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Abstract The framework of stationarity testing is extended to allow a generic
smooth trend function estimated nonparametrically. The asymptotic behavior of the
pseudo-Lagrange multiplier test is analyzed in this setting. The proposed implemen-
tation delivers a consistent test whose limiting null distribution is standard normal.
Theoretical analyses are complemented with simulation studies and some empirical
applications.

Keywords Time series · Stationarity testing · Limiting distribution · Nonparametric
regression · Nonparametric hypothesis testing

1 Introduction and scope of the paper

A considerable amount of research has focused on developing both unit root and
stationarity tests, capable of distinguishing between integrated and stationary-around-
a-trend/level stochastic processes. A number of statistical implications are associated
with this distinction, which becomes crucial in applied time series forecasting, where it
is well known that difference stationary and trend stationary processes often imply very
different forecasts (e.g., Diebold and Kilian 2000). Other application fields include
analysis of economic/financial time series, health economics (studies on health expen-
diture and gross domestic product, e.g., Jewell et al. 2003), hydrology (where testing
for stationarity is an important topic, e.g., Wang 2006; Van Gelder et al. 2007), or
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climate change studies (air pollutant emissions, Dore and Johnston 2000; tempera-
tures, Gay-García et al. 2009). Furthermore, both unit root and stationarity tests are
also regularly applied for model selection.

A potential drawback of standard unit root and stationarity tests stems from their
lack of robustness to misspecification of the trend function. For instance, under mis-
specification of the trend component, standard stationarity tests typically diverge
in probability as sample size goes to infinity, so a spurious unit root is detected
with probability approaching one. This recognition has led some authors to devise
flexible tests, that do not depend critically on trend specification. The earliest proposal
is due to Bierens (1997), who developed a unit root test that considers as alternative a
random process that is stationary around a trend which belongs to a very general class
of functions of time. Bierens’s approach relies on approximating the trend function by
Chebyshev polynomials, and the test becomes more flexible as more complex Cheby-
shev polynomials are used. The limiting null distribution of the test statistic, which
depends on the complexity of the chosen approximant, is computed by Monte Carlo
simulations.

In the field of stationarity testing, Becker et al. (2006) proposed two flexible tests.
The first test relies on approximating the unknown trend function by a model includ-
ing an intercept, a linear trend and two trigonometric components, namely a sine and
cosine function, whose frequency is chosen to maximize goodness of fit. The limit-
ing null distribution of the test, which is nonstandard, is derived in the same paper.
A potential limitation stems from the fact that most smooth functions have Fourier
expansions with an infinite number of frequencies, so the approximation capabilities
of the chosen specification are limited. The same paper also proposes the cumulative
frequency test, which provides further flexibility as it relies on trigonometric polyno-
mials. The null distribution of the test, which as in Bierens’s approach, depends on
the order of the trigonometric polynomial, is computed in the same paper by Monte
Carlo simulations. The cumulative frequency test relies on a fixed-order trigonometric
polynomial, whose representation capabilities are inherently limited to trend functions
with only a finite number of non-null terms in their Fourier expansion, so in this imple-
mentation the test may be regarded as flexible, but not properly as nonparametric. This
drawback is well known in nonparametric statistics. A classical remedy is provided by
the method of sieves (Grenander 1981): by using an increasing sequence of parametric
models, whose complexity grows with sample size at appropriately limited rates, the
method delivers consistent nonparametric estimation and hypothesis testing in very
general settings (e.g., Hong and White 1995).

The sieve principle can also be exploited in stationarity testing. This is the main
goal of the paper. The proposed test relies on nonparametric least squares estimation
of the trend component, which is carried out through trigonometric series regression.
Our approach has the following features: (a) we focus on smooth trends which can be
approximated with arbitrary accuracy, in mean-squared sense, by linear combinations
of the elements of a cosine basis (in principle, any squared integrable function on [0, 1]
has this property). (b) The stochastic part of the null model is generated by a linear
filter process (the performance of the test under several nonlinear time series models is
also studied in simulations). (c) The behavior of the test when the long-run variance of
the process is estimated upon the residuals of the nonparametric regression is studied.
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Finally, (d) the proposed test asymptotically has correct size, and is consistent under
unit root alternatives, with its limiting null distribution being standard normal, which
enables a fairly simple implementation in practice.

As compared with previous stationarity tests, this proposal provides a number of
interesting features: (i) the proposed test is fully nonparametric. It relies on a sieve
mechanism which ensures both consistent estimation of the trend function and asymp-
totically correct behavior of the stationarity test. (ii) The limiting null distribution of
the (suitably rescaled) test is standard, unlike those of most unit root and stationarity
tests, whose distributions are nonstandard as well as model-dependent, in the sense
that they range with each trend specification. The expedient of rescaling the test statis-
tic avoids the burden of computing (usually, by Monte Carlo simulations) a different
set of critical values for each choice of model complexity. (iii) The analytical results
in this paper are valid for the case when the data are driven by linear processes, so our
analyses are not limited to the i.i.d. context. (iv) The complicated issue of estimating
the long-run variance of the process in the nonparametric environment is addressed
analytically. A proposal (namely, a class of kernel estimators for the long-run vari-
ance of the process) is provided in the paper, and its theoretical behavior is analyzed,
including derivation of appropriate rates for bandwidth increase in the nonparametric
setting. The estimator for the long-run variance of the process is computed upon the
residuals of nonparametric regression.

The rest of the paper is structured as follows: in Sect. 2 the nonparametric test is
introduced, and its limiting behavior is analyzed. In Sect. 3 the finite sample properties
of the test are investigated and, in Sect. 4, some empirical applications are presented.
The paper closes with a summary of conclusions. All the mathematical derivations
are collected in the Appendix.

2 A nonparametric stationarity test

2.1 The model

The following error-components model may be used as a general framework:

yt,T = μt + θ∗(t/T ) + εt ,

μt = μt−1 + ut ; t = 1, . . . , T ; T = 1, 2, . . .
(1)

with θ∗ : [0, 1] → R being a smooth function of time (i.e., a trend). We con-
sider approximants to θ∗ of the form θm(x) = ∑m

j=0 β j,mϕ j (x), with βm =
(β0,m, . . . , βm,m)′ ∈ R

m+1, ϕ0(x) = 1, ϕ j (x) = √
2 cos( jπx), j ≥ 1, x ∈ [0, 1].

(The basis {ϕ j , j = 0, 1, . . .} is complete and orthonormal in L2[0, 1].) We let m =
mT grow to infinity with sample size T at an appropriate rate and assume that θ∗ is the

limit of {θmT } under the metric dT (θmT , θ∗) ≡
√

T −1
∑T

t=1[θmT (t/T ) − θ∗(t/T )]2.
This holds for any function in L2[0, 1], although further smoothness conditions on θ∗
will be imposed below.
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In addition, {εt } and {ut } are independent of each other zero-mean error processes
with characteristics to be detailed below and respective (finite) variances E(ε2

t ) =
σ 2

ε > 0 and E(u2
t ) = σ 2

u ≥ 0; {μt } starts with μ0, which is assumed to be zero.

Lagrange multiplier (LM) stationarity testing relies on the following setting:

H0 : q ≡ σ 2
u

σ 2
ε

= 0, versus H1 : q > 0 (2)

In usual stationarity testing, a parametric model for the trend function, such as
θ∗(x) = β0 + β1x , is specified in advance, and the LM statistic to test (2) has the
well-known expression:

ST = σ̂−2T −2ε̂
′C ′

T CT ε̂ = σ̂−2T −2
T∑

t=1

E2
t , (3)

where ε̂ is the T × 1 vector of OLS residuals (we suppress double indexing for nota-
tional simplicity) and CT is a T × T lower triangular matrix of ones. Et = ∑t

i=1 ε̂i

denotes the forward partial sum of the residuals, and σ̂ 2 is a suitable estimator for the
long-run variance of {εt }, to be denoted as σ 2 and assumed non-null.

We will analyze the behavior of the above stationarity test when the trend func-
tion θ∗ is estimated nonparametrically and the test is carried out upon the resid-
uals of this regression. We consider the estimator θ̂mT (x) = ∑mT

j=0 β̂ jϕ j (x), with

β̂mT
= (β̂0, . . . , β̂mT )′, which (given mT ) is computed by OLS regression, i.e., β̂mT

=
(�′�)−1�′y, with � = [ϕt, j ], ϕt, j = ϕ j (t/T ), t = 1, . . . , T ; j = 0, . . . , mT ; we
may write � = [ϕ1, . . . , ϕm], with ϕ j = [ϕ j (1/T ), . . . , ϕ j (T/T )]′.

The pseudo-LM test statistic has the usual form:

ŜT = σ̂−2T −2e′C ′
T CT e (4)

with e = (e1, . . . , eT )′ being the vector of OLS residuals from the above nonparamet-
ric regression. (As the sum of OLS residuals is null in this setting, it holds e′C ′

T CT e =
e′CT C ′

T e, so the nonparametric test may also be computed upon the basis of backward
partial residual sums.)

We shall follow the usual conventions: the symbol “
L−→” indicates convergence

in distribution, “
p−→” denotes convergence in probability, and symbols Op and op

are used with their usual probability order meanings, as T → ∞ with respect to the
probability measure P .

2.2 Assumptions

We consider model (1) under the following assumptions:

Assumption 1 (i) The underlying probability space (�, F, P) is complete, and
the unobservable error process {εt } is generated as εt = ∑∞

j=0 α jvt− j , with
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∑∞
j=0 |α j | < ∞ and α ≡ ∑∞

j=0 α j 
= 0. (ii) The process {vt | t = 1, 2, . . .} is

independent identically distributed (i.i.d.), with E(vt ) = 0, V ar(vt ) = σ 2
v > 0

and E |vt |r < ∞ for some r > 2. (iii) The process {ut } is independent of {vt },
has E(ut ) = 0, V ar(ut ) = σ 2

u ≥ 0, E |ut |2+δ < ∞ for some δ > 0, and
∑T

t=1 ut = Op(T 1/2).

Assumption 2 As T → ∞, (i) m3/2
T T dT (θmT , θ∗) → 0, with (ii) mT → ∞ and

m9/2
T T −1 → 0.

Assumption 3 σ̂ 2 ≥ 0 and, as T → ∞, (i) m1/2
T (̂σ 2 − σ 2)

p−→ 0 under H0, and (ii)
under H1, σ̂ 2 = Op(T ζ ), 0 ≤ ζ < 2. �


2.3 Results

First we derive the limiting behavior of the (standardized) test when the long-run
variance is known.

Proposition 1 Under Assumptions 1 to 2, let ZT = s−1
mT

(σ−2ST − μmT ), where

ST = T −2e′C′
T CT e, e = (IT − �(�′�)−1�

′
)y, � = [ϕt, j ], ϕt, j = ϕ j (t/T ), t =

1, . . . , T, j = 0, . . . , mT , μmT = ∑∞
j=mT +1( jπ)−2 and s2

mT
= 2

∑∞
j=mT +1( jπ)−4.

Then as T → ∞:

(a) under H0, ZT
L−→ N (0, 1),

(b) under H1, P(ZT > κT ) → 1 for any nonstochastic sequence {κT } with
κT m−3/2

T T −2 → 0. �

An analogous result follows when σ 2 is estimated from data.

Proposition 2 Under Assumptions 1 to 3, let ẐT = s−1
mT

(̂σ−2ST − μmT ). Then as
T → ∞:

(a) under H0, ẐT
L−→ N (0, 1),

(b) under H1, P(ẐT > κT ) → 1 if κT m−3/2
T T −(2−ζ ) → 0. �


Assumption 3 requires a suitable estimator for σ 2. We follow Pötscher and Prucha
(1991), and results are stated for nonparametric estimators with kernel W belonging to
the class Wρ , of functions W : R → [−1, 1] satisfying W (0) = 1, W (−x) = W (x)

for all x, W (x) = 0 for |x | > 1 and limx→0 |W (x) − 1|/xρ < ∞ for some ρ > 0.
The following result states that Proposition 2 holds if σ 2 is replaced by a nonpara-

metric estimator with kernel W belonging to the class Wρ . (The truncation estimator
is embedded into the scheme of Proposition 2 by using |̂σ 2| instead of σ̂ 2.)

Proposition 3 Under Assumptions 1 to 3, let σ̂ 2 = ∑�T
i=−�T

wi,T σ̂i ≥ 0, with σ̂i =
T −1 ∑T

t=1+|i | e(d)
t e(d)

t−|i |, e(d)=(e(d)
1 , . . . , e(d)

T )′ = (IT − �d(�′
d�d)−1�′

d)y, �d =
[ϕt, j ], ϕt, j = ϕ j (t/T ), t = 1, . . . , T, j = 0, . . . , m(d)

T , and wi,T = W (i/(1 + �T )),
with kernel W ∈ Wρ . If the following conditions hold: (i) either (i.1) E |vt |4 < ∞ or
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(i.2) E |vt |r < ∞, with 2 < r < 4 and α j = O( j−(1+qv+ε)), where ε > 0 and −qv ≤
min{−2(r −1)/(r −2),−(ρ +1)}, (ii) (m(d)

T )9/2T −1 → 0, (iii) mT �2
T m(d)

T T −1 → 0,

(iv) mT �3
T T −1 → 0, mT �

−2ρ
T → 0, (v) md

T → ∞, �T → ∞, then as T → ∞:

(a) under H0, m1/2
T (̂σ 2 − σ 2)

p−→ 0,

(b) under H1, σ̂ 2 = Op(�T T ) and P(ẐT > κT ) → 1 if κT �t m
−3/2
T T −1 → 0. �


In Proposition 3 above we allow possibly different model complexities (respec-
tively, mT and m(d)

T ) for the numerator and denominator of the test statistic. To our
knowledge, the possibility of this separate treatment of both components in the test
statistic has not been exploited in the literature, although our simulations indicate that
this strategy may be useful in certain cases, where a more complex model may be
advisable in the numerator of the statistic—e.g., this may induce undersmoothing, so
reducing the bias of the nonparametric trend estimator, and allowing better control of
the test’s size—than in the denominator, where stronger complexity control may be
useful to better estimate the long-run variance of the process.

3 Monte Carlo study

In this section, we first provide computer simulation results for the performance of
the test under i.i.d. errors, and afterwards the research is extended to time series.

3.1 Simulations in i.i.d. environment

We analyze the following trend specifications:

(A) θ∗(x) = 0,

(B) θ∗(x) = 1 + 2x + 3x2,

(C) θ∗(x) = 1 + 2x + 3[1 + exp{−50(x − 0.3)}]−1 − 4[1 + exp{−40(x − 0.6)}]−1,

(D) θ∗(x) = 1 + 2x + 2[1 + exp{−γ (x − 0.3)}]−1, with γ = 20, 50, 100,
(E) θ∗(x) = 1 + 2x + 2[1 + exp{−γ (x − 0.3)(x − 0.6)}]−1, for γ = 20, 50, 100,
(F) θ∗(x) = 1 + 2x + 2[1 − exp{−γ (x − 0.3)2}], where γ = 20, 50, 100,
(G) θ∗(x) = 1 + 2x + 2x1(x > 0.3),

(H) θ∗(x) = 1 + 2x − x1(x > 0.3),

(I) θ∗(x) = 1 + 2x − 3(x − 0.3)1(x > 0.3)+ 4(x − 0.6)1(x > 0.6)− 5(x − 0.8)1
(x > 0.8),

with x ∈ [0, 1] and 1(•) denoting the indicator function.
Specification (A) corresponds to a no-trend (or level plus noise) model under the

null hypothesis, and a random walk with noise under the alternative, while (B) allows
us to analyze an explosive deterministic trend. Specification (C) represents an artificial
neural network trend, or equivalently, a linear trend affected by two smooth transitions
of large magnitude which are modeled by logistic sigmoids. Sigmoid functions are
very flexible and allow the analysis of series with gradual changes. So, several clas-
ses of sigmoid curves are considered in specifications (D)–(F). Finally, specifications
(G)–(I) correspond to linear trends with breaks (simulation results for the linear trend
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Nonparametric stationarity testing 131

model with no breaks were very close to the more general cases considered in this
section, so we omitted them for brevity).

In simulations we considered sample sizes T = 100, 300, 500, 1,000, 1,500,

2,000, and signal-to-noise ratio values q = 0, 0.01, 0.1. In the i.i.d. analysis, sim-
ulations were based on 5,000 replications, with the processes ut and εt being N (0, 1).
We applied the deterministic rule mT = md

T = [5T 1/5]. This rate of increase is
somewhat slower than others which appear in related (mainly cross-sectional) non-
parametric regression contexts, although the combined requirements of Assumptions 2
and 3 advised us against being too liberal in this respect. The variance of the process
was estimated by using the “unbiased” estimator σ̂ 2 = (T − md

T − 1)−1e(d)′e(d),
as our simulations indicated that, in small samples, this estimator outperformed the
(asymptotically equivalent) plug-in estimator σ̃ 2 = T −1e(d)′e(d) when included in the
nonparametric stationarity test. (It can be readily checked that the asymptotic results
in Proposition 3 remains valid if these “unbiased” estimators for the autocovariances
are used; we omit derivations for brevity). Table 1 displays the rejection rates at 5 %
significance level, with the critical value provided by the N (0, 1) limiting distribution.
Results indicate that size is close to the nominal significance level (excepting case D
with γ = 100, where a slight oversize is observed) and power figures are very sim-
ilar for all the trend specifications considered. So, the test seems to perform suitably
under a wide spectrum of trend specifications, thus being free from the overrejection
problems caused by misspecification of the trend function.

Next, we compared the performance of the nonparametric test with that of the
two flexible stationarity tests (hereafter BEL1 and BEL2) proposed by Becker et al.
(2006). As commented above, BEL1 approximates the unknown trend function (their
paper focuses mainly on smooth breaks of unknown form and number) by a sin-
gle frequency component from its classical Fourier expansion. The recommenda-
tion is to select that frequency (with a maximum of 5) which minimizes the sum of
squared residuals. The BEL2 (or cumulative frequency) test also relies on classical
Fourier series: the trend function is estimated by least squares regression on a basis of
sines and cosines, and in order to avoid power loss Becker et al. (2006) recommend
that at most the first two frequencies be included. We checked the performance of
the BEL tests—including a linear trend component, ττ test—for trend specifications
(A)–(I) and sample sizes: T = 100, 500, 1,000, 2,000. Results are reported in Table 2
below.

The BEL2 test displays better control of the test size than BEL1, but less power.
These results agree with Becker et al. (2006) conclusions. However, even the BEL2
strategy suffers size distortions in some of the studied cases. The magnitude of
oversize becomes very large as sample size increases (indeed, size approaches 1).
As outlined in Table 1 above the nonparametric test does not suffer these size
distortions. On the other hand, the BEL tests exhibit higher power than the non-
parametric test for T ≤ 1,000, though for larger sample sizes the power of
both tests is similar. This could be expected in advance, as the nonparametric test
includes more frequency terms in order to control test size, which somewhat reduces
power.
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3.2 Simulation analysis in time series

Then we investigated the finite sample properties of the test under more general error
processes. In particular, εt was generated according to the following DGPs:

1. AR(1) model: εt = ρεt−1 + υt , with ρ = 0.5, 0.2, 0,−0.2.

2. MA(1) model: εt = υt + ρυt−1, for ρ = 0.5, 0.2,−0.2.

We also investigated four nonlinear processes analyzed by Hong and Lee (2003)
and Escanciano (2006), namely:

3. AR(1) model with heteroskedasticity (ARHET): εt = ρ1εt−1 + htυt ; h2
t = 0.1 +

0.1ε2
t−1 + ρ2ε

2
t−2.

4. AR(1) model plus a bilinear term (AR-BIL): εt = ρ1εt−1 + ρ2εt−1υt + υt .
5. Bilinear model (BIL): εt = ρ1εt−1 + ρ2εt−2υt−1 + υt .
6. Nonlinear moving average model (NLMA): εt = ρ1εt−1 + ρ2υt−1υt−2 + υt .

For these last models we considered ρ1 = 0.5 and ρ2 = 0.1. Again, the basis
processes {ut } and {vt } were i.i.d. N (0, 1).

For time series only trend specifications (A)–(C) were analyzed and 2,000
replications were carried out. Also, the slightly more conservative rule mT =
[4T 1/5], m(d)

T = [0.85 × 4T 1/5] was applied. The choice md
T ≤ mT was not man-

datory in light of the theoretical results above, although in our simulations it enabled
easier control of size.

In this case it is necessary to treat autocorrelation. A number of papers have pro-
posed several methods for long-run variance estimation, and analyzed the finite sample
behavior of the stationarity test under these proposals (e.g., Kwiatkowski et al. 1992;
Kurozumi 2002; Sul et al. 2005). In our simulations these methods did not provide
satisfactory results. This is not surprising given Propositions 1 to 3 above, as the
probability orders of most magnitudes differ from their analogues in parametric sta-
tionarity testing, this mainly being a consequence of the slower convergence rates of
the nonparametric estimators for the trend function, as compared with their parametric
counterparts. This implies that standard corrections for autocorrelation are generally
invalid in the nonparametric setting.

The poor performance of standard autocorrelation treatments in our nonparametric
setting led us to devise a new strategy. We combined (in a somewhat ad hoc fashion)
the technical apparatus of Proposition 3 above with methods adapted from previous
approaches. Our proposal is oriented to ensure a suitable performance of the nonpara-
metric test in most common applications, although it should only be seen as a sensible
starting point, and further refinements should be pursued in future research. As esti-
mator for σ 2 we used the following truncation estimator (i.e., a kernel estimator with
rectangular kernel): σ̂ 2 = ∑�T

i=−�T
(T − |i | − md

T − 1)−1 ∑T
t=1+|i | e(d)

t e(d)
t−|i |. In order

to select the bandwidth parameter �T , a data-driven rule was applied. We considered
values in the interval �

(−)
T ≤ �T ≤ �

(+)
T , with �

(−)
T and �

(+)
T being deterministic limits

fixed in advance. By imposing �
(−)
T → ∞ and (e.g.) �

(+)
T = [cT 1/5] (c > 0), the rate

�T = Op(T 1/5) is achieved and consistency of the test is ensured in many common
applications. The following scheme, adequate for AR(1) or MA(1) error processes,
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is then applied to obtain �T (as Kurozumi (2002) rule, the scheme uses a tuning param-
eter, k; in our simulations we set k = 0.5; higher values are recommended in case of
stronger autocorrelation):

1. Set �
(−)
T and �

(+)
T . (Here, �

(−)
T = 0, �

(+)
T = [2T 1/5k] were fixed.) Set KT , the

maximum lag order permitted in AR fitting (here, KT = [2T 1/5k] was used).
2. Fit AR(p) models to the residual vector e(d), with p = 0, . . . , KT , and select

the order p∗ that minimizes Schwarz’s information criterion (SIC). Go to step 3.
3a. If p∗ = 0, set �T = �

(−)
T .

3b. If p∗ = 1, set �T = min([20|bT |k], �(+)
T ), with bT being the regression coeffi-

cient of the fitted AR(1) model.
3c. If p∗ > 1, compute sample autocorrelations (ri )of e(d), with i = 1, . . . , �

(+)
T , and

select i∗ such that |ri∗ | = max
i=1,...,�

(+)
T

{ri∗}. Set �T = min(max(i∗, p∗), �(+)
T ).

The above procedure performed well under a wide range of circumstances (several
specifications of the trend, stochastic characteristics of the process, autocorrelation
levels). Further refinements would be available in specific cases where more detailed
knowledge of the nature of the error process is available a priori. Results are reported
in Tables 3 and 4 below.

As compared with the i.i.d. case, some impairment of the finite sample performance
of the test is observed, with slight distortions in size and loss of power. As expected,
the behavior of the test improves as sample size increases (particularly for series with
T ≥ 500). Regarding the error processes considered, it is observed that the test works
better in series with nonnegative autocorrelations.

4 Empirical applications

To illustrate the application of the test, we investigated two time series: the daily series
of the Japanese yen/US dollar exchange rate and the FTSE Eurotop 100 index.

4.1 The daily Japanese yen/US dollar exchange rate series

The data range from July 7, 2002 to July 7, 2007 (1,827 observations) and were ana-
lyzed, together with other exchange rate series, by Brooks (2008) in the context of
vector autoregressive estimation. These financial series—or their first differences—
appear to exhibit nonlinear patterns (e.g., Mills and Markellos 2008) of the kind
analyzed in the above section.

First, we outline the details of stationarity testing for this exchange rate series. The
deterministic rule mT = [4T 1/5] was applied, according to results from Sect. 3. As
sample size is T = 1,827, this gives mT = 17. Figure 1 below displays the series
and its fitted trend, under this model complexity. The numerator of the test statistic
is straightforwardly computed upon the residuals of the OLS regression yt = β̂0 +∑17

j=1 β̂ j
√

2 cos( jπ t/T ) + et . This gives ST = 0.377 for the raw “KPSS” statistic.

For estimation of σ 2 we used the rule outlined in the previous section. In order to
have better control over the size of the test, the residuals used to compute σ̂ 2 were
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Fig. 1 Daily Japanese yen/US dollar exchange rate series (broken line) versus nonparametric fitted trend
(continuous line)

Table 5 Standardization parameters for the nonparametric stationarity test

mT 1 2 3 4 5 6 7 8 9 10
μmT 0.06535 0.04002 0.02876 0.02242 0.01837 0.01556 0.01349 0.01191 0.01066 0.00964

smT 0.04111 0.02017 0.01239 0.00856 0.00636 0.00496 0.00401 0.00333 0.00282 0.00243

mT 11 12 13 14 15 16 17 18 19 20

μmT 0.00881 0.00810 0.00750 0.00698 0.00653 0.00614 0.00579 0.00548 0.00519 0.00494

smT 0.00212 0.00187 0.00167 0.00150 0.00135 0.00123 0.00113 0.00104 0.00096 0.00089

mT 21 22 23 24 25 26 27 28 29 30

μmT 0.00471 0.00450 0.00431 0.00413 0.00397 0.00382 0.00368 0.00355 0.00343 0.00332

smT 0.00083 0.00077 0.00073 0.00068 0.00064 0.00061 0.00057 0.00054 0.00052 0.00049

mT 31 32 33 34 35 36 37 38 39 40

μmT 0.00322 0.00312 0.00302 0.00294 0.00285 0.00278 0.00270 0.00263 0.00256 0.00250

smT 0.00047 0.00045 0.00043 0.00041 0.00039 0.00038 0.00036 0.00035 0.00033 0.00032

obtained from a slightly simpler cosine regression with m(d)
T = [0.85 × 4T 1/5], and

the (rectangular kernel) estimator was applied, i.e.,
σ̂ 2 = ∑�T

i=−�T
(T − |i | − md

T − 1)−1 ∑T
t=1+|i | e(d)

t e(d)
t−|i |, with �T = 3 obtained by

applying the rule outlined in Sect. 3 above. This gives σ̂ 2 = 17.9819.
In order to facilitate the application of the test, Table 5 below displays the standard-

ization parameters μmT and smT for a representative range of values of mT . In our
case, as mT = 17, the table gives μmT = 0.00579 and smT = 0.00113. Therefore,
the observed value of the test statistic is ẐT = s−1

mT
(̂σ−2ST − μmT ) = 13.446 which,

by checking the N (0, 1) distribution, indicates that the null of stationarity around a
deterministic trend is rejected at the critical level p = 0.000.

In a second stage the analysis was extended to the first difference of the series, for
which the fitted trend was computed again under mT = 17. In this case ẐT = 0.122
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Nonparametric stationarity testing 139

Table 6 Sensitivity analysis

Japanese yen/US dollar exchange rate Japanese yen/US dollar exchange rate (differences)

�T = 1 �T = 2 �T = 3 �T = 4 �T = 5 – – �T = 0 �T = 1 �T = 2

mT = 16 32.840 18.290 12.077 8.652 6.482 mT = 16 – – 0.125 −0.0004 −0.355

mT = 17 36.056 20.212 13.446 9.716 7.353 mT = 17 – – 0.122 −0.007 −0.372

mT = 18 38.279 21.524 14.369 10.425 7.926 mT = 18 – – 0.433 0.293 −0.103

FTSE Eurotop 100 index (logs) FTSE Eurotop 100 (returns)

�T = 3 �T = 4 �T = 5 �T = 6 �T = 7 �T = 3 �T = 4 �T = 5 �T = 6 �T = 7

mT = 16 12.934 9.408 7.199 5.672 4.558 mT = 16 −0.350 −1.440 −0.377 −0.185 0.943

mT = 17 10.430 7.368 5.449 4.123 3.155 mT = 17 −0.228 −1.382 −0.257 −0.054 1.140

mT = 18 11.534 8.226 6.154 4.721 3.676 mT = 18 0.030 −1.218 −0.001 0.219 1.512

Values of the test statistic under moderate variations of mT and �T
In bold type the value of the statistic for mT and �T obtained according to the data-driven rules
Critical values of the N(0,1) distribution: 1.282, 1.645 and 2.326, at 10, 5 and 1 % significance levels,
respectively

(critical level p = 0.451), with �T = 0 selected by the data-driven device. So, the null
of stationarity cannot be rejected.

In empirical applications it is advisable to carry out a sensitivity analysis in order
to assess the robustness of the test’s results under moderate variations of mT and �T .
Table 6 displays this analysis for the daily Japanese yen/US dollar exchange rate series,
which indicates that conclusions remain unaffected.

These results, together with the output from mainstream unit root tests, coincide to
suggest that the daily Japanese yen/US dollar exchange rate series has a single unit
root. This conclusion is also in accordance with predictions from financial theory.

4.2 The daily series of the FTSE Eurotop 100 index

Then we analyzed the closing prices of the daily series of the FTSE Eurotop 100
index spanning the period from 17 December 2002 to 30 October 2009 (1,739 observa-
tions) (available at http://www.fin-rus.com/analysis/export_eng_/default.asp).
Figure 2 plots the logarithm of the series and the fitted trend, which was computed
for mT = 17. For estimation of the long-run variance the data-driven device selected
�T = 5, and the observed value of the test statistic was ẐT = 5.449 (critical level
p = 0.000). On the contrary, the extension of the analysis to the first difference of the
series (i.e., the return series) indicated that the null of stationarity around a deterministic
trend cannot be rejected for returns: the value of the test statistic is ẐT = −0.257—
critical level p = 0.601—with �T = 5 selected by the above procedure to estimate
σ 2. The robustness of these conclusions under moderate changes of mT and �T can
be checked in Table 6 above.

These results are in accordance with both financial theories and a large amount of
empirical research, all of them indicating that logarithms of asset prices contain a unit
root, while asset return series do not.
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140 M. Landajo, M. J. Presno

Fig. 2 Daily FTSE Eurotop 100 index series, in logarithms (broken line) versus nonparametric fitted trend
(continuous line)

5 Concluding remarks and further research

We have proposed a nonparametric stationarity test which allows stationarity testing to
be carried out without relying on a priori specification of the trend component, which
tends to be problematic in practice. The test is consistent under unit root alternatives
and its limiting null distribution is standard normal. Simulation analyses indicate that
the test performs suitably in a wide range of circumstances (trend shapes, stochastic
dependence structures).

The nonparametric stationarity test is a conservative solution, that provides a safe-
guard against misspecification of the trend function and achieves correct test size,
at the cost of relatively large samples. Nonparametric estimation/testing is appro-
priate when the researcher lacks a reliable parametric model for the trend function,
and as an exploratory tool. Its use is particularly indicated in large samples. If the
researcher has genuine a priori knowledge that the trend obeys a specific paramet-
ric model, the standard stationarity test—under correct specification of the trend
function (e.g., Landajo and Presno 2010, for general parametric specifications)—
will generally outperform any nonparametric test, exhibiting higher power in small
samples.

The issue of long-run variance estimation has also been addressed. The theoret-
ical results allow nonparametric stationarity testing under nonparametric (kernel)
estimation of the long-run variance, with a deterministic rule for bandwidth selec-
tion. In practice, data-driven bandwidth selection often tends to outperform deter-
ministic rules in estimating long-run variances. A data-driven procedure to treat
autocorrelation—with deterministic brackets that ensure the appropriate stochastic
order for the estimator—has been outlined. Simulations indicate that this proce-
dure performs suitably in common applications of the nonparametric stationarity
test.
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Nonparametric stationarity testing 141

The above results suggest a number of interesting research avenues. First, more
extensive analyses on autocorrelation treatment in nonparametric stationarity testing
are clearly indicated. The theoretical validity of a number of procedures proposed in
the literature (e.g., Sun et al. 2008; Hashimzade and Vogelsang 2008; Kurozumi and
Tanaka 2010), still has to be established in the nonparametric case. Simulation studies
are required in order to assess the empirical performance of the various methods of
treating for autocorrelation in this new setting.

Finally, the proposed nonparametric approach relies on trigonometric series esti-
mation of the trend function. This allowed a relatively simple mathematical analysis.
Computer simulations suggest that analogue results may be obtained for other classes
of series estimators, particularly for algebraic polynomials. A confirmation of this
conjecture would be desirable (results in a classical paper by MacNeill 1978, are rel-
evant for this extension), although the technical burden tends to increase dramatically
when the cosine basis is replaced by other classes of polynomials.

Appendix Mathematical proofs

Notational issues and previous remarks

1. In the proof of limiting normality the following kernel is used: for any (positive
integer) m, let

Km(u, v) = min(u, v) − uv −
m∑

j=1

2( jπ)−2 sin( jπu) sin( jπv); u, v ∈ [0, 1]

(5)

This kernel has the (uniformly convergent) Mercer expansion

Km(u, v) =
∞∑

j=m+1

2( jπ)−2 sin( jπu) sin( jπv), (6)

with (reciprocal) eigenvalues η j = (m + j)−2π−2, j = 1, 2, . . . , μm =
∫ 1

0 Km(u, u)du = ∑∞
j=m+1( jπ)−2 and s2

m = 2
∫ 1

0

∫ 1
0 K 2

m(u, v) du dv = 2
∑∞

j=m+1

( jπ)−4 (for further details, see Tanaka 1996, Chapter 5, p. 153). It is readily checked
that s2

m ≥ 2π−4
∫ ∞

m+1 x−4dx = 2/3π−4(m + 1)−3, so s−1
mT

≤ √
3/2π2(m + 1)3/2.

2. Let rmT (x) = θ∗(x) − θmT (x), x ∈ [0, 1]. Given T , the OLS residuals
have the decomposition et = εt + rmT (t/T ) + θmT (t/T ) − θ̂mT (t/T ). In matrix
form, e = (e1, . . . , eT )′ = �mT ε + �mT rmT + �mT μ, with �mT = (IT −
�(�′�)−1�′), � = [ϕt, j ], t = 1, . . . , T, j = 0, . . . , mT ; ε = (ε1, . . . , εT )′,
μ = (μ1, . . . , μT )′ and rmT = (rmT (1/T ), . . . , rmT (T/T ))′.
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142 M. Landajo, M. J. Presno

The following previous lemmas are required.

Lemma 1 Let B̃m = [̃b(m)
s,t ] = T −1CT �mC′

T , with m fixed. Let S̃T = T −1 ∑T
s=1∑T

t=1 b̃(m)
s,t usut and ST = T −1 ∑T

s=1
∑T

t=1 Km(s/T, t/T )usut , where u = (u1, . . . ,

uT )′ is a sequence of i.i.d. random variables with E(ui ) = 0 and V ar(ui ) = σ 2
u < ∞.

Then, for some c < ∞ not depending on m or T , as T → ∞:
(a) sups,t=1,...,T |̃bs,t − Km(s/T, t/T )| ≤ cm3T −1, (b) E |S̃T − ST | ≤ cm3T −1.

�

Proof As to part (a), (if T ≥ m+1) we have b̃(m)

s,t = min(s/T, t/T )−g̃′
sH̃−1

m+1̃gt , with
H̃m+1 = [̃h j,k] = T −1�′�, j, k = 0, . . . , m, and g̃t = [̃go,t , . . . , g̃m,t ]′, with g̃ j,t =
T −1 ∑t

i=1 ϕ j (i/T ). We also have Km(s/T, t/T ) = min(s/T, t/T ) − gs
′H−1

m+1gt ,

where Hm+1 = [h j,k], with h j,k = ∫ 1
0 ϕ j (u)ϕk(u)du, j, k = 0, . . . , m, and

gt = [go,t , . . . , gm,t ]′, with g j,t = ∫ t/T
0 ϕ j (u)du. Orthonormality of the basis

ensures Hm+1 = Im+1, so Km(s/T, t/T ) = min(s/T, t/T ) − g′
sgt and b̃(m)

s,t

− Km(s/T, t/T ) = g′
sgt − g̃′

sH̃−1
m+1̃gt = A1 + A2, with A1 = g′

sgt − g̃′
s g̃t and

A2 = g̃′
s g̃t − g̃′

sH̃−1
m+1̃gt . Discretization arguments and standard inequalities for eigen-

values ensure |A1| ≤ c(1 + m)2T −1 and A2 = O(m3T −1). Part (b) directly follows
from part (a) and Lemma 3 in Nabeya and Tanaka (1988). �

Lemma 2 Let S1T = T −1 ∑T

s=1
∑T

t=1 KmT (s/T, t/T )vsvt , where the components
of v = (v1, . . . , vT )′ are i.i.d. random variables with E(vi ) = 0, V ar(vi ) =
σ 2

v > 0 and E |vi |2+δ < ∞, δ > 0. Let Z1T = s−1
mT

(σ−2
v S1T − μmT ), with

μmT = ∫ 1
0 KmT (u, u)du = ∑∞

j=mT +1( jπ)−2, s2
mT

= 2
∫ 1

0

∫ 1
0 K 2

mT
(u, v) du dv =

2
∑∞

j=mT +1( jπ)−4. If mT → ∞ and m3
T T −1 → 0, then Z1T

L−→ N (0, 1) as
T → ∞. �

Proof Without loss of generality we assume σ 2

v = 1. It suffices to check that a cen-
tral limit theorem for quadratic forms (with nonvanishing diagonal) in i.i.d. random
variables holds. We apply Theorem 2.1.(iii) in Bhansali et al. (2007). We have S1T =
u′Du = ∑T

s=1
∑T

t=1 ds,tvsvt , with D = [ds,t ] and ds,t = T −1 KmT (s/T, t/T ). Let

‖D‖2,T =
√∑T

s=1
∑T

t=1 d2
s,t and ‖D‖sp,T = η̃1, with η̃1 being the largest eigen-

value of D. We start by deriving limiting normality for Z̃1T = (
√

2‖D‖2,T )−1(S1T

− E(S1T )). This follows under the conditions (1) ‖D‖sp,T /‖D‖2,T → 0 as T → ∞,
and (2)

∑T
t=1 d2

t,t = o(‖D‖2
2,T ). These requirements can be readily checked upon the

basis of the (Euclidean, spectral) norms of kernel KmT (·, ·), namely,

‖KmT ‖2 =
√

∫ 1

0

∫ 1

0
K 2

mT
(u, v) du dv =

√
√
√
√

∞∑

j=mT +1

( jπ)−4 (7)

—this implies ‖KmT ‖−1
2 = O(m3/2

T )—, and ‖KmT ‖sp = η1 = (mT + 1)−2π−2 =
O(m−2

T ). Discretization arguments and Aronszajn Theorem give ‖D‖sp,T = η̃1 ≤
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η1 + |̃η1 − η1| = O
(
m−2

T

)
and ‖D‖2,T = O(m−3/2

T ). Hence, we obtain

‖D‖sp,T /‖D‖2,T = O(m−1/2
T ). This is directly checked as

∑T
t=1 d2

t,t = O(m−2
T T −1)

and ‖D‖2
2,T = O

(
m−3

T

)
. So, Z̃1T

L−→ N (0, 1), and as Z1T = Z̃1T + Op(m
5/2
T T −1)

the conclusion follows. �

Lemma 3 Let S1T = T −1 ∑T

s=1
∑T

t=1 KmT (s/T, t/T )εsεt , with εt = ∑∞
i=0 αivt−i ,

under Assumption 1 and σ 2 = α2σ 2
v . Let ZT = s−1

mT
(σ−2S1T − μmT ). If mT → ∞

and m3
T T −1 → 0 then ZT

L−→ N (0, 1) as T → ∞. �

Proof Without loss of generality we assume σ 2

v = 1, so σ 2 = ∑∞
i=0

∑∞
k=0 αiαk > 0,

and proceed as in Tanaka (1990, Theorem 1, Appendix). First, we have

ZT = s−1
mT

σ−2

(

T −1
T∑

s=1

T∑

t=1

KmT (s/T, t/T )εsεt − μmT σ 2

)

= σ−2
∞∑

i=0

∞∑

k=0

αiαkwT,i,k (8)

with wT,i,k = s−1
mT

[T −1 ∑T
s=1

∑T
t=1 KmT (s/T, t/T )vs−ivt−k − μmT ]. The fol-

lowing decomposition is applicable: ZT = ZT,M + VT,M , where ZT,M =
σ−2 ∑M

i=0
∑M

k=0 αiαkwT,i,k and VT,M is the remainder term. It is readily checked that
E |VT,M | ≤ cM for all T large, with cM ≡ 3σ−2(1+δ)

∑∞
i=0 |αi | ·∑∞

k=M+1 |αk | → 0
as M → ∞.

As to ZT,M , first fix M and let T → ∞. We have ZT,M = Z̃T,M + RT,M , with
Z̃T,M = wT,0,0(σ

−2 ∑M
i=0

∑M
k=0 αiαk) and RT,M =σ−2 ∑M

i=0
∑M

k=0 αiαk(wT,i,k −
wT,0,0). As wT,0,0

L−→ N (0, 1) by Lemma 2, we have (for any fixed M , as

T → ∞) that Z̃T,M
L−→ Z̃ M , which is Gaussian with mean zero and variance

(σ−2 ∑M
i=0

∑M
k=0 αiαk)

2.
As to the remainder RT,M , for fixed M as T → ∞, it holds E |wT,i,k − wT,0,0| ≤

c′M2m5/2
T T −1, with c′ depending neither on 0 ≤ i, k ≤ M , nor on M or T . Hence,

lim supT →∞ E |wT,i,k − wT,0,0| = 0 and the same applies, for any fixed M , to RT,M .

Hence, we have, for any M, Z̃T,M
L−→ Z̃ M as T → ∞. It also holds Z̃ M

L−→
N (0, 1) as M → ∞, by the continuous mapping Theorem. Since ZT = ZT,M +
VT,M = Z̃T,M + RT,M + VT,M and E |ZT − Z̃T,M | ≤ E |RT,M |+ E |VT,M |, Theorem

4.2 in Billingsley (1968) and Tchebyshev’s inequality give ZT
L−→ N (0, 1). �


Proof of Proposition 1 As to part (a), since e = �mT ε + �mT r, the decomposi-
tion ST = S1T + A1 + A2, with S1T = T −2ε′�′

mT
C′

T CT �mT ε, A1 = T −2

r′�′
mT

C′
T CT �mT ε + T −2ε′�′

mT
C′

T CT �mT r, and A2 = T −2r′�′
mT

C′
T CT �mT r,

is directly obtained. Hence, ZT = Z̃1T + s−1
mT

σ−2 A1 + s−1
mT

σ−2 A2, with Z̃1T =
s−1

mT
(σ−2S1T − μmT ).

Limiting normality of Z̃1T is readily checked. It suffices to derive limiting nor-
mality for Z̃2T = s−1

mT
(σ−2 S̃2T − μmT ), with S̃2T = T −1ε′BT ε and BT = [bs,t ] =
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T −1CT �mT C′
T . First we approximate S̃2T by S2T = T −1 ∑T

s=1
∑T

t=1 KmT (s/T,

t/T )εsεt . Let RT = S̃2T − S2T = T −1 ∑T
s=1

∑T
t=1[bs,t − KmT (s/T, t/T )]εsεt and

δT ≡ sups,t=1,...,T |̃bs,t − Km(s/T, t/T )|. By Lemma 1, δT = O(m3
T T −1). A prob-

ability inequality in Tanaka (1990, Appendix, Theorem 1) ensures, for any x > 0,
that P(|RT | > x) ≤ (c/x)δT (

∑∞
i=0 |αi |)2 for some constant c > 0 not depending

on T . Hence, RT = Op(δT ) = Op(m3
T T −1). Therefore, Z̃2T = Z2T + s−1

mT
σ−2 RT ,

with Z2T = s−1
mT

(σ−2S2T − μmT ). As s−1
mT

= O(m3/2
T ), we obtain s−1

mT
σ−2 RT =

Op(m
9/2
T T −1), which is asymptotically negligible as m9/2

T T −1−→0. Lemma 3 gives

Z2T
L−→ N (0, 1). Therefore, Z̃2T

L−→ N (0, 1), which amounts to Z̃1T
L−→ N (0, 1).

It is readily checked that the bias terms have lower probability orders than Z̃T . In par-
ticular, the basic projection inequality of least squares regression ensures s−1

mT
σ−2 A1 =

Op(T m3/2
T dT (θmT , θ∗)) and s−1

mT
σ−2 A2 = O(T m3/2

T d2
T (θmT , θ∗)). Both quantities

are asymptotically negligible under H0 given Assumption 2. As to (b), under H1 we
have e = �mT ε + �mT r + �mT μ, that combined with standard inequalities gives

ST = Op(T 2). Hence, ZT = s−1
mT

σ−2ST − s−1
mT

μmT = Op(m
3/2
T T 2) − Op(m

1/2
T ) =

Op(m
3/2
T T 2), so P(ZT > κT )−→1 if κT = o(m3/2

T T 2). �


Proof of Proposition 2 As to (a), we have Z̃T − ZT = s−1
mT

(σ−2ST −μmT ) σ̂−2 (σ 2 −
σ̂ 2)+σ̂−2(σ 2−σ̂ 2)s−1

mT
μmT , and as s−1

mT
(σ−2ST −μmT ) = Op(1) by Proposition 1 and

σ̂ 2 − σ 2 = op(1), it holds Z̃T − ZT = op(1) as Assumption 3 imposed m1/2
T (̂σ 2 −

σ 2)
p−→ 0 under H0. As to (b), as ST = Op(T 2) we have Z̃T = s−1

mT
σ̂−2ST −

s−1
mT

μmT = σ̂−2 Op(m
3/2
T T 2) − O(m1/2

T ) = Op(m
3/2
T T 2−ζ ) and the conclusion fol-

lows. �


Lemma 4 Let {ϕ j , j = 0, 1, . . .} be an orthonormal set in L2[0, 1] and let H̃−1
mT +1 =

(T −1�′�)−1, with � = [ϕt, j ], ϕt, j = ϕ j (t/T ), t = 1, . . . , T ; j = 0, . . . , mT . Let
VT = v′�(�′�)−1�′v, with v =(v1, . . . , vT )′, being a finite sample of the i.i.d. pro-
cess in Assumption 1. Under the conditions: (i) sup j≥0 ‖ϕ j‖∞ ≤ � < ∞, and each
ϕ j satisfies the Lipschitz condition |ϕ j (x)−ϕ j (x ′)| ≤ cj |x − x ′|; x, x ′ ∈ [0, 1], with
c < ∞ not depending on j , (ii) for any fixed m, ‖H̃m+1 − Im+1‖2,m+1 ≤ cm2T −1 as

T → ∞, with c not depending on m or T , and (iii) m = mT → ∞ and m9/2
T T −1 → 0,

as T → ∞. Then QT = (2(1 + mT ))−1/2(σ−2
v VT − (1 + mT ))

L−→ N (0, 1) as
T → ∞. �


Proof This case is analogous to Hong and White (1995, Appendix, Theorem A.1).
Without loss of generality we assume σ 2

v = 1. Let VT = T −1v′BT v, with
BT = [bs,t ] = �(T −1�′�)−1�′ = �H̃−1

mT +1�
′. For any T , we shall use the

kernel K ′
mT

(u, v) = ∑mT
j=0 ϕ j (u)ϕ j (v); u, v ∈ [0, 1], which is degenerate, with

reciprocal eigenvalues η′
1 = · · · = η′

mT +1 = 1, which implies ‖K ′
mT

‖sp = 1 and
‖K ′

mT
‖2 = mT + 1.

The analysis proceeds as in Lemma 1. First, we approximate VT by ṼT =
T −1 ∑T

s=1
∑T

t=1 K ′
mT

(s/T, t/T )vsvt and obtain, by Lemma 3 in Nabeya and Tanaka
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(1988), VT = ṼT + Op(m5
T T −1). The rest of the proof is analogous to that of

Lemma 2. �

Lemma 5 Under the assumptions of Lemma 4, let VT = ε′�(�′�)−1�′ε, with
ε=(ε1, . . . , εT )′ being a finite sample from the linear filter process in Assumption 1.

Then QT = (2(1 + mT ))−1/2(σ−2VT − (1 + mT ))
L−→ N (0, 1) as T → ∞. �


Proof It is analogous to the proof of Lemmas 2 and 4. Without loss of generality
we assume σ 2

v = 1, so σ 2 = ∑∞
i=0

∑∞
k=0 αiαk > 0. Let VT = T −1ε′BT ε, with

BT = [bs,t ] = �(T −1�′�)−1�′ = �H̃−1
mT +1�

′. First, we approximate VT by ṼT =
T −1 ∑T

s=1
∑T

t=1 K ′
mT

(s/T, t/T )εsεt . Lemma 4 and the same probability inequality
used in Lemma 2 above (see Tanaka 1990, Theorem 1, Appendix) give VT − ṼT =
Op(m5

T T −1). The rest of the proof is analogous to that of Lemma 3. �

Proof of Proposition 3 We have the decomposition e(d) = ε̃(d) + r̃(d) + μ̃(d),
with ε̃(d) = (̃ε

(d)
t ) = �

m(d)
T

ε, r̃(d) = r̃
m(d)

T
= (̃r (d)

t ) = �
m(d)

T
r

m(d)
T

, r
m(d)

T
=

(r
m(d)

T
(1/T ), . . . , r

m(d)
T

(T/T ))′, and μ̃(d) = (μ̃
(d)
t ) = �

m(d)
T

μ. Hence, σ̂i = T −1

∑T
t=1+|i | e(d)

t e(d)
t−|i | = ∑6

k=1 Ak,i , with A1,i = T −1 ∑T
t=1+|i | ε̃

(d)
t ε̃

(d)
t−|i |, A2,i = T −1

∑T
t=1+|i | r̃ (d)

t r̃ (d)
t−|i |, A3,i = T −1 ∑T

t=1+|i | ε̃
(d)
t r̃ (d)

t−|i | + T −1 ∑T
t=1+|i | r̃ (d)

t ε̃
(d)
t−|i |, A4 =

T −1 ∑T
t=1+|i | μ̃

(d)
t μ̃

(d)
t−|i |, A5 = T −1 ∑T

t=1+|i | ε̃
(d)
t μ̃

(d)
t−|i | + T −1 ∑T

t=1+|i | μ̃
(d)
t ε̃

(d)
t−|i |,

and A6 = T −1 ∑T
t=1+|i | r̃ (d)

t μ̃
(d)
t−|i | + T −1 ∑T

t=1+|i | μ̃
(d)
t r̃ (d)

t−|i |. Cauchy–Schwarz
inequality and the projection inequality of least squares regression give: |A2,i | ≤
d2

T (θ
m(d)

T
, θ∗), A3,i = Op(dT (θ

m(d)
T

, θ∗)), |A4,i | ≤ T −1 ∑T
t=1 μ2

t = Op(T ), |A5,i | ≤
2
√

T −1
∑T

t=1 ε2
t

√
T −1

∑T
t=1 μ2

t = Op(T 1/2) and A6,i = Op(dT (θ
m(d)

T
, θ∗)T 1/2).

We may write σ̂ 2 = ∑�T
i=−�T

wi,T σ̂i = ∑�T
i=−�T

wi,T A1,i + RT , with RT =
∑�T

i=−�T
wi,T

∑6
k=2 Ak,i . As |wi,T | ≤ 1, we obtain:

(1) under H0: |RT | ≤ (2�T +1){d2
T (θ

m(d)
T

, θ∗) + 2
√

T −1
∑T

t=1 ε2
t dT (θ

m(d)
T

, θ∗)}
= Op(�T dT (θ

m(d)
T

, θ∗)),

(2) under H1: |RT | ≤ ∑�T
i=−�T

|wi,T | ∑6
k=2 |Ak,i | = Op(�T T −1 ∑T

t=1 μ2
t ) =

Op(�T T ).

Now we analyze
∑�T

i=−�T
wi,T A1,i . As A1,i = T −1 ∑T

t=1+|i | ε̃
(d)
t ε̃

(d)
t−|i | and

ε̃
(d)
t = ε

(d)
t − ht , with h = (h1, . . . , hT )′ = �d(�′

d�d)−1�′
dε, we obtain the

decomposition
∑�T

i=−�T
wi,T A1,i = σ̃ 2 + ∑�T

i=−�T
wi,T (B1,i + B2,i ) with σ̃ 2 =

∑�T
i=−�T

wi,T T −1 ∑T
t=1+|i | εtεt−|i |, B1,i = −T −1 ∑T

t=1+|i | εt ht−|i | − T −1 ∑T
t=1+|i |

htεt−|i |, and B2,i = T −1 ∑T
t=1+|i | ht ht−|i |.

It is readily obtained
∑�T

i=−�T
wi,T (B1,i + B2,i ) = Op(�T

√
T −1

∑T
t=1 h2

t ). As

T −1 ∑T
t=1 h2

t = T −1ε′�d(�′
d�d)−1�′

dε = T −1VT , with VT as in Lemma 5 above,

we have VT = σ 2(QT

√

2(1 + m(d)
T ) + (1 + m(d)

T )) = Op(m
(d)
T ), and Lemma 5 gives

T −1 ∑T
t=1 h2

t = T −1VT = Op(m
(d)
T T −1).
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Then we apply the decomposition σ̂ 2 = (̂σ 2 − σ̃ 2)+ (̃σ 2 −σ 2)+ (σ 2 −σ 2)+σ 2,
with σ 2 = ∑�T

i=−�T
wi,T T −1 ∑T

t=1+|i | E(εtεt−|i |). As to the first difference, the

above results give, under H0, σ̂ 2 − σ̃ 2 = ∑�T
i=−�T

wi,T (B1,i + B2,i ) + RT =
Op(�T (m(d)

T )1/2T −1/2) + Op(�T dT (θ
m(d)

T
, θ∗)) = Op(�T (m(d)

T )1/2T −1/2) because

of Assumption 2 and �T = o(T ).
Corollary 6.3 in Pötscher and Prucha (1991) gives σ̃ 2 − σ 2 = Op(�

3/2
T T −1/2)

and σ 2 − σ 2 = Op(�
−ρ
T ). Hence, under H0, σ̂ 2 − σ 2 = Op(�T (m(d)

T )1/2T −1/2) +
Op(�

3/2
T T −1/2) + Op(�

−ρ
T ). Under H0 and the assumptions of this proposition all

these terms vanish in probability, even when multiplied by m1/2
T . These arguments

are valid under assumption (i.2), but remain true under (i.1), i.e., when E |ε|4 and∑∞
j=0 |α j | < ∞, as a consequence of Corollary 8.3.1 in Anderson (1971) and Corol-

lary 6.3 in Pötscher and Prucha (1991).
Finally, under H1 the dominant term in σ̂ 2 is RT , so σ̂ 2 = Op(�T T ), as well as

nonnegative by construction, and the rate of divergence is derived as in Proposition 2.
�
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