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Abstract We study the problem of parameter estimation for Ornstein–Uhlenbeck
processes driven by symmetric α-stable motions, based on discrete observations.
A least squares estimator is obtained by minimizing a contrast function based on
the integral form of the process. Let h be the length of time interval between two con-
secutive observations. For both the case of fixed h and that of h → 0, consistencies
and asymptotic distributions of the estimator are derived. Moreover, for both of the
cases of h, the estimator has a higher order of convergence for the Ornstein–Uhlenbeck
process driven by non-Gaussian α-stable motions (0 < α < 2) than for the process
driven by the classical Gaussian case (α = 2).

Keywords Stable law · Ornstein–Uhlenbeck · Parametric estimation · Consistency ·
Asymptotic distribution · Least squares method

1 Introduction

A stationary process {Xt , t ≥ 0} is defined to be an Ornstein–Uhlenbeck (O–U)
process driven by a symmetric α-stable motion if it is the stationary solution of the
stochastic differential equation (SDE)

dXt = −θ Xt dt + σd Zt , (1)
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where θ > 0 and σ > 0 are parameters, and {Zt , t ≥ 0} is a standard symmetric
α-stable Lévy process with starting value Z0 = 0. If the characteristic exponent α of
the process Zt is 2, i.e. Zt is a Brownian motion, the stationary solution of SDE (1)
will have a Gaussian marginal distribution; if 0 < α < 2, the stationary solution will
have an α-stable marginal distribution with α being equal to that of Zt . The O–U pro-
cess with α-stable marginal distribution belongs to non-Gaussian O–U processes. The
modeling via the use of these processes has received considerable attention in appli-
cations such as finance and econometrics (see, e.g., Barndorff-Nielsen and Shephard
2001; Cariboni and Schoutens 2009; Benth et al. 2007).

Due to growing practical interest, many researchers have proposed statistical infer-
ence methods for discretely sampled non-Gaussian O–U processes. As is well-known,
the use of non-Gaussian marginal distributions makes likelihood analysis of these pro-
cesses unfeasible for virtually all cases of interest. Non-parametric estimation of the
Lévy measure of a hidden Lévy process driving a stationary O–U process is consid-
ered in Jongbloed et al. (2005). Compared with the study of non-parametric methods,
that of parametric methods is more active. The asymptotic behavior of a so-called
cumulant M-estimator of the O–U process induced by the subordinator is analyzed
in Jongbloed and Van Der Meulen (2006). Brockwell et al. (2007) have also studied
the parametric inference of the O–U process induced by the subordinator, but they
have used a discrete approximation to the exact integral representation of the driven
process. In Sun and Zhang (2009), an empirical likelihood estimation procedure for
parameters of the discretely sampled process of O–U type is presented. By minimizing
some distance function between an empirical estimator of the characteristic function
and a model-based one, Taufer and Leonenko (2009) have studied the asymptotic
properties of the characteristic function estimation method.

In most of the above-mentioned literatures, the driving Lévy process of the O–U
process has finite moments. However, when the driving Lévy process has infinite var-
iance, few papers are concerned with parametric inference in this case except for that
of Hu and Long (2009). For the case 1 < α < 2 and σ = 1, the consistency and the
asymptotic distribution of a least squares estimator of parameter θ for the O–U process
defined in SDE (1) are studied in Hu and Long (2009). But they do not consider the
case α ∈ (0, 1]. The contrast function, which the LSE is obtained by minimizing, is
constructed by the discretization of SDE (1). The main focus of this paper is the study
of the consistency and the asymptotic distribution of another least squares estimator of
parameter θ for the O–U process driven by the α-stable motion, but for all the cases of
0 < α < 2 and σ > 0. However, the contrast function is constructed by the integral
representation of SDE (1).

Assume that the O–U process is observed at equidistant discrete times {tk = kh,

k = 0, 1, 2, . . .}. It is well-known (see Lemma 17.1 of Sato 1999) that the stationary
solution of (1) satisfies the difference equations,

Xkh = e−θh X(k−1)h + σ Zk,h with Zk,h =
∫ kh

(k−1)h
e−θ(kh−s) dZ(s)

d=
(

1 − e−θαh

θα

)1/α

Sk, (2)
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where
d= denotes equality in distribution, and {Sk, k = 1, 2, . . .} is an independent

identically distributed (i.i.d.) sequence of random variables with a symmetric α-stable
distribution. Our proposed estimator θ̂n is the value of θ which minimizes

∑n
k=1 |Xkh−

e−θh X(k−1)h |2, i.e.

θ̂n = − 1

h
log

(∑n
k=1 X(k−1)h Xkh∑n

k=1 X2
(k−1)h

)
. (3)

The estimator θ̃n of Hu and Long (2009) is the value of θ which minimizes
∑n

k=1 |Xkh−
(1 − θh)X(k−1)h |2, i.e.

θ̃n = −
∑n

k=1(Xkh − X(k−1)h)X(k−1)h

h
∑n

k=1 X2
(k−1)h

. (4)

As is well-known, θ̂n is the exact MLE when {Zt , t ≥ 0} is a standard Brownian
motion. For the case that {Zt , t ≥ 0} is not a Brownian motion, based on the sample
(Xkh)n

k=0, we shall study the asymptotic properties of θ̂n under the following three
conditions.

Condition 1 As n → ∞, h > 0 is fixed.

Condition 2 As n → ∞, h → 0 and nh → ∞. (For clarity, we omit the dependence
of h on n.)

Condition 3 As n → ∞, h → 0 and nh2+ρ → ∞ for some ρ > 0 small enough.
(For clarity, we omit the dependence of h on n. To keep the condition to be as weak
as possible, ρ can be chosen to be a fixed positive small enough number.)

Under either Condition 1 or 2, we shall give the strong and the weak consistencies
of θ̂n , respectively for the case of 1 ≤ α < 2 and 0 < α < 1. Further, under either
Condition 1 or 3, we shall give the asymptotic distributions of θ̂n . And the asymptotic
distributions are independent of the parameter σ .

For the case 1 < α < 2, the strong consistency and the asymptotic distribution of
θ̃n are given in Hu and Long (2009), respectively, under Condition 2 and condition
(A1) of Hu and Long (2009). Condition (A1) of Hu and Long (2009) depends on the
value of α. On the contrary, Condition 3 of this paper is independent of the value of
α. Actually, by the series representation of the logarithm and Theorem 2.1 of Hu and
Long (2009), we have for the case 1 < α < 2,

θ̂n = − 1

h
log(1 − hθ̃n) = θ̃n + o(n)

a.s.(h), (5)

where o(n)
a.s.(h)/h → 0 almost surely as h → 0 and nh → ∞.

Since the consistency of θ̃n does not hold under Condition 1, it is obvious that θ̂n

is superior to θ̃n for fixed positive h. It seems that the asymptotic behaviors of θ̂n and
θ̃n are same as h → 0. Actually, the asymptotic distribution of θ̃n depends on the
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condition nh1+α/ log n → 0. However, the asymptotic behavior of θ̂n is independent
of this condition.

The remainder of the paper is organized as follows. In Sect. 2, we provide several
asymptotic results of the estimator θ̂n . All proofs are in Sect. 3. In Sect. 4, we present
some simulation examples to evidence our theoretical results.

2 Notation and results

2.1 General setting and notation

We assume that (Ft ) is the right-continuous filtration generated by {Zt , t ≥ 0} and
that F = ∨

t≥0 Ft . Our O–U process {Xt , t ≥ 0} is defined on the filtered probability
space (�,F , (Ft )t≥0, P). In the SDE (1), we let θ0 ∈ (0,∞) denote the true unknown
parameter value, which we wish to estimate.

We use the symbol Sα(σ, β, μ) to denote an α-stable distribution with the charac-
teristic exponent (index) α ∈ (0, 2], scale parameter σ ∈ (0,∞), skewness parameter
β ∈ [−1, 1] and location parameter μ ∈ (−∞,∞) (cf. Lévy 1934; Hall 1981 for the
details on stable distributions). If a random variable X follows the Sα(σ, β, μ) distribu-
tion, we write X ∼ Sα(σ, β, μ). The standard symmetric α-stable Lévy process Zt sat-
isfies Z1 ∼ Sα(1, 0, 0), i.e. the characteristic function of Z1 is φZ1(u) = exp{−|u|α}.
It follows from Theorem 4.1 of Sato and Yamazato (1984) that the process X (t) has
a limit distribution Sα((1/(θ0α))1/ασ, 0, 0). We assume that the starting value X0
follows this limit distribution.

The statement h(x) ∼ g(x) as x → a means limx→a h(x)/g(x) = 1. Convergence
in distribution, convergence in probability and convergence almost surely are denoted

by �,
P−→ and

a.s.−→, respectively.

2.2 Consistency and asymptotic behavior of the LSE for the case of fixed h

Essentially, if h is fixed, the difference equations (2) can be treated as an AR(1)

process, whose noise is assumed to be α-stable. For a general AR(1) process with
α-stable noise, the LSE of the autocorrelation parameter is weak consistent for its true
value (see Davis and Resnick 1986). But it is not sure that the strong consistency of
the LSE holds. However, for the difference equations (2), the noise has the specified
form

∫ kh
(k−1)h e−θ(kh−s) dZ(s), which ensures that θ̂n is strong consistent for θ0 in the

case 1 ≤ α < 2. The consistency of θ̂n for all α ∈ (0, 2) is stated as follows.

Theorem 1 Under Condition 1, we have

(1) if 1 ≤ α < 2, then θ̂n
a.s.−→ θ0;

(2) if 0 < α < 1, then θ̂n
P−→ θ0.

For 0 < α < 2, let Cα = (
∫ ∞

0 x−α sin(x) dx)−1 = 2 sin(πα/2)
(α)/π , and let

σ1 = 2αC−2/α
α/2 , σ2 = C−1/α

α . The asymptotic behavior of the estimator θ̂n is stated
next.

123



A LSE for O–U processes driven by α-stable motions 93

Theorem 2 Suppose α (0 < α < 2) be known. Then, under Condition 1, we have

(
n

log n

)1/α

(θ̂n − θ0) � eθ0h(1 − e−2θ0h)

h(1 − e−αθ0h)1/α

Ỹ

Y0
, (6)

where Y0 and Ỹ are independent stable variables. Further, Y0 ∼ Sα/2(σ1, 1, 0) and
Ỹ ∼ Sα(σ2, 0, 0).

Remark 1 Theorem 2 states that the rate at which θ̂n converges to θ0 is (log n/n)1/α ,
which is considerably faster than the rate n−1/2 in the classical Brownian motion
case. Moreover, the asymptotic distribution of the estimator θ̂n is independent of the
parameter σ .

2.3 Consistency and asymptotic behavior of the LSE for the case of h → 0

Theorem 3 Under Condition 2, we have

(1) if 1 ≤ α < 2, then θ̂n
a.s.−→ θ0;

(2) if 0 < α < 1, then θ̂n
P−→ θ0.

Theorem 4 Suppose α (0 < α < 2) be known. Then, under Condition 3, we have

(
n

log n

)1/α

h1/α(θ̂n − θ0)
d−→ 2θ0(αθ0)

−1/αỸ

Y0
, (7)

where Y0 and Ỹ are as specified in Theorem 2.

Remark 2 It is not surprising due to (5) that the asymptotic distributions of Theorem 4
are the same as that of Theorem 3.1 of Hu and Long (2009). Theorem 4 states that the
rate at which θ̂n converges to θ0 is (log n/(nh))1/α , which is considerably faster than
the rate (nh)−1/2 in the classical Gaussian O–U process case. Moreover, the asymp-
totic distribution of the estimator θ̂n is independent of the parameter σ . However,
Condition 3 is stronger than Condition 2, which can ensure the asymptotic normality
of θ̂n in the classical Gaussian O–U process case.

Remark 3 The asymptotic behavior of θ̃n depends on the condition nh1+α/ log n → 0
(see the proof of Lemma 3.4 of Hu and Long 2009). On the contrary, the asymptotic
behavior of θ̂n is independent of this condition. For convenience of verification, Condi-
tion 3 is deliberately chosen to be independent of α. Or else, it can be relaxed. Actually,
from the proof of Theorem 4, ρ can be chosen to be any fixed positive number. To
keep the condition to be as weak as possible, ρ can be chosen to be a fixed positive
small enough number.
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3 Proofs

3.1 Proofs for the consistencies

We shall firstly establish several preliminary lemmas.

Lemma 1 Let δ > 0 be any positive number. Then, under Condition 1, if 0 < α < 1,
we have

1

n1+δ

n∑
k=1

|X(k−1)h |α a.s.−→ 0. (8)

Proof By (2) and the Cr -inequality (see, e.g., p. 97 of Lin and Bai 2010), we have
|Xkh |α = |e−θh X(k−1)h + σ Zk,h |α ≤ e−αθh |X(k−1)h |α + σα|Zk,h |α . Summing k = 1
to n and rearranging gives

(1 − e−αθh)
1

n1+δ

n∑
k=1

|X(k−1)h |α ≤ σα 1

n1+δ

n∑
k=1

|Zk,h |α + 1

n1+δ
(|X0|α − |Xkh |α).

(9)

Obviously, as n → ∞, (|X0|α − |Xkh |α)/n1+δ → 0 almost surely. Since {Zk,h, k =
1, 2, . . . , n} are i.i.d. random variables with the common Sα(((1−e−θαh)/θα)1/α, 0, 0)

law, by Theorem 1.12 of Nolan (2010), we have as n → ∞, P(|Z1,h |α > n1+δ) =
P(|Z1,h | > n(1+δ)/α) ∼ ((1 − e−θαh)/(θα))Cαn−(1+δ). Hence,

∑∞
n=1 P(|Z1,h |α >

n1+δ) < ∞. Since E[|Z1,h |α] = ∞ and
∑n

k=1 |Zk,h |α/n1+δ ≥ 0, it follows from the
result of Feller (1946) (see also p. 66 of Durrett 2004) that limn→∞

∑n
k=1 |Zk,h |α/

n1+δ = 0 almost surely. Due to (9), this establishes (8). �	
The following lemma, which is a special case of Theorem 3.3 of Davis and Resnick

(1986), is also given as Lemma 3.6 of Hu and Long (2009).

Lemma 2 Suppose {Si }∞i=0 be i.i.d. with the same stable distribution Sα(1, 0, 0). Then

for an = (Cαn)1/α and ãn = C2/α
α (n log n)1/α , we have for m ∈ N,

(
a−2

n

n∑
i=1

S2
i , ã−1

n

n∑
i=1

Si Si+1, . . . , ã−1
n

n∑
i=1

Si Sm+1

)
� (Y0, Y1, . . . , Ym),

where Y0, Y1, . . . , Ym are independent stable random variables, Y0 is positive α/2-
stable with distribution Sα/2(σ1, 1, 0), and Y1, . . . , Ym are i.i.d. symmetric α-stable
with distribution Sα(σ2, 0, 0).

The precise values of σ1 and σ2 are not provided explicitly in Davis and Resnick
(1986). Mikosch et al. (1995) have determined their values, but with an incorrect value
of σ1; it is necessary to replace C−2/α

α/2 by 2αC−2/α
α/2 to obtain the correct value of σ1

that was used in Mikosch et al. (1995) and Hu and Long (2009).
Since we have expression (2), using Lemma 2, we therefore obtain the following

lemma.
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A LSE for O–U processes driven by α-stable motions 95

Lemma 3 Suppose α (0 < α < 2) be known, Zk,h (k = 1, 2, . . . , n) be defined in (2)
and Y0 be defined in Theorem 2. Then, we have

(1) under Condition 1, n−2/α
∑n

k=1 Z2
k,h � ((1 − e−θαh)/(θα))2/αC2/α

α Y0 and

(2) under Condition 2, (nh)−2/α
∑n

k=1 Z2
k,h � C2/α

α Y0.

The following lemma is a result of Corollary 3.1 of Rosinski and Woyczynski
(1986).

Lemma 4 Suppose 0 < α < 2 and the process {φ(t), t ≥ 0} be a real measurable
(Ft )-adapted process such that for every T > 0,

∫ T
0 |φ(t)|α dt < ∞ almost surely.

Let τ(u) = ∫ u
0 |φ(t)|α dt , and let φ : R+ 
→ R+ be increasing. Then, if τ(u) → ∞

almost surely as u → ∞ and
∫ ∞

1 ϕ−α(t) dt < ∞, then

lim sup
t→∞

∣∣∣ ∫ t
0 φ(s) dZs

∣∣∣
ϕ(τ(t))

= 0 a.s.

The idea of the proof of Theorem 1 is analogous to that of Theorem 2.1 in Hu and
Long (2009), but the details are more involved, so we give a complete proof.

Proof of Theorem 1 Substitution of expression (2) of Xkh leads to

e−θ̂nh =
∑n

k=1 X(k−1)h Xkh∑n
k=1 X2

(k−1)h

= e−θ0h + σ

∑n
k=1 X(k−1)h Zk,h∑n

k=1 X2
(k−1)h

. (10)

By (10), to prove Theorem 1, it suffices to show that under Condition 1,

∑n
k=1 X(k−1)h Zk,h∑n

k=1 X2
(k−1)h

a.s.−→ 0 or
P−→ 0 (11)

according as 1 ≤ α < 2 or 0 < α < 1.
From the strict stationarity of Xt and Theorem 4.3 of Masuda (2004), we note that

Xt is ergodic. Thus, it follows from the ergodic theorem and Corollary 25.8 of Sato
(1999) that for 0 < α < 2 and any r ≥ α,

lim
n→∞

1

n

n∑
k=1

|X(k−1)h |r = E[Xr∞] = ∞ (12)

almost surely. Let

φn(t) =
{∑n

k=1 X(k−1)he−θ0(kh−t)1((k−1)h,kh](t), if 1 < α < 2,
1

n1/α

∑n
k=1 X(k−1)he−θ0(kh−t)1((k−1)h,kh](t), if 0 < α ≤ 1,
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and let τ(nh) = ∫ nh
0 |φn(t)|α dt . Then it is easy to find

τ(nh) =
⎧⎨
⎩

(
1−e−αθ0h

αθ0

) ∑n
k=1 |X(k−1)h |α, if 1 < α < 2,(

1−e−αθ0h

αθ0

)
1
n

∑n
k=1 |X(k−1)h |α, if 0 < α ≤ 1.

(13)

Equality (12) implies that for fixed h > 0, τ (nh)
a.s.→ ∞ as n → ∞. Let δ ∈ (0, 1)

be a fixed real number, and let

ϕ(t) =
⎧⎨
⎩

t, if 1 < α < 2,

t1+δ, if α = 1,

t (2+α)/α, if 0 < α < 1.

Note that
∫ ∞

1 ϕ−α(t) dt < ∞. It is clear that

∑n
k=1 X(k−1)h Zk,h∑n

k=1 X2
(k−1)h

=
∫ nh

0 φn(s) dZs

ϕ (τ(nh))

ϕ (τ(nh))

bn
∑n

k=1 X2
(k−1)h

with bn =
{

1, if 1 < α < 2,

n−1/α, if 0 < α ≤ 1.
(14)

By Lemma 4, we have

lim sup
n→∞

∣∣∣ ∫ nh
0 φn(s) dZs

∣∣∣
ϕ (τ(nh))

= 0 a.s. (15)

By (14)–(15), to prove (11), it suffices to show that under Condition 1,

ϕ (τ(nh))

bn
∑n

k=1 X2
(k−1)h

a.s.−→ 0 or
P−→ 0 (16)

according as 1 ≤ α < 2 or 0 < α < 1. In the reminder of the proof, conclusion (16)
will be proved on three cases of the values of α.

First consider the case 1 < α < 2. By the Hölder inequality, we have

ϕ (τ(nh))

bn
∑n

k=1 X2
(k−1)h

= τ(nh)∑n
k=1 X2

(k−1)h

≤
(

1 − e−αθ0h

αθ0

) (
1

n

n∑
k=1

X2
(k−1)h

)− 2−α
α

, (17)

which converges to zero almost surely as n → ∞, since we have obtained (12). This
proves (16) for the case 1 < α < 2.

Next consider the case α = 1. By the Cr -inequality and then by the Hölder
inequality, we have (

∑n
k=1 |X(k−1)h |)1+δ ≤ nδ

∑n
k=1 |X(k−1)h |1+δ ≤ n(1+δ)/2
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(
∑n

k=1 |X(k−1)h |2)(1+δ)/2. Thus, from (13), we have

ϕ (τ(nh))

bn
∑n

k=1 X2
(k−1)h

= (τ (nh))1+δ

1
n

∑n
k=1 X2

(k−1)h

≤
(

1 − e−θ0h

θ0

)1+δ
(

1

n

n∑
k=1

X2
(k−1)h

)− 1−δ
2

,

(18)

which converges to zero almost surely as n → ∞, since we have obtained (12). This
proves (16) for the case α = 1.

Then consider the case 0 < α < 1. Note that

ϕ (τ(nh))

bn
∑n

k=1 X2
(k−1)h

= (τ (nh))(2+α)/α

1
n1/α

∑n
k=1 X2

(k−1)h

=
(

1 − e−αθ0h

αθ0

)(2+α)/α

×
(

1

n1+1/(2+α)

n∑
k=1

|X(k−1)h |α
)(2+α)/α (

1

n2/α

n∑
k=1

X2
(k−1)h

)−1

.

(19)

Then, it follows from (8) that we have, under Condition 1,

1

n1+1/(2+α)

n∑
k=1

|X(k−1)h |α a.s.−→ 0. (20)

Due to (2), we have σ 2 Z2
k,h = (Xkh − e−θh X(k−1)h)2 ≤ 2X2

kh + 2e−2θh X2
(k−1)h .

Summing k = 1 to n and rearranging gives
∑n

k=1 X2
(k−1)h ≥ 2−1(1 + e−2θh)−1(σ 2∑n

k=1 Z2
k,h + 2(X2

0 − X2
kh)). Since as n → ∞, 1

n2/α (X2
0 − X2

kh) → 0 almost surely.
Then, by Lemma 3, we have under Condition 1,

(
1

n2/α

n∑
k=1

X2
(k−1)h

)−1

≤ 2(1+e−2θh)

(
σ 2 1

n2/α

n∑
k=1

Z2
k,h +2

1

n2/α
(X2

0 −X2
kh)

)−1

� 2(1 + e−2θh)σ−2
(

1 − e−θαh

θα

)−2/α

C−2/α
α

1

Y0
. (21)

It follows from (19)–(21) that under Condition 1, ϕ(τ(nh))

bn
∑n

k=1 X2
(k−1)h

� 0.

The convergence also holds in probability, since convergence in probability and
convergence in distribution are equivalent when the limit is a constant. This proves
(16) for the case 0 < α < 1. �	
Proof of Theorem 3 In view of expressions (3) and (10), to prove Theorem 3, it suffices
to show that

(
1 + σeθ0h ∑n

k=1 X(k−1)h Zk,h∑n
k=1 X2

(k−1)h

)1/h
a.s.−→ 1 or

P−→ 1 (22)
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according as 1 ≤ α < 2 or 0 < α < 1. It is clear that

(
1 + σeθ0h ∑n

k=1 X(k−1)h Zk,h∑n
k=1 X2

(k−1)h

)1/h

=
(

1 + σeθ0h ∑n
k=1 X(k−1)h Zk,h∑n

k=1 X2
(k−1)h

) ∑n
k=1 X2

(k−1)h

σeθ0h ∑n
k=1 X(k−1)h Zk,h

σeθ0h ∑n
k=1 X(k−1)h Zk,h

h
∑n

k=1 X2
(k−1)h

.

Reviewing the proof of Theorem 1, we find, under Condition 2,

σeθ0h ∑n
k=1 X(k−1)h Zk,h∑n

k=1 X2
(k−1)h

a.s.−→ 0 or
P−→ 0

according as 1 ≤ α < 2 or 0 < α < 1. It is equivalent to

(
1 + σeθ0h ∑n

k=1 X(k−1)h Zk,h∑n
k=1 X2

(k−1)h

) ∑n
k=1 X2

(k−1)h

σeθ0h ∑n
k=1 X(k−1)h Zk,h a.s.−→ e or

P−→ e

according as 1 ≤ α < 2 or 0 < α < 1. Therefore, to prove (22), it suffices to show

∑n
k=1 X(k−1)h Zk,h

h
∑n

k=1 X2
(k−1)h

a.s.−→ 0 or
P−→ 0 (23)

according as 1 ≤ α < 2 or 0 < α < 1.
Let φn(·), τ (·) and ϕ(·) be as defined in the proof of Theorem 1. According to (14),

we can represent the left side of (23) to be

∑n
k=1 X(k−1)h Zk,h

h
∑n

k=1 X2
(k−1)h

=
∫ nh

0 φn(s) dZs

ϕ (τ(nh))

ϕ (τ(nh))

bnh
∑n

k=1 X2
(k−1)h

with bn defined in (14). Note that under Condition 2, Equalities (12) and (15) still
hold. Thus, to show (23), it suffices to show that under Condition 2,

ϕ (τ(nh))

bnh
∑n

k=1 X2
(k−1)h

a.s.−→ 0 or
P−→ 0 (24)

according as 1 ≤ α < 2 or 0 < α < 1.
From (17), we have

ϕ (τ(nh))

bnh
∑n

k=1 X2
(k−1)h

≤
(

1 − e−αθ0h

αθ0h

)(
1

n

n∑
k=1

X2
(k−1)h

)− 2−α
α

,
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which converges to zero almost surely under Condition 2, since we have (12) and
(1 − e−αθ0h)/(αθ0h) → 1. This proves (24) for the case 1 < α < 2. From (18), we
have

ϕ (τ(nh))

bnh
∑n

k=1 X2
(k−1)h

≤
(

1 − e−θ0h

θ0h

)1+δ

hδ

(
1

n

n∑
k=1

X2
(k−1)h

)− 1−δ
2

which converges to zero almost surely under Condition 2, since we have (12) and
((1 − e−θ0h)/(θ0h))1+δhδ → 0. This proves (24) for the case α = 1. From (19), we
have

ϕ (τ(nh))

bnh
∑n

k=1 X2
(k−1)h

=
(

1 − e−αθ0h

αθ0h

)(2+α)/α

×
(

1

n1+1/(2+α)

n∑
k=1

|X(k−1)h |α
)(2+α)/α (

1

(nh)2/α

n∑
k=1

X2
(k−1)h

)−1

.

Similar to prove (21), by Lemma 3, we have under Condition 2,

(
1

(nh)2/α

n∑
k=1

X2
(k−1)h

)−1

≤ 2(1 + e−2θh)

×
(

σ 2 1

(nh)2/α

n∑
k=1

Z2
k,h + 2

1

(nh)2/α
(X2

0 − X2
kh)

)−1

� 4σ−2C−2/α
α

1

Y0
.

Note that under Condition 2, the result (20) still holds. This proves (24) for the case
0 < α < 1. This completes the proof. �	

3.2 Proofs for the asymptotic behaviors

Proof of Theorem 2 The representation (2) can be treated as an AR(1) model. Using
the result in Example 5.3 of Davis and Resnick (1986), we have under Condition 1,

(
n

log n

)1/α
(∑n

k=1 X(k−1)h Xkh∑n
k=1 X2

(k−1)h

− e−θ0h

)
� 1 − e−2θ0h

(1 − e−αθ0h)1/α

Ỹ

Y0
.

By the mean value theorem, (n/ log n)1/α
(

e−θ̂nh − e−θ0h
)

= −(n/ log n)1/αe−θ̄nh

(θ̂n − θ0)h, where θ̄n satisfies |θ̄n − θ0| ≤ |θ̂n − θ0|. By the consistency of θ̂n and the
symmetry of random variable Ỹ , we obtain (6). �	

The proof of Theorem 4 follows some similar ideas as the proof of Theorem 3.1
of Hu and Long (2009). We shall only give an outline of the proof. (The complete
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proof is available at http://blog.sciencenet.cn/home.php?mod=space&uid=116301&
do=blog&id=505695.)

Proof skeleton of Theorem 4 By (10), we have

(
n

log n

)1/α

h1/α−1(e−θ̂nh − e−θ0h) = (n log n)−1/αh−1/ασ
∑n

k=1 X(k−1)h Zk,h

n−2/αh1−2/α
∑n

k=1 X2
(k−1)h

:= �1(n)

�2(n)
,

where �1(n) and �2(n) are as defined in (3.2) of Hu and Long (2009). Under Con-
dition 3, the asymptotic behavior of �1(n)/�2(n) is same as that in the proof of
Theorem 3.1 of Hu and Long (2009). That is, under Condition 3,

(
n

log n

)1/α

h1/α−1(e−θ̂nh − e−θ0h) � 2θ0(αθ0)
−1/αỸ

Y0
,

where Ỹ ∼ Sα(σ2, 0, 0), Y0 ∼ Sα/2(σ1, 1, 0), and Ỹ is independent of Y0. By the mean

value theorem, (n/ log n)1/αh1/α−1(e−θ̂nh − e−θ0h) = −(n/ log n)1/αh1/αe−θ̄nh(θ̂n −
θ0), where θ̄n satisfies |θ̄n − θ0| ≤ |θ̂n − θ0|. Due to the consistency of θ̂n and the
symmetry of random variable Ỹ , we establish (7). �	

4 Simulation

By Eq. (2) and the simulation algorithm for generating an α-stable random variate (see
Chambers et al. 1976), we can obtain the exact simulation algorithm for generating a
trajectory of the O–U process driven by the α-stable motion.

Fig. 1 Two Q–Q plots, each of which is depicted by the empirical distributions obtained from the two
data sets. Left The case of α = 0.8; right The case of α = 1.6
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Table 1 Mean and RMSE of 400 realizations of θ̂n (the true parameter θ0 = 1)

h T

50 100 200 500

α = 0.8

σ = 1

1.00 – (–) 1.030 (0.239) 0.993 (0.087) 1.000 (0.063)

0.50 1.007 (0.163) 1.004 (0.131) 1.005 (0.101) 1.005 (0.060)

0.10 1.028 (0.185) 1.005 (0.083) 1.006 (0.081) 1.003 (0.050)

0.01 1.025 (0.171) 1.008 (0.080) 1.006 (0.064) 1.000 (0.031)

σ = 10

1.00 – (–) 1.016 (0.220) 1.025 (0.191) 1.001 (0.057)

0.50 1.035 (0.258) 1.023 (0.214) 1.001 (0.076) 1.000 (0.037)

0.10 1.008 (0.150) 1.012 (0.121) 1.005 (0.153) 0.999 (0.029)

0.01 1.032 (0.261) 1.003 (0.091) 1.008 (0.082) 0.999 (0.044)

α = 1.6

σ = 1

1.00 – (–) 1.060 (0.311) 1.026 (0.172) 1.003 (0.106)

0.50 1.045 (0.260) 1.032 (0.213) 1.014 (0.122) 0.996 (0.070)

0.10 1.020 (0.187) 1.005 (0.156) 1.012 (0.089) 1.009 (0.061)

0.01 1.046 (0.209) 1.031 (0.149) 1.009 (0.086) 1.002 (0.058)

σ = 10

1.00 – (–) – (–) 1.026 (0.167) 1.018 (0.108)

0.50 1.028 (0.275) 1.023 (0.200) 1.016 (0.126) 1.006 (0.074)

0.10 1.030 (0.220) 1.029 (0.137) 1.018 (0.092) 0.999 (0.058)

0.01 1.024 (0.195) 1.021 (0.126) 1.014 (0.092) 1.004 (0.058)

To evidence the results in Theorems 2 and 4, we provide two Q–Q plots in Fig. 1.
In both of the two Q–Q plots, we set σ = 1 and θ0 = 2, and depict each of them by
the empirical distributions obtained from the two data sets. Each of the two data sets
includes 1000 samples. In the left figure, for the case α = 0.8, one of the two data

sets is sampled from eθ0h(1−e−2θ0h)

h(1−e−αθ0h)1/α
Ỹ
Y0

, and the other from (n/ log n)1/α(θ̂n − θ0) with
n = 20000 and h = 1. In the right figure, for the case α = 1.6, one of the two data sets
is sampled from 2θ0(αθ0)

−1/αỸ/Y0, and the other from (n/ log n)1/αh1/α(θ̂n − θ0)

with n = 4×105 and h = 0.05. Each of the realizations of θ̂n is obtained by generating
a trajectory of the O–U process and calculated by (3). Note that the left figure is a
Q–Q plot for two very heavy-tailed distributions. The Q–Q plots in Fig. 1 show that
the difference between two empirical distributions is subtle in each of the two cases
of α = 0.8 and α = 1.6.

Table 1 reports the mean values and the square roots of mean square error (RMSEs)
of the realizations of θ̂n for different sample size n and different length of time interval
between two consecutive observations h. In Table 1, we set T = nh. As we see from
the table, the difference between the mean value of the estimates and the true value
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Table 2 Mean and RMSE of 400 realizations of θ̂n and θ̃n (the true parameter θ0 = 2)

h T

50 100 200 500

0.5

θ̂n 2.062 (0.498) 2.053 (0.372) 2.009 (0.236) 2.012 (0.157)

θ̃n 1.266 (0.753) 1.272 (0.739) 1.262 (0.743) 1.266 (0.736)

0.1

θ̂n 2.047 (0.299) 2.031 (0.231) 2.002 (0.150) 2.005 (0.089)

θ̃n 1.848 (0.283) 1.836 (0.248) 1.813 (0.223) 1.817 (0.197)

0.05

θ̂n 2.066 (0.298) 2.018 (0.198) 2.011 (0.145) 2.008 (0.091)

θ̃n 1.961 (0.264) 1.919 (0.195) 1.912 (0.157) 1.910 (0.122)

0.025

θ̂n 2.064 (0.278) 2.002 (0.189) 2.000 (0.132) 2.001 (0.085)

θ̃n 2.011 (0.256) 1.952 (0.186) 1.951 (0.135) 1.952 (0.094)

0.0125

θ̂n 2.038 (0.300) 2.010 (0.193) 2.001 (0.136) 2.004 (0.082)

θ̃n 2.011 (0.290) 1.985 (0.188) 1.976 (0.134) 1.979 (0.082)

0.005

θ̂n 2.033 (0.291) 2.023 (0.187) 2.006 (0.129) 2.005 (0.083)

θ̃n 2.022 (0.287) 2.013 (0.184) 1.996 (0.127) 1.995 (0.082)

θ0 is very small for all case of n and h. Otherwise, the RMSE becomes lesser with
T increasing and h decreasing. Also, we find the value of σ has little effect on the
bias and the RMSE of θ̂n . Missing values in the table is owing to the case that there
is no solution in some realizations of θ̂n , i.e. there exist some negative realizations for∑n

k=1 X(k−1)h Xkh/
∑n

k=1 X2
(k−1)h .

For fixed α = 1.8, Table 2 reports the mean values and the RMSEs of the realiza-
tions of θ̂n and θ̃n (defined in (4)) for different n and different h. In Table 2, we still set
T = nh. Table 2 shows that for larger h, the difference between the mean value of the
estimates and the true value θ0 and the RMSE of the estimator θ̂n are always less than
those of θ̃n . However, with T increasing and h decreasing, the difference between θ̂n

and θ̃n becomes subtle.
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