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Abstract In this paper, we consider the robust estimation for a certain class of dif-
fusion processes including the Ornstein—Uhlenbeck process based on discrete obser-
vations. As a robust estimator, we consider the minimum density power divergence
estimator (MDPDE) proposed by Basu et al. (Biometrika 85:549-559, 1998). It is
shown that the MDPDE is consistent and asymptotically normal. A simulation study
demonstrates the strong robustness of the MDPDE.

Keywords Diffusion processes - The Ornstein—Uhlenbeck process - Minimum
density power divergence estimator - Discretely observed sample - Robustness

1 Introduction

Let us consider the diffusion process:

[dX, =a(X;,0)dt + odW;, "

Xo = xo,

where (0, 0) € ©, a convex compact subset of R? x R™, a is a known real valued
function defined on R x R”, and W is a 1-dimensional standard Wiener process. The
diffusion process has long been popular in analyzing random phenomena in finance,
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engineering, physical and medical sciences. Particularly, the diffusion process given
by (1) has wide applications and includes the Ornstein—Uhlenbeck process as a spe-
cial case. Statistical inference for this process has been studied by many authors, for
instance, Florens-Zmirou (1989), and the asymptotic properties for various parameter
estimators are well summarized in Prakasa Rao (1999, pp 143-144 and 153-158),
Yoshida (1992), Kessler (1997), Ait-Sahalia (2002) and many other researchers stud-
ied the estimation problem for a more general class of diffusion processes. In those
articles, the estimation procedure is conducted based on discretely observed sample.
Statistical inference for continuous samples can be found in Kutoyants (2004).

In this paper, we consider a robust estimation of (6, o) in the model (1) based on
discretized observations. In the statistical literature, it is well known that the estimators
based on Gaussian likelihood are severely influenced by outliers or extreme values.
Thus, it can be guessed that the similar situations happen in the estimation procedure,
based on Gaussian approximation method, for diffusion processes [for e.g., the Euler
estimator in Prakasa Rao (1999, p 155) and Kessler (1997) estimator]. In fact, in our
simulation study, the Euler estimator is observed to be severely damaged by outliers
(cf. Tables 2, 3).

In order to construct a robust estimator for process (1), we adopt the idea of
Basu et al. (1998) (BHHJ for abbreviation) which introduces a robust estimation pro-
cedure to minimize a density-based divergence measures, called the density power
divergences:

J{M@ -0+ De@ @+ L e @} dz. « >0,
do (8. f) = )
[ g(z) (log g(z) — log f(2)) dz, oa =0,

where f and g are density functions.

For a family of parametric distributions {Fy : 6 € ® C R} possessing densities
{ fo} and for a distribution G with density g, they defined the minimum density power
divergence functional 7, (-) by

do (8. fTa) = eeig do (g, fo).

Note that if G belongs to {Fy}, Ty (g) = 6 for some 6 € ©. In this case, given random
sample X1, ..., X, with unknown density g, the minimum density power divergence
estimator (MDPDE) is defined by

A 1

n
ea,n = arglelélcl_)l ; le Va,n(e; X)),
t=

where

[ @dz - 1+ D fe X, a >0,
Va(0: X;) =

long(Xl‘)v o =0.
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BHH]J showed that HAO,‘,, is weakly consistent for 7}, (g) and asymptotically normal, and
demonstrated that the estimator has strong robust properties against outliers and the
misspecification of underlying models with little loss in asymptotic efficiency relative
to the maximum likelihood estimator.

This approach can be extended to regression models. Let { fo (y|x)} be a parametric
family of regression models indexed by the parameter 6 € ® and let g(y|x) be the
true density for ¥ given X = x. Substituting f and g in (2) by fy(-|x) and g(-|x)
respectively, a family of the x-conditional versions of density power divergences is
obtained as follows:

T S [ O dy = (L+ D) T L S Kalx), @ > 0,
argmein
”_12?:1_10gf0(yt|xt), a=0.

This idea will be adopted later for our own purpose.

Compared to other existing density-based divergence methods, such as Beran
(1977), Tamura and Boos (1986) and Simpson (1987), which use the Hellinger dis-
tance, and Basu and Lindsay (1994) and Cao et al. (1995), this method is known to
have merit of not requiring any smoothing methods. In this case, one can avoid draw-
backs and difficulties like the selection of bandwidth that necessarily follow from the
kernel smoothing method.

The organization of this paper is as follows. In Sect. 2, we construct the robust
estimator using (3) and address the asymptotic properties of the proposed estimator.
In Sect. 3, we perform a simulation study and compare the proposed estimator with the
Euler estimator. The proofs for the results in Sect. 2 are provided in Sect. 4. Finally,
some auxiliary lemmas are presented in Sect. 5.

2 Main results
Let (6o, 0p) € © be the true parameter for the diffusion process in (1). Suppose that

Xt{’» 1 <i < n, are observed, where t!' = ihy, h, — 0, and nh, — oo. Applying
the Euler’s approximation to (1), we have that

thf’ = Xf,-",l + a(Xt{Ll’ 00)hn +00ZniN hn + An i,

14
Zni == (W =W ) and A, z/n_. {acxs. 60— a (X, 00) ] ds.

Let " denote the sigma field generated by {Wy : s < t'}. If ignoring A, ;’s
(actually, one can check that max;<, [A, ;| = 0,(h,). cf. Lemma 2), by notic-
ing that Z, 1, ..., Zy n are iid N(O, 1), we can see that for large n, X,l;z|€§ behave

@ Springer



216 S. Lee, J. Song

like independent r.v.’s following N (X m, o+ a(X " 6p), aghn). Hence, viewing the
observations as regression data pairs {(X i X lin)}?: | and applying (3) to them (in
this case the family of parametric distributions is the normal distributions), we can
define the MDPDE as

A -
(67 6;/) = arg min ;Z}V,ffi(é’,a),
=

where
f 1
G lasoi-a+d)
2
Ve (0,0) =] Xexp i—% (g =Xy, —a(xg,.0) ) /ozhnH , a>0,
2
(X’f — X,iril —a (X,;LI,O) h,,) Jo2hy, +10g02, a=0.

Remark 1 The MDPDE with ¢ = 0 coincides with the Euler estimator in Prakasa
Rao (1999, p 155). Also, 9,? is the same as the least squares estimator 6 sq [see also

Florens-Zmirou 1989] and O f that maximize the discrete approximate likelihood
functions, respectively:

A~ . - 2
OLsq = argmgmg (X;ln — X —a (th-"_l, 9) hn) )
i=

and

n

A 2 1 2
O = argmeaxz [a (Xf,-"_w 9) (X,[n — X’;"_l) — Ea (X’f'_l’e) hn] .

i=1

Below we establish the consistency and asymptotic normality of the MDPDE. For
this task, we set

P = {f(xﬁ) 1 fl <€+ |x])€ for some C},

where C does not depend on 6, and assume the conditions as follows:

(A1) There exists a constant C; such that for any x, y, |a(x, 6y) — a(y, 6p)| <
Cilx —yl.

(A2) The process X from (1) is ergodic for (6y, op) with its invariant measure (i
such that [ x*dj(x) < oo for all k > 0.

(A3) sup, E{|X,|¥} < oo forall k > 0.

(A4) The function a is continuously differentiable with respect to x for all 8 and the
derivatives belong to &.
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(AS) The function a and all its x-derivatives are three times differentiable with respect
to 6 for all x. Moreover, these derivatives up to the third order with respect to
0 belong to &.

(A6) Ifa(x,0) = a(x, 6y) for ug a.s. all x, then 6 = 6.

(A7) § = f dpa(x, 6p) dgra(x, Bo)do(x) is positive definite, where dga = da/96.

Here are the main results of this paper.

Theorem 1 Assume that (A1)-(A6) hold. For each « > O, if h, — 0, nh, — o0
and nh} — 0 for some q > 1, then

(éﬁl ; 6;(11) — (6o, 00) in probability.

Remark 2 The condition that nkj — 0 for some ¢ > 1 is not necessary for the case
of @« = 0. However, in the other cases, this condition is essential to obtain the weak
consistency result (cf. Lemma 2).

Theorem 2 Assume that (A1)—(A7) hold and (6y, 00) is in the interior of ©. For each
a >0, ifh, — 0, nh, — oo and nh? — 0, then

(J_nhn@;' — 6p)

— N 0,% in distribution,
ﬁ(&gl — 50) ) p+1( o)

where
I+a g1 0

(I+a)® ( (1+a)?(1+2a?) _i)
Q+a?)? \" (1+20)2/T+20 1+«

Remark 3 In actual practice, one may raise a question of how to choose an optimal «.
In the situation of no outliers, one may select o to minimize the asymptotic variance
in Theorem 2 (i.e., the case of @ = 0). However, with their existence, the outliers will
damage this procedure, so an optimal « is very hard to choose. Conventionally, taking
account of this difficulty, one employs a fixed « rather than seek for a suitable o, which
ranges in [0.15, 0.5] since too a large o, which would have strong robust properties,
may result in a big loss in efficiency when the portion of outliers is not very large as
speculated. We will see this phenomenon from the simulation result presented in the
next section.

So far, we have considered the case that the diffusion coefficient is a constant.
However, the MDPDE can be extended to the following diffusion process:

dXt = a(Xt, Q)dt + o b(Xt)th (4)

Since by transforming X; into Y; = G(X;), where G satisfies the relationship
0xG(x) = 1/b(x), and using Itd’s formula, we obtain

dY; = u(Y,0,0)dt +odW;, (5)
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where

_a(GT'(y»,0) o O
u(y,0,0) = W - 7 0xb (G (y),cr),

and subsequently, the estimation procedure for the process in (4) is reduced to that
for the diffusion process in (1). For a more general class of diffusion process, we
may define the MDPDE using the Euler approximation and the contrast functions in
(3). However, there are some technical difficulties in obtaining the same asymptotic
properties of the estimator. We leave this task as a future study.

3 Simulation study

In this section, we compare the performance of the MDPDE with « € {0.05,0.1, ...,
0.95} and the Euler estimator (EE) for the Ornstein—Uhlenbeck process:
Xo=0.

In our simulation, the case (6p, 0g) = (1, 1) is considered, and the sample {X o,t["}?: "

is obtained discretely with sampling interval &, = n~%3. The comparison is based
on the numbers defined by

1
2 d
, dr = ,
R = dof EE

A 2
( i~ 90) + (67— ‘70)2

1 r
d:da:z;z

i=1

where r is the number of repetitions. In fact, d is the average distance between the
true parameter and its estimates, so the smaller d (or dg ) indicates that the estimator
is more efficient.

First, we handle the case that the observation is not contaminated by outliers.
Based on 1000 repetitions, the mean, standard deviation, d and dp are calculated for
n = 500, 800, 1000. Figure 1 plots the calculated d,,’s, where dj is the one for the EE.
The results presented in Table 1 and Fig. 1 show that the EE outperforms the MDPDE,

© _-o
@ a--2-"%
(=} o
. a//E’—D
o o -7
@ a--8-"7 - 0"
(=} - o
ko] | D___,r_a»-‘?‘cr P _a—4
© = - -t o- " A_,A"A
P o~
AN~ -o- a—-
(= 0= _a-—
I N i - a o
—a—AT
§ | A__A——A-A—-A—‘A'
(=] T T T T T
0.0 0.2 0.4 0.6 0.8

alpha

Fig. 1 d without outliers. Square, diamond and triangle represent for the case of n = 500, 800, 1000,
respectively
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and the MDPDE with « close to 0 performs similarly to the EE. It is also seen that the
performance of the MDPDE with « not close to 0, say o« =0.15-0.5, is not very poor.

Tables 2 and 3 and Figs. 2, 3, 4, 5, 6, and 7 summarize the results for the case
that outliers are involved in the data. Here, we consider the situation that the sample
{Xo. ,n | from (6) is contaminated by the outliers {X. ,n} ~ iid N (0, av) and the
observed r v.’s follow the scheme X mo= (1 - pi) X, o+ i Xens where p; are
iid Bernoulli r.v.’s with success probability p. It is assumed that {p;}, {X, ,n} and
{X, ,n} are all independent. The mean, standard deviation, d and dr based on {X z"}
are calculated out of 1000 repetitions for n = 1000, p = 0. 05 and 0.1. From Tables 2
and 3, we can see that the dg tends to get smaller as either aV or p increases except for
some cases such as @ = 0.05, 0.15 and p = 0.1. The bold phased figures denote the
o’s that give a minimal dg’s. Figures 2 and 5 show the plots of dg when observations
are contaminated by 5 and 10% outliers, respectively. It can be seen that the MDPDE’s
with the o lying in 0.15-0.3 produce very small dg’s. Figures 3 and 6 show the plots of
the EE’s and the MDPDE’s producing the smallest d (optimal MDPDE’s), and Figs. 4
and 6 are the corresponding histograms. The figures show that the EE’s scatter widely
whereas the optimal MDPDE’s lie near the true parameter. From these results, we can
conclude that the MDPDE possesses much more robust properties than the EE. It can
be seen that the «’s yielding minimal d varies with the cases. This indicates that choos-
ing an optimal « is not an easy task in actual usage. Conventionally, & € [0.1, 0.2] is
recommended since the MDPDE with the « still keeps the efficiency when there are
no outliers and are robust against outliers. The same can be applied to our case, but
our simulation study suggests to us that a broader range of «’s, say, in [0.15, 0.5] may
be employed in construction of the MDPDE.

4 Proofs

We will provide the proof for the case of @ > 0 since the proofs of the case of « = 0
are similar to that of « > 0. In what follows, we denote

ai(e) = a(Xt;lv 6)5 Zn,i = Zia T} = (05 O.)’ )70 = (007 00)

Moreover, C > 0 denotes a universal constant.

Proof of Theorem 1 Note that

_1
. l ¢ ;_ l ﬁ ’
Ul(o, 0p) := 1+ 14+« , o >0,
2
o 1+« o o

has a minimal value at o = o¢. Similarly to the proof of Theorem 1 of Kessler (1997),
Theorem 1 is proved if we verify that
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Ki(0,0) = Kpi(0,0) i= o« = ZiAi(O)Vhy + 5 =5

a0 ZiA AiO)A; o A?

l

aaz Vh, * o2 202h,’
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Fig. 7 Histogram of the EE and the optimal MDPDE with 10 % outliers when 0‘2, =3

where A;(0) = A,i(0) := ai—1(6p) — a;—1(0). In view of Lemma 2 in Sect. 5, we
have

1
sup max |K;(#,0)| = op(h,)f) for 0<y <.
y l<i=n 2

Thus, we have that

1\ 1 < /1\?
14—} = —
| (1+5)22(2)

2
o (Xp =Xy —ai10)h) o o
2 o2hy

@ Springer



Minimum density power divergence estimator for diffusion processes

IN T 1\ _e%y02
1+ —)= Z) e 2,24 (C—KI(G,U)_I)
(+2):2()
(12w ()
<({l14+—)sup{—) max
o n o 1<i<n

< Cqy [exp (sup max |K,~(9,0)|) — 1] =op(1).
n 1<i<n

225

= sup
n

o—Ki0.0) _ 1‘

Using this and Lemma 4, we have that uniformly in 7,

2
1) 1< (1) a(Xf,-”_Xt;LI_“i—l(e)h”)
()50
a)n o 2

— o2h,
o\
1\ (1)°
ﬁ>(1+—)(—) (1+ —02) :
o o2

which establish (i).

Next, we verify (ii). Using Taylor’s theorem, we can write that

e—K,-<eo,o> _ e Ki0.)

ZA @)y + o A (9) +aAi(9)Ai

hn 2

g

1 o o2
-3 {aza—aZ?Ai(G)zhn + Ki(0,0)* — a2o—gzi2Ai(9)2hn]

KiGo, 07 .. . Ki©,0)
TR BT

2
ZA(Q)\FJr (l—az—

+m@uﬁéu+mwoﬁ

)A(@) hp + H;i p

2! 3 o

where |£1,;| < |K; (6o, 0)|, 1¢2,i| < |K;(6,0)], and

AiO)A; 1
H;0,0)=H,;0,0) = o——F—

2
(o
-3 (K,- ©,0)* — aza—ngA,-(e)zhn).
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Owing to Lemma 2, we have that
sup max |H;(0,0)| =o0,(h}), 0<r <15,
n 1<i<n

3
Slrl]p IE?LX |Ki(0,0)°| =0p(h2), 0=<ry <15, 7)
sup 1max |K; (0, 0)?| = op(hy), 0<r3<2,
1

and

sup max |e’!| < exp
n 1<i<n

[sup max |K; <eo,o>|} = 0p(1),
®)

sup max |e§2’| < exp [sup max |K; (6, o)|] = 0p(1).

n 1<i<n

By (7) and (8), we have that

K;(0g, 0)? Ki(0,0)> .
sup max R;(6,0) := sup max [H,-,n(e, o)+ Mem + Meh’]
y l<izn p 1<i<n 2! 3!
= op(h)) for 0 <r < 1.5. ©

Thus, by Lemmas 4 and 5 and (9), we have that uniformly in (0, o),

Zvn“ ©, o)——ZV“ (60, 0)
1 1 0{+21 2 _gﬁ 2 1 e+2
_ +“(_) _z(l_a“—‘;Z? Ai0)e 2a°22f+(1+a>(—)
n o g

2 o <
i=1

2
2 %0 72
VA 5 Z;

| _af 11 & _a
X 00Z;A;j(B)e 20271 4 — Ri(8,0)e 20
[nmzlo, i) anh; i(0,0) ]

=1}

[S!

Sy (p) ()
— —(1l4+a)| - 1+ot—
2 o

This completes the proof.

3

2

fa(x, 0) —a(x, 60)}* duo(x).

~
o Lo

Proof of Theorem 2 Let iy = (05, 6.7), L7 (n) = 2/_; Vi (),

1 1 a2 5
Lg — - \/lnhn 301;3 (770) 7 and Czl (n) _ nhn 80 9T n (71) n«/liaGO’lg (77) ’
——— 9 l“(no) la(n) —82 la(n)
N n\/an OGT n n- g2'n
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where 32

00T = 35307 = 5. Using Taylor’s theorem, we have that

92 92 — 92
Qo 960 do

o ! 210 ~Q jer 90
0= VI%(no) + / V21 (0 + (3% — no)) du ( 1 ,
0

from which we can write that

1 A~
. o il (62 — 90))
L% = [ Cyn —n0))d NG .
n /0 (o + @@y — no)) du ( Jn(6E — o)

We intend to show that

d
L5 LeN©, 20, (10
where
1 2
(EJ:;Q))% > ’
— o
Yl a2 0 ( (4?1420 _ i) ’
0 (14+20)2/142a 1+

and S is the one defined in (A7). Let

1\% 1 1 Ai_ n Zi » 2
Uyi(n) = (;) [ —(H‘;)exp(_%( 1Oy + 00Zi/hy) )

1+« o2hy,
(11)
and
(e Zi 06Uy (o)
ST Um0 )
then, due to Lemma 6, (10) can be verified if we show that
- P
> Eo (4 |9) — o0, (12)
i=1
- P
> Eo(669) 5 S (13)
i=1
. P
> Eo (1al']#) = 0 (14)

i=1
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[cf. Theorems 3.2 and 3.4 of Hall and Heyde (1980)]. Note that

I+
U, (n0) = —vhn — 5 Zidgai— 1(90)6—52 (15)
9
o 1 1+« a2
Ue,(no) = — + (1 - Z-2) e 3%, 16
i (Mo) Jraoet et ; (16)
(14 a)?

2
UL dgrUR ;(0) = hy Z}dgai—1(80) dgrai—1(6o) e* %1,

242
90

2
o 1 a1+ o (I—Zf)e_%ziz

( (770)) l+a 0020,4.2 Gga+2

(1 +w)? 2\2 —az?
e (1-2) e,
0

+
and

o 1
89U;lx’l agU,(i,(WO) = —ﬁ ot gUn l(n())

(1+Ot)2 —az?
~Vhu e A — Z})dpaj—1(60) e~ %1

Utilizing the arguments:

Eo{Zie @429} =0,
Eo{Z?e 2% |19} = (1 + 2a>*% ,
]Eo{(l —zl?)e 57 |§¢} —a(+a)?

Eo [(1 = z})ze—“ziﬂ%] =2(1+ 2a2) (1420)73,
and
Eo{(2i - 7}) e |9} =

by simple calculus, we can readily check (12) and (13). Since (14) holds due to the

facts:
c
Bo {[aoUg; 0m0)[*|9} < h2ca (14 X |)

and

Eo { [, Uz, o[} = €

(10) is established.
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Now, owing to (10), the theorem is asserted if we verify that

1
1 —S5 0
" P 1 VIt
| ot =) au > s (V2 ) an
0 0y (14a)2
For this task, it suffices to show that
b1 ¢11Ta s 0
Can(m) — —73 0 o242 | (18)
% (14a)3
and
P
sup |Ca.n (10 + 1) — Can(m0)| — 0, (19)

[nl<en

where {¢,} is any positive real sequence decaying to 0.
We first deal with (18). Put

2
(o
Jii(n) = Ai(©)8pyr ai—1(9) + (aa_gz,? — 1) dpai—1(0) pra;—1(6),
o 3
Di(n) = Aj dpyrai—1(0) + ) [ZGOZiAi(Q)hﬁ +200Zi Aivha + Ai (),
+2A;(0)Aihy + A%] dpai—1(0) dyrai—1(9),

2
i_o
2

4
J3i(n) = Z7K; (n)+ K (m),

and
2
Joi(m) = —200Zi Ki (M hu + (Ai @) hy + A )(a +2— a— 7?2 — 2K,-(n)).

It is not difficult to see that

)| = Ca (14 22) (14X, )C. 20)

Also, in view of Lemma 2, we can see that
sup max |Jo; ()| =o0,(h;,), 0=<r <15,
n 1<i<n
. — r
S‘f]p llgiagxn [J3,i(m)| =o0p(h;,), 0=<r <05, Q21

sup max |Ja; ()| =o0p(hy), 0<r<1.
n 1<i<n

@ Springer



230 S. Lee, J. Song

Meanwhile, we have that

l4+a -
Oporl () = sy Z {0039297611‘—1(9)21'\/% + Jii(mhy, + Jz,i(n)}

o2
e 5532 ~Kitn)

2

1+« _a% 52

2 Z:

= T sar2 E 000yyrai-1(0)Ziv/hpe >
i=1

l+ag % 2 Ly
_Ua+2 le(’?) 2899Tai—1(9)zj Al(e) h € 2o !
i=1
1+a
MZRu(n)
n 2 4
2 _ n l+o oy o 0y 4
00l () =« 1+am—w- 1[14-0!—(3-1-201);2[4‘056_421‘]
=

2 n
_a% 2 14+« -5
e 252 z+m [(3—1—201) K(n)—ah,(n)] *o
i=1

SIS}

_a% 2
QH ZRzl(n)e 2T Ki(n) e,
2 ga I+« 03 2 —%@Z?
3ealn(ﬂ)=mz3f)ai—1(9) @+2—a73Z7 JooZivhpe o7
Lt % 72

g Zaeal 10)Jai(mye 2o

Q
I\J‘OI\J

_e% 72
a+3 Zaea, 1O)Rs (e 2 K () et

where |¢| < |K;(n)|, and

M;(n) = 009,7ai—1O) Zix/hu + J1.i (Mhy + J2,i (),

Rii) = {200 = (il + J25 () @25 ZiA )y | ¢

o2

00 1 ——r
+M;(n) |Ota—22iAi(9)\/hn —Kyi(n) + EK,-Z(H) e;] e Yo%,
2 4
) — _ % 2 2 % 44
Ryi(m) = 1+a—(3+2a) 2 Zi + aKz(n) toy Z!+ J3i(n) g,

Rsi(n) = oo(a +2—a—zz)z Vhn + Jai ().
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Then, using (8), (21) and Lemma 2, we can have that
sup max |Ry;(m)| =o0,(hy,), 0<r <15,
n l<i<n
Sgp lr;liasxn [R2,: (M) Ki(n) et = op(hy), 0<r <05, (22)

sup max [R3;(mK;(m)ef|=o,(h), 0<r <1,
n 1<i<n
Therefore, by Lemmas 4 and 5, (21) and (22),
—-3/2
1, P l1+a og
% 399713(7)) I m (1 + aO'_z)
x [s - / (a(x, 00) — a(x, 0)) 32,rax, 0) Mo(X)] :

— N\
o l—l—ot_l—i—a (1—|—a)( )

O
0
oo+2 oo+2 I+a—

3 S
2 2\ 2 4 2\ 2
O O (of (o
—(3+2a)—°2(1+a—(;) +3a—%(1+a—02) :
o o o o

P
32, 1%(m) — 0

1 P
- 18 () —

1
n«/hy,

uniformly in 7. Thus (18) is verified. Since the above limits are continuous in n by

(A2) and (AS), we can demonstrate that (19) holds. This completes the proof.

5 Some Lemmas

Lemma 1 Suppose that (A1) holds. Then, for k > 1,

3 k
Bo {1t} < cem (1+ %0, |) -

Since the result of Lemma 1 is well known, we omit the proof.

O

Lemma 2 Suppose that f : R x ® — R belongs to P. Then if (A1) and (A3) hold

and nhll — 0 for some g > 1,

sup max
n 1<i<n

f! (thgl, 77) AT

where j, k,1 € {0,1,2,---}andm > —1.51.

=op(h,) for 0<r <15]+m,
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Proof For any integer p with (1.5/ +m — r)p > g, we have that

c P (m— _
o s ] (1 [, ) 250 07 < oS40 — oy,
which establishes the lemma. O

Lemma 3 Suppose that (A1) and (A3) hold. Then, for f :R x ® — Rin &,
1 n
=3 (X, om) = 0p (). 23)
S

If in addition, nh, — oo, (A2) holds and f is differentiable with respect to x and n
whose derivatives also belong to ‘P, then

—Zf( o) — / £ mduo(x) 24)

uniformly in 1.

It is easy to prove (23), so we omit the proof. The argument in (24) is due to Lemma
8 of Kessler (1997).

Lemma 4 Suppose that (A1)—(A3) hold. Thenif f : Rx® — R € & isdifferentiable
with respect to x and n with derivatives belonging to 2,

1
1 - _e% 2 p AN
;Zf(Xt;_pn) e 2l (1+060_—°2 /f(x,n)duo(x), (25)
i=1

3

l - _a%, 2\ 2
;Zf (Xt;l_l’ n) z7e 1ot w2 (1 +o —02) /f(x mduo(x),  (26)
i=1
; :
—Zf(in],n) zie 87 i>3(l+a—) [remdme e

i=1

uniformly in 1.

Proof Let

IR
Qla
N‘ON
N
IN)

hi(n) = %f (Xt;gl, n) e
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In view of Lemma 9 of Genon-Catalot and Jacod (1993), the convergence result for
each 7 is ensured by the facts:

n 2\ —1/2 n
1

> Eo {hiIGl,} = (1%%) DI TIN)
i=1

i=1
o\ 172
P (70
LN (1 +a—2) /f(x, nduo(x),
o
and
n 1 n
> Eo{m)IG1} = = D7 (X ) = 0p (D).
i=1 i=1

To establish the uniform convergence, in view of Theorem 20 of Ibragimov and
Has’minskii (1981, p 378)), it suffices to verify that
. 2d
> hi(n)
i=1

Eo < C forall n, (28)

and
2d

Eo < Clp —m forall ni,m,  (29)

D hitm) = D hi(m)
i=1 i=1

where d is the dimension of ®. We only prove (29) since (28) can be proved in
essentially the same way. Note that

c
sup |Vhi ()] < %“ + 77| (1 + ‘Xli"—l D
n

Then, using Cauchy’s inequality and Jensen’s inequality, we have that

2d

> (i) = hi(12))

i=1

Eo

2d

> Vhi(r)(m — )

i=1

<Ko

C
(1 |xe,

")

where n* lies between 1 and ;. This asserts (29). In a similar fashion, we can verify
(26) and (27). O

] n
< Cyln — m|MEod = ‘1 72
< Cqulni — m2| o[n; + Z;

< Colm —ml*,

@ Springer



234 S. Lee, J. Song
Lemma 5 Under the conditions in Lemma 4, if nh, — oo, then
! if(x ) 7,452 1) (30)
no, e i =0
n\/E P L n 1 P
uniformly in 1.
Proof Let
Won = —— fxp mzie 37 (31)
; = — no, e os 1
in nm ti—l n 1

From the facts:

D Eo{him|Gi_;} =0,
i=1
and

ZEo{h DG} = Zf (Xi,.n) =00,

we can see that (30) holds for each 7. Thus, as in the proof of Lemma 4, the lemma is

proved if we show that (28) and (29) hold for (31).

By applying Burkhoder’s inequality to a sequence of martingale differences
{hi N }:.’:1 , one can easily see that (28) holds. Also, applying Burkhoder’s inequal-

ity to a sequence of martingale differences {hi(m) —hi(n), gl."}?:l and using the

facts:

\ c
sup }Vhi(ﬂ)| < |Zi +Z; | (1 + ‘Xtin—l D ’
n

Co
na/hy,

Cauchy’s inequality and Jensen’s inequality, we have that

2d

> (i) = hi(12))

i=1

> (hi(m) = hi(m))*

i=1

D IV

i=1

<Im —mlPE

A

i=1

hdlm —

This entails (29) and completes the proof.
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Lemma 6 Let U,‘ii(n) be the one defined in (11). Under (A1), (A3) and (A4), if
nh? = 0, then

1 < 1 &
VY, - U, = 1), 32
’/—hg Vi) = o 2L i) | = o (D) (32)
1 < 1 &
—= D Vi) — —= D" 3 Us (o) = 0p (D). (33)
ﬁi:l ' ‘/ﬁizl ’

Proof We only deal with (32) since (33) can be proven similarly. Note that

14+« _az2 k.
V3t 10) =~ (o0 Zi/In + A7) i1 By e 4 e Kio,
%

where K; o = K,,.; (o). It follows from (15) that

1 ! n
Zaevzi(UO) - Z3QU’?J(770)
Vnhy, = P
Co < c
= «/n(;; 2 (1 + ‘X’t’"—l D ‘("Ozl‘\/}TnJr A (1 = Ki0et) = 00Ziv/hn
n =1
Co < c
=< o (1+‘X" ‘) {|ZK0|\/h>e{+|A|e7K10}

Co < ¢
max; |K; ol ol n K- .
=€ Om; (1+ [ ) {1Ziiolvim + 1801}

C
where |¢| < |K;ol. Using the facts that ]Eo(Kiz,O|Q;'_1) <C (1 + )Xtin—l ) h,% and

C
Bo(K?IG7 ) = € (14X, |) i, we have

JITZE (14 e ) (Ziksolin + 1) e |

C < c

< L+ | X Eo(ZD)Eo(K |G )V hn + Eo(1Ai (1G] )
/nhn i—1
C

n
Z (1 + | X )C h\> = 0p(nhy)
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and

: znpao[(1+\x,,.n1\)C(|Z,-Kl-,o|JE+|AiI)2|g{’_1]

nh
m =1

C - ¢ 3 2
= > (1%, |) B =0pwd.

n

Since eM@i IKiol = O p (1), in view of Lemma 9 of Genon-Catalot and Jacod (1993),
(32) is established. This completes the proof. O
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