
Ann Inst Stat Math (2012) 64:1089–1119
DOI 10.1007/s10463-012-0357-x

Strictly stationary solutions of multivariate ARMA
equations with i.i.d. noise

Peter Brockwell · Alexander Lindner ·
Bernd Vollenbröker

Received: 2 May 2011 / Revised: 20 October 2011 / Published online: 11 March 2012
© The Institute of Statistical Mathematics, Tokyo 2012

Abstract We obtain necessary and sufficient conditions for the existence of strictly
stationary solutions of multivariate ARMA equations with independent and identi-
cally distributed driving noise. For general ARMA(p, q) equations these conditions
are expressed in terms of the coefficient polynomials of the defining equations and
moments of the driving noise sequence, while for p = 1 an additional characteriza-
tion is obtained in terms of the Jordan canonical decomposition of the autoregressive
matrix, the moving average coefficient matrices and the noise sequence. No a priori
assumptions are made on either the driving noise sequence or the coefficient matrices.
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1090 P. Brockwell et al.

1 Introduction

Let m, d ∈ N = {1, 2 . . . , }, p, q ∈ N0 = N ∪ {0}, (Zt )t∈Z be a d-variate
noise sequence of random vectors defined on some probability space (Ω,F , P) and
Ψ1, . . . , Ψp ∈ C

m×m and Θ0, . . . , Θq ∈ C
m×d be deterministic complex-valued

matrices. Then any m-variate stochastic process (Yt )t∈Z defined on the same proba-
bility space (Ω,F , P) which satisfies almost surely

Yt − Ψ1Yt−1 − · · · − ΨpYt−p = Θ0 Zt + · · · + Θq Zt−q , t ∈ Z, (1)

is called a solution of the ARMA(p, q) equation (1) (autoregressive moving average
equation of autoregressive order p and moving average order q). Such a solution is
often called a VARMA (vector ARMA) process to distinguish it from the scalar case,
but we shall simply use the term ARMA throughout. Denoting the identity matrix in
C

m×m by Idm , the coefficient polynomials P(z) and Q(z) of the ARMA(p, q) equation
(1) are defined as:

P(z) := Idm −
p∑

k=1

Ψk zk and Q(z) :=
q∑

k=0

Θk zk for z ∈ C. (2)

With the aid of the backwards shift operator B, Eq. (1) can be written more com-
pactly in the form

P(B)Yt = Q(B)Zt , t ∈ Z.

There is an evidence to show that, although VARMA(p, q) models with q > 0 are
more difficult to estimate than VARMA(p, 0) (vector autoregressive) models, signifi-
cant improvement in forecasting performance can be achieved by allowing the moving
average order q to be greater than zero. See, for example, Athanasopoulos and Vahid
(2008), where such improvement is demonstrated for a variety of macroeconomic time
series.

Much attention has been paid to weak ARMA processes, i.e., weakly stationary
solutions of (1) if (Zt )t∈Z is a weak white noise sequence. Recall that a C

r -valued
process (Xt )t∈Z is weakly stationary if each Xt has finite second moment, and if EXt

and Cov(Xt , Xt+h) do not depend on t ∈ Z for each h ∈ Z. If additionally every
component of Xt is uncorrelated with every component of Xt ′ for t �= t ′, then (Xt )t∈Z

is called weak white noise. In the case when m = d = 1 and Zt is weak white noise
having non-zero variance, it can easily be shown using spectral analysis, see e.g.,
Brockwell and Davis (1991), Problem 4.28, that a weak ARMA process exists if and
only if the rational function z �→ Q(z)/P(z) has only removable singularities on the
unit circle in C. For higher dimensions, it is well known that a sufficient condition for
weak ARMA processes to exist is that the polynomial z �→ det P(z) has no zeroes on
the unit circle (this follows as in Theorem 11.3.1 of Brockwell and Davis 1991), by
developing P−1(z) = (det P(z))−1Adj(P(z)), where Adj(P(z)) denotes the adjugate
matrix of P(z), into a Laurent series which is convergent in a neighborhood of the
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Strictly stationary multivariate ARMA processes 1091

unit circle). However, to the best of our knowledge, necessary and sufficient conditions
have not been given in the literature so far. We shall obtain such conditions in terms of
the matrix rational function z �→ P−1(z)Q(z) in Theorem 3, the proof being an easy
extension of the corresponding one-dimensional result.

Weak ARMA processes, by definition, are restricted to have finite second moments.
However, financial time series often exhibit apparent heavy-tailed behaviour with
asymmetric marginal distributions, so that second-order properties are inadequate to
account for the data. To deal with such phenomena we focus in this paper on strict
ARMA processes, by which we mean strictly stationary solutions of (1) when (Zt )t∈Z

is supposed to be an independent and identically distributed (i.i.d.) sequence of random
vectors, not necessarily with finite variance. A sequence (Xt )t∈Z is strictly station-
ary if all its finite dimensional distributions are shift invariant. Much less is known
about strict ARMA processes, and it was shown only recently for m = d = 1 in
Brockwell and Lindner (2010) that for i.i.d. non-deterministic noise (Zt )t∈Z, a strictly
stationary solution of (1) exists if and only if Q(z)/P(z) has only removable singular-
ities on the unit circle and Z0 has finite log moment, or if Q(z)/P(z) is a polynomial.
For higher dimensions, it can easily be shown (by the same arguments used to establish
the existence of weakly stationary solutions) that the conditions E log+ ‖Z0‖ < ∞ and
det P(z) �= 0 for |z| = 1 are sufficient for a strictly stationary solution to exist. How-
ever, necessary and sufficient conditions have not yet been established. In this paper,
we obtain such conditions in Theorem 2, generalizing the results of Brockwell and
Lindner (2010) to higher dimensions. A related question was considered by Bougerol
and Picard (1992) who, using their powerful results on random recurrence equations,
showed in their Theorem 4.1 that if E log+ ‖Z0‖ < ∞ and the coefficient polynomials
are left-coprime, meaning that the only common left-divisors of P(z) and Q(z) are
unimodular (see Sect. 6 for the precise definitions), then a non-anticipative strictly
stationary solution of (1) exists if and only if det P(z) �= 0 for |z| ≤ 1. Observe
that in characterizing the existence of strict (not necessarily non-anticipative) ARMA
processes in the present paper, we shall make no a priori assumptions on log moments
of the noise sequence or on left-coprimeness of the coefficient polynomials, but rather
obtain related conditions as parts of our characterization. As one application of our
main results, we shall obtain in Theorem 4 a slight extension of Theorem 4.1 of
Bougerol and Picard (1992) by characterizing all non-anticipative strictly stationary
solutions of (1) without any moment assumptions but still assuming left-coprime-
ness of the coefficient polynomials. Klein et al. (2005) consider the model (1) from
a somewhat different point of view. Assuming that d = m and that the equations
det P(z) = 0 and det Q(z) = 0 have no roots in the closed unit disc, they show that
the Fisher information matrix is singular if and only if these two equations have at
least one root in common.

The paper is organized as follows. In Sect. 2, we state the main results of the paper.
Theorem 1 gives necessary and sufficient conditions for the multivariate ARMA(1, q)

equation,

Yt − Ψ1Yt−1 =
q∑

k=0

Θk Zt−k, t ∈ Z, (3)
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where (Zt )t∈Z is an i.i.d. sequence, to have a strictly stationary solution. Elemen-
tary considerations will show that it suffices to establish these conditions under the
assumption that Ψ1 is in Jordan block form. Theorem 1 characterizes the existence of
strictly stationary solutions of (3) in terms of the Jordan canonical decomposition of
Ψ1, the coefficients Θk and properties of Z0. An explicit solution of (3), assuming its
existence, is also derived and the question of uniqueness of this solution is addressed.

Strict ARMA(p, q) processes are treated in Theorem 2. Since every m-variate
ARMA(p, q) process can be expressed in terms of a corresponding mp-variate
ARMA(1, q) process, questions of existence and uniqueness can, in principle, be
resolved by Theorem 1. However, since the Jordan canonical form of the correspond-
ing mp × mp-matrix Ψ 1 in the higher-dimensional ARMA(1, q) representation is,
in general, difficult to handle, another more compact characterization is derived in
Theorem 2. This characterization is given in terms of properties of the matrix ratio-
nal function P−1(z)Q(z) and finite log moments of certain linear combinations of
the components of Z0, extending the conditions obtained by Brockwell and Lindner
(2010) for m = d = 1 in a natural way. Although the statement of Theorem 2 makes no
reference to Jordan canonical forms, its proof makes fundamental use of Theorem 1.

Theorem 3 deals with the corresponding questions for weak ARMA(p, q) pro-
cesses. The proofs of Theorems 1, 3 and 2 are given in Sects. 3, 4 and 5, respectively.
The proof of Theorem 2 makes crucial use of both Theorems 1 and 3.

The main results are discussed in Sect. 6 and, as one application, the characterization
of non-anticipative strictly stationary solutions is obtained in Theorem 4, generalizing
slightly the result of Bougerol and Picard (1992).

Throughout the paper, vectors will be understood as column vectors and ei will
denote the i th unit vector in C

m . The zero matrix in C
m×r is denoted by 0m,r

or simply 0, the zero vector in C
r by 0r or simply 0. The transpose of a matrix

A is denoted by AT, and its complex conjugate transpose matrix by A∗ = A
T

.
By ‖ · ‖ we denote an unspecific, but fixed vector norm on C

s for s ∈ N, as
well as the corresponding matrix norm ‖A‖ = supx∈Cs ,‖x‖=1 ‖Ax‖. We write
log+(x) := log max{1, x} for x ∈ R, and denote by P − lim limits in probability.
All equations and inequalities concerning random variables should be interpreted
as holding almost surely, and uniqueness will always mean almost sure unique-
ness.

2 Main results

Theorems 1 and 2 give necessary and sufficient conditions for the ARMA(1, q)

equation (3) and the ARMA(p, q) equation (1), respectively, to have a strictly sta-
tionary solution. In Theorem 1, these conditions are expressed in terms of the i.i.d.
noise sequence (Zt )t∈Z, the coefficient matrices Θ0, . . . , Θq and the Jordan canonical
decomposition of Ψ1, while in Theorem 2 they are given in terms of the noise sequence
and the coefficient polynomials P(z) and Q(z) as defined in (2).

As background for Theorem 1, suppose that Ψ1 ∈ C
m×m and choose a (necessar-

ily non-singular) matrix S ∈ C
m×m such that S−1Ψ1S is in Jordan canonical form.

Suppose also that S−1Ψ1S has H ∈ N Jordan blocks, Φ1, . . . , ΦH , the hth block
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Strictly stationary multivariate ARMA processes 1093

beginning in row rh , where r1 := 1 < r2 < · · · < rH < m + 1 =: rH+1. A Jordan
block with associated eigenvalue λ will always be understood to be of the form

⎛

⎜⎜⎜⎝

λ 0
1 λ

. . .
. . .

0 1 λ

⎞

⎟⎟⎟⎠ , (4)

i.e., the entries 1 are below the main diagonal.
Observe that (3) has a strictly stationary solution (Yt )t∈Z if and only if the corre-

sponding equation for Xt := S−1Yt namely

Xt − S−1Ψ1SXt−1 =
q∑

j=0

S−1Θ j Zt− j , t ∈ Z, (5)

has a strictly stationary solution. This will be the case only if the equation for the hth
block,

X (h)
t := Ih Xt , t ∈ Z, (6)

where Ih is the (rh+1 − rh) × m matrix with (i, j) components,

Ih(i, j) =
{

1 if j = i + rh − 1,

0 otherwise,
(7)

has a strictly stationary solution for each h = 1, . . . , H. But these equations are simply

X (h)
t − Φh X (h)

t−1 =
q∑

j=0

Ih S−1Θ j Zn− j , t ∈ Z, h = 1, . . . , H, (8)

where Φh is the hth Jordan block of S−1Ψ1S.
Conversely if (8) has a strictly stationary solution X ′(h) for each h ∈ {1, . . . , H},

then we shall see from the proof of Theorem 1 that there exist (possibly different if
|λh | = 1) strictly stationary solutions X (h) of (8) for each h ∈ {1, . . . , H}, such that

Yt := S(X (1)T
t , . . . , X (H)T

t )T, t ∈ Z, (9)

is a strictly stationary solution of (3).
Existence and uniqueness of a strictly stationary solution of (3) are therefore equiv-

alent to the existence and uniqueness of a strictly stationary solution of the equations
(8) for each h ∈ {1, . . . , H}. The necessary and sufficient condition for each one
will depend on the value of the eigenvalue λh associated with Φh and in particular
on whether (a) |λh | ∈ (0, 1), (b) |λh | > 1, (c) |λh | = 1 and λh �= 1, (d) λh = 1
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and (e) λh = 0. These cases will be addressed separately in the proof of Theorem 1,
which is given in Sect. 3. The aforementioned characterization in terms of the Jordan
decomposition of Ψ1 now reads as follows.

Theorem 1 [Strict ARMA(1, q) processes] Let m, d ∈ N, q ∈ N0, and let (Zt )t∈Z be
an i.i.d. sequence of C

d -valued random vectors. Let Ψ1 ∈ C
m×m and Θ0, . . . , Θq ∈

C
m×d be complex-valued matrices. Let S ∈ C

m×m be an invertible matrix such that
S−1Ψ1S is in Jordan block form as above, with H Jordan blocks Φh, h ∈ {1, . . . , H},
and associated eigenvalues λh, h ∈ {1, . . . , H}. Let r1, . . . , rH+1 be given as above
and Ih as defined by (7). Then the ARMA(1, q) equation (3) has a strictly stationary
solution Y if and only if the following statements (i)–(iii) hold.

(i) For every h ∈ {1, . . . , H} such that |λh | �= 0 or 1,

E log+
∥∥∥∥∥

( q∑

k=0

Φ
q−k
h Ih S−1Θk

)
Z0

∥∥∥∥∥ < ∞ (10)

(ii) For every h ∈ {1, . . . , H} such that |λh | = 1, but λh �= 1, there exists a
constant αh ∈ C

rh+1−rh such that

( q∑

k=0

Φ
q−k
h Ih S−1Θk

)
Z0 = αh a.s. (11)

(iii) For every h ∈ {1, . . . , H} such that λh = 1, there exists a constant αh =
(αh,1, . . . , αh,rh+1−rh )

T ∈ C
rh+1−rh such that αh,1 = 0 and (11) holds.

If these conditions are satisfied, then a strictly stationary solution of (3) is given
by (9) with

X (h)
t :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
j=0

Φ
j−q

h

(
j∧q∑
k=0

Φ
q−k
h Ih S−1Θk

)
Zt− j , |λh | ∈ (0, 1),

−
∞∑

j=1−q
Φ

− j−q
h

(
q∑

k=(1− j)∨0
Φ

q−k
h Ih S−1Θk

)
Zt+ j , |λh | > 1

m+q−1∑
j=0

(
j∧q∑
k=0

Φ
j−k

h Ih S−1Θk

)
Zt− j , λh = 0,

fh +
q−1∑
j=0

(
j∑

k=0
Φ

j−k
h Ih S−1Θk

)
Zt− j , |λh | = 1,

(12)

where fh ∈ C
rh+1−rh is a solution of

(Idh − Φh) fh = αh, (13)

which exists for λh = 1 by (iii) and, for |λ| = 1, λ �= 1, by the invertibility of
(Idh − Φh). The series in (12) converge a.s. absolutely.
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Strictly stationary multivariate ARMA processes 1095

If the necessary and sufficient conditions stated above are satisfied, then, provided
the underlying probability space is rich enough to support a random variable which
is uniformly distributed on [0, 1) and independent of (Zt )t∈Z, the solution given by
(9) and (12) is the unique strictly stationary solution of (3) if and only if |λh | �= 1 for
all h ∈ {1, . . . , H}.

Special cases of Theorem 1 are treated in Corollaries 1, 2 and Remark 1.
It is well-known that every ARMA(p, q) process can be embedded into a higher

dimensional ARMA(1, q) process in the sense specified by Proposition 1 of Sect. 5.
Hence, in principle, the questions of existence and uniqueness of strictly stationary
ARMA(p, q) processes can be resolved by Theorem 1. However, it is generally dif-
ficult to obtain the Jordan canonical decomposition of the (mp × mp)-dimensional
matrix Φ defined in Proposition 1, which is needed to apply Theorem 1. Hence, a more
natural approach is to express the conditions in terms of the coefficient polynomials
P(z) and Q(z) of the ARMA(p, q) equation (1). Observe that z �→ det P(z) is a poly-
nomial in z ∈ C, not identical to the zero polynomial. Hence, P(z) is invertible except
for finitely many values of z. Denoting the adjugate matrix of P(z) by Adj(P(z)), it
follows from Cramér’s inversion rule that the inverse P−1(z) of P(z) can be written
as

P−1(z) = (det P(z))−1Adj(P(z))

which is a C
m×m-valued rational function, i.e., all its entries are rational functions. For

a general matrix-valued rational function z �→ M(z) of the form M(z) = P−1(z)Q̃(z)
with some matrix polynomial Q̃(z), the singularities of M(z) are the zeroes of
det P(z), and any singularity, z0 say, is removable if all entries of M(z) have removable
singularities at z0. Also, observe that if M(z) has only removable singularities on the
unit circle in C, then M(z) can be expanded in a Laurent series M(z) = ∑∞

j=−∞ M j z j ,
convergent in a neighborhood of the unit circle. The characterization for the existence
of strictly stationary ARMA(p, q) processes now reads as follows.

Theorem 2 [Strict ARMA(p, q) processes] Let m, d, p ∈ N, q ∈ N0, and let (Zt )t∈Z

be an i.i.d. sequence of C
d-valued random vectors. Let Ψ1, . . . , Ψp ∈ C

m×m and
Θ0, . . . , Θq ∈ C

m×d be complex-valued matrices, and define the coefficient polyno-
mials as in (2). Define the linear subspace of C

d ,

K := {a ∈ C
d : the distribution of a∗Z0 is degenerate to a Dirac measure},

denote by K ⊥ its orthogonal complement in C
d , and let s denotes the vector–space

dimension dim K ⊥ of K ⊥. Let U ∈ C
d×d be a unitary matrix such that U K ⊥ =

C
s × {0d−s} and U K = {0s} × C

d−s , and define the C
m×d -valued rational function

M(z) by

z �→ M(z) := P−1(z)Q(z)U∗
(

Ids 0s,d−s

0d−s,s 0d−s,d−s

)
. (14)
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Then there is a constant u ∈ C
d−s and a C

s -valued i.i.d. sequence (wt )t∈Z such
that

U Zt =
(

wt

u

)
a.s. ∀ t ∈ Z, (15)

and the distribution of b∗w0 is not degenerate to a Dirac measure for any b ∈ C
s \{0}.

Moreover, a strictly stationary solution of the ARMA(p, q) equation (1) exists if and
only if the following statements (i)–(iii) hold.

(i) All singularities on the unit circle of the meromorphic function M(z) are remov-
able.

(ii) If M(z) = ∑∞
j=−∞ M j z j denotes the Laurent expansion of M in a neighbour-

hood of the unit circle, then

E log+ ‖M jU Z0‖ < ∞ ∀ j ∈ {mp + q − p + 1, . . . , mp + q}
∪{−p, . . . ,−1}. (16)

(iii) There exist v ∈ C
s and g ∈ C

m such that g is a solution of the linear equation

P(1)g = Q(1)U∗(vT, uT)T. (17)

Further, if (i) above holds, then condition (ii) can be replaced by

(ii′) If M(z) = ∑∞
j=−∞ M j z j denotes the Laurent expansion of M in a neigh-

bourhood of the unit circle, then
∑∞

j=−∞ M jU Zt− j converges almost surely
absolutely for every t ∈ Z,

and condition (iii) can be replaced by

(i i i ′) For all v ∈ C
s there exists a solution g = g(v) to the linear equation (17).

If the conditions (i)–(iii) given above are satisfied, then a strictly stationary solution
Y of the ARMA(p, q) equation (1) is given by

Yt = g +
∞∑

j=−∞
M j (U Zt− j − (vT, uT)T), t ∈ Z, (18)

the series converging almost surely absolutely. Further, provided that the underlying
probability space is rich enough to support a random variable which is uniformly dis-
tributed on [0, 1) and independent of (Zt )t∈Z, the solution given by (18) is the unique
strictly stationary solution of (1) if and only if det P(z) �= 0 for all z on the unit circle.

Special cases of Theorem 2 are treated in Remarks 2, 3 and Corollary 3. Observe that
for m = 1, Theorem 2 reduces to the corresponding result in Brockwell and Lindner
(2010). Also, observe that condition (iii) of Theorem 2 is not implied by condition (i),
which can be seen, e.g., by allowing a deterministic noise sequence (Zt )t∈Z, in which
case M(z) ≡ 0. The proof of Theorem 2 will be given in Sect. 5 and will make use of

123



Strictly stationary multivariate ARMA processes 1097

both Theorems 1 and 3 given below. The latter is the corresponding characterization
for the existence of weakly stationary solutions of ARMA(p, q) equations, expressed
in terms of the coefficient polynomials P(z) and Q(z). That det P(z) �= 0 for all z
on the unit circle together with E(Z0) = 0 is sufficient for the existence of weakly
stationary solutions is well-known, but that the conditions given below are necessary
and sufficient in higher dimensions seems not to have appeared in the literature so far.
The proof of Theorem 3, which is similar to the proof in the one-dimensional case,
will be given in Sect. 4.

Theorem 3 [Weak ARMA(p, q) processes] Let m, d, p ∈ N, q ∈ N0, and let
(Zt )t∈Z be a weak white noise sequence in C

d with expectation EZ0 and covari-
ance matrix �. Let Ψ1, . . . , Ψp ∈ C

m×m and Θ0, . . . , Θq ∈ C
m×d , and define

the matrix polynomials P(z) and Q(z) by (2). Let U ∈ C
d×d be unitary such that

U�U∗ =
(

D 0s,d−s

0d−s,s 0d−s,d−s

)
, where D is a real (s × s)-diagonal matrix with the

strictly positive eigenvalues of � on its diagonal for some s ∈ {0, . . . , d}. (The matrix
U exists since � is positive semidefinite.) Then the ARMA(p, q) equation (1) admits
a weakly stationary solution (Yt )t∈Z if and only if the C

m×d -valued rational function

z �→ M(z) := P−1(z)Q(z)U∗
(

Ids 0s,d−s

0d−s,s 0d−s,d−s

)

has only removable singularities on the unit circle and if there is some g ∈ C
m such

that

P(1) g = Q(1) EZ0. (19)

In that case, a weakly stationary solution of (1) is given by

Yt = g +
∞∑

j=−∞
M j U (Zt− j − EZ0), t ∈ Z, (20)

where M(z) = ∑∞
j=−∞ M j z j is the Laurent expansion of M(z) in a neighbourhood

of the unit circle, which converges absolutely there.

It is easy to see that if � in the theorem above is invertible, then the condition that
all singularities of M(z) on the unit circle are removable is equivalent to the condition
that all singularities of P−1(z)Q(z) on the unit circle are removable.

3 Proof of Theorem 1

In this section we give the proof of Theorem 1. In Sect. 3.1, we show that the conditions
(i)–(iii) are necessary. The sufficiency of the conditions is proved in Sect. 3.2 and the
uniqueness assertion is established in Sect. 3.3.
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3.1 The necessity of the conditions

Assume that (Yt )t∈Z is a strictly stationary solution of Eq. (3). As observed before,
Theorem 1 implies that each of the equations (8) admits a strictly stationary solution,
where X (h)

t is defined as in (6). Equation (8) is itself an ARMA(1, q) equation with
i.i.d. noise, so that for proving (i)–(iii) we may assume that H = 1, that S = Idm and
that Φ := Ψ1 is an m × m Jordan block corresponding to an eigenvalue λ. Hence, we
assume throughout Sect. 3.1 that

Yt − ΦYt−1 =
q∑

k=0

Θk Zt−k, t ∈ Z, (21)

has a strictly stationary solution with Φ ∈ C
m×m of the form (4), and we need to show

that this implies (i) if |λ| �= 0, 1, (ii) if |λ| = 1 but λ �= 1, and (iii) if λ = 1. Before
we do this in the following subsections, we observe that iteration of the ARMA(1, q)

equation (21) gives, for n ≥ q,

Yt =
q−1∑

j=0

Φ j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j +
n−1∑

j=q

Φ j

( q∑

k=0

Φ−kΘk

)
Zt− j

+
q−1∑

j=0

Φn+ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j) + ΦnYt−n . (22)

3.1.1 The case |λ| ∈ (0, 1)

Suppose that |λ| ∈ (0, 1) and ε ∈ (0, |λ|). Then there are constants C, C ′ ≥ 1 such
that

‖Φ− j‖ ≤ C · |λ|− j · jm ≤ (C ′)(|λ| − ε)− j for all j ∈ N,

as a consequence of Theorem 11.1.1 in Golub et al. (1996). Hence, we have for all
j ∈ N0 and t ∈ Z

∥∥∥∥∥

( q∑

k=0

Φ−kΘk

)
Zt− j

∥∥∥∥∥ ≤ C ′(|λ| − ε)− j

∥∥∥∥∥Φ j

( q∑

k=0

Φ−kΘk

)
Zt− j

∥∥∥∥∥ . (23)

Now, since limn→∞ Φn = 0 and since (Yt )t∈Z and (Zt )t∈Z are strictly stationary,
an application of Slutsky’s lemma to Eq. (22) shows that

Yt =
q−1∑

j=0

Φ j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j + P- lim
n→∞

n−1∑

j=q

Φ j

( q∑

k=0

Φ−kΘk

)
Zt− j . (24)
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Hence, the limit on the right hand side exists and, as a sum with independent
summands, it converges almost surely. Thus, it follows from Eq. (23) and the Borel–
Cantelli lemma that

∞∑

j=q

P

(∥∥∥∥∥

q∑

k=0

Φ−kΘk Z0

∥∥∥∥∥ > C ′(|λ| − ε)− j

)

≤
∞∑

j=q

P

(∥∥∥∥∥Φ j

( q∑

k=0

Φ−kΘk

)
Z− j

∥∥∥∥∥ > 1

)
< ∞,

and hence E
(
log+ ∥∥(∑q

k=0 Φ−kΘk
)

Z0
∥∥)

< ∞. Obviously, this is equivalent to con-
dition (i).

3.1.2 The case |λ| > 1

Suppose that |λ| > 1. Multiplying Eq. (22) by Φ−n gives for n ≥ q

Φ−nYt =
q−1∑

j=0

Φ−(n− j)

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j +
n−q∑

j=1

Φ− j

( q∑

k=0

Φ−kΘk

)
Zt−n+ j

+
q−1∑

j=0

Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j) + Yt−n .

Defining Φ̃ := Φ−1, and substituting u = t − n yields

Yu = −
q−1∑

j=0

Φ̃− j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zu− j −
n−q∑

j=1

Φ̃ j

( q∑

k=0

Φ−kΘk

)
Zu+ j

−
q−1∑

j=0

Φ̃n− j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zu+n− j + Φ̃nYu+n . (25)

Letting n → ∞ then gives condition (i) with the same arguments as in the case
|λ| ∈ (0, 1).

3.1.3 The case |λ| = 1 and symmetric noise (Zt )

Suppose that Z0 is symmetric and that |λ| = 1. Defining

J1 := Φ − λ Idm and Jl := J l
1 for j ∈ N0,
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we have

Φ j =
m−1∑

l=0

(
j

l

)
λ j−l Jl , j ∈ N0,

since Jl = 0 for l ≥ m and
( j

l

) = 0 for l > j . Further, since for l ∈ {0, . . . , m − 1}
we have

Jl = (el+1, el+2, . . ., em, 0m, . . ., 0m) ∈ C
m×m,

with unit vectors el+1, . . ., em in C
m , it is easy to see that for i = 1, . . ., m the i th row

of the matrix Φ j is given by

eT
i Φ j =

m−1∑

l=0

(
j

l

)
λ j−l eT

i Jl =
i−1∑

l=0

(
j

l

)
λ j−l eT

i−l , j ∈ N0. (26)

It follows from Eqs. (22) and (26) that for n ≥ q and t ∈ Z,

eT
i Yt =

q−1∑

j=0

(
i−1∑

l=0

(
j

l

)
λ j−l eT

i−l

) ⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j

+
n−1∑

j=q

(
i−1∑

l=0

(
j

l

)
λ j−l eT

i−l

)( q∑

k=0

Φ−kΘk

)
Zt− j

+
q−1∑

j=0

(
i−1∑

l=0

(
n + j

l

)
λn+ j−l eT

i−l

)⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j)

+
i−1∑

l=0

(
n

l

)
λn−l eT

i−lYt−n . (27)

We claim that

eT
i

q∑

k=0

Φ−kΘk Zt = 0 a.s. ∀ i ∈ {1, . . . , m} ∀ t ∈ Z, (28)

which clearly gives conditions (ii) and (iii), respectively, with α = α1 = 0m . Equation
(28) will be proved by induction on i = 1, . . . , m. We start with i = 1. From equation
(27) we know that for n ≥ q
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eT
1 Yt − λneT

1 Yt−n −
q−1∑

j=0

λ j eT
1

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j

−
q−1∑

j=0

λn+ j eT
1

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠Zt−(n+ j) =
n−1∑

j=q

λ j eT
1

( q∑

k=0

Φ−kΘk

)
Zt− j . (29)

Due to the stationarity of (Yt )t∈Z and (Zt )t∈Z, there exists a constant K1 > 0 such
that

P

⎛

⎝

∣∣∣∣∣∣
eT

1 Yt − λneT
1 Yt−n −

q−1∑

j=0

λ j eT
1

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j

−
q−1∑

j=0

λn+ j eT
1

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j)

∣∣∣∣∣∣
< K1

⎞

⎠ ≥ 1

2
∀n ≥ q.

By (29) this implies that

P

⎛

⎝

∣∣∣∣∣∣

n−1∑

j=q

λ j eT
1

( q∑

k=0

Φ−kΘk

)
Zt− j

∣∣∣∣∣∣
< K1

⎞

⎠ ≥ 1

2
∀n ≥ q. (30)

Therefore, |∑n−1
j=q λ j eT

1 (
∑q

k=0 Φ−kΘk)Zt− j | does not converge in probability to
+∞ as n → ∞. Since this is a sum of independent and symmetric terms, this implies
that it converges almost surely (Kallenberg 2002, Theorem 4.17), and the Borel-Can-
telli lemma then shows that

eT
1

( q∑

k=0

Φ−kΘk

)
Zt = 0, t ∈ Z,

which is (28) for i = 1. With this condition, equation (29) simplifies for t = 0 and
n ≥ q to

eT
1 Y0 − λneT

1 Y−n =
q−1∑

j=0

λ j eT
1

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Z− j

+
q−1∑

j=0

λn+ j eT
1

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Z−(n+ j).

Now setting t = −n in the above equation, multiplying it with λt = λ−n and
recalling that eT

1 Φ j = λ j eT
1 by (26) yields for t ≤ −q
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eT
1 Yt = −

q−1∑

j=0

eT
1 Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt− j

+λt eT
1

⎛

⎝Y0 −
q−1∑

j=0

Φ j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Z− j

⎞

⎠ .

For the induction step let i ∈ {2, . . . , m} and assume that

eT
r

( q∑

k=0

Φ−kΘk

)
Zt = 0 a.s., r ∈ {1, . . ., i − 1}, t ∈ Z, (31)

together with

eT
r Yt = −eT

r

q−1∑

j=0

Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt− j

+
{

0 r ∈ {1, . . . , i − 2}, t ≤ −rq,

λt eT
r Vr r = i − 1, t ≤ −rq,

(32)

where, for r ∈ {1, . . . , m},

Vr := λ(r−1)q

⎛

⎝Y−(r−1)q −
q−1∑

j=0

Φ j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Z− j−(r−1)q

⎞

⎠ .

We are going to show that this implies

eT
i

( q∑

k=0

Φ−kΘk

)
Zt = 0 a.s., t ∈ Z, (33)

and

eT
i Yt = −eT

i

q−1∑

j=0

Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt− j + λt eT
i Vi a.s., t ≤ −iq, (34)

together with

eT
i−1Vi−1 = 0. (35)

This will then imply (28). The first step is to establish the following Lemma.
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Lemma 1 Suppose that i ∈ {2, . . . , m} and that (31) and (32) hold. Then for t ≤
−(i − 1)q and n ≥ q,

eT
i Yt − λneT

i Yt−n

=
q−1∑

j=0

eT
i Φ j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j +
n−1∑

j=q

λ j eT
i

( q∑

k=0

Φ−kΘk

)
Zt− j

+λn
q−1∑

j=0

eT
i Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j) + nλt−1eT
i−1Vi−1, (36)

Proof Assuming that t ≤ −(i − 1)q and n ≥ q and using (32) and (26), we see that
the last summand of (27) satisfies

i−1∑

l=0

(
n

l

)
λn−l eT

i−lYt−n − λneT
i Yt−n

=
i−1∑

r=1

(
n

i − r

)
λn−(i−r)eT

r Yt−n,

= −
q−1∑

j=0

(
i−1∑

r=1

r−1∑

l=0

(
j

l

)(
n

i − r

)
λn−(i−r)λ j−l eT

r−l

) ⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j)

+nλt−1eT
i−1Vi−1

= −
q−1∑

j=0

(
i−1∑

s=1

(
n + j

s

)
λn+ j−seT

i−s

) ⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j)

+λn
q−1∑

j=0

(
i−1∑

s=1

(
j

s

)
λ j−seT

i−s

) ⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j) + nλt−1eT
i−1Vi−1,

where we substituted s := i − r + l and p := s − l and used Vandermonde’s identity∑s
p=1

( j
s−p

)(n
p

) = (n+ j
s

) − ( j
s

)
in the last equation. Inserting this back into equation

(27) and using (31), we get for t ≤ −(i − 1)q and n ≥ q

eT
i Yt − λneT

i Yt−n

=
q−1∑

j=0

(
i−1∑

l=0

(
j

l

)
λ j−l eT

i−l

)⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j

+
n−1∑

j=q

λ j eT
i

( q∑

k=0

Φ−kΘk

)
Zt− j +

q−1∑

j=0

λn+ j eT
i

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j)
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+λn
q−1∑

j=0

(
i−1∑

s=1

(
j

s

)
λ j−seT

i−s

) ⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j)

+nλt−1eT
i−1Vi−1.

Application of (26) then shows (36), completing the proof of the lemma. ��

To continue with the induction step, we first show that (35) holds. Dividing (36)
by n and letting n → ∞, the strict stationarity of (Yt )t∈Z and (Zt )t∈Z implies that for
t ≤ −(i − 1)q,

n−1
n−1∑

j=q

λ j eT
i

( q∑

k=0

Φ−kΘk

)
Zt− j

converges in probability to −λt−1eT
i−1Vi−1. On the other hand, this limit in probability

must clearly be measurable with respect to the tail-σ -algebra ∩k∈Nσ(∪l≥kσ(Zt−l)),
which by Kolmogorov’s zero-one law is P-trivial. Hence, this probability limit must
be constant, and because of the assumed symmetry of Z0 it must be symmetric, hence
is equal to 0, i.e.,

eT
i−1Vi−1 = 0 a.s.,

which is (35). Using this, we get from Lemma 1 that

eT
i Yt − λneT

i Yt−n −
q−1∑

j=0

eT
i Φ j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j

−λn
q−1∑

j=0

eT
i Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j)

=
n−1∑

j=q

λ j eT
i

( q∑

k=0

Φ−kΘk

)
Zt− j , t ≤ −(i − 1)q. (37)

Again due to the stationarity of (Yt )t∈Z and (Zt )t∈Z there exists a constant K2 > 0
such that

P

⎛

⎝

∣∣∣∣∣∣
eT

i Yt − λneT
i Yt−n −

q−1∑

j=0

eT
i Φ j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Zt− j

−λn
q−1∑

j=0

eT
i Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt−(n+ j)

∣∣∣∣∣∣
< K2

⎞

⎠ ≥ 1

2
∀ n ≥ q,
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so that

P

⎛

⎝

∣∣∣∣∣∣

n−1∑

j=q

λ j eT
i

( q∑

k=0

Φ−kΘk

)
Zt− j

∣∣∣∣∣∣
< K2

⎞

⎠ ≥ 1

2
∀ n ≥ q, t ≤ −(i − 1)q.

Therefore
∣∣∣
∑n−1

j=q λ j eT
i

(∑q
k=0 Φ−kΘk

)
Zt− j

∣∣∣ does not converge in probability to

+∞ as n → ∞. Since this is a sum of independent and symmetric terms, this implies
that it converges almost surely (Kallenberg 2002, Theorem 4.17), and the Borel–Can-
telli lemma then shows that eT

i

(∑q
k=0 Φ−kΘk

)
Zt = 0 a.s. for t ≤ −(i − 1)q and

hence for all t ∈ Z, which is (33). Equation (37) now simplifies for t = −(i − 1)q
and n ≥ q to

eT
i Y−(i−1)q − λneT

i Y−(i−1)q−n =
q−1∑

j=0

eT
i Φ j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Z−(i−1)q− j

+λn
q−1∑

j=0

eT
i Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Z−(i−1)q−n− j .

Multiplying this equation by λ−n and denoting t := −(i − 1)q − n, it follows that
for t ≤ −iq it holds

eT
i Yt = −

q−1∑

j=0

eT
i Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt− j

+λt+(i−1)qeT
i

⎛

⎝Y−(i−1)q −
q−1∑

j=0

Φ j

⎛

⎝
j∑

k=0

Φ−kΘk

⎞

⎠ Z− j−(i−1)q

⎞

⎠

= −
q−1∑

j=0

eT
i Φ j

⎛

⎝
q∑

k= j+1

Φ−kΘk

⎞

⎠ Zt− j + λt eT
i Vi ,

which is Eq. (34). This completes the proof of the induction step and hence of (28). It
follows that conditions (ii) and (iii), respectively, hold with α1 = 0 if |λ| = 1 and Z0
is symmetric.

3.1.4 The case |λ| = 1 with not necessarily symmetric noise (Zt )

As in Sect. 3.1.3, assume that |λ| = 1, but not necessarily that Z0 is symmetric. Let
(Y ′

t , Z ′
t )t∈Z be an independent copy of (Yt , Zt )t∈Z and denote Ỹt := Yt −Y ′

t and Z̃t :=
Zt − Z ′

t . Then (Ỹt )t∈Z is a strictly stationary solution of Ỹt −ΦỸt−1 = ∑q
k=0 Θk Z̃t−k ,

and (Z̃t )t∈Z is i.i.d. with Z̃0 being symmetric. It hence follows from Sect. 3.1.3 that
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( q∑

k=0

Φq−kΘk

)
Z0 −

( q∑

k=0

Φq−kΘk

)
Z ′

0 =
( q∑

k=0

Φq−kΘk

)
Z̃0 = 0.

Since Z0 and Z ′
0 are independent, this implies that there is a constant α ∈ C

m such
that

∑q
k=0 Φq−kΘk Z0 = α a.s., which is (11), hence condition (ii) if λ �= 1. To show

condition (iii) in the case λ = 1, recall that the derivation of (30) in Sect. 3.1.3 did not
need the symmetry assumption on Z0. Hence, by (30) there is some constant K1 such
that P(| ∑n−1

j=q 1 j eT
1 α| < K1) ≥ 1/2 for all n ≥ q, which clearly implies eT

1 α = 0
and hence condition (iii).

3.2 The sufficiency of the conditions

Suppose that conditions (i)–(iii) are satisfied, and let X (h)
t , t ∈ Z, h ∈ {1, . . . , H}, be

defined by (12). The fact that X (h)
t as defined in (12) converges a.s. for |λh | ∈ (0, 1)

is in complete analogy to the proof in the one-dimensional case treated in Brockwell
and Lindner (2010), but we give the short argument here for completeness. Observe
that there are constants a, b > 0 such that ‖Φ j

h ‖ ≤ ae−bj for j ∈ N0. Hence, for
b′ ∈ (0, b) we have

∞∑

j=q

P

(∥∥∥∥∥Φ
j−q

h

q∑

k=0

Φ
q−k
h Ih S−1Θk Zt− j

∥∥∥∥∥ > e−b′( j−q)

)

≤
∞∑

j=q

P

(
log+

(
a

∥∥∥∥∥

q∑

k=0

Φ
q−k
h Ih S−1Θk Zt− j

∥∥∥∥∥

)
> (b − b′)( j − q)

)
< ∞,

the last inequality being due to the fact that ‖∑q
k=0 Φ

q−k
h Ih S−1Θk Zt− j‖ has the same

distribution as ‖∑q
k=0 Φ

q−k
h Ih S−1Θk Z0‖ and the latter has finite log-moment by (10).

The Borel–Cantelli lemma then shows that the event {‖Φ j−q
h

∑q
k=0 Φ

q−k
h Ih S−1Θk

Zt− j‖ > e−b′( j−q) for infinitely many j} has probability zero, giving the almost sure
absolute convergence of the series in (12). The almost sure absolute convergence of
(12) if |λh | > 1 is established similarly.

It is obvious that ((X (1)T
t , . . . , X (H)T

t )T)t∈Z as defined in (12), and hence (Yt )t∈Z

defined by (9), is strictly stationary, so it only remains to show that (X (h)
t )t∈Z satisfies

(8) for each h ∈ {1, . . . , H}. For |λh | �= 0, 1, this is an immediate consequence of
(12). For |λh | = 1, we have by (12) and the definition of fh that

X (h)
t − Φh X (h)

t−1 = αh +
q−1∑

j=0

j∑

k=0

Φ
j−k

h Ih S−1Θk Zt− j −
q∑

j=1

j−1∑

k=0

Φ
j−k

h Ih S−1Θk Zt− j

= αh +
q−1∑

j=0

Ih S−1Θ j Zt− j −
q−1∑

k=0

Φ
q−k
h Ih S−1Θk Zt−q
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= Ih S−1
q∑

j=0

Θ j Zt− j ,

where the last equality follows from (11). Finally, if λh = 0, then Φ
j

h = 0 for j ≥ m,

implying that X (h)
t defined by (12) satisfies (8) also in this case.

3.3 The uniqueness of the solution

Suppose that |λh | �= 1 for all h ∈ {1, . . . , H} and let (Yt )t∈Z be a strictly stationary
solution of (3). Then (X (h)

t )t∈Z as defined by (6) is a strictly stationary solution of
(8) for each h ∈ {1, . . . , H}. It then follows as in Sect. 3.1.1 that by the equation
corresponding to (24), X (h)

t is uniquely determined if |λh | ∈ (0, 1). Similarly, X (h)
t

is uniquely determined if |λh | > 1. The uniqueness of X (h)
t if λh = 0 follows from

the equation corresponding to (22) with n ≥ m, since then Φ
j

h = 0 for j ≥ m. We

conclude that ((X (1)T
t , . . . , X (H)T

t )T)t∈Z is unique and hence so is (Yt )t∈Z.
Now suppose that there is h ∈ {1, . . . , H} such that |λh | = 1. Let U be a random

variable which is uniformly distributed on [0, 1) and independent of (Zt )t∈Z. Then
(Rt )t∈Z, defined by Rt := λt

h(0, . . . 0, e2π iU )T ∈ C
rh+1−rh , is strictly stationary and

independent of (Zt )t∈Z and satisfies Rt −Φh Rt−1 = 0. Hence, if (Yt )t∈Z is the strictly
stationary solution of (3) specified by (12) and (9), then

Yt + S(0T
r2−r1

, . . . , 0T
rh−rh−1

, RT
t , 0T

rh+2−rh+1
, . . . , 0T

rH+1−rH
)T, t ∈ Z,

is another strictly stationary solution of (3), violating uniqueness.

4 Proof of Theorem 3

In this section, we shall prove Theorem 3. Define

R := U∗
(

D1/2 0s,d−s

0d−s,s 0d−s,d−s

)
and Wt :=

(
D−1/2 0s,d−s

0d−s,s 0d−s,d−s

)
U (Zt − EZ0), t ∈ Z,

where D1/2 is the unique diagonal matrix with strictly positive eigenvalues such that
(D1/2)2 = D. Then (Wt )t∈Z is a white noise sequence in C

d with expectation 0 and

covariance matrix

(
Ids 0s,d−s

0d−s,s 0d−s,d−s

)
. It is also clear that all singularities of M(z) on

the unit circle are removable if and only if all singularities of M ′(z) := P−1(z)Q(z)R
on the unit circle are removable, and in that case, the Laurent expansions of both M(z)
and M ′(z) converge absolutely in a neighbourhood of the unit circle.

To see the sufficiency of the condition, suppose that (19) has a solution g and that
M(z) and hence M ′(z) have only removable singularities on the unit circle. Define
Y = (Yt )t∈Z by (20), i.e.,
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1108 P. Brockwell et al.

Yt = g +
∞∑

j=−∞
M j

(
D1/2 0s,d−s

0d−s,s 0d−s,d−s

)
Wt− j = g + M ′(B)Wt , t ∈ Z.

The series converges almost surely absolutely due to the exponential decrease of
the entries of M j as | j | → ∞. Further, Y is clearly weakly stationary, and since the
last (d −s) components of U (Zt −EZ0) vanish, having expectation zero and variance
zero, it follows that

RWt = U∗
(

Ids 0s,d−s

0d−s,s 0d−s,d−s

)
U (Zt − EZ0) = U∗U (Zt − EZ0)

= Zt − EZ0, t ∈ Z.

We conclude that

P(B)(Yt − g) = P(B)M ′(B)Wt = P(B)P−1(B)Q(B)RWt = Q(B)(Zt − EZ0).

Since P(1)g = Q(1)EZ0, this shows that (Yt )t∈Z is a weakly stationary solution
of (1).

Conversely, suppose that Y = (Yt )t∈Z is a weakly stationary solution of (1). Tak-
ing expectations in (1) yields P(1) EY0 = Q(1) EZ0, so that (19) has a solution. The
C

m×m-valued spectral measure μY of Y satisfies

P(e−iω) dμY (ω) P(e−iω)∗ = 1

2π
Q(e−iω)�Q(e−iω)∗ dω, ω ∈ (−π, π ].

It follows that, with the finite set N := {ω ∈ (−π, π ] : P(e−iω) = 0},

dμY (ω) = 1

2π
P−1(e−iω)Q(e−iω)�Q(e−iω)∗ P−1(e−iω)∗ dω on (−π, π ] \ N .

Observing that R R∗ = �, it follows that the function ω �→ M ′(e−iω)M ′(e−iω)∗
must be integrable on (−π, π ] \ N . Now assume that the matrix rational function M ′
has a non-removable singularity at z0 with |z0| = 1 in at least one matrix element.
This must then be a pole of order r ≥ 1. Denoting the spectral norm by ‖ ·‖2 it follows
that there are ε > 0 and K > 0 such that

‖M ′(z)∗‖2 ≥ K |z − z0|−1 ∀ z ∈ C : |z| = 1, z �= z0, |z − z0| ≤ ε.

This may be seen by considering first the row sum norm of M ′(z)∗ and then using
the equivalence of norms. Since the matrix M ′(z)M ′(z)∗ is hermitian, we conclude
that

‖M ′(z)M ′(z)∗‖2 = sup
v∈Cn :|v|=1

|v∗M ′(z)M ′(z)∗v|

= sup
v∈Cn :|v|=1

|M ′(z)∗v|2 ≥ K 2|z − z0|−2
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Strictly stationary multivariate ARMA processes 1109

for all z �= z0 on the unit circle such that |z − z0| ≤ ε. But this implies that ω �→
M ′(e−iω)M ′(e−iω)∗ cannot be integrable on (−π, π ] \ N , giving the desired contra-
diction. This completes the proof of Theorem 3. �

5 Proof of Theorem 2

In this section, we shall prove Theorem 2. In order to do so we first observe that the
existence of an ARMA(p, q) process is equivalent to the existence of a correspond-
ing higher dimensional ARMA((1, q) process, specified in the following well-known
proposition. We shall omit the elementary proof.

Proposition 1 Let m, d, p ∈ N, q ∈ N0, and let (Zt )t∈Z be an i.i.d. sequence of
C

d-valued random vectors. Let Ψ1, . . . , Ψp ∈ C
m×m and Θ0, . . . , Θq ∈ C

m×d be
complex-valued matrices. Define the matrices Φ ∈ C

mp×mp and Θk ∈ C
mp×d ,

k ∈ {0, . . . , q}, by

Φ :=

⎛

⎜⎜⎜⎜⎜⎜⎝

Ψ1 Ψ2 · · · Ψp−1 Ψp

Idm 0m,m · · · 0m,m 0m,m

0m,m
. . .

. . .
...

...
...

. . .
. . . 0m,m

...

0m,m · · · 0m,m Idm 0m,m

⎞

⎟⎟⎟⎟⎟⎟⎠
and Θk =

⎛

⎜⎜⎜⎝

Θk

0m,d
...

0m,d

⎞

⎟⎟⎟⎠ . (38)

Then the ARMA(p, q) equation (1) admits a strictly stationary solution (Yt )t∈Z of
m-dimensional random vectors Yt if and only if the ARMA(1, q) equation

Y t − Φ Y t−1 = Θ0 Zt + Θ1 Zt−1 + · · · + Θq Zt−q , t ∈ Z, (39)

admits a strictly stationary solution (Y t )t∈Z of mp-dimensional random vectors Y t .
More precisely, if (Yt )t∈Z is a strictly stationary solution of (1), then

(Y t )t∈Z := ((Y T
t , Y T

t−1, . . . , Y T
t−(p−1))

T)t∈Z (40)

is a strictly stationary solution of (39), and conversely, if the sequence (Y t )t∈Z =
((Y (1)T

t , . . . , Y (p)T
t )T)t∈Z with random components Y (i)

t ∈ C
m is a strictly stationary

solution of (39), then (Yt )t∈Z := (Y (1)
t )t∈Z is a strictly stationary solution of (1).

For the proof of Theorem 2 we need some notation: define Φ and Θk as in (38).
Choose an invertible C

mp×mp matrix S such that S−1ΦS is in Jordan canonical form,
with H Jordan blocks Φ1, . . . , ΦH , say, the hth Jordan block Φh starting in row rh ,
with r1 := 1 < r2 < · · · < r H < mp + 1 =: r H+1. Let λh be the eigenvalue
associated with Φh , and, similar to (7), denote by I h the (rh+1 − rh) × mp-matrix
with components I h(i, j) = 1 if j = i + rh − 1 and I h(i, j) = 0 otherwise. For
h ∈ {1, . . . , H} and j ∈ Z let
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1110 P. Brockwell et al.

N j,h :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 j≥0Φ
j−q
h

j∧q∑
k=0

Φ
q−k
h I h S−1Θk, |λh | ∈ (0, 1),

−1 j≤q−1Φ
j−q
h

q∑
k=(1+ j)∨0

Φ
q−k
h I h S−1Θk, |λh | > 1,

1 j∈{0,...,mp+q−1}
j∧q∑
k=0

Φ
j−k
h I h S−1Θk, λh = 0,

1 j∈{0,...,q−1}
j∑

k=0
Φ

j−k
h I h S−1Θk, |λh | = 1,

and

N j := S−1(N T
j,1, . . . , N T

j,H )T ∈ C
mp×d . (41)

Further, let U and K be defined as in the statement of the theorem, and denote

Wt := U Zt , t ∈ Z.

Then (Wt )t∈Z is an i.i.d. sequence. Equation (15) is then an easy consequence of
the fact that for a ∈ C

d the distribution of a∗W0 = (U∗a)∗Z0 is degenerate to a Dirac
measure if and only if U∗a ∈ K , i.e., if a ∈ U K = {0s} × C

d−s . Taking for a the i th
unit vector in C

d for i ∈ {s +1, . . . , d}, we see that Wt must be of the form (wT
t , uT)T

for some u ∈ C
d−s , and taking a = (bT, 0T

d−s)
T for b ∈ C

s we see that b∗w0 is not
degenerate to a Dirac measure for b �= 0s . The remaining proof of the necessity of the
conditions, the sufficiency of the conditions and the stated uniqueness will be given
in the next subsections.

5.1 The necessity of the conditions

Suppose that (Yt )t∈Z is a strictly stationary solution of (1). Define Y t by (40). Then
(Y t )t∈Z is a strictly stationary solution of (39) by Proposition 1. Hence, by Theorem 1,
there is f ′ ∈ C

mp, such that (Y ′
t )t∈Z, defined by

Y ′
t = f ′ +

∞∑

j=−∞
N j Zt− j , t ∈ Z, (42)

is (possibly another) strictly stationary solution of

Y ′
t − Φ Y ′

t−1 =
q∑

k=0

Θk Zt−k =
q∑

k=0

Θ̃k Wt−k, t ∈ Z,

where Θ̃k := ΘkU∗. The sum in (42) converges almost surely absolutely. Now define
Ah ∈ C

(rh+1−rh)×s and Ch ∈ C
(rh+1−rh)×(d−s) for h ∈ {1, . . . , H} such that |λh | = 1

by
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(Ah, Ch) :=
q∑

k=0

Φ
q−k
h I h S−1Θ̃k . (43)

By conditions (ii) and (iii) of Theorem 1, for every such h with |λh | = 1 there exists
a vector αh = (αh,1, . . . , αh,rh+1−rh

)T ∈ C
rh+1−rh such that

(Ah, Ch)W0 = αh a.s.

with αh,1 = 0 if λh = 1. Since W0 = (wT
0 , uT)T, this implies Ahw0 = αh − Chu,

but since b∗w0 is not degenerate to a Dirac measure for any b ∈ C
s \ {0s}, this gives

Ah = 0 and hence Chu = αh for h ∈ {1, . . . , H} such that |λh | = 1. Now let v ∈ C
s

and (W ′′
t )t∈Z be an i.i.d. N

((
v

u

)
,

(
Ids 0s,d−s

0d−s,s 0d−s,d−s

))
-distributed sequence, and

let Z ′′
t := U∗W ′′

t . Then

(Ah, Ch)W ′′
0 = Chu = αh a.s. for h ∈ {1, . . . , H} : |λh | = 1

and

E log+
∥∥∥∥∥

q∑

k=0

Φ
q−k
h I h S−1Θ̃k W ′′

0

∥∥∥∥∥ < ∞ for h ∈ {1, . . . , H} : |λh | �= 0, 1.

It then follows from Theorem 1 that there is a strictly stationary solution Y ′′
t of the

ARMA(1, q) equation Y ′′
t − Φ Y ′′

t−1 = ∑q
k=0 Θ̃k W ′′

t−k = ∑q
k=0 Θk Z ′′

t−k , which can
be written in the form Y ′′

t = f ′′ +∑∞
j=−∞ N j Z ′′

t− j for some f ′′ ∈ C
mp. In particular,

(Y ′′
t )t∈Z is a Gaussian process. Again from Proposition 1 it follows that there is a

Gaussian process (Y ′′
t )t∈Z which is a strictly stationary solution of

Y ′′
t −

p∑

k=1

ΨkY ′′
t−k =

q∑

k=0

Θ̃k W ′′
t−k =

q∑

k=0

Θk Z ′′
t−k, t ∈ Z.

In particular, this solution is also weakly stationary. Hence, it follows from The-
orem 3 that z �→ M(z) has only removable singularities on the unit circle and that
(17) has a solution g ∈ C

m , since EZ ′′
0 = U∗(vT, uT)T. Hence, we have established

that (i) and (iii′), and hence (iii), of Theorem 2 are necessary conditions for a strictly
stationary solution to exist.

To see the necessity of conditions (ii) and (ii′), we need the following lemma, which
is interesting in itself since it expresses the Laurent coefficients of M(z) in terms of
the Jordan canonical decomposition of Φ.

Lemma 2 With the notations of Theorem 2 and those introduced after Proposition 1,
suppose that condition (i) of Theorem 2 holds, i.e., that M(z) has only removable sin-
gularities on the unit circle. Denote by M(z) = ∑∞

j=−∞ M j z j the Laurent expansion
of M(z) in a neighborhood of the unit circle. Then
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M j := (MT
j , MT

j−1, . . . , MT
j−p+1)

T = N jU
∗
(

Ids 0s,d−s

0d−s,s 0d−s,d−s

)
∀ j ∈ Z.

(44)

In particular,

M jU Zt− j = N j Zt− j − N jU
∗(0T

s , uT)T ∀ j, t ∈ Z. (45)

Proof Define 
 :=
(

Ids 0s,d−s

0d−s,s 0d−s,d−s

)
, let (Z ′

t )t∈Z be an i.i.d. N (0d , U∗
U )-dis-

tributed noise sequence and define Y ′
t := ∑∞

j=−∞ M jU Z ′
t− j . Then (Y ′

t )t∈Z is a
weakly and strictly stationary solution of P(B)Y ′

t = Q(B)Z ′
t by Theorem 3, and

the entries of M j decrease geometrically as | j | → ∞. By Proposition 1, the pro-
cess (Y ′

t )t∈Z defined by Y ′
t = (Y ′

t
T
, Y ′

t−1
T
, . . . , Y ′

t−p+1
T
) = ∑∞

j=−∞ M jU Z ′
t− j is a

strictly stationary solution of

Y ′
t − Φ Y ′

t−1 =
q∑

j=0

Θ j Z ′
t− j , t ∈ Z. (46)

Denoting Θ j = 0mp,d for j ∈ Z \ {0, . . . , q}, it follows that
∑∞

k=−∞(Mk −
Φ Mk−1)U Z ′

t−k = ∑∞
k=−∞ Θk Z ′

t−k , and multiplying this equation from the right by

Z ′T
t− j , taking expectations and observing that M(z)
 = M(z). We conclude that

(M j − Φ M j−1)U = (M j − Φ M j−1)
U = Θ jU
∗
U ∀ j ∈ Z. (47)

Next observe that since (Y ′
t )t∈Z is a strictly stationary solution of (46), it follows

from Theorem 1 that (Y ′′
t )t∈Z, defined by Y ′′

t = ∑∞
j=−∞ N j Z ′

t− j , is also a strictly
stationary solution of (46). By precisely the same argument as above it follows that

(N j − Φ N j−1)U
∗
U = Θ jU

∗
U ∀ j ∈ Z. (48)

Now let L j := M j − N jU
∗
, j ∈ Z. Then L j − ΦL j−1 = 0mp,d from (47) and

(48), and the entries of L j decrease exponentially as | j | → ∞ since so do the entries
of M j and N j . It follows that for h ∈ {1, . . . , H} and j ∈ Z we have

I h S−1L j − Φh I h S−1L j−1

= I h

⎛

⎜⎝S−1L j −
⎛

⎜⎝
Φ1

. . .

ΦH

⎞

⎟⎠ S−1L j−1

⎞

⎟⎠ = 0rh+1−rh ,d . (49)

Since Φh is invertible for h ∈ {1, . . . , H} such that λh �= 0, this gives I h S−1L0 =
Φ

− j
h I h S−1L j for all j ∈ Z and λh �= 0. Since for |λh | ≥ 1, ‖Φ− j

h ‖ ≤ κ jmp for all
j ∈ N0 for some constant κ , it follows that ‖I h S−1L0‖ ≤ κ jmp‖I h S−1L j‖, which
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converges to 0 as j → ∞ by the geometric decrease of the coefficients of L j as
j → ∞, so that I h S−1Lk = 0 for |λh | ≥ 1 and k = 0 and hence for all k ∈ Z.
Similarly, letting j → −∞, it follows that I h S−1Lk = 0 for |λh | ∈ (0, 1) and k = 0
and hence for all k ∈ Z. Finally, for h ∈ {1, . . . , H} such that λh = 0 observe that
I h S−1Lk = Φ

mp
h I h S−1Lk−mp for k ∈ Z by (49), and since Φ

mp
h = 0, this shows that

I h S−1Lk = 0 for k ∈ Z. Summing up, we have S−1Lk = 0 and hence Mk = N kU∗

for k ∈ Z, which is (44). Equation (45) then follows from (15), since

M jU Zt− j = M j

(
wt− j

u

)
= N jU

∗
(

wt− j

0d−s

)
= N jU

∗
(

U Zt− j −
(

0
u

))
.

��

Returning to the proof of the necessity of conditions (ii) and (ii′) for a strictly
stationary solution to exist, observe that

∑∞
j=−∞ N j Zt− j converges almost surely

absolutely by (42), and since the entries of N j decrease geometrically as | j | → ∞,
this together with (45) implies that

∑∞
j=−∞ M jU Zt− j converges almost surely abso-

lutely, which shows that (ii′) must hold. To see (ii), observe that for j ≥ mp + q we
have

N j,h =
⎧
⎨

⎩
Φ

j−q
h

q∑
k=0

Φ
q−k
h I h S−1Θk, |λh | ∈ (0, 1),

0, |λh | �∈ (0, 1),

while

N−1,h =
⎧
⎨

⎩
Φ

−1−q
h

q∑
k=0

Φ
q−k
h I h S−1Θk, |λh | > 1,

0, |λh | ≤ 1.

Since a strictly stationary solution of (39) exists, it follows from Theorem 1 that
E log+ ‖N j Z0‖ < ∞ for j ≥ mp + q and E log+ ‖N−1 Z0‖ < ∞. Together with
(45) this shows that condition (ii) of Theorem 2 is necessary.

5.2 The sufficiency of the conditions and uniqueness of the solution

In this subsection we shall show that (i), (ii), (iii) as well as (i), (ii′), (iii) of Theorem 2
are sufficient conditions for a strictly stationary solution of (1) to exist, and prove the
uniqueness assertion.

(a) Assume that conditions (i), (ii) and (iii) hold for some v ∈ C
s and g ∈ C

m .
Then E log+ ‖N−1 Z0‖ < ∞ and E log+ ‖N mp+q Z0‖ < ∞ by (ii) and (45).
In particular, since S is invertible, E log+ ‖N−1,h Z0‖ < ∞ for |λh | > 1 and
E log+ ‖Nmp+q,h Z0‖ < ∞ for |λh | ∈ (0, 1). The invertibility of Φh for λh �= 0
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then shows that

E log+
∥∥∥∥∥

q∑

k=0

Φ
q−k
h I h S−1Θk Z0

∥∥∥∥∥ < ∞ ∀ h ∈ {1, . . . , H} : |λh |

∈ (0, 1) ∪ (1,∞). (50)

Now let (W ′′′
t )t∈Z be an i.i.d. N

((
v

u

)
,

(
Ids 0s,d−s

0d−s,s 0d−s,d−s

))
-distributed

sequence and define Z ′′′
t := U∗W ′′′

t . Then EZ ′′′
t = U∗(vT, uT)T. By conditions

(i) and (iii) and Theorem 3, (Y ′′′
t )t∈Z, defined by Y ′′′

t := P(1)−1 Q(1)EZ ′′′
0 +∑∞

j=−∞ M j (W ′′′
t− j − (vT, uT)T), is a weakly stationary solution of the equa-

tion Y ′′′
t − ∑p

k=1 ΨkY ′′′
t−k = ∑q

k=0 Θk Z ′′′
t−k , and obviously, it is also strictly

stationary. It now follows in complete analogy to the necessity proof pre-
sented in Sect. 5.1 that Ah = 0 and Chu = (αh,1, . . . , αh,rh+1−rh

)T for
|λh | = 1, where (Ah, Ch) is defined as in (43) and αh,1 = 0 if λh = 1.

Hence
∑q

k=0 Φ
q−k
h I h S−1Θ̃k W0 = (αh,1, . . . , αh,rh+1−rh

)T for |λh | = 1. By
Theorem 1, this together with (50) implies the existence of a strictly stationary
solution of (39), so that a strictly stationary solution (Yt )t∈Z of (1) exists by
Proposition 1.

(b) Now assume that conditions (i), (ii′) and (iii) hold for some v ∈ C
s and g ∈ C

m

and define Y = (Yt )t∈Z by (18). Then Y is clearly strictly stationary. Since
U Zt = (wT

t , uT), we further have, using (iii), that

P(B)Yt = P(1)g − P(1)M(1)

(
v

u

)
+ Q(B)U∗

(
Ids 0s,d−s

0d−s,s 0d−s,d−s

) (
wt

u

)

= Q(1)U∗
(

v

u

)
− Q(1)U∗

(
v

0d−s

)
+ Q(B)U∗

(
wt

0d−s

)

= Q(B)U∗
(

wt

u

)
= Q(B)Zt

for t ∈ Z, so that (Yt )t∈Z is a solution of (1).
(c) Finally, the uniqueness assertion follows from the fact that, by Proposition 1, (1)

has a unique strictly stationary solution if and only if (39) has a unique strictly
stationary solution. By Theorem 1, the latter is equivalent to the fact that Φ

does not have an eigenvalue on the unit circle, which, in turn, is equivalent to
det P(z) �= 0 for z on the unit circle, since det P(z) = det(Idmp − Φz) (e.g.,
Gohberg et al. 1982, p. 14). This completes the proof of Theorem 2.

6 Discussion and consequences of the main results

In this section, we shall discuss the main results and consider special cases. Some con-
sequences of the results are also listed. We start with some comments on Theorem 1.
If Ψ1 has only eigenvalues of absolute value in (0, 1) ∪ (1,∞), then a much simpler
condition for stationarity of (3) can be given:
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Corollary 1 Let the assumptions of Theorem 1 be satisfied and suppose that Ψ1 has
only eigenvalues of absolute value in (0, 1)∪(1,∞). Then a strictly stationary solution
of (3) exists if and only if

E log+
∥∥∥∥∥

( q∑

k=0

Ψ
q−k
1 Θk

)
Z0

∥∥∥∥∥ < ∞. (51)

Proof It follows from Theorem 1 that there exists a strictly stationary solution if and
only if (10) holds for every h ∈ {1, . . . , H}. But this is equivalent to

E log+
∥∥∥∥∥

( q∑

k=0

(S−1Ψ1S)q−kIdm S−1Θk

)
Z0

∥∥∥∥∥ < ∞,

which, in turn, is equivalent to (51), since S is invertible and hence for a random vector
R ∈ C

m we have E log+ ‖S R‖ < ∞ if and only if E log+ ‖R‖ < ∞. ��
Remark 1 Suppose that Ψ1 has only eigenvalues of absolute value in (0, 1) ∪ (1,∞).
Then E log+ ‖Z0‖ is a sufficient condition for (3) to have a strictly stationary solution,
since it implies (51). But it is not necessary. For example, suppose that q = 1, m =
d = 2,

Ψ1 =
(

2 0
0 3

)
, Θ0 = Id2, and Θ1 =

(−1 −1
1 −4

)
, so that

1∑

k=0

Ψ
q−k
1 Θk =

(
1 −1
1 −1

)
.

By (51), a strictly stationary solution exists if the i.i.d. noise (Zt )t∈Z satisfies Z0 =
(R0, R0 + R′

0)
T, where R′

0 is a random variable with finite log moment and R0 is
a random variable with infinite log moment. This means that E log+ ‖Z0‖ could be
infinite.

An example like the one in Remark 1 cannot occur if m = d and the matrix∑q
k=0 Ψ

q−k
1 Θk is invertible. More generally, we have the following result.

Corollary 2 Let the assumptions of Theorem 1 be satisfied and suppose that Ψ1 has
only eigenvalues of absolute value in (0, 1)∪ (1,∞). Suppose further that d ≤ m and
that

∑q
k=0 Ψ

q−k
1 Θk has full rank d. Then a strictly stationary solution of (3) exists if

and only if E log+ ‖Z0‖ < ∞.

Proof The sufficiency of the condition has been observed in Remark 1, and for the
necessity, observe that with A := ∑q

k=0 Ψ
q−k
1 Θk and U := AZ0 we must have

E log+ ‖U‖ < ∞ by (51). Since A has rank d, the matrix AT A ∈ C
d×d is invertible

and we have Z0 = (AT A)−1 ATU , i.e., the components of Z0 are linear combinations
of those of U . It follows that E log+ ‖Z0‖ < ∞. ��

Next we shall discuss the conditions of Theorem 2 in more detail. The following
remark is obvious from Theorem 2. It implies, in particular, the well-known fact that
the conditions E log+ ‖Z0‖ < ∞ and det P(z) �= 0 for all z on the unit circle are
sufficient for the existence of a strictly stationary solution.
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Remark 2 (a) E log+ ‖Z0‖ < ∞ is a sufficient condition for (ii) of Theorem 2.
(b) det P(1) �= 0 is a sufficient condition for (iii) of Theorem 2.
(c) det P(z) �= 0 for all z on the unit circle is a sufficient condition for (i) and (iii)

of Theorem 2.

With the notation of Theorem 2, define

Q̃(z) := Q(z)U∗
(

Ids 0s,d−s

0d−s,s 0d−s,d−s

)
, (52)

so that M(z) = P−1(z)Q̃(z). It is natural to ask if conditions (i) and (iii) of Theorem 2
can be replaced by a removability condition on the singularities on the unit circle of
(det P(z))−1 det(Q̃(z)) if d = m. The following corollary shows that this condition
is indeed necessary, but it is not sufficient as pointed out in Remark 3.

Corollary 3 Under the assumptions of Theorem 1, with Q̃(z) as defined in (52), a
necessary condition for a strictly stationary solution of the ARMA(p, q) equation
(1) to exist is that the function z �→ | det P(z)|−2det(Q̃(z)Q̃(z)∗) has only remov-
able singularities on the unit circle. If additionally d = m, then a necessary con-
dition for a strictly stationary solution to exist is that the matrix rational function
z �→ (det P(z))−1 det(Q̃(z)) has only removable singularities on the unit circle.

Proof The second assertion is immediate from Theorem 2, and the first assertion fol-
lows from the fact that if M(z) as defined in Theorem 2 has only removable singularities
on the unit circle, then so does M(z)M(z)∗ and hence det(M(z)M(z)∗). ��
Remark 3 In the case d = m and E log+ ‖Z0‖ < ∞, the condition that the matrix
rational function z �→ (det P(z))−1det Q̃(z) has only removable singularities on
the unit circle is not sufficient for the existence of a strictly stationary solution
of (3). For example, suppose that p = q = 1, m = d = 2, Ψ1 = Θ0 =
Id2,Θ1 =

(−1 0
1 −1

)
, (Zt )t∈Z is an i.i.d. standard normal sequence and U = Id2.

Then det P(z) = det Q̃(z) = (1 − z)2, but it does not hold that Ψ1Θ0 + Θ1 = 0,
so that condition (iii) of Theorem 1 is violated and no strictly stationary solution can
exist.

Next, we shall discuss condition (i) of Theorem 2 in more detail. Recall (e.g.,
Kailath 1980) that a C

m×m matrix polynomial R(z) is a left-divisor of P(z), if there
is a matrix polynomial P1(z) such that P(z) = R(z)P1(z). The matrix polynomials
P(z) and Q̃(z) are left-coprime, if every common left-divisor R(z) of P(z) and Q̃(z)
is unimodular, i.e., the determinant of R(z) is constant in z. In that case, the matrix
rational function P−1(z)Q̃(z) is also called irreducible. With Q̃ as defined in (52), it
is then easy to see that condition (i) of Theorem 2 is equivalent to

(i′) There exist C
m×m-valued matrix polynomials P1(z) and R(z) and a C

m×d -val-
ued matrix polynomial Q1(z) such that P(z) = R(z)P1(z), Q̃(z) = R(z)Q1(z)
for all z ∈ C and det P1(z) �= 0 for all z on the unit circle.
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That (i′) implies (i) is obvious, and that (i) implies (i′) follows by taking R(z) as
the greatest common left-divisor (cf. Kailath 1980, p. 377) of P(z) and Q̃(z). The
remaining right-factors P1(z) and Q1(z) are then left-coprime, and since the matrix
rational function M(z) = P−1(z)Q̃(z) = P−1

1 (z)Q1(z) has no poles on the unit cir-
cle, it follows from page 447 in Kailath (1980) that det P1(z) �= 0 for all z on the unit
circle, which establishes (i′). As an immediate consequence, we have the following
result.

Remark 4 In the notation of Theorem 2 and (52), if P(z) and Q̃(z) are left-coprime
then condition (i) of Theorem 2 is equivalent to det P(z) �= 0 for all z on the unit
circle.

Next we show how a slight extension of Theorem 4.1 of Bougerol and Picard (1992),
which characterizes the existence of a strictly stationary non-anticipative solution of
the ARMA(p, q) equation (1), can be deduced from Theorem 2. By a non-anticipative
strictly stationary solution we mean a strictly stationary solution Y = (Yt )t∈Z such that
for every t ∈ Z, Yt is independent of the sigma algebra generated by (Zs)s>t , and by a
causal strictly stationary solution we mean a strictly stationary solution Y = (Yt )t∈Z

such that for every t ∈ Z, Yt is measurable with respect to the sigma algebra gener-
ated by (Zs)s≤t . Clearly, since (Zt )t∈Z is assumed to be i.i.d., every causal solution
is also non-anticipative. The equivalence of (i) and (iii) in the theorem below was
already obtained by Bougerol and Picard (1992) under the additional assumption that
E log+ ‖Z0‖ < ∞.

Theorem 4 If, under the assumptions of Theorem 2, the matrix polynomials P(z)
and Q̃(z), defined in the theorem and in (52), are left-coprime, then the following are
equivalent.

(i) There exists a non-anticipative strictly stationary solution of (1).
(ii) There exists a causal strictly stationary solution of (1).

(iii) det P(z) �= 0 for all z ∈ C such that |z| ≤ 1 and if M(z) = ∑∞
j=0 M j z j

denotes the Taylor expansion of M(z) = P−1(z)Q̃(z), then

E log+ ‖M jU Z0‖ < ∞ ∀ j ∈ {mp + q − p + 1, . . . , mp + q}. (53)

Proof The implication “(iii) ⇒ (ii)” is immediate from Theorem 2 and Eq. (18), and
“(ii) ⇒ (i)” is obvious since (Zt )t∈Z is i.i.d. Let us show that “(i) ⇒ (iii)”: since a
strictly stationary solution exists, the function M(z) has only removable singularities
on the unit circle by Theorem 2. Since P(z) and Q̃(z) are left-coprime, this implies
by Remark 4 that det P(z) �= 0 for all z ∈ C such that |z| = 1. In particular, by The-
orem 2, the strictly stationary solution is unique and given by (18). By assumption,
this solution must then be non-anticipative, so that we conclude that the distribution
of M jU Zt− j must be degenerate to a constant for all j ∈ {−1,−2, . . .}. But since
U Z0 = (wT

0 , uT)T and M j = (M ′
j , 0m,d−s) with certain matrices M ′

j ∈ C
m,s , it

follows for j ≤ −1 that M jU Z0 = M ′
jw0, so that M ′

j = 0 since no non-trivial
linear combination of the components of w0 is constant a.s. It follows that M j = 0
for j ≤ −1, i.e., M(z) has only removable singularities for |z| ≤ 1. Since P(z) and
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Q̃(z) are assumed to be left-coprime, it follows from page 447 in Kailath (1980) that
det P(z) �= 0 for all |z| ≤ 1. Equation (53) is an immediate consequence of Theorem 2.

��
It may be possible to extend Theorem 4 to situations in which P(z) and Q̃(z) are

not left-coprime, but we did not investigate this question. The last result is on the
interplay between the existence of strictly and of weakly stationary solutions of (1)
when the noise is i.i.d. with finite second moments:

Theorem 5 Let m, d, p ∈ N, q ∈ N0, and let (Zt )t∈Z be an i.i.d. sequence of C
d-

valued random vectors with finite second moment. Let Ψ1, . . . , Ψp ∈ C
m×m and

Θ0, . . . , Θq ∈ C
m×d . Then the ARMA(p, q) equation (1) admits a strictly stationary

solution if and only if it admits a weakly stationary solution, and in that case, the
solution given by (20) is both a strictly stationary and weakly stationary solution of
(1).

Proof It follows from Theorem 3 that if a weakly stationary solution exists, then one
such solution is given by (20), which is also clearly strictly stationary. On the other
hand, if a strictly stationary solution exists, then by Theorem 2, one such solution is
given by (18), which is clearly weakly stationary. ��

Finally, we remark that most of the results presented in this paper can be applied also
to the case when (Zt )t∈Z is an i.i.d. sequence of C

d×d ′
random matrices and (Yt )t∈Z

is C
m×d ′

-valued. This can be seen by stacking the columns of Zt into a C
dd ′

-variate
random vector Z ′

t , those of Yt into a C
md ′

-variate random vector Y ′
t , and considering

the matrices

Ψ ′
k :=

⎛

⎜⎝
Ψk

. . .

Ψk

⎞

⎟⎠ ∈ C
md ′×md ′

and Θ ′
k :=

⎛

⎜⎝
Θk

. . .

Θk

⎞

⎟⎠ ∈ C
md ′×dd ′

.

The question of existence of a strictly stationary solution of (1) with matrix-val-
ued Zt and Yt is then equivalent to the existence of a strictly stationary solution of
Y ′

t − ∑p
k=1 Ψ ′

kY ′
t−k = ∑q

k=0 Θ ′
k Z ′

t−k .

Acknowledgments We would like to thank Jens-Peter Kreiß and two referees for helpful comments

References

Athanasopoulos, G., Vahid, F. (2008). VARMA versus VAR for macroeconomic forecasting. Journal of
Business and Economic Statistics, 26, 237–252.

Bougerol, P., Picard, N. (1992). Strict stationarity of generalized autoregressive processes. The Annals of
Probability, 20, 1714–1730.

Brockwell, P. J., Davis, R. A. (1991). Time series: Theory and methods (2nd ed.). New York, NY: Springer.
Brockwell, P. J., Lindner, A. (2010). Strictly stationary solutions of autoregressive moving average equa-

tions. Biometrika, 97, 765–772.
Gohberg, I, Lancaster, P., Rodman, L. (1982). Matrix polynomials. New York, NY: Academic Press.
Golub, G. H., van Loan, C. F. (1996). Matrix computations (3rd ed.). Baltimore, London: Johns Hopkins.

123



Strictly stationary multivariate ARMA processes 1119

Kailath, R. (1980). Linear systems. Englewood Cliffs, NJ: Prentice-Hall.
Kallenberg, O. (2002). Foundations of modern probability (2nd ed.). New York, NY: Springer.
Klein, A., Mélard, G., Spreij, P. (2005). On the resultant property of the Fisher information matrix of a

vector ARMA process. Linear Algebra and its Applications, 403, 291–313.

123


	Strictly stationary solutions of multivariate ARMA equations with i.i.d. noise
	Abstract
	1 Introduction
	2 Main results
	3 Proof of Theorem 1
	3.1 The necessity of the conditions
	3.1.1 The case |λ| (0,1)
	3.1.2 The case |λ|>1
	3.1.3 The case |λ|=1 and symmetric noise (Zt)
	3.1.4 The case |λ|=1 with not necessarily symmetric noise (Zt)

	3.2 The sufficiency of the conditions
	3.3 The uniqueness of the solution

	4 Proof of Theorem 3
	5 Proof of Theorem 2
	5.1 The necessity of the conditions
	5.2 The sufficiency of the conditions and uniqueness of the solution

	6 Discussion and consequences of the main results
	Acknowledgments
	References


