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Abstract We consider nonparametric estimation of the conditional qth quantile for
stationary time series. We deal with stationary time series with strong time depen-
dence and heavy tails under the setting of random design. We estimate the conditional
qth quantile by local linear regression and investigate the asymptotic properties. It is
shown that the asymptotic properties are affected by both the time dependence and
the tail index of the errors. The results of a small simulation study are also given.

Keywords Conditional quantile · Random design · Check function · Local linear
regression · Stable distribution · Linear process · Long-range dependence ·
Martingale central limit theorem

1 Introduction

Let {(Xi , Yi )} be a bivariate stationary process generated by

Yi = u(Xi ) + Vi , i = 1, 2, . . . , (1)

where Vi = V (Xi , Zi ), Xi = J (. . . , εi−1, εi ), Zi = ∑∞
j=0 c jζi− j , and {εi } and {ζi }

are mutually independent i.i.d. processes. Then, we estimate the qth conditional quan-
tile of Yi given Xi = x0 from n observations by appealing to local linear regression
and investigate the asymptotic properties of the estimator.

Assuming that {Zi } is a heavy-tailed linear process and that c j does not decay so
fast, we examine how the heavy tail and the time dependence through {c j } affect the
asymptotic properties of the local linear estimator in the setting of (1). We need the
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24 T. Honda

assumption of linear process as in (1) to derive the asymptotic distribution of the esti-
mator. We adopt the data generating process and the dependence measure of Wu et al.
(2010) for {Xi }, which allows us to consider nonlinearity and long-range dependence
(LRD) of {Xi }. See Wu et al. (2010) for the details.

We state a few assumptions on u(x) and V (x, z) here. Let u(x) be twice continu-
ously differentiable in a neighborhood of x0. We denote the qth quantile of Z1 by mq

and assume that V (x, z) is monotone increasing in z and V (x, mq) = 0 for any x .
Then u(x0) is the conditional qth quantile given Xi = x0. An example of V (x, z) is
σ(x)(z − mq). Some more technical assumptions on V (x, z) will be given in Sect. 2.

There have been a lot of studies on quantile regression for linear models since
Koenker and Basset (1978). It is because quantile regression gives us more informa-
tion about data than mean regression and is robust to outliers. Pollard (1991) devised
a simple proof of the asymptotic normality of regression coefficient estimators. See
Koenker (2005) for recent developments of quantile regression.

We often employ nonparametric regression when no parametric regression function
is available or when we want to check the parametric regression function. Chaudhuri
(1991) considered nonparametric estimation of conditional quantiles for i.i.d obser-
vations by using local polynomial regression. Fan et al. (1994) applied the method of
Pollard (1991) to nonparametric robust estimation including nonparametric estima-
tion of conditional quantiles. We examine the estimator of Chaudhuri (1991) in our
setting by exploiting the method of Pollard (1991). See Fan and Gijbels (1996) for
nonparametric regression and local linear estimators.

Many authors have considered cases of weakly dependent observations and studied
the asymptotic properties of the nonparametric quantile estimators since Chaudhuri
(1991). For example, Truong and Stone (1992) considered local medians for α-mixing
processes. Honda (2000a) and Hall et al. (2002) examined the asymptotic properties
of the estimator of Chaudhuri (1991). Härdle and Song (2010) constructed uniform
confidence intervals. Zhao and Wu (2006) considered another setting from α-mix-
ing processes. The above authors considered nonparametric quantile estimation under
random design. Zhou (2010) is a recent paper for nonparametric quantile estimation
under fixed design. See Fan and Yao (2003) for nonparametric regression for time
series.

Some authors investigated robust or nonparametric estimation of regression func-
tions for LRD time series with finite variance after the developments of theoretical
results on time series with LRD, especially, the results on linear processes by Ho and
Hsing (1996, 1997). Giraitis (1996) deals with robust linear regression under LRD.
See Robinson (1997); Hidalgo (1997); Csörgő and Mielniczuk (2000); Mielniczuk
and Wu (2004), and Guo and Koul (2007) for nonparametric estimation of conditional
mean functions. Wu and Mielniczuk (2002) fully examined the asymptotic properties
of kernel density estimators. Wu et al. (2010) also deals with kernel density estimation
and nonparametric regression and the results are useful to the present paper. Honda
(2000b) and Honda (2010a) considered nonparametric estimation of conditional quan-
tiles when {Xi } and {Zi } are LRD linear processes with finite variance in (1). It is now
known that the asymptotic distributions of nonparametric estimators drastically change
depending on the strength of dependence and the bandwidths in the cases of density
estimation and nonparametric regression under random design. The time dependence
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Nonparametric quantile regression 25

Table 1 Three Cases for α and β in Assumptions Z1–Z2

Case 1 Case 2 Case 3

1 < α < 2 0 < α < 2 0 < α < 2

1/α < β < 1 1 < β < 2/α 2/α < β

Koul and Surgailis (2001) Surgailis (2002) Hsing (1999)

Honda (2009b) Pipiras and Taqqu (2003)

of covariates has almost no effect on the asymptotics except for technical conditions
in the setting similar to (1). See Beran (1994), Robinson (2003), and Doukhan et al.
(2003) for surveys on time series with LRD.

Here we state Assumptions Z1–Z2 on {Zi } and describe some relevant results on the
limiting distributions of partial sums of bounded functionals of {Zi }. Those results of
Hsing (1999), Koul and Surgailis (2001), Surgailis (2002), Pipiras and Taqqu (2003),
and Honda (2009b) are summarized in Table 1. They are based on the methods of Ho
and Hsing (1996, 1997). Let an ∼ a′

n mean an/a′
n → 1 as n → ∞.

Assumption Z1 c j ∼ cz j−β and c0 = 1.

Assumption Z2 Write G0(z) for the distribution function of ζ1. Then there exists
0 < α < 2 s.t.

lim
z→−∞ |z|αG0(z) = c− and lim

z→∞ |z|α(1 − G0(z)) = c+,

where c− + c+ > 0. In addition, E{ζ1} = 0 when α > 1.

Hereafter we assume that Assumptions Z1–Z2 hold. Then there are three Cases as
in Table 1. Some authors say that the linear process has LRD in Cases 1–2. Note that
ζ1 belongs to the domain of attraction of the α-stable distribution Sα(σ, η, μ), whose
characteristic function is given by

{
exp{−σα|θ |α(1 − iηsign(θ) tan(πα/2)) + iμθ} for α �= 1,

exp{−σ |θ |(1 + 2
π

iηsign(θ) log |θ |) + iμθ} for α = 1,

where 0 < σ, −1 ≤ η ≤ 1, −∞ < μ < ∞, and i stands for the imaginary unit. See
Samorodnitsky and Taqqu (1994) for more details about stable distributions.

In Case 3, we have

1√
n

n∑

i=1

(H(Zi ) − E{H(Zi )}) d→ N(0, σ 2),

where
d→ denotes convergence in distribution and H(z) is a bounded function. In Cases

1 and 2, the limiting distribution is an α- and αβ-stable distribution with n−1+β−1/α

and n−1/(αβ) as the normalization constant, respectively.
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26 T. Honda

Some authors have considered robust parametric or nonparametric estimation under
dependent errors with infinite variance, i.e. in Case 1, Case 2 with α > 1, and Case
3. Peng and Yao (2004) and Chan and Zhang (2009) considered robust nonparametric
regression under fixed design. Honda (2009a) considered kernel density estimation
by following Wu and Mielniczuk (2002) and found that the asymptotic distributions
depend on α and β in Assumptions Z1–Z2. Koul and Surgailis (2001) and Zhou and
Wu (2010) deals with linear regression in Case 1.

In this paper, we consider nonparametric estimation of the conditional qth quantile
in (1) in Cases 1–3 by following Honda (2010a). Theorems 1–3 are concerned with
Cases 1–3, respectively. We can say that this paper is a random-design version of Peng
and Yao (2004) and Chan and Zhang (2009).

We find that α and β affect the asymptotics in Cases 1–2 and that we have the
same asymptotics as for i.i.d. observations in Case 3. As for the effects of {Xi }, only
minor technical assumptions are imposed in Theorem 3 of Case 3. In Theorem 1 of
Case 1, we derive the asymptotic distributions under additional Assumption X3 or X4
on {Xi }. However, almost all linear processes with the (2 + δ) th moment for some
positive δ meet these assumptions. See comments below Assumption X3 and above
Assumption X4 in Sect. 2. The treatment of this paper also allows for nonlinearity of
{Xi }. Thus we can conclude that the time dependence of {Xi } has almost no effect on
the asymptotics in Cases 1 and 3. The Case 2 is the most challenging and we have
not resolved the effects of the LRD of {Xi } completely. See Theorem 2 below for
more details. We conjecture that the strong LRD of {Xi } affects the asymptotics of the
estimator in Case 2. However, this is a topic of future research.

This paper is organized as follows. In Sect. 2, we describe assumptions, define the
local linear estimator, and present the asymptotic properties in Theorems 1–3. We
carried out a small simulation study and the results are reported in Sect. 3. We state
Propositions 1–5 and prove Theorems 1–3 in Sect. 4. The proofs of propositions are
confined to Sect. 5. Some of the technical details are given in Sect. 6. The rest of the
technical details are omitted here and relegated to the full version of this paper Honda
(2010b). It is available on the website or upon request from the author.

Finally in this section, we introduce some notation. We write |w| and AT for the
Euclidean norm of a vector w and the transpose of a matrix A. We denote the L p

norm of a random variable W by ‖W‖p and p is omitted when p = 2. Let
p→ denote

convergence in probability and we omit a.s. (almost surely) when it is clear from the
context.

We write a ∧ b and a ∨ b for min{a, b} and max{a, b}, respectively. Let R and Z

denote the set of real numbers and integers, respectively. Throughout this paper, C
and δ are positive generic constants and the values vary from place to place. The range
of integration is also omitted when it is R.

2 Local linear estimator and asymptotic properties

We state assumptions, define the local linear estimator, and present the asymptotic
properties of the estimator in Theorems 1–3.

First we state Assumption V on V (x, z). Recall that mq is the qth quantile of Z1
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Nonparametric quantile regression 27

Assumption V V (x, z) is monotone increasing in z and V (x, mq) = 0 for any x .
Besides, V (x, z) is continuously differentiable in a neighborhood of (x0, mq) and
∂V (x0, mq)/∂z > 0.

We need a kernel function K (ξ) and a bandwidth h to define the local linear esti-
mator.

Assumption K The kernel function K (ξ) is a symmetric and bounded density func-
tion with compact support [−CK , CK ]. We write κ j and ν j for

∫
ξ j K (ξ)dξ and∫

ξ j K 2(ξ)dξ , respectively.

Assumption H h = chn−1/5 for some positive ch .

We impose Assumption H for simplicity of presentation. However, other choices
of h do not improve the rate of convergence of the estimator. We give a brief com-
ment about the bandwidth here. In Case 1, the convergence rate is determined by
(h2+(nh)−1/2)∨n1/α−β for general h. The former is the same as for i.i.d. observations
and the latter is due to {Zi }. We can optimize the convergence rate by Assumption H
since n1/α−β is independent of h. We see no effect of α and β in the asymptot-
ics under Assumption H when (nh)−1/2/n1/α−β → ∞. The effects appear when
(nh)−1/2/n1/α−β → 0. This comment is also true in Case 2 with n1/α−β replaced by
n1/(αβ)−1. In Case 3, n1/α−β is replaced by n−1/2. This is smaller than (h2 +(nh)−1/2)

and we see no effect of α and β in the asymptotics. There is no theoretical difficulty
in dealing with the case where Xi ∈ R

d . Then we should take h = chn−1/(d+4).
Now we introduce the check function ρq(u) and the derivative ρ′

q(u) in (2) to define
the local linear estimator of u(x0).

ρq(u) = u(q − I (u < 0)) and ρ′
q(u) = q − I (u < 0). (2)

Then we estimate (u(x0), hu′(x0))
T by

β̂ = (β̂1, β̂2)
T = argminβ∈R2

n∑

i=1

Kiρq(Yi − ηT
i β),

where Ki = K ((Xi − x0)/h) and ηi = (1, (Xi − x0)/h)T .
We normalize β̂ − (u(x0), hu′(x0))

T by τn and define θ̂ by

θ̂ = τn(β̂1 − u(x0), β̂2 − hu′(x0))
T . (3)

We specify τn later in this section. It is easy to see that θ̂ is also defined by

θ̂ = argminθ∈R2

n∑

i=1

Kiρq(V ∗
i − τ−1

n ηT
i θ), (4)

where

V ∗
i = V (Xi , Zi ) + h2

2

( Xi − x0

h

)2
u′′(X̄i )

and X̄i is between x0 and Xi and independent of θ .
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28 T. Honda

Before stating assumptions on {Xi } and {Zi }, we define σ -fields F i , Gi , and Si by

Fi = σ(. . . , εi−1, εi ), Gi = σ(. . . , ζi−1, ζi ), Si = σ(. . . , εi−1, ζi−1, εi , ζi ).

We adopt the setup and the notation of Wu et al. (2010), especially that of Section 2.1,
for {Xi } and Assumption X1 below is necessary to define the dependence measure.

Set

Fl(x |Fi ) = P(Xi+l ≤ x |Fi ). (5)

Assumption X1 With probability 1, F1(x |F0) is differentiable on R and the derivative
f1(x |F0) satisfies supR f1(x |F0) ≤ C and limx→x0 E{| f1(x |F0) − f1(x0|F0)|} = 0.

We write f (x) for the density function of X1 and assume that f (x0) > 0 throughout
the paper. Here notice that f (x) = E{ f1(x |F0)}.

Another σ -field F∗
i below is necessary to define the dependence measure of {Xi }

as in Wu et al. (2010).

F∗
i =

{
σ(. . . , ε−1, ε

∗
0 , ε1, . . . , εi ) for i ≥ 0,

Fi for i < 0,

where ε∗
0 is an independent copy of ε0. Then we define the dependence measure θ j,p(x)

by

θ j,p(x) = ‖ f1+ j (x |F0) − f1+ j (x |F∗
0 )‖p

for p > 1 and j ≥ 0. When j < 0, set θ j,p(x) = 0. We also have

‖E{ f1(x |Fi )|Fi− j } − E{ f1(x |Fi )|Fi− j−1}‖p ≤ θ j,p(x). (6)

We also define p′, θp( j), and Θp by p′ = 2 ∧ p,

θp( j) = sup
x∈R

θ j,p(x), and Θp(n) =
∑

i∈Z

⎛

⎝
n−i∑

j=1−i

θp( j)

⎞

⎠

p′

. (7)

We find in Section 4.1 of Wu et al. (2010) that θp( j) ≤ C |b j | for 1 < p ≤ 2 when
E{|εi |2} < ∞ and Xi is given by

Xi =
∞∑

j=0

b jεi− j . (8)

Assumption X2 (Θp(n))1/p′
/n → 0 for some 1 < p.
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Nonparametric quantile regression 29

Assumption X2 will be employed to deal with
∑n

i=1( f1(x0 + ξh|Fi−1) − f (x0 +
ξh)). In fact, Lemma 3 of Wu et al. (2010) implies that

sup
x∈R

‖
n∑

i=1

( f1(x |Fi−1) − f (x))‖p ≤ C(Θp(n))1/p′
(9)

and that almost every linear process with finite variance satisfies Assumption X2. We
assume that Assumptions X1–X2 hold throughout the paper.

Assumptions X3–X5 below will be used to derive the asymptotic distribution when
the effects of α and β appear in the asymptotics.

Assumption X3
∞∑
j=1

θp( j) < ∞.

It is easy to see that Assumption X3 implies Assumption X2. We take p = α and
αβ < p ≤ 2 in Cases 1 and 2, respectively. Since θp( j) ≤ C |b j | for 1 < p ≤ 2, we
see that short-range dependent linear processes satisfy Assumption X3.

Hereafter we write Aξ (i) for f1(x0 + ξh|Fi−1) for notational convenience. Notice
that E{Aξ (i)} = f (x0 + ξh). Assumption X4 below holds under (8) with b j ∼
cX j−(1+δ1)/2 and E{|ε1|2+δ2} < ∞ for some positive δ1 and δ2. Thus it is just a mild
assumption and will be used in Case 1B.

Assumption X4 There exists a positive γx s.t.

|Cov(Aξ (i), Aξ ( j))| ≤ C |i − j |−γx for i �= j.

Assumption X5 There exist rx and δx s.t. αβ < rx , δx > 0, and θrx ( j) ≤
C j−δx −1/(αβ).

Assumption X5 will be used in Case 2. The assumption is rather restrictive because
it depends on αβ. However, it seems very difficult to derive the asymptotic distribution
without this kind of assumption when we see the effects of α and β. See a comment
on this difficulty around (11) and (12) below.

We introduce some more notation to state another assumption on {Zi }. We define
Zi, j and Z̃i, j by

Zi, j =
j∑

l=0

clζi−l and Z̃i, j = Zi − Zi, j =
∞∑

l= j+1

clζi−l

and let G j (z) denote the distribution function of Z1, j . Then G∞(z) is that of Z1 and
we write g j (z) for G ′

j (z).

Assumption Z3 There exists a positive γz s.t. for any j ,

|G ′′
j (z)| ≤ C(1 + |z|)−(1+γz) and |G ′′

j (z1) − G ′′
j (z2)| ≤ C |z1 − z2|

(1 + |z1|)(1+γz)
(10)

for |z1 − z2| ≤ 1. In addition, g∞(mq) > 0.
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30 T. Honda

Assumption Z3 is a technical one and Lemma 4.2 of Koul and Surgailis (2001)
implies that Assumption Z3 can be relaxed for α > 1. When ζ1 has a stable distri-
bution, Assumption Z3 follows from the argument based on integration by parts in
Hsing (1999).

We divide Case 1 into Cases 1A and 1B and Case 2 into Cases 2A–C, respectively
to present Theorems 1–3. We also specify the normalization constant τn for each case
here. Note that −2/5 in Case 1 below comes from (nh)−1/2 = n1/α−β and that 3/5
in Case 2 below comes from (nh)−1/2 = n1/(αβ)−1.

Case 1: 1 < α < 2, 1 < αβ < 2, and β < 1
Case 1A: 1/α − β < −2/5 and τn = √

nh
Case 1B: 1/α − β > −2/5 and τn = nβ−1/α . In addition, Assumption X3 with

p = α or X4 holds.
Case 2: 0 < α < 2, 1 < αβ < 2, and β > 1

Case 2A: 1/(αβ) < 3/5 and τn = √
nh.

Case 2B: 1/(αβ) > 3/5 and τn = nν , where ν < 1 − 1/(αβ).
Case 2C: 1/(αβ) > 3/5 and τn = n1−1/(αβ). In addition, Assumption X3 with

αβ < p or X5 holds.
Case 3: αβ > 2 and τn = √

nh.

In Cases 1A, 2A, and 3, we have the same asymptotic distribution as for i.i.d. obser-
vations. On the other hand, we see the effects of α and β in Cases 1B, 2B, and 2C
and have worse convergence rates. We have to impose additional assumptions on {Xi }
to investigate the asymptotic distribution of the nonparametric quantile estimator in
those cases. Especially in Case 2, we have to show

n−1/(αβ)
n∑

i=1

(Aξ (i) − E{Aξ (i)})B1(Z̃i,0) = op(1) (11)

or deal with

n−1/(αβ)
n∑

i=1

∞∑

j=1

Aξ (i + j)(B j (c jζi ) − E{B j (c jζi )}), (12)

where B j (z) is specified later in Proposition 2. We will prove (11) and derive the
asymptotic distribution in Case 2C. When (11) does not seem to hold, we have to
deal with (12). However, Aξ (i + j) in (12), not Aξ (i), will extremely complicate the
theoretical treatment and we do not pursue the problem in this paper.

Theorems 1–3 below deals with Cases 1–3, respectively. We denote the density of
V (x0, Z1) at 0 by fV (0|x0), which is written as

fV (0|x0) = g∞(mq)
(∂V

∂z
(x0, mq)

)−1
.

Theorem 1 Suppose that Assumptions V, K, H, Z1–Z3, and X1–X2 hold in Case 1. In
Case 1B, Assumption X3 with p = α or X4 is also assumed. Then we have as n → ∞,

123



Nonparametric quantile regression 31

Case 1A:

θ̂
d→ N

((
c5/2

h u′′(x0)κ2
2
0

)

,
q(1 − q)

f 2
V (0|x0) f (x0)

(
ν0 0
0 κ−2

2 ν2

))

,

Case 1B:

θ̂ = − 1

fV (0|x0)

(
1
0

) ∫

ρ′
q(V (x0, z))g′∞(z)dz · τn

n

n∑

i=1

Z̃i,0 + op(1)

d→ − 1

fV (0|x0)

(
1
0

) ∫

ρ′
q(V (x0, z))g′∞(z)dz · cd L ,

where
∫

ρ′
q(V (x0, z))g′∞(z)dz = −g∞(mq), L ∼ Sα(1, (c+ −c−)/(c+ +c−), 0),

and

cd = cz

(
(c+ + c−)

Γ (2 − α) cos(απ/2)

1 − α

∫ 1

−∞

{ ∫ 1

0
(t − s)−β

+ dt
}

ds
)1/α

.

Theorem 2 Suppose that Assumptions V, K, H, Z1–Z3, and X1–X2 hold in Case 2.
In Case 2C, Assumption X3 with αβ < p or X5 is also assumed. Then we have as
n → ∞,

Case 2A: we have the same result as in Case 1A,
Case 2B: θ̂ = op(1),
Case 2C:

θ̂
d→ σαβ

fV (0|x0)

(
1
0

)

(c1/(αβ)
+ C+

q L+ + c1/(αβ)
− C−

q L−),

where L+ ∼ Sαβ(1, 1, 0), L− ∼ Sαβ(1, 1, 0), L+ and L− are mutually indepen-
dent,

σαβ =
{

cα
z Γ (2 − αβ)| cos(παβ/2)|

(αβ − 1)βαβ

}1/(αβ)

,

C±
q =

∫ ∞

0
{q − G∞(mq ∓ v)}v−(1+1/β)dv.

In Case 2B, we have only proved that β̂ − (u(x0), hu′(x0))
T = op(n−ν) for any

ν < 1 − 1/(αβ).

Theorem 3 Suppose that Assumptions V, K, H, Z1–Z3, and X1–X2 hold in Case 3.
Then we have the same result as in Case 1A.

123



32 T. Honda

Theorems 1–2 shows that the asymptotic properties may be badly affected by α

and β in Cases 1B, 2B, and 2C. Generally speaking, the convergence rates of mean
regression are worse than those of quantile regression when α < 2. However, the
convergence rate is the same as that of the sample mean of {Zi } in Case 1B. In Case
2, the rates are improved and better than n−1+1/α .

In Sect. 3, we report the results of our simulation study to show how α and β affect
the properties of the local linear estimator.

In Cases 1A, 2A, and 3, our choice of h in Assumption H gives the optimal rate
of convergence to the local linear estimator. In Cases 1B and 2C, the rate of conver-
gence is independent of h and any other choices of h does not improve the rate. Only
the boundaries between subcases may vary with h. Therefore we recommend that we
should choose the bandwidth as if we had i.i.d. observations.

The asymptotic distribution depends on α and β in a complicated way in Cases 1B
and 2C. It might be very difficult to estimate the parameters and statistical inference
is a topic of future research.

3 Simulation study

We carried out a small simulation study using R. In the simulation study, we set
εi ∼ N(0, 1), ηi ∼ Sα(1, 0, 0),

Yi = 2(X2
i + X4

i ) + Zi , Xi =
999∑

j=0

cx

(1 + j)γ
εi− j , Zi =

999∑

j=0

cz

(1 + j)β
ηi− j ,

where cx and cz are chosen so that Xi ∼ N(0, 1) and Zi ∼ Sα(1, 0, 0).
We took γ = 0.75, x0 = 0.0, 0.6, and h = 0.2, 0.4. We examined 20 pairs of

(α, β), α = 1.1, 1.2, 1.3, 1.4, 1.5 and β = 0.9, 1.3, 1.7, ∞. The sample size is
400 and the results are based on 10,000 repetitions.

We estimate the conditional median u(x0) = 2(x2
0 + x4

0 ) by employing the rq func-
tion of the quantreg package (Koenker 2009) with the Epanechnikov kernel and use
the rstable function of the fBasics package (Wuertz et al. 2009) to generate Sα(1, 0, 0)

random numbers. When there are less than four observations available to estimate
u(x0), just the sample median is used here. However, there are less than 10 sample
median cases among the repetitions for each entry of Tables 2, 3, 4, 5 and 6 below and
there will be almost no influence on the results.

Tables 2, 3, 4, 5 and 6 are for the cases of α = 1.1, 1.2, 1.3, 1.4, 1.5, respectively.
The results for γ = 1.25 are also reported in Honda (2010b). There is no significant
difference between γ = 0.75 and γ = 1.25.

Note that all of (∗, 0.9) belong to Case 1B. Pairs (1.1, 1.3) and (1.2, 1.3) belong to
Cases 2C. The other pairs have the same asymptotic distribution as for i.i.d. observa-
tions. In the tables, every entry is estimated by the sample mean. “mean” is the mean
of β̂1 and “bias” is the mean minus the true value. “mse” is the mean squared error
and N/A means that the MSE does exist from a theoretical point of view. Actually,
we had unstable and extremely large values. Values with ∗ in the tables were unstable
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Table 2 α = 1.1

β 0.9 1.3 1.7 ∞
h 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

0.0 Mean 0.072 0.163 0.032 0.078 0.017 0.067 0.018 0.066

Bias 0.072 0.163 0.032 0.078 0.017 0.067 0.018 0.066

mse N/A N/A N/A N/A 0.362* 0.333* 0.059 0.032

madv 1.927 1.923 0.683 0.661 0.317 0.286 0.191 0.141

0.6 Mean 1.183 1.332 1.018 1.179 1.028 1.169 1.028 1.170

Bias 0.204 0.353 0.039 0.200 0.048 0.190 0.049 0.190

mse N/A N/A N/A N/A 0.677* 0.466* 0.090 0.078

madv 1.928 1.912 0.764 0.736 0.362 0.355 0.224 0.229

Table 3 α = 1.2

β 0.9 1.3 1.7 ∞
h 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

0.0 Mean 0.013 0.015 0.055 0.105 0.002 0.051 0.016 0.066

Bias 0.013 0.015 0.055 0.105 0.002 0.051 0.016 0.066

mse N/A N/A N/A N/A 0.644* 1.139* 0.060 0.033

madv 1.505 1.460 0.534 0.509 0.285 0.255 0.192 0.145

0.6 Mean 0.971 1.172 1.074 1.217 1.003 1.154 1.031 1.173

Bias −0.008 0.193 0.094 0.238 0.024 0.175 0.052 0.194

mse N/A N/A N/A N/A 2.299* 1.651* 0.092 0.081

madv 1.496 1.603 0.582 0.571 0.334 0.328 0.228 0.232

Table 4 α = 1.3

β 0.9 1.3 1.7 ∞
h 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

0.0 Mean 0.050 0.098 0.027 0.074 0.012 0.066 0.013 0.063

Bias 0.050 0.098 0.027 0.074 0.012 0.066 0.013 0.063

mse N/A N/A 2.580* 2.778* 0.116 0.086 0.061 0.034

madv 0.921 0.908 0.423 0.396 0.260 0.223 0.195 0.147

0.6 Mean 1.065 1.214 1.035 1.157 1.026 1.175 1.028 1.170

Bias 0.086 0.235 0.056 0.177 0.047 0.196 0.049 0.191

mse N/A N/A 2.094* 4.499* 0.163 0.145 0.087 0.081

madv 0.956 0.946 0.450 0.458 0.296 0.295 0.227 0.232

and the true values may not exist. “madv” stands for the mean absolute deviation,
E{|β̂1 − u(x0)|}.

We have the following observations from Tables 2, 3, 4, 5 and 6.
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Table 5 α = 1.4

β 0.9 1.3 1.7 ∞
h 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

0.0 Mean 0.025 0.073 0.009 0.059 0.013 0.064 0.014 0.065

Bias 0.025 0.073 0.009 0.059 0.013 0.064 0.014 0.065

mse N/A N/A 1.199* 1.333* 0.096 0.068 0.063 0.035

madv 0.751 0.737 0.357 0.33 0.244 0.206 0.199 0.149

0.6 Mean 1.030 1.174 1.022 1.165 1.028 1.170 1.024 1.172

Bias 0.051 0.194 0.043 0.186 0.049 0.191 0.045 0.193

mse N/A N/A 1.049* 1.116* 0.131 0.120 0.090 0.082

madv 0.779 0.779 0.389 0.387 0.279 0.275 0.229 0.233

Table 6 α = 1.5

β 0.9 1.3 1.7 ∞
h 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

0.0 Mean 0.034 0.085 0.007 0.060 0.016 0.066 0.012 0.064
Bias 0.034 0.085 0.007 0.060 0.016 0.066 0.012 0.064
mse N/A N/A 0.238 0.213 0.091 0.064 0.063 0.035
madv 0.613 0.597 0.316 0.288 0.237 0.199 0.198 0.149

0.6 Mean 1.049 1.194 1.023 1.167 1.033 1.178 1.031 1.176
Bias 0.070 0.215 0.043 0.188 0.054 0.199 0.052 0.197
mse N/A N/A 0.280 0.275 0.129 0.120 0.088 0.083
madv 0.636 0.638 0.347 0.344 0.275 0.275 0.230 0.236

1. In the cases of β = 0.9, the values of madv are very large for small α. This implies
that the effects of small β and small α are very serious and that nonparametric
estimation may be very difficult.

2. In the cases of β = 1.3, the values of mse are large for α = 1.3 − 1.5. We should
have the same asymptotic distribution as for i.i.d. observations in those cases. The
values of madv are still larger than those for β = ∞.

3. In the cases of β = 1.7, the effects of small α on mse are serious up to α = 1.3
and the madv values are also affected up to α = 1.2.

4. Larger bandwidths yield better results for the MSE. But there is almost no differ-
ence in the mean absolute deviation between h = 0.2 and h = 0.4.

The effects of α and β are serious and there seem to be considerable differences
between the asymptotics and the finite sample properties.

4 Proofs of Theorems 1–3

We verify Theorems 1–3 in a similar way to Theorem 1 of Honda (2010a). Honda
(2010a) deals with linear process with finite variance. First we state Propositions 1–5,
which are essential tools to the proofs. Propositions 1–3 deal with the stochastic term

123



Nonparametric quantile regression 35

of the estimator and they correspond to Lemma 1 of Honda (2010a). Propositions 4
and 5 correspond to Lemmas 2 and 3, respectively and deal with all the cases simul-
taneously. Proposition 4 is about a quadratic form in θ and Proposition 5 is related to
the bias term.

Proposition 1 Suppose that the same assumptions hold as in Theorem 1. Then we
have as n → ∞,

Case 1A:

τn

nh

n∑

i=1

Kiηiρ
′
q(Vi )

d→ N

((
0
0

)

, q(1 − q) f (x0)

(
ν0 0
0 ν2

))

,

Case 1B:

τn

nh

n∑

i=1

Kiηiρ
′
q(Vi )

= − f (x0)

(
1
0

) ∫

ρ′
q(V (x0, z))g′∞(z)dz · τn

n

n∑

i=1

Z̃i,0 + op(1)

d→ − f (x0)

(
1
0

) ∫

ρ′
q(V (x0, z))g′∞(z)dz · cd L ,

where cd and L are defined in Theorem 1.

Here we give an outline of the proof of Proposition 1. First write

n∑

i=1

Kiηiρ
′
q(Vi )

=
n∑

i=1

(Kiηiρ
′
q(Vi ) − E{Kiηiρ

′
q(Vi )|Si−1}) +

n∑

i=1

E{Kiηiρ
′
q(Vi )|Si−1}

= An + Bn

as in Wu and Mielniczuk (2002) and Honda (2009a). We deal with An and Bn by
using the martingale CLT and the result of Koul and Surgailis (2001), respectively.
Especially, (nh)−1/2 An converges in distribution to a normal distribution. The limiting
distribution depends on which of An and Bn is stochastically larger. In Case 1A, An

is dominant. In Case 1B, Bn is dominant. In the proof of Proposition 2, we apply the
results of Surgailis (2002) and Honda (2009b) instead of that of Koul and Surgailis
(2001). In Case 3, we have Bn = Op(h

√
n) and we do not see any effects of Bn in

the asymptotics.

Proposition 2 Suppose that the same assumptions hold as in Theorem 2. Then as
n → ∞,
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Case 2A: we have the same result as in Case 1A of Proposition 1,
Case 2B: τn

nh

∑n
i=1 Kiηiρ

′
q(Vi ) = op(1),

Case 2C:

τn

nh

n∑

i=1

Kiηiρ
′
q(Vi )

d→ f (x0)

(
1
0

)

σαβ(c1/(αβ)
+ C+

q L+ + c1/(αβ)
− C−

q L−),

where σαβ, C±
q , and L± are defined in Theorem 2.

Proposition 3 Suppose that the same assumptions hold as in Theorem 3. Then we
have the same result as in Case 1A of Proposition 1.

Proposition 4 Suppose that the Assumptions V, K, H, Z1–Z3, and X1–X2 hold. Then
for any fixed θ , we have as n → ∞,

τ 2
n

nh

n∑

i=1

Ki (ρq(V ∗
i − τ−1

n ηT
i θ) − ρq(V ∗

i ))

= 1

2
θT

(
1 0
0 κ2

)

θ fV (0|x0) f (x0) −
(

τn

nh

n∑

i=1

Kiηiρ
′
q(V ∗

i )

)T

θ + op(1).

The bias term in Proposition 5 below is negligible in Cases 1B, 2B, and 2C since
τn/

√
nh → 0 in these cases.

Proposition 5 Suppose that the Assumptions V, K, H, Z1–Z3, and X1–X2 hold. Then
we have as n → ∞,

τn

nh

n∑

i=1

Kiηiρ
′
q(V ∗

i )

= τn

nh

n∑

i=1

Kiηiρ
′
q(Vi ) + τn

2
√

nh

(
c5/2

h κ2u′′(x0) fV (0|x0) f (x0)

0

)

+ op(1).

Now we prove Theorem 1 as in Fan et al. (1994) and Hall et al. (2002) by adapt-
ing the method of Pollard (1991) to nonparametric regression. Theorems 2–3 can be
established in the same way by applying Propositions 2–3, respectively and the proofs
are omitted.

Proof of Theorem 1 Recall that τn/
√

nh = 1 in Case 1A and τn/
√

nh = o(1) in Case
1B. Equation (4) is equivalent to

θ̂ = argminθ∈R2
τ 2

n

nh

n∑

i=1

Ki (ρq(V ∗
i − τ−1

n ηT
i θ) − ρq(V ∗

i )). (13)
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By Propositions 4–5, we have for any fixed θ ∈ R
2,

τ 2
n

nh

n∑

i=1

Ki (ρq(V ∗
i − τ−1

n ηT
i θ) − ρq(V ∗

i ))

= 1

2
θT

(
1 0
0 κ2

)

θ fV (0|x0) f (x0) −
(

τn

nh

n∑

i=1

Kiηiρ
′
q(Vi )

)T

θ

− τn

2
√

nh
(c5/2

h κ2u′′(x0) fV (0|x0) f (x0), 0)θ + op(1). (14)

As in Pollard (1991), Fan et al. (1994) and Hall et al. (2002), the convexity lemma
implies that (14) holds uniformly on {|θ | < M} for any positive M .

We consider the RHS of (14). Proposition 1 implies that

τn

nh

n∑

i=1

Kiηiρ
′
q(Vi ) = Op(1). (15)

Combining (15), τn/
√

nh = O(1), the uniformity of (14), and the convexity of the
objective function in (13), we conclude that |θ̂ | = Op(1) by appealing to the standard
argument.

By using |θ̂ | = Op(1) and the uniformity of (14) again, we obtain

θ̂ = 1

fV (0|x0) f (x0)

(
1 0
0 κ2

)−1

×
{ τn

nh

n∑

i=1

Kiηiρ
′
q(Vi ) + τn

2
√

nh
(c5/2

h κ2u′′(x0) fV (0|x0) f (x0), 0)T
}

+ op(1).

(16)

The results of the theorem follow from (16) and Proposition 1. Hence the proof of the
theorem is complete. ��

5 Proofs of Propositions 1–5

We present Lemmas 1–3 before we prove Propositions 1–5. (ii) of Lemmas 1–2 are
employed to derive the asymptotic distributions in Cases 1B and 2C, respectively. (i)
of Lemmas 1–2 and Lemma 3 is enough to consider the other cases and establish
Propositions 4–5.

The proofs of the lemmas are postponed to Sect. 6. We introduce some more nota-
tion for Lemmas 1–3.

Define Bξ,s(Z̃i,s−1) and Bξ,∞(v) for ξ ∈ [−CK , CK ] by

Bξ,s(Z̃i,s−1) = E{Bξ (Zi )|Gi−s} and Bξ,∞(v) = E{Bξ (Z1 + v)}, (17)
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where Bξ (z) is uniformly bounded in ξ and will be specified in the proofs of Propo-
sitions 1–5. When Bξ (z) does not depend on ξ , we write B(z) for Bξ (z).

Next we define om,r (an) for r ≥ 1 by

Wξ = om,r (an) ⇔ ‖a−1
n Wξ‖r = o(1) uniformly in ξ. (18)

The definition of Om,r (an) is obvious from (18).
Recall that Aξ (i) = f1(x0 + ξh|Fi−1) and E{Aξ (i)} = f (x0 + ξh). Hereafter we

omit “as n → ∞”.

Lemma 1 Suppose that Assumptions X1–X2 and Z1–Z3 hold in Case 1.

(i) There exists 1 < r < α s.t.

1

n

n∑

i=1

Aξ (i)Bξ,1(Z̃i,0)

= ( f (x0 + ξh) + om,r (1))E{Bξ,1(Z̃1,0)} + 1

n
B ′

ξ,∞(0)

n∑

i=1

Aξ (i)Z̃i,0

+om,r (n
−β+1/α). (19)

(ii) When Assumption X3 with p = α or X4 holds, we can replace Aξ (i) in the
RHS of (19) with E{Aξ (i)} = f (x0 + ξh).

It is easy to see that E{|n−1 ∑n
i=1 Aξ (i)Z̃i,0|r } = o(1) for any 1 < r < α.

When we use an assumption similar to Assumption X4 instead of Assumption X5
in Lemma 2(ii) below, we have to assume that 2/(αβ) − 1 < γx to obtain the same
result. Note that Bξ, j (z) is defined in (17).

Lemma 2 Suppose that Assumptions X1–X2 and Z1–Z3 hold in Case 2.

(i) There exists 1 < r < αβ s.t.

1

n

n∑

i=1

Aξ (i)Bξ,1(Z̃i,0)

= ( f (x0 + ξh) + om,r (1))E{Bξ,1(Z̃1,0)}

+1

n

n∑

i=1

∞∑

j=1

Aξ (i + j)(Bξ, j (c jζi ) − E{Bξ, j (c jζi )}) + om,r (n
−1+1/(αβ)).

(20)

In addition, for any 1 < r < αβ,

E

⎧
⎨

⎩
|

∞∑

j=1

Aξ (i + j)(Bξ, j (c jζi ) − E{Bξ, j (c jζi )})|r
⎫
⎬

⎭
< C

uniformly in ξ and i .
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(ii) When Assumption X3 with αβ < p or X5 holds, we can replace Aξ (i + j) in
the RHS of (20) with E{Aξ (i + j)} = f (x0 +ξh). Besides, when Bξ (z) = B(z)
for some function B(z), we have

n−1/(αβ)
n∑

i=1

∞∑

j=1

(B j (c jζi ) − E{B j (c jζi )})

d→ σαβ(c1/(αβ)
+ C+

B L+ + c1/(αβ)
− C−

B L−),

where C±
B = ∫ ∞

0 (B∞(±v) − B∞(0))v−(1+1/β)dv. See Theorem 2 for the
definitions of σαβ and L±.

Lemma 3 Suppose that Assumptions X1–X2 and Z1–Z3 hold in Case 3. Then we have

1

n

n∑

i=1

Aξ (i)Bξ,1(Z̃i,0) = ( f (x0 + ξh) + om,p(1))E{Bξ,1(Z̃1,0)} + Om,2(n
−1/2).

Now we begin to prove Propositions 1–5.

Proof of Proposition 1. We follow Wu and Mielniczuk (2002), Mielniczuk and Wu
(2004) and Honda (2009a). We consider only the first element. The second element
can be treated in the same way.

Set

Ti = Kiρ
′
q(Vi ) − E{Kiρ

′
q(Vi )|Si−1}.

Note that |Ti | ≤ C and that

1

nh

n∑

i=1

E{T 2
i |Si−1}

= 1

n

n∑

i=1

∫ ∫

K 2(ξ) f1(x0 + ξh|Fi−1)(ρ
′
q(V (x0 + ξh, z)))2g0(z − Z̃i,0)dξdz

+op(1)

= ν0

n

n∑

i=1

f1(x0|Fi−1)

∫

(ρ′
q(V (x0, z)))2g0(z − Z̃i,0)dz + op(1)

p→ ν0 f (x0)q(1 − q). (21)

We used the monotonicity of V (x, z) in z, Assumption X1, and the ergodic theorem
in (21). Therefore by the martingale central limit theorem,

τn

nh

n∑

i=1

Ti

{
d→ N (0, f (x0)q(1 − q)ν0) in Case1A,

= op(1) in Case1B.
(22)
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Next we deal with E{Kiρ
′
q(Vi )|Si−1}. Since

1

h
E{Kiρ

′
q(Vi )|Si−1}

=
∫

K (ξ)

{

f1(x0 + ξh|Fi−1)

∫

ρ′
q(V (x0 + ξh, z))g0(z − Z̃i,0)dz

}

dξ, (23)

we apply Lemma 1 with Bξ (z) = ρ′
q(V (x0 + ξh, z)) = ρ′

q(V (x0, z)) and

Bξ,1(Z̃i,0) =
∫

ρ′
q(V (x0 + ξh, z))g0(z − Z̃i,0)dz =

∫

ρ′
q(V (x0, z))g0(z − Z̃i,0)dz.

Notice that

E{Bξ,1(Z̃i,0)} = 0 and B ′
ξ,∞(0) = −

∫

ρ′
q(V (x0, z))g′∞(z)dz. (24)

From Lemma 1(ii) and (24), we have in Case 1B that

1

n

n∑

i=1

Aξ (i)Bξ,1(Z̃i,0)

= − f (x0 + ξh)

∫

ρ′
q(V (x0, z))g′∞(z)dz

1

n

n∑

i=1

Z̃i,0 + om,r (n
−β+1/α). (25)

From Jensen’s inequality w.r.t.
∫ ·K (ξ)dξ , (23), and (25), we obtain

1

nh

n∑

i=1

E{Kiρ
′
q(Vi )|Si−1}

= − f (x0)

∫

ρ′
q(V (x0, z))g′∞(z)dz

1

n

n∑

i=1

Z̃i,0 + op(n
−β+1/α). (26)

We can proceed in a similar way in Case 1A by employing Lemma 1(i). Thus by
(26) and the definition of τn ,

τn

nh

n∑

i=1

E{Kiρ
′
q(Vi )|Si−1}

⎧
⎨

⎩

= op(1) in Case 1A,

= − f (x0)
∫

ρ′
q(V (x0, z))g′∞(z)dz

× τn
n

∑n
i=1 Z̃i,0 + op(1) in Case 1B.

(27)

The desired result follows from (22), (27), and Kasahara and Maejima (1988).
Hence the proof is complete. ��
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Proof of Proposition 2. We define Ti as in the proof of Proposition 1 and Ti can be
treated in the same way as in the proof of Proposition 1. Then we have

τn

nh

n∑

i=1

Ti

{
d→ N (0, f (x0)q(1 − q)ν0) in Case 2A,

= op(1) in Case 2B, C.
(28)

Next we deal with 1
h E{Kiρ

′
q(Vi )|Si−1} by applying Lemma 2 as in the proof of

Proposition 1.
By Lemma 2(i),

1

n

∫

K (ξ)Aξ (i)Bξ,1(Z̃i,0)dξ

= 1

n

n∑

i=1

∫

K (ξ)

⎧
⎨

⎩

∞∑

j=1

Aξ (i + j)(Bξ, j (c jζi ) − E{Bξ, j (c jζi )})
⎫
⎬

⎭
dξ

+ op(n
−1+1/(αβ)).

From the latter half of Lemma 2(i), we have for any 1 < r < αβ,

1

n

n∑

i=1

∫

K (ξ)Aξ (i)Bξ,1(Z̃i,0)dξ = Op(n
−1+1/r ). (29)

Finally, we consider the case where Assumption X3 with αβ < p or X5 holds.
Then Lemma 2(ii), the monotonicity of V (x, z) in z, and Jensen’s inequality w.r.t.∫ ·K (ξ)dξ yield that

1

n

∫

K (ξ)Aξ (i)Bξ,1(Z̃i,0)dξ

= 1

n

∫

K (ξ) f (x0 + ξh)dξ

n∑

i=1

∞∑

j=1

(B j (c jηi ) − E{B j (c jηi )}) + op(n
−1+1/(αβ)),

where B(z) = ρ′
q(V (x0, z)). The convergence in distribution follows from the latter

half of Lemma 2(ii) with

B∞(v) =
∫

(q − I (z + v < mq))g∞(z)dz = q − G∞(mq − v).

Consequently we have

τn

nh

n∑

i=1

E{Kiρ
′
q(Vi )|Si−1}

⎧
⎪⎨

⎪⎩

= op(1) in Case 2A, B,
d→ σαβ(c1/(αβ)

+ C+
q L+ in Case 2C.

+c1/(αβ)
− C−

q L−)

(30)
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The desired result follows from (28) and (30). Hence the proof of the lemma is
complete. ��
Proof of Proposition 3. We can proceed as in the proofs of Propositions 1–2 by appeal-
ing to Lemma 3. Since E{Bξ,1(Z̃i,0)} = 0,

∑n
i=1 Ti is stochastically larger than∑n

i=1 E{Kiρ
′
q(Vi )|Si−1} for any pair of α and β of Case 3. The details are omitted.

��
Proof of Proposition 4. We establish Proposition 4 by employing Lemmas 1–3. Set

Sθ (Xi , Zi ) = ρq(V ∗
i − τ−1

n ηT
i θ) − ρq(V ∗

i ) + τ−1
n ηT

i θρ′
q(V ∗

i ).

Since |V ∗
i − Vi | ≤ Ch2 and τn = O(h−2), we have

|Sθ (Xi , Zi )| ≤ C |τ−1
n ηT

i θ |I (|Vi | ≤ Cτ−1
n |θ |).

Letting

Ti = Ki Sθ (Xi , Zi ) − E{Ki Sθ (Xi , Zi )|Si−1},
we have

τ 2
n

nh

n∑

i=1

Ti = op(1) (31)

because

E
{( τ 2

n

nh

n∑

i=1

Ti

)2} ≤ C
τ 2

n |θ |2
(nh)2

n∑

i=1

E{K 2
i I (|Vi | ≤ Cτ−1

n |θ |)}

≤ C
τn|θ |3

nh
→ 0.

Next we deal with E{Ki Sθ (Xi , Zi )|Si−1}, which is written as

τ 2
n

h
E{Ki Sθ (Xi , Zi )|Si−1} (32)

=
∫

K (ξ)

{

f1(x0 + ξh|Fi−1)τ
2
n

∫

Sθ (x0 + ξh, z)g0(z − Z̃i,0)dz

}

dξ.

We take Bξ (z) = τ 2
n Sθ (x0 + ξh, z) for Lemmas 1–3 and have

E{Bξ (Zi )} = 1

2
((1, ξ)θ)2 fV (0|x0) + o(1) uniformly in ξ.

Note that Bξ (z) is not uniformly bounded in ξ . However, Bξ,1(z) is uniformly
bounded in ξ . Therefore, we should apply Lemma 1–3 with Z̃i,0 and Bξ,1(z) replaced
by Z̃i,1 and Bξ,2(z). Then we have for some 1 < r ,
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1

n

n∑

i=1

Aξ (i)Bξ,2(Z̃i,1) = 1

2
((1, ξ)θ)2 fV (0|x0) f (x0) + om,r (1). (33)

We also have

1

n

n∑

i=1

Aξ (i)(Bξ,1(Z̃i,0) − Bξ,2(Z̃i,1)) = Om,2(n
−1/2). (34)

By (32)–(34),

τ 2
n

nh
E{Ki Sθ (Xi , Zi )|Si−1} = 1

2
θT

(
1 0
0 κ2

)

θ fV (0|x0) f (x0) + op(1). (35)

The desired result follows from (31) and (35). Hence the proof of the proposition
is complete. ��
Proof of Proposition 5. we can prove Proposition 5 in the same way as Proposition 4
by setting

Ti = Ki (ρ
′
q(V ∗

i ) − ρ′
q(Vi )) − E{Ki (ρ

′
q(V ∗

i ) − ρ′
q(Vi ))|Si−1}

and

Bξ (z) = τn(ρ′
q(V ∗(x0 + ξh, z)) − ρ′

q(V (x0 + ξh, z))).

The details are omitted. ��

6 Technical lemmas

We establish Lemmas 1–3 in this section. We state Lemmas 4–6 before the proof of
Lemma 1, Lemmas 7–8 before the proof of Lemma 2, and Lemma 9 before the proof
of Lemma 3, respectively. The proofs of Lemmas 4–9 are relegated to Honda (2010b)
and omitted here.

Lemma 4 below is essentially Lemma 4.1 of Koul and Surgailis (2001) and their
lemma deals with empirical distribution functions. We can prove Lemmas 5–6 by
some tedious calculation.

Lemma 4 Suppose that Assumptions X1–X2 and Z1–Z3 hold in Case 1. Then there
exists 1 < r < α s.t.

1

n

n∑

i=1

Aξ (i)(Bξ,1(Z̃i,0) − E{Bξ,1(Z̃i,0)} − B ′
ξ,∞(0)Z̃i,0) = om,r (n

−β+1/α).
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Lemma 5 Suppose that Assumptions X1–X3 with p = α, and Z1–Z3 hold in Case 1.
Then there exists 1 < r < α s.t.

1

n

n∑

i=1

(Aξ (i) − E{Aξ (i)})B ′
ξ,∞(0)Z̃i,0 = om,r (n

−β+1/α).

Lemma 6 Suppose that Assumptions X1–X2, X4, and Z1–Z3 hold in Case 1. Then
there exists 1 < r < α s.t.

1

n

n∑

i=1

(Aξ (i) − E{Aξ (i)})B ′
ξ,∞(0)Z̃i,0 = om,r (n

−β+1/α).

Proof of Lemma 1. From Lemmas 4–6, we have

1

n

n∑

i=1

Aξ (i)(Bξ,1(Z̃i,0) − E{Bξ,1(Z̃i,0)})

= 1

n
Aξ (i)B ′

ξ,∞(0)Z̃i,0 + om,r1(n
−β+1/α)

= 1

n
E{Aξ (i)}B ′

ξ,∞(0)Z̃i,0 + om,r1(n
−β+1/α) + om,r2(n

−β+1/α),

where r1 is from Lemma 1, r2 is from Lemma 2 or 3, and 1 < r1, r2 < α. We set
r = r1 ∧ r2 and apply (9) to E{Bξ,1(Z̃1,0)} ∑n

i=1 Aξ (i). Hence the proof of Lemma 1
is complete. ��

Lemma 7 below is essentially proved for 1 < α < 2 and for 0 < α ≤ 1 in Surgailis
(2002) and Honda (2009b), respectively. We can verify Lemma 8 in the same way as
Lemmas 5–6.

Lemma 7 Suppose that Assumptions X1–X2 and and Z1–Z3 hold in Case 2. Then
there exists 1 < r < αβ s.t.

1

n

n∑

i=1

Aξ (i)(Bξ,1(Z̃i,0) − E{Bξ,1(Z̃i,0)})

= 1

n

n∑

i=1

∞∑

j=1

Aξ (i + j)(Bξ, j (c jζi ) − E{Bξ, j (c jζi )}) + om,r (n
−1+1/(αβ)).

Lemma 8 Suppose that Assumptions X1–X2 and and Z1–Z3 hold in Case 2. In addi-
tion, Assumption X3 with αβ < p or X5 holds. Then there exists 1 < r < αβ s.t.

1

n

n∑

i=1

Aξ (i)(Bξ,1(Z̃i,0) − E{Bξ,1(Z̃i,0)})

= 1

n
f (x0 + ξh)

n∑

i=1

∞∑

j=1

(Bξ, j (c jζi ) − E{Bξ, j (c jζi )}) + om,r (n
−1+1/(αβ)).
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Proof of Lemma 2.

(i) The former half of (i) follows from Lemma 7 and (9).
Next by following Lemma 3.1 of Surgailis (2002) and Proposition 2.3 of Honda
(2009b), we can demonstrate that given {εi },

limsup|z|→∞|z|−1/β
∣
∣
∣

∞∑

j=1

Aξ (i + j)(Bξ, j (c j z) − E{Bξ, j (c jζi )}
∣
∣
∣ ≤ C,

uniformly in ξ and i and C is independent of {εi }. This implies that

limsupz→∞zαβP
(∣
∣
∣

∞∑

j=1

Aξ (i + j)(Bξ, j (c jζi ) − E{Bξ, j (c jζi )})
∣
∣
∣ > z

)
≤ C,

(36)

uniformly in ξ and i . The latter half of (i) follows from (36)
(ii) The desired result follows from (i), Lemma 8, and Proposition 2.3 of Honda

(2009b). ��
Lemma 9 below is almost given in Pipiras and Taqqu (2003).

Lemma 9 Suppose that Assumptions X1–X2 and Z1–Z3 hold in Case 3. Then we have

1

n

n∑

i=1

Aξ (i)(Bξ,1(Z̃i,0) − E{Bξ,1(Z̃i,0)}) = Om,2(n
−1/2).

Proof of Lemma 3. We can verify Lemma 3 in the same way as Lemmas 1–2 using
Lemma 9. The details are omitted. ��
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