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Abstract Mean-preserving and covariance preserving matchings are introduced that
can be obtained with conditional, randomized matching on sub-populations of a large
control group. Under moment conditions it is shown that these matchings are, respec-
tively, equal percent bias reducing (EPBR) and variance proportionate modifying (PM)
for linear functions of the covariates and their standardizations. The results provide
additional insight into and theory for EPBR and PM properties and confirm empirical
and simulation findings that matchings can have the EPBR and PM properties also
when the covariates are not exchangeable, or the treatment means are not equal.

Keywords Discriminant matching · Equal percent bias reducing · Mean–covariance
preserving matching · Variance proportionate modifying matching

1 Introduction

In an observational (non-randomized) study with the objective evaluation of a treat-
ment’s effect, the use of random samples from the treated and control populations
may cause estimation bias. Matched sampling on covariates is a popular technique for
controlling the bias. It all started with “discriminant matching” (Cochran and Rubin
1973; Rubin 1970, 1973a,b) that evolved into propensity matching used in causal
inference (Rosenbaum and Rubin 1983, 1984, 1985). Related theory with applica-
tions and extensions for matching and causal inference for two or more treatments are
presented, among others, in Rubin and Thomas (1992, 1996), Joffe and Rosenbaum
(1999), Imbens (2000), Imai and Van Dyk (2004) and Rubin and Stuart (2006). Stuart
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70 Y. G. Yatracos

(2010, p. 15) provides a review on matching methods for causal inference suggesting
future research directions one of which is covariate balancing for multiple treatments.
Yatracos (2011) presents causal inference for multiple treatments with s-matching
obtained via sufficiency.

Without exact matching, the bias will increase for some linear functions Y = α
′
X

of the covariates X unless the matching method is equal percent bias reducing (EPBR),
i.e. the bias in each coordinate of X is reduced by the same percentage (Rubin 1976a,b);
X ∈ R p, α ∈ R p. This makes EPBR a desirable property in matched sampling.

Matched sampling on covariates is ρ2-proportionate modifying of the variance
(PM-1) of the matched sample means’ difference Ȳmt − Ȳmc of the Y ’s, when it allows

to express for all Y = α
′
X, with α′α = 1, the variances’ ratio Var(Ȳmt −Ȳmc)

Var(Ȳr t −Ȳrc)
as weighted

sum of the same variances’ ratio but with X projected, respectively, along the best lin-
ear discriminant and its uncorrelated covariate; the weights are ρ2 and 1−ρ2, Ȳr t −Ȳrc

is the random sample means’ difference and t and c denote, respectively, treatment and
control. Arguments for the desirability of PM-1 property appear in Rubin and Thomas
(1996, Section 2.1, p. 251) where it is mentioned that when Ȳmt = Ȳr t = Ȳt and
for a specific setting that implies also EPBR matching, “The entire differential effect
of the matching on different Y variables is determined by ρ2, the effect of matching
being the same for all discriminant’s uncorrelated covariates.” In addition, analytic

approximations are obtained for Var(Ȳt −Ȳmc)

Var(Ȳt −Ȳrc)
using equations (2.7) and (2.8) in Rubin

and Thomas (1996, p. 252). Analogous results hold for ρ2-proportionate modifying
matching of the expectations of the sample variances (PM-2) and make PM-2 property
desirable; see Rubin and Thomas (1996, Section 2.1, p. 252).

Rubin and Thomas (1992) (hereafter R&T) showed that when the distribution of
X is proportional ellipsoidally symmetric (PES), affine invariant matching methods
are EPBR, PM-1 and PM-2. Rubin and Stuart (2006) (hereafter R&S) extended these
results when X follows a “discriminant mixture of proportional ellipsoidally symmet-
ric” (DPEMS) distribution. Crucial for the results is that PES and DPEMS distributions
allow for the reduction of the covariates models in a canonical form with one common
linear transformation and the intention to use affine invariant matching methods (R&T,
p. 1081, l. −1 to −6). However, it has been noticed that

(a) when X follows a PES distribution and the number of covariates is large,
exchangeability restricts the covariances to be non-negative, and

(b) when the propensity score or the linear discriminant are used for matching in
examples and simulations with various other distributions, EPBR, PM-1 and
PM-2 properties still hold (R&T, R&S).

EPBR and PM are moment properties and moment conditions should be sufficient
for these to hold. In Sect. 2, simulations indicate that EPBR and PM properties hold,
respectively, for randomly obtained exponential covariates and their standardizations
(with respect to the means and variances of the control population), when the matched
control covariates are obtained using a uniform distribution in a neighborhood of each
of the observed exponential treatment covariates. In Sect. 3, mean-preserving (MP),
covariance preserving (CP) and mean and covariance preserving (MCP) matchings
are defined and matching Lemma 1 is provided that is used to obtain MP and CP
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Mean–covariance preserving matching and its properties 71

matchings. In Sect. 4, it is shown that with MP-matching as in the simulation exam-
ple, mild moment conditions on the treatment populations are necessary and sufficient
for the the EPBR property to hold for linear functions of X. In Sect. 5, it is shown that
moment conditions on the populations and CP-matching are sufficient for the PM-
properties to hold for standardized covariates X∗ and in some cases also for X. These
results provide additional insight into the EPBR and PM properties and explain why
the EPBR property holds often. With MCP-matching, that is both MP and CP, EPBR
and PM properties hold for X∗, and the results for X in R&T and R&S are obtained as
special case. The theoretical results suggest sampling from sub-populations of the con-
trol populations to obtain MP and CP matchings via matching Lemma 1. A discussion
follows in Sect. 6 on the Lemma’s assumptions. The proofs are in the Appendix.

The goal of matched sampling is pairing of treatment and control units which are
similar with respect to covariates, with no concern for the difference between these
covariates’ distribution functions. In machine learning, the distribution functions of
the training and test data differ arbitrarily, causing the covariate shift problem (see,
for example, Shimodaira 2000; Sugiyama et al. 2008). In classification problems, for
example, the covariate shift problem affects the minimum value of the risk used to
determine a classifier, as well as the classifier’s choice (Bickel et al. 2007). The intro-
duction of distributional matching methods, with goal similarity of the distributions of
control and treatment populations, will be helpful in reducing the effect of covariate
shift.

2 The motivating examples

The definitions of EPBR and PM properties follow, preceding the examples that indi-
cate moment conditions are sufficient for these to hold. For matched and random
samples of U ’s denote, respectively, their means Ūms and Ūrs, s = t, c.

Definition 1 With the notation in the introduction, let Y = α
′
X, α ∈ R p.

(a) The matching is EPBR (Rubin 1976a) if

E(Ȳmt − Ȳmc)

E(Ȳr t − Ȳrc)

is independent of α ∈ R p.

(b) The matching is ρ2-proportionate modifying of the variance of the difference in
matched sample means (PM-1, R&T) if

Var(Ȳmt − Ȳmc)

Var(Ȳr t − Ȳrc)
= ρ2Ṽ1 + (1 − ρ2)Ṽ2,

with only ρ depending on α, 0 ≤ ρ2 ≤ 1. Ṽ1 and Ṽ2 are numbers taking the
same two values for all Y.

In R&T, Ymt has correlation ρ with the best, standardized linear discriminant D
of X, W is a standardized linear combination of X uncorrelated with D and
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Ṽ1 = Var(D̄mt − D̄mc)

Var(D̄rt − D̄rc)
, Ṽ2 = Var(W̄mt − W̄mc)

Var(W̄rt − W̄rc)
.

(c) The matching is ρ2-proportionate modifying of the expectations of the sample
variances (PM-2, R&T) if

Evms(Y )

Evrs(Y )
= ρ2Ṽ1,s + (1 − ρ2)Ṽ2,s, s = t, c,

with only ρ depending on α, 0 ≤ ρ2 ≤ 1; vmt , vmc, vr t and vrc are, respectively,
the sample variances of nt and nc matched and randomly chosen treated and con-
trol units using (nt − 1) and (nc − 1) in the denominators. Ṽ1,t , Ṽ2,t , Ṽ1,c, Ṽ2,c

are numbers taking the same four values for all Y.

In R&T,

Ṽ1,s = Evms(D)

Evrs(D)
, Ṽ2,s = Evms(W )

Evrs(W )
, s = t, c.

2.1 EPBR simulation example

Althauser and Rubin (1970) use a subset V at ε-distance from the observed treatment
covariates to obtain matched control covariates. Rosenbaum and Rubin (1985) con-
struct V using the propensity score and obtain via Mahalanobis distance matching
control covariates with the EPBR property. We also use in this example a neighbor-
hood V of the observed treatment’s covariates Xmt = xmt , and obtain the matching
control covariates Xmc via any distribution P on V with mean xmt + z(xmt − x̄c);
z ∈ R, x̄c is a sample average from the control population used in random sampling
without matching. It is assumed that Xmc takes values in the control population.

Let Y = α′X, and let Ȳr t,α, Ȳrc,α be Y -averages obtained, respectively, from the
random samples of treatment and control covariates. Let Ȳmt,α, Ȳmc,α be Y -averages
obtained from the samples of matched covariates. The EPBR property holds when for
any α1,α2, the ratios difference

E(Ȳmt,α1 − Ȳmc,α1)

E(Ȳr t,α1 − Ȳrc,α1)
− E(Ȳmt,α2 − Ȳmc,α2)

E(Ȳr t,α2 − Ȳrc,α2)
= 0. (1)

In R&T and R&S it is shown that (1) holds for PES and DPEMS distributions.
A sample with size 200 of 2-dimensional, independent, random, treatment and con-

trol covariates are obtained, respectively, from exponential distributions with parame-
ters θ1 = (5.211, 3.215) and θ2 = (4.019, 4.295); the parameters are absolute values
of observed, independent normal variables with mean 5 and variance 4. For the matched
samples, 200 treatment covariates (Xmt,1, Xmt,2) are obtained from an exponential dis-
tribution with parameter θ1 and conditionally on Xmt,i = xmt,i , the matching control
variable Xmc,i is the average of 100 independent random variables obtained from a
uniform distribution on the interval
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Fig. 1 Simulations supporting
the EPBR property
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(xmt,i + z(xmt,i − x̄c,i ) − 1, xmt,i + z(xmt,i − x̄c,i ) + 1), i = 1, 2; (2)

z = −0.548231 is obtained from a standard normal distribution, x̄c,i is the average of
a random sample of size 500 from the control population.

Values α1 = (7.673, 8.781), α2 = (8.486, 8.952) are obtained independently
from a normal distribution with mean 10 and standard deviation 4. We obtain 300
samples of the covariates, calculate Ȳmt,αi , Ȳmc,αi , Ȳr t,αi , Ȳrc,αi , i = 1, 2, for each
sample and their averages are used to estimate the expectations in (1). The procedure
is repeated 100 times, to obtain in Fig. 1 the histogram of estimated values of the ratios
difference in the left-hand side of (1) that have mean −0.0013 and variance 0.0081.
The results support the EPBR property (1) of the matching.

2.2 Variance PM simulation example

Treatment and control samples with size 200 of 2-dimensional, independent exponen-
tial random variables are obtained with parameters, respectively, (1.740, 1.740) and
(1, 1). The samples’ coordinates are standardized in the same way to obtain covari-
ates X∗

t , X∗
c with X∗

c having coordinates with mean zero and variance one; t denotes
treatment and c denotes control. The matched treatment covariates X∗

mt and X∗
t are

obtained from the same population. Conditionally on X∗
mt,i = x∗

mt,i , the matching con-
trol variable X∗

mc,i is the average of 20, independent random variables obtained from

a uniform distribution on the interval (x∗
mt,i + zx∗

mt,i −√
3, x∗

mt,i + zx∗
mt,i +√

3), i =
1, 2; z = 1.629 is obtained from a standard normal distribution.

For X∗ = X∗
mt we can write when α′α = 1,

Y = α
′
X∗ = ρmt�

∗
mt +

√
1 − ρ2

mt W
∗
mt , (3)
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where

�∗
mt = μ∗′

mt X
∗/||μ∗

mt ||, ρmt = α′μ∗
mt/||μ∗

mt ||, W ∗
mt = γ ′

mt X
∗;

�∗
mt is a linear discriminant, μ∗

mt is the mean of the standardized treatment population,
γ mt is a norm 1 vector orthogonal to μ∗

mt on the plane determined by α and μ∗
mt , ||x||

is the usual Euclidean norm of x. A similar decomposition to (3) holds for X∗ = X∗
mc

and for the random covariates X∗ = X∗
r t , X∗

rc.

In this set-up, Definition 1 (b), (c) is satisfied and the matching is:

(a) ρ2
mt -proportionate modifying of the variance of the difference in matched sample

means (PM-1) if

Var(Ȳmt − Ȳmc)

Var(Ȳr t − Ȳrc)
− ρ2

mt
Var(�̄∗

mt − �̄∗
mc)

Var(�̄∗
r t − �̄∗

rc)
− (1 − ρ2

mt )
Var(W̄ ∗

mt − W̄ ∗
mc)

Var(W̄ ∗
r t − W̄ ∗

rc)
= 0. (4)

(b) ρ2
mt -proportionate modifying of the expectations of the sample variances (PM-2)

if

Evmt (Y )

Evr t (Y )
− ρ2

mt
Evmt (�

∗)
Evr t (�∗)

− (1 − ρ2
mt )

Evmt (W ∗)
Evr t (W ∗)

= 0, (5)

and

Evmc(Y )

Evrc(Y )
− ρ2

mt
Evmc(�

∗)
Evrc(�∗)

− (1 − ρ2
mt )

Evmc(W ∗)
Evrc(W ∗)

= 0, (6)

where vmt , vmc, vr t and vrc are, respectively, the sample variances of nt and
nc matched and randomly chosen treated and control units using (nt − 1) and
(nc − 1) in the denominators.

Fig. 2 The PM-1 property
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Fig. 3 The PM-2 treatment
property
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Fig. 4 The PM-2 control
property
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Values α = (7.962, 9.381) are obtained independently from a normal distribution
with mean 10 and standard deviation 4. We obtain 300 samples of covariates and the
differences Ȳmt −Ȳmc, Ȳr t −Ȳrc, �̄∗

mt −�̄∗
mc, �̄∗

r t −�̄∗
rc, W̄ ∗

mt −W̄ ∗
mc, W̄ ∗

r t −W̄ ∗
rc are

used to estimate the PM-1 difference (4). Estimates for the PM-2 differences (5) and
(6) are similarly obtained. The procedure is repeated 200 times to obtain in Figs. 2, 3
and 4 histograms of the estimated values of PM-1 and PM-2 differences. The PM-1
mean difference is −0.00035 and the variance is 0.000078, the PM-2 mean treatment
difference is −0.00319 and the variance is 0.00134, the PM-2 mean control difference
is −0.00623 and the variance is 0.00578. The results support the PM properties (4)–(6)
of the matching.
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3 MP, CP and MCP matchings and the matching lemma

Let Xt , Xc be p-dimensional covariates obtained randomly from the treatment and
control populations P t and Pc, respectively, with mean and covariance matrices
μt , �t , μc, �c, respectively; t denotes treatment, c denotes control. Let Xmt , Xmc be
p-dimensional covariate vectors from populations MP t and MPc used for matched
sampling, with mean and covariance matrices, respectively, μmt , �mt , μmc, �mc.

Often, Pt = MP t , Pc and MPc differ, and Xmt is obtained randomly from Pt . In
the examples in Sect. 2, Pt = MP t .

Definition 2 (a) Assume without loss of generality μc = 0. Mean preserving (MP)
matching on covariates X is any matching method for which

E(Xmt ) ∝ E(Xmc), (7)

with subscripts mt and mc referring to the selected treatment unit and the matched
control unit, respectively.

(b) Let 1 be the p-dimensional all-ones vector. Covariance preserving (CP) matching
on X is any matching method for which

Var(Xms) ∝ I + ks11′, ks ∈ R, s = t, c, (8)

Var(Xmt − Xmc) ∝ I + k11′, k ∈ R. (9)

(c) Mean–covariance preserving (MCP) matching on covariates X is any matching
method for which (7), (8) and (9) hold.

Remark 1 Relations (8) and (9) mean that in each covariance matrix all the variances
are equal, all the covariances are equal, and this is preserved from covariates Xmt of
the selected treatment unit to the covariates Xmc of the matched control unit and their
difference Xmt − Xmc.

A matching Lemma follows which determines the mean and covariance structure
of Xmc from that of Xmt and can be used for MP and CP matchings in practice. Use
the notation

�mt = (σmt,i j ), �mc = (σmc,i j ), Var(Xmt − Xmc) = (σmt,mc,i j ), 1 ≤ i, j ≤ p.

Lemma 1 Select Xmt in MP t and assume μc = 0. Conditionally on Xmt,i = xmt,i ,

Xmc,i is obtained at random from a distribution with mean δxmt,i , and variance
βσmt,i i , and support in MPc; δ ∈ R, β ≥ 0, i = 1, . . . , p. Then,

(a) The matching on Xmt is MP-matching since

μmc = δμmt , (10)
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(b) It holds

σmc,i i = (δ2 + β)σmt,i i , σmt,mc,i i = [β + (1 − δ)2]σmt,i i , i = 1, . . . , p.

(11)

(c) If the Xmt -covariates are independent, then

σmc,i j = 0 = σmt,mc,i j , i 	= j. (12)

(d) If the Xmt -covariates are uncorrelated and σmc,i i ≈ 0, i = 1, . . . , p, then

σmc,i j ≈ 0 = σmt,mc,i j , i 	= j.

(e) In addition to the assumptions for (a), (b), and either (c) or (d), assume that
σmt,i i = σ 2

mt , i = 1, . . . , p. Then, the so-obtained matching is MCP-matching
and kt = kc = k = 0 in (8), (9).

Corollary 1 Under the assumptions in Lemma 1, conditional nearest neighbor match-
ing with one possible choice of matching value Xmc = δxmt is MCP-matching.

Remark 2 When μc,i = 0, the matching in the EPBR simulation example using the
uniform distribution is MP matching since E Xmc,i = (1+ z)E Xmt,i , i = 1, 2. When
the treatment and control populations follow PES or DPEMS distributions in canonical
form, affinely invariant matching methods are MCP-matching (Theorem 3.1 in R&T
and R&S). The matching in the variance PM simulation example is MCP matching.

4 MP-matching and the EPBR property

Let α ∈ R p, α′α = 1, and for X in either Pt or Pc let

Y = α′X. (13)

EPBR is a property that depends on expected values only; thus we decompose Y using
a decomposition of α along μt . Let γ t ∈ R p, γ ′

tγ t = 1, be a vector orthogonal to μt
on the plane determined by α and μt ,

α = (α′μt/||μt ||)μt/||μt || + (α′γ t )γ t ,

to obtain the decomposition of Y,

Y = ρt� +
√

1 − ρ2
t W (14)

ρt = α′μt/||μt ||, � = μ′
t X/||μt ||, W = γ ′

t X. (15)

For X in either MP t or MPc, (14) and (15) hold with ρmt , γ mt or ρmc, γ mc instead
of ρt , γ t .
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In this and subsequent sections, Ūrs (resp. Ūms) is the average of obtained U -values
from Ps (resp. MPs), s = t, c.

Proposition 1 Assume without loss of generality μc = 0.

(a) If the matching is MP and, in addition, it holds μmt = ζμt , ζ ∈ R, then the
matching is also EPBR,

E(Ȳmt − Ȳmc)

E(Ȳr t − Ȳrc)
= sign(ζ )

E(�̄mt − �̄mc)

E(�̄r t − �̄rc)
, (16)

where the subscripts rt and rc refer, respectively, to a randomly chosen sample
of nt treated and nc control units. The percent reduction in bias is the same for

any Y (i.e. any linear combination of X ), since E(�̄mt −�̄mc)

E(�̄r t −�̄rc)
takes the same value

for all Y. The result is independent of the covariance structure.
(b) If the matching is MP and, in addition, it is also EPBR, then μmt = ζμt , ζ ∈ R.

Remark 3 The mild moment condition μmt = ζμt , ζ ∈ R, holds when Pt = MP t

with ζ = 1. Under MP-matching, Proposition 1 provides a necessary and sufficient
condition for the EPBR property to hold.

5 CP-matching and the PM properties

In R&T and R&S conditions (C1), on Pt and Pc, and (C2), on MP t and MPc,

are sufficient for the EPBR and PM properties to hold for the X-covariates and affine
invariant matching methods;

(C1) the control and the treatment populations are in canonical form,

μt = η1, �t = σ 2I, μc = 0, �c = I, (17)

with 1 the all-ones vector (called also unit vector in R&T, p. 1081), 0 the zero vector,
η positive scalar constant,

(C2) under (C1), matching vectors Xmt , Xmc are obtained, respectively, from the
treatment and the control groups with

(i) means proportional to 1, and
(ii) the covariance matrix of the sample means difference X̄mt − X̄mc proportional

to I + k11′, k ∈ R.

Under (C1), X is projected along 1 that is proportional to μt because of (17) and
the standardized linear discriminant

�∗ = 1′X/
√

p, 1′ = (1, . . . , 1), (18)

is used.
There are cases where the X-coordinates have not the same mean and we would like

to know when the PM-properties hold. A new set-up is presented herein to deal with
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this situation. (C1) is not necessary for the results to hold, a discriminant other than
(18) is used and CP-property will hold for transformed covariates X∗ and in particular
cases for X.

Assume that

(A1) the X-coordinates are uncorrelated in both populations, and
(A2) for the variances σ 2

t,i , σ 2
c,i , of Xi in Pt and Pc, respectively,

σ 2
t,i

σ 2
c,i

= σ ∗2, i = 1, . . . , p. (19)

(A1) and (A2) hold when (C1) holds. (A2), like the condition of exchangeability in
R&T and R&S, makes the covariates in the treatment and control populations “similar”
and holds when �t ∝ �c. (A2) may hold when a subpopulation of Pc is used.

Standardize the covariates in Pt ,Pc using the means and variances in Pc,

X∗
i = Xi − μci

σci

, i = 1, . . . , p, (20)

and observe that for these transformed covariates

Ec(X∗
i ) = 0, Varc(X∗

i ) = 1

Et (X∗
i ) = μti − μci

σci

= μ∗
i , Vart (X∗

i ) = σ 2
ti

σ 2
ci

= σ ∗2, i = 1, . . . , p,

with Et , Vart , Ec, Varc denoting, respectively, the means and variances in the treat-
ment and control populations. The means μ∗

t , μ∗
c and covariance matrices �∗

t =
(σ ∗

t,i j ), �∗
c = (σ ∗

c,i j ) of X∗′ = (X∗
1, . . . , X∗

p), respectively, in the treatment and
control populations are

μ∗′
t = (μ∗

1, . . . , μ
∗
p), μ∗

c = 0, (21)

�∗
t = σ ∗2I, �∗

c = I. (22)

Note that (21) holds by construction but (22) holds from (A1) and (A2). (A2) is the
assumption σmt,i i = σ 2

mt , i = 1, . . . , p, needed in Corollary 1 for MC P matching
of the X∗ covariates.

Remark 4 When μc = 0, �t = σ 2I and �c = I, (A1) and (A2) hold and X∗ = X.

The analogous of the standardized linear discriminant (18) is

�∗ = μ∗′
t X∗/||μ∗

t ||. (23)
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For Y = α
′
X∗, the analogous of (14) is

Y = ρt�
∗ +

√
1 − ρ2

t W ∗, (24)

ρt = α′μ∗
t /||μ∗

t ||, W ∗ = γ ′
t X

∗. (25)

A similar decomposition holds when X∗ is obtained from either MPmt or MPmc

with ρmt , γ mt instead of ρt , γ t .

Remark 5 Under (A1) and (A2), one can use on X∗-covariates the matching described
in Lemma 1 with σ ∗

mt,i j = 0 to obtain MCP-matching with kt = kc = k = 0.

The following proposition decomposes the effect on Y of CP-matching on X∗, into
the effects of the matching on �∗ and on W ∗.

Proposition 2 Under (A1) and (A2), for the transformed covariates (20)

(a) CP-matching with k = 0 is ρ2
mt -proportionate modifying of the variance of the

difference in matched sample means (PM-1),

Var(Ȳmt − Ȳmc)

Var(Ȳr t − Ȳrc)
= ρ2

mt
Var(�̄∗

mt − �̄∗
mc)

Var(�̄∗
r t − �̄∗

rc)
+ (1 − ρ2

mt )
Var(W̄ ∗

mt − W̄ ∗
mc)

Var(W̄ ∗
r t − W̄ ∗

rc)
(26)

where the ratios

Var(�̄∗
mt − �̄∗

mc)

Var(�̄∗
r t − �̄∗

rc)
,

Var(W̄ ∗
mt − W̄ ∗

mc)

Var(W̄ ∗
r t − W̄ ∗

rc)

take the same two values for all Y.

(b) CP-matching with kt = kc = 0 is ρ2
mt -proportionate modifying of the expecta-

tions of the sample variances (PM-2),

Evmt (Y )

Evr t (Y )
= ρ2

mt
Evmt (�

∗)
Evr t (�∗)

+ (1 − ρ2
mt )

Evmt (W ∗)
Evr t (W ∗)

(27)

and

Evmc(Y )

Evrc(Y )
= ρ2

mt
Evmc(�

∗)
Evrc(�∗)

+ (1 − ρ2
mt )

Evmc(W ∗)
Evrc(W ∗)

(28)

where vmt , vmc, vr t and vrc are, respectively, the sample variances of nt and
nc matched and randomly chosen treated and control units using (nt − 1) and
(nc − 1) in the denominators. The ratios

Evmt (�
∗)

Evr t (�∗)
,

Evmt (W ∗)
Evr t (W ∗)

,
Evmc(�

∗)
Evrc(�∗)

,
Evmc(W ∗)
Evrc(W ∗)

take the same four values for all Y.
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Corollary 2 When the X-covariates in the control population have the same variance,
i.e. σ 2

ci
= σ 2

c , i = 1, . . . , p, Propositions 1 and 2 hold for linear functions of X.

The next result implies results in R&T and R&S.

Corollary 3 When the distributions of X are in canonical form (17), MCP matching
on X with μmt = ζμt , ζ ∈ R, is for linear functions of X

(i) EPBR, and
(ii) proportionate modifying of the variance of the difference in matched sample

means and of the expectations of the sample variances.

6 Discussion

When treatment samples are obtained from one population, i.e. Pt = MP t , the EPBR
and PM properties hold, respectively, with MP and CP matchings on sub-populations
of the control population according to Lemma 1. Most conditions in the Lemma are
moment conditions that hold when MPc is continuous, has a smooth density and we
can sample from uniform distributions in neighborhoods of the observed treatment
values. The EPBR property holds since we can easily have E Xmc,i = δE Xmt,i , i =
1, . . . , p. For the CP property to hold, the X∗ covariates have to be either indepen-
dent or uncorrelated with (a) Var(X∗

mc,i |X∗
mt,i = x∗

mt,i ) = βσ ∗2
mt , b) σ ∗

mc,i i ≈ 0 and

(c) σ ∗
mt,i i = σ ∗2

mt (i.e. (A2) holds), i = 1, . . . , p. Condition (a) is satisfied when
sampling from a uniform distribution on an interval with length proportional to σmt .

Condition (b) holds when, as in the variance PM simulations example, the matching
value is average of p-values with p large. The most stringent condition (c) may hold
when using only a subset of Pc chosen such that the variances ratios (19) all coincide.

For a large, discreet control population MPc, assume that when Xmt,i = xmt,i its
nearest neighbors xc,i,L , xc,i,U in the control group satisfy xc,i,L ≤ xmt,i < xc,i,U , 1 ≤
i ≤ p. For the EPBR property to hold use probabilities qi = qi (xmt,i ) = xc,i,U −xmt,i

xc,i,U −xc,i,L

such that qi xc,i,L + (1 − qi )xc,i,U = xmt,i and draw an observation X̃mc,i from
{xc,i,L , xc,i,U } with P[X̃mc,i = xc,i,L ] = qi such that E X̃c,i = E Xmt,i , i = 1, . . . , p.

For CP matching, use neighbors {x∗
c,i,L , x∗

c,i,U } such that the conditional variance
(x∗

c,i,U − x∗
mt,i )(x∗

mt,i − x∗
c,i,L) is the same for i = 1, . . . , p, in order to satisfy a). This

is feasible if MPc is large. More than two neighbors can be used in this matching.

7 Appendix

Proof of the matching Lemma 1 (a) For i = 1, . . . , p, it holds

E(Xmc,i ) = E[E(Xmc,i |Xmt,i )] = E(δXmt,i ) = δμmt,i .
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(b) For i = 1, . . . , p, it holds

Var(Xmc,i ) = Var[E(Xmc,i |Xmt,i )]+E[Var(Xmc,i |Xmt,i )]=(δ2 + β)σmt,i i ,

E(Xmt,i Xmc,i ) = E[E(Xmt,i Xmc,i |Xmt,i )] = δE(X2
mt,i ),

Cov(Xmt,i , Xmc,i ) = E(Xmt,i Xmc,i ) − δμ2
mt,i = δσmt,i i ,

to obtain

Var(Xmt,i − Xmc,i ) = Var(Xmt,i ) + Var(Xmc,i ) − 2Cov(Xmt,i , Xmc,i )

= [β + (1 − δ)2]σmt,i i .

(c) For 1 ≤ i, j ≤ p, i 	= j, Xmc,i , Xmc, j are conditionally independent given
Xmt,i , Xmt, j , thus

E(Xmc,i Xmc, j ) = E[E(Xmc,i Xmc, j |Xmt,i , Xmt, j )] = δ2 E(Xmt,i Xmt, j ),

Cov(Xmc,i , Xmc, j ) = E(Xmc,i Xmc, j ) − δ2μmt,iμmt, j = δ2σmt,i j ,

E(Xmt,i Xmc, j ) = E[E(Xmt,i Xmc, j |Xmt,i , Xmt, j )] = δE(Xmt,i Xmt, j ),

Cov(Xmt,i , Xmc, j ) = E(Xmt,i Xmc, j ) − δμmt,iμmt, j = δσmt,i j ,

to obtain

Cov(Xmt,i − Xmc,i , Xmt, j − Xmc, j )

= Cov(Xmt,i , Xmt, j ) − Cov(Xmt,i , Xmc, j ) − Cov(Xmc,i , Xmt, j )

+ Cov(Xmc,i , Xmc, j )

= σmt,i j − 2δσmt,i j + δ2σmt,i j = (1 − δ)2σmt,i j .

(d) The resultσmc,i j ≈0 follows from the inequality |Cov(U, V )|≤√
Var(U )

√
Var(V ).

The result σmt,mc,i j = 0 that improved my result σmt,mc,i j ≈ 0, i 	= j, follows
because, as the referee cleverly observed, Xmt,1, . . . , Xmt,p are uncorrelated and the
calculations of E(Xmt,i Xmc, j ) and of Cov(Xmt,i , Xmc, j ), i 	= j, in c) do not use the
assumed conditional independence.

(e) Follows from the definition of MCP matching. ��
Proof of Corollary 1 Since EXmc = δEXmt and

Var(Xmc,i ) = Var[E(Xmc,i |Xmt,i )] = δ2Var(Xmt,i ) = δ2σ 2
mt , i = 1, . . . , p,

the result follows. ��
Proof of Proposition 1 (a) For � and W in (14), it holds from (15)

Et (�) = μ
′
tμt/||μt || = ||μt ||, Et (W ) = γ ′μt = 0,

Ec(�) = μ
′
tμc/||μt || = 0, Ec(W ) = γ ′μc = 0,
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and for random samples from Pt and Pc

E(�̄r t ) = ||μt ||, E(W̄rt ) = 0, E(Ȳr t ) = ρt ||μt ||, (29)

E(�̄rc) = E(W̄rc) = E(Ȳrc) = 0. (30)

If the matching is MP and, in addition, μmt = ζμt , ζ ∈ R, Eqs. (14) and (15)
with ρmt = sign(ζ )ρt , γ mt = γ t , imply

E(Ȳmt − Ȳmc) = sign(ζ )ρt E(�̄mt − �̄mc) +
√

1 − ρ2
t E(W̄mt − W̄mc).

By (15),

E(W̄mt − W̄mc) = γ ′
t E(X̄mt − X̄mc), γ ′

tμmt = γ ′
tζμt = 0,

and by the MP-matching, E(X̄mt − X̄mc) ∝ μmt , thus

E(Ȳmt − Ȳmc) = sign(ζ )ρt E(�̄mt − �̄mc).

Relation (16) follows from (14), (29) and (30) by noting that

E(Ȳr t − Ȳrc) = ρt E(�̄r t − �̄rc).

(b) From the EPBR property, there is b ∈ R such that for any α ∈ R p,

E(Ȳmt − Ȳmc)

E(Ȳr t − Ȳrc)
= b = ρmt E(�̄mt − �̄mc)

ρt E(�̄r t − �̄rc)
,

with the last equality due to the MP-matching assumption, or

ρmt = b∗ρt , b∗ ∈ R, i.e. α′μmt/||μmt || = b∗α′μt/||μt ||,

and this holds for any vector α in the usual orthonormal basis in R p implying that

μmt,i = b∗ ||μmt ||
||μt ||

μt,i , i = 1, . . . , p.

��
When (A1) and (A2) hold, for the transformed covariates X∗ under treatment and

control it holds

Vart (�
∗) = μ∗′

t �∗
t μ∗

t /||μ∗
t ||2 = σ ∗2, Varc(�

∗)=μ∗′
t �∗

c μ∗
t /||μ∗

t ||2 =1. (31)

For the variances of W ∗ in the treatment and control populations it holds

Vart (W ∗) = γ ′
t�

∗
t γ t = σ ∗2, Varc(W ∗) = γ ′

t�
∗
c γ t = 1, (32)
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and the covariance of �∗ and W ∗

Covs(�
∗, W ∗) = Covs(μ

∗′
t X∗/||μ∗

t ||, γ ′
t X

∗) = μ∗′
t

||μ∗
t ||

�∗
s γ t = 0, s = t, c.

(33)

Relations (32), (33) hold for any W ∗ for which

W ∗ = γ ′
t X

∗, γ ′
tμ

∗
t = 0, γ ′

tγ t = 1. (34)

From (24), (31) and (32), for random samples of size nt in the treated population
and of size nc in the control population it holds

Var(�̄∗
r t ) = Var(W̄ ∗

r t ) = Var(Ȳr t ) = σ ∗2

nt
, (35)

Var(�̄∗
rc) = Var(W̄ ∗

rc) = Var(Ȳrc) = 1

nc
. (36)

Remark 6 Decomposition (24) and (25) are used in the sequel for the selected and
the matched samples, with μ∗

t replaced by μ∗
mt , the mean of the selected treatment

sample, and with γ mt , ρmt instead of γ t , ρt .

Proposition 3 Matched treated and control samples on X∗ are obtained, respectively,
with sizes nt , nc and means X̄∗

mt , X̄∗
mc.

(a) If the matching is MP-matching,

E(X̄∗
mt ) ∝ E(X̄∗

mc). (37)

(b) If the matching is CP-matching with kt = kc = k = 0,

Var(X̄∗
mt ) ∝ Var(X̄∗

mc) ∝ Var(X̄∗
mt − X̄∗

mc) ∝ I, (38)

E(vmt (X∗)) ∝ E(vmc(X∗)) ∝ I, (39)

where vmt (X∗) and vmc(X∗) are the unbiased sample covariance matrices of X∗
in the matched treated and control samples.

Proof It follows from the definitions of MP-matching and CP-matching. ��
The following results are useful:

Corollary 4 Under the hypotheses of Proposition 3 b), the quantities Var(W̄ ∗
mt −

W̄ ∗
mc), E(vmt (W ∗)) and E(vmc(W ∗)) take the same values for all W ∗ satisfying (34).

When in addition (22) holds, the analogous three results apply for statistics in random
samples indexed by rt and rc. Since �∗ is the discriminant, defined without regard to
the choice of Y, the analogous quantities for �∗ are also the same for all Y.
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Proof Since

W ∗ = γ ′
mt X

∗, W̄ ∗
mt − W̄ ∗

mc = γ ′
mt (X̄

∗
mt − X̄∗

mc),

it holds that

Var(W̄ ∗
mt − W̄ ∗

mc) = γ ′
mt Var(X̄∗

mt − X̄∗
mc)γ mt

which from (34) and (38) takes the same value for each γ mt . Since

vms(W ∗) = vms(γ
′
mt X∗), s = t, c,

from (39) the results for E(vmt (W ∗)) and E(vmc(W ∗)) hold. The analogous results
for random samples follow from (32), (35) and (36). The remaining results follow
easily. ��
Proof of Proposition 2 (a) For the matched samples, (24) implies that

Var(Ȳmt − Ȳmc) = ρ2
mt Var(�̄∗

mt − �̄∗
mc) + (1 − ρ2

mt )Var(W̄ ∗
mt − W̄ ∗

mc),

since from (23) and (34)

�̄∗
mt − �̄∗

mc = μ∗′
mt

||μ∗
mt ||

(X̄∗
mt − X̄∗

mc), W̄ ∗
mt − W̄ ∗

mc = γ ′
mt (X̄

∗
mt − X̄∗

mc),

and from (38)

Cov(�̄∗
mt − �̄∗

mc, W̄ ∗
mt − W̄ ∗

mc) ∝ μ ∗′
mt Var(X̄∗

mt − X̄∗
mc)γ mt = 0. (40)

Decomposition (26) of the variances ratio follows from (35) and (36) since for
random samples from the treated and control populations

Var(Ȳr t − Ȳrc) = Var(�̄∗
r t − �̄∗

rc) = Var(W̄ ∗
r t − W̄ ∗

rc) = σ ∗2

nt
+ 1

nc
.

The results for the ratios (27) follow from Corollary 4.
(b) For the matched treated sample

Evmt (Y ) = ρ2
mt Evmt (�

∗) + (1 − ρ2
mt )Evmt (W ∗)

because from (39) the expected matched treated sample covariance of �∗ and W ∗ is
proportional to

1

||μ∗
mt ||

E(μ∗′
mtvmt (X∗)γ mt ) ∝ μ∗′

mt Iγ mt = 0. (41)
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Noting that

Evr t (Y ) = Evr t (�
∗) = Evr t (W ∗)

(27) follows. Analogous derivations for the matched control sample establishes (28).
The proof is completed using Corollary 4. ��
Proof of Corollary 2 Observe that α′(X∗

mt − X∗
mc) = 1

σc
α′(Xmt − Xmc) and that σc

cancels because all the results concern ratios. ��
Proof of Corollary 3 From Remark 4, (A1) and (A2) are satisfied and X∗ = X.

(i) follows from Proposition 1 (a).
(ii) follows from the proof of Proposition 2 since μt = η1 and the equivalent to

relations (40) and (41) are, respectively,

1′(I + k11′)γ = 0,

and

1′(I + ks11′)γ = 0, s = t, c.
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