = ( j, . . . , j)

and w
j
2 = ( j, . . . , i1, . . . , j) along w are odd closed walks. Therefore, w satisfies

Condition 1.
Conversely, let w be an even closed walk with Condition 1. From Proposition 3, it

suffices to show that w satisfies Condition 2. The condition (i) in Condition 2 follows
from Condition 1. Then, it is enough to confirm that w satisfies the condition (ii) in
Condition 2.

First, we claim that every edge e ∈ E(w) with |ρ(e)| = 2 can be contracted and
every vertex j with #w( j) = 2 and degGw

( j) = 4, i.e. degGw
( j) = degW ( j) = 4,

can be separated. The case of contraction is obvious from Condition 1. We confirm
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Fig. 8 A vertex j with degGw
( j) = degW ( j) = 4

Fig. 9 A vertex j which does not exist in w with Condition 1

Fig. 10 Case that there exists a vertex j in Fig. 9

the case of separation. Consider the vertex j in Fig. 8. If an edge {k1, k2} dose not
exist or exists with weight +1, it belongs to the case (a) or (b) in Fig. 4, respectively.
Let us consider the case that there exists an edge {k1, k2} with weight −1 and sup-
pose that the vertex k1 connects to more than three edges as shown in Fig. 9. Then,
j, k1 and k2 appear in w like ( j, k1, . . . , k1, k2, j) or ( j, k1, . . . , k1, k2, . . . , k2, j),
because V (w

j
1)∩ V (w

j
2) = { j} holds. This implies that (k1, . . . , k1) is even as shown

in Fig. 10, which contradicts Condition 1. Hence the case with {k1, k2} with weight
−1 belongs to (c) in Fig. 4. Therefore, the claim is confirmed.

Second, we verify that contraction and separation on W preserve Condition 1. Con-
sider the case of contraction of an edge {i, j} ∈ E(W ). From Condition 1, such i, j
appear in w as w = (i1, . . . , il1 , i, j, il2 , . . . , il3 , j, i, il4 , . . . , i1). The contraction of
{i, j} is equivalent to replacing w by (i1, . . . , il1 , i, il2 , . . . , il3 , i, il4 , . . . , i1). This
change causes the decrease of two edges from w, and preserves Condition 1. The case
of separation is checked in the same way.

Finally, consider the weighted graph W ′ obtained by all possible contractions and
separations on W . From the claims above, every connected component of W ′ satisfies
Condition 1 and has no vertex j with #w( j) = 2, i.e. an even cycle or an edge with
weight 0. Therefore, w satisfies Condition 2. 
�
Remark 4 We proved Theorem 1 using an alternative characterization of a primitive
binomial in Proposition 3. However, as suggested by a referee, there may exist a shorter
direct proof of Theorem 1. It is of interest to consider such a direct proof.

4 Algorithm for generating elements of Graver basis

In this section, we present an algorithm for generating elements randomly from the
Graver basis for a simple undirected graph. As shown in Proposition 1, for testing the
beta model of random graphs with ni j = 1, we only need square-free elements of the
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Graver basis. Therefore, the restriction to square-free elements of our algorithm will
be discussed in Remark 5. Theorem 1 guarantees the correctness of our algorithm.

We need some tools in order to construct an algorithm. Let T be a weighted tree
(V (T ), E(T ), μ) where μ : V (T ) → Z≥2 = {2, 3, . . . } is a weight function. For this
weighted tree T , let us consider the following condition.

Condition 3 For each vertex vT ∈ V (T ), deg(vT ) ≤ μ(vT ) and deg(vT ) ≡ μ(vT )

mod 2.

With these tools, let us consider generating an element of the Graver basis for a
simple undirected graph G = (V (G), E(G)). For simplicity, first consider the case
that that G is complete. We call an edge e with |ρ(e)| = 2 a cycle in Gw for an even
closed walk w in this section. We will discuss later the case that G is not complete. Let
T = (V (T ), E(T ), μ) be a weighted tree satisfying Condition 3 and the following
equation:

∑

vT ∈V (T )

μ(vT ) − |E(T )| ≤ |V (G)|. (3)

Then, we can construct a primitive walk in G using T as follows. First, we assign the
set of vertices VvT ⊆ V (G) with |VvT | = μ(vT ) for each vertex vT ∈ V (T ) under the
equation

|VvT ∩ Vv′
T
| =

{
1, if {vT , v′

T } ∈ E(T ),

0, if {vT , v′
T } /∈ E(T ),

(v′
T ∈ V (T ))

and every vertex v ∈ V (G) is assigned at most twice. Equation (3) guarantees that
this assignment is possible. Second, we make cycles in G by arbitrarily ordering the
vertices VvT . Then we make a subgraph of G by taking the union of these cycles.
Finally, we obtain a closed walk by choosing a root vertex from this subgraph and
going around it. It is easy to see that this closed walk is primitive by Theorem 1.

Conversely we can construct a weighted tree with Condition 3 and (3) from each
primitive walk. Let w be a primitive walk. First, the vertex set V (T ) is constructed
by creating a vertex vc of T for each cycle c in Gw. Second, the edge set E(T )

is obtained by adding edge {vc, vc′ } to E(T ) for each pair of cycles c, c′ in Gw with
V (c)∩V (c′) �= ∅. Then, we assign weight μ(vc) := |V (c)| to each vertex vc ∈ V (T ).

Therefore, once we have a weighted tree T with Condition 3 and (3), we can
construct an element of the Graver basis for G. Such a tree T is constructed by the
following algorithm.

Algorithm 1 (Algorithm for constructing an weighted tree)
Input : A complete graph G = (V (G), E(G)).

Output : A weighted tree T = (V (T ), E(T ), μ) with Condition 3 and (3).

1. Let V (T ), E(T ) be empty sets and n := |V (G)|.
2. Add a root vertex r to V (T ).
3. Assign μ(r) a weight from {2, 3, . . . , n} randomly.
4. Grow T by the following loop.
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(a) For each vertex vT ∈ V (T ) which is deepest from r , add edges {vT , vi
T } to

E(T ) and the endpoints vi
T (i = 0, 1, . . . , IvT ) to V (T ), where the number

IvT is randomly decided under the following two conditions:
– IvT + 1 ≤ μ(vT ).
– IvT + 1 ≡ μ(vT ) mod 2.

(b) For each new vertex vi
T , assign μ(vi

T ) a weight from {2, 3, . . . , n − α} ran-
domly, where α := ∑

vT ∈V (T ) μ(vT ) − |E(T )|.
(c) Recompute α and if α > n, delete all new vertices and edges in the above (a)

and break the loop.
(d) If the total number of new edges is equal to 0, break the loop.
(e) Return to (a).

5. If |V (T )| = 1 and μ(r) is odd, change μ(r) to μ(r) − 1 or μ(r) + 1.
6. If |V (T )| > 1 and T has a leaf with even weight, subtract or add 1 to the weight.
7. Output T .

Algorithm 1 provides a simple algorithm for generating an element of Graver basis
as follows.

Algorithm 2 (Algorithm for generating an element of Graver basis)
Input : A complete graph G = (V (G), E(G)).

Output : A primitive walk w.

1. Construct a weighted tree T with Condition 3 and (3) by Algorithm 1.
2. Construct a primitive walk by assigning vertices of G and ordering them randomly.
3. Output w.

Since there is no restarts in Algorithm 2, it has a fixed worst case running time for a
complete graph G. In each step, the algorithm performs O(|V (G)|) operations. Then it
generates one element of the Graver basis for G in O(|V (G)|) time. A demonstration
for the case of a complete graph G with |V (G)| = 25 is shown in Figs. 11 and 12.
The output of this demonstration is a primitive walk w with |V (Gw)| = 21 in Fig. 12.

Remark 5 For the case that an input graph G is not complete, the elements of the Graver
basis for G can be generated by throwing away elements with supports not contained
in G (Proposition 4.13 of Sturmfels 1996). In fact this is the advantage of considering
the Graver basis. The restriction for generation of square-free elements of the Graver
basis can be realized by a slight modification in Algorithm 1. In fact, it suffices to
change merely {2, 3, 4, . . .} to {3, 4, . . .} in Step 3 and in (b) of Step 4 in Algorithm 1.

Remark 6 The output of Algorithm 2 is not uniformly distributed over all elements of
Graver basis. The distribution depends on how to implement the randomness in Step
3 and in (b) of Step 4 in Algorithm 1.

Algorithm 2 allows us to uniformly sample graphs with the common degree
sequence via Metropolis–Hastings algorithm with the Graver basis, with or without
the restriction that graphs are simple. It is done by constructing a connected Markov
chain of graphs with the common degree sequence. In each iteration, a primitive walk
is randomly generated by Algorithm 2. If the primitive walk is applicable, a new sam-
ple graph with the same degree sequence is obtained by adding the primitive walk,
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Fig. 11 Demonstration of Algorithm 1

Fig. 12 Demonstration of Algorithm 2

otherwise the primitive walk is rejected. Note that Metropolis-Hastings algorithm does
not require the uniformity of the distribution of generated primitive walks. As long
as there is a positive probability of generating every element of the Graver basis, the
Metropolis–Hastings algorithm realizes uniform sampling of graphs with the common
degree sequence.

5 Numerical experiments

In this section, we present numerical experiments with elements of the Graver basis
computed by Algorithm 2 in Sect. 4. The implementation of Metropolis-Hastings algo-
rithm with Algorithm 2 is done by Java 1.6.0 on Windows OS with Intel(R) Core(TM)
i7-2829QM CPU@2.30GHz.
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Fig. 13 Small graph H0
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Fig. 14 Histogram from sampling

5.1 A simulation with a small graph

We run a Markov chain over the fiber containing a small graph H0 in Fig. 13. The under-
lying graph G = K8 is assumed to be complete with eight vertices. By the Markov
chain we sampled 510,000 graphs in the fiber, including 10,000 burn-in steps. The num-
ber of types of obtained graphs in our chain is 591. By enumeration we checked that 591
is actually the number of the elements of the fiber of H0. The histogram of this exper-
iment is shown in Fig. 14. The horizontal axis expresses the frequency of each type
of graph and the vertical axis expresses the number of types. The mean of the number
of appearances of each type is 829 and the standard deviation is 179. This experiment
shows that the algorithm samples each element of the fiber almost uniformly.

5.2 The beta model for the food web data

We apply Algorithm 2 for testing of the real data, the observed food web of 36 types of
organisms in the Chesapeake Bay during the summer. This data is available online at
Ulanowicz (2005). Blitzstein and Diaconis (2010) analyzed essentially the same data
set.

The graph H of the data is shown in Fig. 15. The vertices represent the types of
organisms like blue crab, bacteria etc., and the edges represent the relationship of one
preying upon the other. The degree sequence of H is

(9, 10, 6, 2, 3, 3, 9, 11, 6, 4, 6, 7, 5, 7, 8, 4, 3, 8,

7, 2, 3, 11, 8, 2, 4, 5, 7, 4, 4, 4, 3, 5, 5, 2, 14, 29).
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Fig. 15 Food web for the Chesapeake Bay during the summer

Although there is a self loop at the vertex 19 in the observation, we ignored it for
simplicity.

We set the beta model (1) in Sect. 2 with ni j = 1 for each edge {i, j} as the null
hypothesis. Then the probability of H is described as

P(H) ∝
∏

i∈V α
di
i∏

{i, j}∈E (1 + αiα j )
. (4)

Parameter αi (i ∈ V ) is interpreted as the value of organism represented by the vertex
i as a food to other organisms. Then the beta model (4) implies that a vertex i with large
αi is likely to be connected to many edges. Let P ∈ (4) mean that P can be expressed
by (4) for a set of parameters {αi }i∈V . Consider now the statistical hypothesis testing
problem

H0 : P ∈ (4) versus H1 : P /∈ (4).

Starting from the graph in Fig. 15, we construct a Markov chain of 10,100,000 graphs
including 100,000 burn-in steps and compute the chi-square statistic of each graph
as a test statistic. The running time of the calculation is 5 min and 4.8 s. Using the
maximum likelihood estimator, the chi-square value of observed graph H is 477 and
the histogram of the estimated distribution of the chi-square values is shown in Fig. 16.
The approximate p-value is 0.286. This value is not so small and there is no evidence
against the beta model (4).

Next, we consider some other characteristics of the observed graph H and graphs
obtained by the above Markov chain. We compute their clustering coefficient defined
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by Wattz and Strogatz (1998) and also count the number of triangles (3-cycles). For the
observed graph H , the values of clustering coefficient and the number of triangles are
0.447 and 101, respectively. For the sampled graphs, the histograms are obtained as in
Fig. 17 and 18 and their mean values are 0.436 and 92.4, respectively. The differences
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between the actual values and the means of sampled graphs are not large. It suggests
that these statistics agree with the beta model (4).

As mentioned in Sect. 1 there are computer algebra systems such as 4ti2 (4ti2 team)
to compute the Graver basis. However the whole Graver basis is huge and difficult to
compute even for a moderate-sized graph like the real data above. Algorithm 2, our
adaptive algorithm, enables us to perform the Markov chain Monte Carlo method for
such a moderate-sized graph.

6 Concluding remarks

In this paper, we obtained a simple characterization of the Graver basis for toric ideals
arising from undirected graphs. This Graver basis allows us to perform the conditional
test of the beta model for arbitrary underlying graph. Our characterization allows us to
construct an algorithm for sampling elements of the Graver basis, which is sufficient
for performing the conditional test.

By numerical experiments, we confirmed that our procedure works well in practice.
We should mention that the sequential importance sampling method of Blitzstein and
Diaconis (2010) may work faster for the case of complete underlying graph.

If we allow multiple edges, then we do not need the Graver basis. A minimal Markov
basis, which is often much smaller than the Graver basis, is sufficient for connectivity
of Markov chains. Properties of Markov basis for the p1-model have been given in
Petrović et al. (2010). It is of interest to study properties of minimal Markov bases for
undirected graphs, including the case of allowing self loops.

Appendix A: Proofs of Lemmas in Sect. 3.2

A.1 Proof of Lemma 2

The contraction of the edge with its weight ±2 on W is possible from Lemma 1. We
denote this edge by e = {i, j} as shown in Fig. 19. Suppose w̃ is not primitive. Then
there exists an proper subwalk w̃′ of w̃. If i /∈ V (w̃′), w̃′ is also a proper subwalk
of w, a contradiction to the primitiveness of w. Then i ∈ V (w̃′). However, a proper
subwalk of w is constructed by embedding e into W̃ ′. Therefore, w̃ is primitive. 
�

Fig. 19 Contraction of an edge e
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Fig. 20 Separation of a vertex i

Fig. 21 Insertion to a vertex i

A.2 Proof of Lemma 3

We consider the case that both positive and negative sides of i correspond to (a) in
Fig. 4 and relevant edges are labeled as shown in Fig. 20. Suppose w1 is neither
primitive nor of length two. Then there exists a proper subwalk w′

1 of w1 on W1. If
e+ /∈ E(w′

1), w′
1 is also a proper subwalk of w, a contradiction to the primitiveness

of w. Then e+ ∈ E(w′
1). Now w′

1 is expressed as follows:

w′
1 = (ei1 , ei2 , . . . , eik , e+, eik+1 , . . . , eis ).

Then an even closed walk on W

(ei1 , ei2 , . . . , eik , e+
1 , e−

1 , . . . , e−
2 , e+

2 , eik+1 , . . . , eis )

is a proper subwalk of w. This contradicts the primitiveness of w. Therefore w1 is
primitive or of length two. The cases of (b) and (c) in Fig. 4 are shown in the same
way. Note that it is easy to confirm the possibility of contraction after the step 1 in the
case (b) from Lemma 1 and then the primitiveness is guaranteed by Lemma 2. By the
same argument, the case of w2 is confirmed. 
�

A.3 Proof of Lemma 4

Let e be the new edge appearing through the insertion to i as shown in Fig. 21. Suppose
w̃ is not primitive. Then, there exists a proper subwalk w̃′ of w̃. If e /∈ E(w̃′), w̃′ is
contained in W̃1 or W̃2. Then w̃′ or its reverse becomes a proper subwalk of w. This
contradicts the primitiveness of w. Hence e ∈ E(w̃′). Then we can construct a proper
subwalk of w by removing e from w̃′ and reversing the weights of edges belonging to
E(w1), a contradiction to the primitiveness of w. Therefore, w̃ is primitive. 
�
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Fig. 22 Binding of W1 and W2

A.4 Proof of Lemma 5

Let i be the new vertex appearing through the binding. We consider the case that both
positive and negative sides of i correspond to (a) in Fig. 4 and relevant edges are
labeled as shown in Fig. 22. Other cases are shown in the same way.

Suppose w is not primitive. Then there exists a proper subwalk w′ of w. Here, we
choose a primitive walk as w′. If i /∈ V (w′), w′ is also a proper subwalk of w1 or w2.
Then i ∈ V (w′). This implies that all four edges connected to i appear in w′. Let us
consider the separation of i to W ′. Then the resulting two weighted graphs W ′

1, W ′
2

are primitive from Lemma 3. Furthermore at least one of w′
i (i = 1, 2) is a proper

subwalk of wi , a contradiction to the primitiveness of wi . Therefore, w is primitive.

�
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