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Abstract The statistic introduced in Fortiana and Grané (J R Stat Soc B 65(1):115–
126, 2003) is modified so that it can be used to test the goodness-of-fit of a censored
sample, when the distribution function is fully specified. Exact and asymptotic dis-
tributions of three modified versions of this statistic are obtained and exact critical
values are given for different sample sizes. Empirical power studies show the good
performance of these statistics in detecting symmetrical alternatives.

Keywords Goodness-of-fit · Censored samples · Maximum correlation · Exact
distribution · L-statistics

1 Introduction

The usual way to measure system reliability is to test completed products or compo-
nents, under conditions that simulate real life, until failure occurs. One may think that
the more data available, the more confidence one will have in the reliability level, but
this practice is often expensive and time-consuming. Hence, it is of special interest to
analyze product life before all test units fail. This situation leads to censored samples
that are encountered naturally in reliability studies. The present paper is concerned on
goodness-of-fit tests for this type of data with particular censoring schemes.

Let y1, . . . , yn be independent and identically distributed (iid) random variables
with cumulative distribution function (cdf) F and consider the ordered sample
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1188 A. Grané

y(1) < · · · < y(n). In the following, we adopt the notation of Stephens and D’Agostino
(1986). When some of the observations are missing the sample is said to be censored.
If all the observations less than y(s) (s > 1) are missing the sample is left censored
and if all the observations greater than y(r) (r < n) are missing, it is right censored;
in either case the sample is said to be singly censored. If the observations are missing
at both ends, the sample is doubly censored. Censoring may occur for random values
of s or r (Type I or time censoring) or for fixed values (Type II or failure censoring).

In Fortiana and Grané (2003), we proposed a goodness-of-fit statistic for complete
samples to test the null hypothesis H0 : F(y) = F0(y), where F0(y) is a com-
pletely specified cdf, or equivalently to test that x1, . . . , xn , where xi = F0(yi ), are
iid random variables uniformly distributed in the [0, 1] interval. The statistic is based
on Hoeffding’s maximum correlation (see the definition below) between the empirical
cdf and the hypothesized. When there is no censoring, we found out that the test based
on the proposed statistic can advantageously replace those of Kolmogorov–Smirnov,
Cramér–von Mises and Anderson–Darling for a wide range of alternatives. Recently,
Grané and Tchirina (2011) studied the efficiency properties, in the Bahadur sense, of
the test based on Qn and obtain its Bahadur local asymptotic optimality domains.

The purpose of the present paper is to derive the exact distribution of Qn in the
context of censored sampling, with the aim of obtaining a test that performs as well as
the uncensored one, and which provides a competitive tool for the reader. However this
goal is only possible to achieve under some particular censoring schemes like Type I
and Type II, and not under random censoring. Concerning the asymptotic distribution
of Qn , the choice of Type I and Type II censoring schemes is again crucial as it allows
the application of L-statistic-type results in the derivation of the asymptotics for Qn .

Most goodness-of-fit statistics can be regarded as measures of proximity between
two distributions: the empirical and the hypothesized. For instance, the Kolmogo-
rov–Smirnov statistic is based on the supremum distance, whereas Cramér–von Mises
and Anderson–Darling statistics use a weighted L2 distance. Another possibility is
Kulback–Leibler information measure, that was used by Ebrahimi (2001) for testing
uniformity in a general set-up. However, there are few references concerning cen-
sored samples. Lim and Park (2007) adapted Kulback–Leibler information measure
for Type II censored data, for testing normality or exponentiality, but not for uniformity.
Moreover, tests based on Kulback–Leibler information measure (and also on entropy
measures) present similar drawbacks both for complete and censored samples. It is not
possible to obtain the exact distribution of the test statistic and critical values should
be derived by Monte Carlo methods. Sometimes, the asymptotic distribution of the
statistic is approximate and so the asymptotic critical values. Hence, when studying
the power of the uniformity Qn-based test, in the context of censored samples, we
compare it with the adapted versions (adapted, to the censoring schemes considered
in this paper) of classical statistics, such as Kolmogorov–Smirnov, Cramér–von Mises
and Anderson–Darling (Barr and Davidson 1973; Pettitt and Stephens 1976; Stephens
and D’Agostino 1986).

The remaining of paper proceeds as follows: in Sect. 2, the exact distributions of
three modifications of the statistic are deduced and exact critical values are obtained
for different sample sizes and different significance levels. In Sect. 3, we give some
conditions under which the convergence to the normal distribution can be asserted. In
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Exact goodness-of-fit tests for censored data 1189

Sect. 4, we study the power of the exact tests based on these statistics for five parametric
families of alternative distributions with support contained in the [0, 1] interval, where
we conclude that the tests based on our proposals have a good performance in detect-
ing symmetrical alternatives, whereas the tests based on the Kolmogorov–Smirnov,
Cramér–von Mises and Anderson–Darling statistics are biased for some of these alter-
natives. In Sect. 5, we give an application in the engineering context.

2 Exact distributions

We start by introducing Hoeffding’s maximum correlation and recall how the Qn

statistic is obtained in the case of complete samples.
Let F1 and F2 be two cdfs with second order moments. Hoeffding’s maximum

correlation between F1 and F2, henceforth denoted by ρ+(F1, F2), is defined as the
maximum of the correlation coefficients of bivariate distributions having F1 and F2
as marginals:

ρ+(F1, F2) = 1

σ1 σ2

(∫ 1

0
F−

1 (p) F−
2 (p) d p − μ1 μ2

)
, (1)

where F−
i is the left-continuous pseudo-inverses of Fi , μi and σ 2

i are, respectively,
the expectation and variance of Fi , i = 1, 2 (see, e.g., Cambanis et al. 1976). Since
ρ+(F1, F2) equals 1 if and only if F1 = F2 (almost everywhere) up to a scale and
location change, it is a measure of proximity between two distributions and yields a
goodness-of-fit test statistic when considering the empirical and hypothesized distri-
butions.

In Fortiana and Grané (2003), we studied the test of uniformity based on

Qn = sn√
1/12

ρ+(Fn, FU ), (2)

where Fn is the empirical cdf of n iid real-valued random variables, sn is the sample
standard deviation and FU is the cdf of a uniform in [0, 1] random variable. The exact
distribution of Qn was obtained and its small and large sample properties were stud-
ied (see also Grané and Tchirina 2011, where local Bahadur asymptotic optimality
domains for Qn are obtained).

In the following, we deduce the expressions of the modified Qn statistic for sin-
gly- and doubly censored samples and obtain their exact probability density functions
(pdfs) under the null hypothesis of uniformity. For all the statistics, we give tables of
exact critical values for different sample sizes and different significance levels.

2.1 Right-censored samples

Let y(1) < · · · < y(n) be the ordered sample. Suppose that the sample is right censored
of Type I; the yi values are known to be less than a fixed value y∗. The set of available
transformed xi values (xi = F0(yi )) is then x(1) < · · · < x(r) < t , where t = F0(y∗).

123



1190 A. Grané

If the censoring is of Type II, there are again r values x(i), with x(r) the largest and r
fixed.

Proposition 1 Under the null hypothesis of uniformity:

(i) The modified Qn statistic for Type I right-censored data is

1 Qtn =
r+1∑
i=1

ai x(i), (3)

where ai = 6((2i − 1)(r + 1) − n2)/(n2(r + 1)), for 1 ≤ i ≤ r and ar+1 =
6r(n2 − r2 − r)/(n2(r + 1)).

(ii) The modified Qn statistic for Type II right-censored data is

2 Qrn =
r∑

i=1

ai x(i), (4)

where ai = 6((2i −1)r −n2)/(n2r), for 1 ≤ i ≤ r −1 and ar = 6(r −1)(n2 −
r(r − 1))/(n2r).

Proof (i) For type I right-censored data, suppose t (t < 1) is the fixed censoring value.
This value can be added to the sample set (see Stephens and D’Agostino 1986), and
the statistic can be calculated using x(r+1) = t . Note that it is possible to have r = n
observations less than t , since when the value t is added the new sample has size n +1.

From formulas (2) and (1) we have that

Qn = 12

(∫ 1

0
F−

n (p) F−
U (p) d p − 1

2
xn

)
. (5)

Noticing that the pseudo-inverse of the empirical cdf is

F−
n (p) =

{
x(i),

i−1
n < p ≤ i

n , 1 ≤ i ≤ r,
x(r+1),

r
n < p ≤ 1,

for 0 ≤ p ≤ 1, the first summand of (5) is

∫ 1

0
F−

n (p) F−
U (p) d p =

r∑
i=1

∫ i/n

(i−1)/n
x(i) p d p +

n∑
i=r+1

∫ i/n

(i−1)/n
x(r+1) p d p

= 1

2n2

r∑
i=1

(2i − 1)x(i) + 1

2n2 (n2 − r2)x(r+1)

and subtracting the (available) sample mean, the part of (5) between parenthesis is

1

2n2(r + 1)

r∑
i=1

((2i − 1)(r + 1) − n2)x(i) + r(n2 − r2 − r)

2n2(r + 1)
x(r+1).
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Exact goodness-of-fit tests for censored data 1191

(ii) For Type II right-censored data the pseudo-inverse of the empirical cdf is

F−
n (p) =

{
x(i),

i−1
n < p ≤ i

n , 1 ≤ i ≤ r − 1,

x(r),
r−1

n < p ≤ 1,

for 0 ≤ p ≤ 1. Proceeding analogously, the first summand of (5) is

∫ 1

0
F−

n (p) F−
U (p) d p = 1

2n2

r−1∑
i=1

(2i − 1)x(i) + 1

2

(
1 − (r − 1)2

n2

)
x(r)

and subtracting the (available) sample mean, the part of (5) between parenthesis is

1

2n2r

r−1∑
i=1

((2i − 1)r − n2)x(i) + (r − 1)

2n2r
(n2 − r(r − 1))x(r).

��

Under the null hypothesis, 1 Qtn and 2 Qrn are linear combinations of selected order
statistics from the [0, 1] uniform distribution. Therefore their exact probability density
functions can be obtained with the following algorithm, proposed by Dwass (1961),
Matsunawa (1985) and Ramallingam (1989).

For Type I right-censored data, let

bi =
r+1∑
l=i

al = 6

n2 (2i − i2 − 1) + 6

r + 1
(i − 1), i = 1, 2, . . . , r + 1,

let k be the number of distinct non-zero bi ’s, and (ν1, . . . , νk) be the corresponding
multiplicities of (b1, . . . , bk). Defining on C the functions:

G(s) =
⎡
⎣ k∏

j=1

(
s + 1

b j

)ν j

⎤
⎦

−1

, Gl(s) =
(

s + 1

bl

)νl

G(s), l = 1, 2, . . . , k,

the exact pdf of 1 Qtn statistic, under H0, is given by

f1 Qtn (s) =
k∑

l=1

νl∑
m=1

sign(bl) C�
l,mχ

(
s

bl

)

× χ

(
1− s

bl

)
sm−1

(
1− s

bl

)n−m
/

B(m, n − m + 1)

where χ(x) is the indicator of the interval [x > 0], B(a, b) is the Beta function,

C�
l,m =

⎛
⎝ k∏

j=1

(b j )
−ν j

⎞
⎠ Cl,m, Cl,m = G(νl−m)

l (−1/bl)

(νl − m)! ,

and G( j)
l denotes the j-th derivative of Gl .
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1192 A. Grané

Table 1 Lower- and upper-tail critical values of 1 Qtn and 2 Qrn for p proportions of data in the sample

p 5% significance level 2.5% significance level

n = 10 n = 20 n = 30 n = 10 n = 20 n = 30

Critical values for 1 Qtn

0.3 0.2221 1.4577 0.3563 1.3467 0.4288 1.2751 0.1692 1.6314 0.3009 1.4778 0.3760 1.3828

0.4 0.3566 1.6455 0.5260 1.5568 0.6133 1.4925 0.2874 1.8059 0.4590 1.6805 0.5514 1.5952

0.5 0.4867 1.7344 0.6820 1.6820 0.7788 1.6315 0.4071 1.8725 0.6088 1.7917 0.7128 1.7239

0.6 0.5980 1.7228 0.8095 1.7167 0.9104 1.6853 0.5142 1.8326 0.7356 1.8076 0.8450 1.7631

0.7 0.6751 1.6095 0.8935 1.6554 0.9937 1.6465 0.5939 1.6875 0.8243 1.7240 0.9335 1.7067

0.8 0.6994 1.4005 0.9172 1.4956 1.0125 1.5103 0.6278 1.4500 0.8580 1.5414 0.9619 1.5516

0.9 0.6337 1.1368 0.8547 1.2518 0.9443 1.2876 0.5789 1.1735 0.8101 1.2817 0.9067 1.3886

Critical values for 2 Qrn

0.3 0.0999 1.1678 0.2714 1.2105 0.3659 1.1861 0.0684 1.3418 0.2240 1.3423 0.3172 1.2940

0.4 0.2221 1.4577 0.4418 1.4621 0.5531 1.4284 0.1692 1.6314 0.3800 1.5905 0.4938 1.5334

0.5 0.3566 1.6455 0.6066 1.6303 0.7267 1.5943 0.2874 1.8059 0.5359 1.7478 0.6615 1.6906

0.6 0.4867 1.7344 0.7503 1.7110 0.8712 1.6773 0.4071 1.8725 0.6760 1.8119 0.8051 1.7604

0.7 0.5980 1.7228 0.8579 1.6983 0.9722 1.6701 0.5142 1.8326 0.7857 1.7784 0.9098 1.7364

0.8 0.6751 1.6095 0.9141 1.5876 1.0145 1.5666 0.5939 1.6875 0.8493 1.6446 0.9602 1.6141

0.9 0.6994 1.4005 0.8993 1.3818 0.9789 1.3889 0.6278 1.4500 0.8469 1.4180 0.9367 1.4600

Analogously, for Type II right-censored data, the pdf of 2 Qrn is found by applying
the previous algorithm, taking into account that in this case

bi =
r∑

l=i

al = 6

n2 (2i − i2 − 1) + 6

r
(i − 1), i = 1, 2, . . . , r.

Remark 1 For left-censored data, note that from the r largest observations one can
compute the values x∗

(i) = 1 − x(n+1−i), for i = 1, . . . , r , so that the sample becomes
right censored. In Type I censoring, the left-censoring fixed value converts to t∗ = 1−t ,
to be used as the right-censoring fixed point.

Mathematica programs implementing this algorithm are available from the
author. As an illustration of the application, critical values for 5 and 2.5% significance
levels are computed to test the null hypothesis of uniformity. They are reproduced in
Table 1.

In order to show the effect of right censoring on the distribution of Qn , in Fig. 1
we depict the density functions of Qn (complete samples), 1 Qtn (Type I right-cen-
sored data) and 2 Qrn (Type II right-censored data), for different p = 0.9, 0.8, 0.7
proportions of data in samples of size n = 20.
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(a) (b)

Fig. 1 Density functions for a 1 Qtn (Type I right-censored data) and b 2 Qrn (Type II right-censored data),
for different p = 0.9, 0.8, 0.7 proportions of data in samples of size n = 20

2.2 Doubly censored samples

Let x(s) < · · · < x(r), with 1 < s < r < n, be the available xi values from a Type II
doubly censored sample.

Proposition 2 Under the null hypothesis of uniformity, the modified Qn statistic for
Type II doubly censored data is

2 Qsr,n =
r∑

i=s

ai x(i), (6)

where as = 6(s − n2/(r − s + 1))/n2, ai = 6((2i − 1) − n2/(r − s + 1))/n2, for
s + 1 ≤ i ≤ r − 1 and ar = 6(n2 − (r − 1)2 − n2/(r − s + 1))/n2.

Proof Since in this case the pseudo-inverse of the empirical cdf is

F−
n (p) =

⎧⎨
⎩

x(s), 0 < p ≤ s
n ,

x(i),
i−1

n < p ≤ i
n , s + 1 ≤ i ≤ r − 1,

x(r),
r−1

n < p ≤ 1,

for 0 ≤ p ≤ 1, the first summand of (5) is equal to

∫ 1

0
F−

n (p) F−
U (p) d p =

s∑
i=1

∫ i/n

(i−1)/n
x(s) p d p

+
r−1∑

i=s+1

∫ i/n

(i−1)/n
x(i) p d p +

n∑
i=r

∫ i/n

(i−1)/n
x(r) p d p

= 1

2n2 s x(s) + 1

2n2

r−1∑
i=s+1

(2i − 1)x(i)

+ 1

2n2

(
n2 − (r − 1)2

)
x(r).
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1194 A. Grané

Subtracting the (available) sample mean, the part of (5) between parenthesis is

1

2n2

[(
s − n2

r − s + 1

)
x(s) +

r−1∑
i=s+1

(
(2i − 1) − n2

r − s + 1

)
x(i)

+
(

n2 − (r − 1)2 − n2

r − s + 1

)
x(r)

]
.

��
For Type II doubly censored data, the pdf of 2 Qsr,n is found by applying the algo-

rithm described in Sect. 2.1, taking into account that now

bi =
r∑

l=i

al =
{

6
n2 s(1 − s), i = s,
6

n2 (2i − i2 − 1) + 6
r−s+1 (i − s), i = s + 1 . . . , r.

Analogously, it is possible to obtain tables of critical values for different values of
r and s and different sample sizes. A Mathematica program implementing this
algorithm is available from the author. As an illustration of its application, critical
values for 5 and 2.5% significance levels are computed to test the null hypothesis of
uniformity, for symmetric double censoring, where p = r/n, q = s/n and p = 1−q.
They are reproduced in Table 2.

Concerning to the Mathematica programs implementing the pdfs of 1 Qtn , 2 Qrn

and 2 Qsr,n , it should be mentioned that the original formula (2.3) of Ramallingam
(1989) for the pdf consists on a sum of terms, containing indicator functions of over-
lapping intervals. There we obtain an alternative expression taking disjoint intervals

Table 2 Lower- and upper-tail
critical values of 2 Qsr,n for
different values of p = r/n and
q = s/n, where p = 1 − q

p 5% sig. level 2.5% sig. level

n = 10

0.80 0.4458 1.3152 0.3798 1.3978

0.90 0.6994 1.4005 0.6278 1.4500

n = 20

0.80 0.5297 1.1458 0.4790 1.2065

0.85 0.6518 1.2051 0.6006 1.2535

0.90 0.7627 1.2378 0.7136 1.2750

0.95 0.8547 1.2518 0.8101 1.2817

n = 30

0.80 0.5707 1.0752 0.5278 1.1253

0.833 0.6498 1.1195 0.6072 1.1631

0.867 0.7239 1.1519 0.6824 1.1891

0.90 0.7912 1.1736 0.7517 1.2048
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Exact goodness-of-fit tests for censored data 1195

which saves computational resources in calculating the critical values. If k is the num-
ber of distinct non-zero bi ’s and we consider these coefficients ordered in ascending
order, b(1) < · · · < b(k), then the pdf is defined by parts over the partition 0 < b(1) <

· · · < b(k), if all the bi ’s are positive or either over the partition b(1) < · · · < b(k)

if there are negative bi ’s. In all cases, the support of these pdfs is determined by the
interval [min{0, b(1)}, b(k)].

2.3 Expectation and variance

In this section, we obtain expressions for the exact expectation and variance of 2 Qrn

and 2 Qsr,n under the null hypothesis of uniformity. In matrix notation, these statistics
can be written as

2 Qrn = a′ xr , (7)

where xr = (x(1), . . . , x(r))
′, a = (a1, . . . , ar )

′, with ai = 6((2i − 1)r − n2)/(n2r),
for 1 ≤ i ≤ r − 1 and ar = 6(r − 1)(n2 − r(r − 1))/(n2r),

2 Qsr,n = a′ xsr , (8)

where xsr = (x(s), . . . , x(r))
′, a = (as, . . . , ar )

′, with as = 6(s −n2/(r − s +1))/n2,
ai = 6((2i − 1) − n2/(r − s + 1))/n2, for s + 1 ≤ i ≤ r − 1 and ar = 6(n2 − (r −
1)2 − n2/(r − s + 1))/n2.

It is straightforward to prove that when s = 1 and r = n the previous statistics
coincide with the Qn statistic for complete samples (see Proposition 3 of Fortiana and
Grané 2003).

Proposition 3 Under the null hypothesis of uniformity, the exact expectation and
variance of 2 Qrn are given by

E(2 Qrn|H0) = (3n2 + r − 2r2)(r − 1)

n2(n + 1)
, var(2 Qrn|H0) = a′Cr a,

where a is the vector of coefficients of (7) and matrix Cr = (ci j )1≤i, j≤r is defined by
the covariances

ci j =cov((x(i), x( j))|H0)= 1

(n + 2)(n + 1)2
{(n + 1) min(i, j) − i j} , 1 ≤ i, j ≤ r.

Proposition 4 Under the null hypothesis of uniformity, the exact expectation and
variance of 2 Qsr,n are given by

E(2 Qsr,n|H0) = 1

n2(n + 1)

(
(1 + 3(n − r) − 3n2 − 4(n − r)2)(n − r)

+ (3n2 − 1)r + 3r2 − 2r3
)

,

var(2 Qsr,n|H0) = a′Csr a,

123



1196 A. Grané

where a is the vector of coefficients of (8) and matrix Csr = (ci j )s≤i, j≤r , with covar-
iances ci j defined as in Proposition 3, but for s ≤ i, j ≤ r .

Proof (of Propositions 3 and 4). Formulae for the expectation and variance of xr

under the null can be found in David (1981). Expressions for the expectations and
variances of 2 Qrn and 2 Qsr,n are obtained from (7) and (8), respectively, after some
easy but tedious computations. For example, to get the expectation of 2 Qrn substitute

E(xr |H0) =
(

1
n+1 , . . . , r

n+1

)′
for xr in formula (7). ��

3 Asymptotic distributions

In this section, we give conditions under which the asymptotic normality of 1 Qtn, 2 Qrn

and 2 Qsr,n can be established. With the same notation of Sect. 2 and under the null
hypothesis of uniformity:

Proposition 5 If r = o(n), the statistic 2 Qrn is asymptotically normally distributed,
in the sense of

sup
−∞<t<∞

|P(2 Qrn < t) − �μn ,σn (t)| → 0, (n → ∞),

where �μn ,σn is the cdf of a normal random variable with expectation and variance

μn = (3n2 + r − 2r2)(r − 1)

n2(n + 1)
,

σ 2
n = 6(r + 1)

5n4(n + 1)2r

(
5n4(2r − 1) − 15n2(r − 1)r2 + r2(6r3 − 9r2 + r + 1)

)
.

Proof The proof is based on Theorem 4.4 of Matsunawa (1985). Since the assump-
tions of that theorem hold, to assert the convergence of 2 Qrn to the normal distribution
we must prove that

max1≤i≤r |bi |
(n + 1) σn

→ 0, (n → ∞), (9)

where coefficients bi s were defined as bi = 6
n2 (2i−i2−1)+ 6

r (i−1) for i =1, 2, . . . , r .
From formulas (4.6) and (4.7) of Matsunawa (1985), we obtain

μn = 1

n + 1

r∑
i=1

bi = (3n2 + r − 2r2)(r − 1)

n2(n + 1)
,

σ 2
n = 1

(n + 1)2

×
r∑

i=1

b2
i = 6(r + 1)(5n4(2r − 1) − 15n2(r − 1)r2 + r2(6r3 − 9r2 + r + 1))

5n4(n + 1)2r
.
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Exact goodness-of-fit tests for censored data 1197

If r = o(n), condition (9) is fulfilled, since

max
1≤i≤r

|bi | ≤ max
1≤i≤r

(
6

n2 (i − 1)2 + 6

r
(i − 1)

)
= 6(r − 1)

(
r − 1

n2 + 1

r

)
.

��
Corollary 1 Under the assumptions of Proposition 5, an analogous result can be
established for the statistic 1 Qtn with conditional mean and variance

μn = (3n2r − 3r2 − 2r3 − r)/(n2(n + 1)),

σ 2
n = 6r(5n2(2r + 1) − 15n2r(r + 1)2

+(r + 1)2(6r3 + 9r2 + r − 1))/(5n4(n2 + 1)(r + 1)).

Proof The proof is analogous to that of Proposition 5, but taking into account that for
Type I right-censored data coefficients bi s are bi = 6

n2 (2i − i2 − 1) + 6
r+1 (i − 1) for

i = 1, 2, . . . , r + 1. ��
Proposition 6 If r = o(n), the statistic 2 Qsr,n, where s = n − r , is asymptotically
normally distributed, in the sense of

sup
−∞<t<∞

|P(2 Qsr,n < t) − �μn ,σn (t)| → 0, (n → ∞),

where �μn ,σn is the cdf of a normal random variable with expectation and variance

μn = 1

n2(n + 1)

(
(1+3(n−r) − 3n2−4(n − r)2)(n − r)+(3n2 − 1)r +3r2 − 2r3

)
,

σ 2
n = 6

5n4(n + 1)2(n − 2r + 1)

(
19n6 − 4n5(21 + 37r) + 10n4(9 + 44r + 47r2)

−10n3(3 + 34r + 90r2 + 76r3) + n2(1 + 80r + 470r2 + 940r3 + 640r4)

+2r(1 + 2r + 5r2 + 40r3 + 69r4 + 18r5)

− n(1 + 4r + 60r2 + 310r3 + 540r4 + 258r5)
)

.

Proof To prove the convergence of 2 Qsr,n to the normal distribution is equivalent to
proving that (see Theorem 4.4. of Matsunawa 1985)

maxs≤i≤r |bi |
(n + 1) σn

→ 0, (n → ∞). (10)

In the case of doubly censored samples, coefficients bi s were defined as

bi =
{

6
n2 s(1 − s), i = s,
6

n2 (2i − i2 − 1) + 6
r−s+1 (i − s), i = s + 1, . . . , r.
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Introducing s = n − r , we have that

max
s≤i≤r

|bi | = max
s+1≤i≤r

|bi | = 6

n2(2r − n + 1)
max

s+1≤i≤r

∣∣∣ − (i − 1)2(2r − n + 1)

+n2(i − n + r)

∣∣∣.
The function inside the absolute value is a polynomial of second order in i with a
negative leading term. If i takes values from 1 to n −1, this function is always positive
and the maximum is attained at i∗ = [1 + n2/(2(2r − n + 1))], where [·] denotes the
nearest integer. However, since i takes values from s + 1 to r , it is possible that the
maximum is attained at a certain i < i∗. In fact, we have that

if r < i∗ ⇒ max
s≤i≤r

|bi | = |br | < |bi∗ |,
if r ≥ i∗ ⇒ max

s≤i≤r
|bi | = |bi∗ |.

In both cases it holds that

max
s≤i≤r

|bi | ≤ |bi∗ | = 3
(
4 + 5n2 + 12r + 8r2 − 4n(2 + 3r)

)
2(n − 2r + 1)2 .

Expressions for the expectation and variance are obtained after applying formulas
(4.6) and (4.7) of Matsunawa (1985):

μn = 1

n + 1

(
s bs +

r∑
i=s+1

bi

)
, σ 2

n = 1

(n + 1)2

(
s b2

s +
r∑

i=s+1

b2
i

)
.

Finally condition (10) is fulfilled since σ 2
n = O(1/n). ��

Remark 2 Note that in Propositions 5 and 6, the expectation of the limit distribution
is the exact expectation of the statistic. Asymptotic critical values for 2 Qrn and 2 Qsr,n

can be computed from the limit distribution using the corresponding asymptotic vari-
ance given in Propositions 5 and 6, or either the corresponding exact variance given in
Propositions 3 and 4 (see Theorem 4.3 of Matsunawa 1985). In Table 3, we show the
relative error (percentage of its absolute value) with respect to the 5% exact critical
values of 2 Qrn in either situation, for several p proportions of data in a sample of size
n = 30.

4 Power study and comparisons

In this section, we study the power of the tests based on 2 Qrn and 2 Qsr,n for a set of
five parametric families of alternative distributions with support contained in the [0, 1]
interval. They have been chosen so that either the mean or the variance differs from
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Table 3 Relative error
(percentage of its absolute value)
of the 5% asymptotic critical
values of 2 Qrn computed from
the limit distribution using (a)
the exact variance of the statistic
and (b) the asymptotic variance
of the statistic, with respect to
the exact critical values, for p
proportions of data in a sample
of size n = 30

p (a) Exact (%) (b) Asymp. (%)

Lower Upper Lower Upper

0.3 13.69 3.48 29.73 1.47

0.4 6.73 2.30 22.78 3.91

0.5 3.39 1.46 19.93 6.08

0.6 1.47 0.78 18.76 8.20

0.7 0.25 0.20 18.54 10.45

0.8 0.56 0.32 19.02 13.00

0.9 0.95 0.86 20.19 14.04

those of the null distribution, which in each case is obtained for a particular value of
the parameter.

A1. Lehmann alternatives. Asymmetric distributions with cdf Fθ (x) = xθ , for 0 ≤
x ≤ 1 and θ > 0.

A2. Centered distributions having a U-shaped pdf, for θ ∈ (0, 1), or wedge-shaped
pdf, for θ > 1, whose cdf is given by

Fθ (x) =
{ 1

2 (2x)θ , 0 ≤ x ≤ 1/2,

1 − 1
2 (2(1 − x))θ , 1/2 ≤ x ≤ 1.

A3. Compressed uniform alternatives in the [θ, 1 − θ ] interval, for 0 ≤ θ < 1/2.
A4. Centered distributions with parabolic pdf fθ (x) = 1 + θ(6x(1 − x) − 1), for

0 ≤ x ≤ 1 and −2 ≤ θ ≤ 1.
A5. Centered distributions with pdf given by

fθ (x) =
√

6θ√
π eθ/2 erf

(√
3θ/2

) exp{θ(6x(1 − x) − 1)},

for 0 ≤ x ≤ 1 and θ > 0, where erf(x) = 2√
π

∫ x
0 e−t2

dt is the error function.

The power of the tests increases with the proportion of data in the sample. To illus-
trate this finding in Fig. 2, we depicted the power functions of the 5% significance
level test based on 2 Qrn , for p = 0.4, 0.6, 0.8 proportions of data in the sample.
For each value of the parameter, the power was estimated from N = 1000 simulated
samples of size n = 10 from alternatives A1–A3 as the relative frequency of values of
the statistic in the critical region. For each family, we have taken 30 different values
of the corresponding parameter. We used the exact critical values listed in Table 1.

We have compared the power of the test based on 2 Qrn with those based
on classical statistics such as the Kolmogorov–Smirnov, Cramér–von Mises and
Anderson–Darling. Modified versions of these statistics for censored samples, as well
as their critical values, can be found in Barr and Davidson (1973), Pettitt and Stephens
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Fig. 2 Power functions of the 5% significance level test based on 2 Qrn , for different p proportions of data
in samples of size n = 10, for a A1 alternative, b A2 alternative and c A3 alternative
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Fig. 3 Power functions of the 5% significance level tests based on 2 Qrn , 2 Drn , 2W 2
rn and 2 A2

rn for a
p = 0.8 proportion of data in a sample of size n = 25, for a A1 alternative, b, c A2 alternative, d A3
alternative, e A4 alternative and f A5 alternative

(1976) and also in Stephens and D’Agostino (1986). Figure 3 contains the power func-
tions obtained from N = 1000 Type II right-censored samples of size n = 25 and a
proportion of data of p = 0.8 for A1–A5 alternatives. For each family, we have taken
30 different values of the corresponding parameter. We have denoted by 2 Drn, 2W 2

rn
and 2 A2

rn the modified versions of the Kolmogorov–Smirnov, Cramér–von Mises and
Anderson–Darling statistics, respectively. Sample size and data proportion values of
n = 25 and p = 0.8 were chosen so that the critical values reproduced in Stephens and
D’Agostino (1986) were appropriate for comparison. For the test based on 2 Qrn , we
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Fig. 4 Power functions of the 5% significance level tests based on 2 Qsr,n , 2W 2
sr,n and 2 A2

sr,n for n = 20
and p = 0.9, for a A1 alternative, b A2 alternative, c A3 alternative, d A4 alternative and e A5 alternative

computed the exact critical regions. From Fig. 3, we can observe the good performance
of the 2 Qrn statistic in detecting symmetrical alternatives.

We also compared the power of the test based on 2 Qsr,n with those based on the
Cramér–von Mises and Anderson–Darling statistics. Critical values for the modified
versions of these statistics for doubly censored samples were computed by Pettitt and
Stephens (1976). Figure 4 contains the power functions obtained from N = 1000 Type
II doubly censored samples of size n = 20 and p = r/n = 0.9 (q = 1 − p, s = q/n)
for A1–A5 alternatives. Once more, for each family we have taken 30 different values
of the corresponding parameter. We have denoted by 2W 2

rs,n and 2 A2
rs,n the modified

versions of the Cramér–von Mises and Anderson–Darling statistics, respectively. For
the test based on 2 Qsr,n , we computed the exact critical regions, whereas for 2W 2

rs,n

and 2 A2
rs,n we considered the asymptotical ones, since Pettitt and Stephens (1976)

concluded that the distributions of these statistics converge quickly to the asymptot-
ical ones. From Fig. 4, we can observe the good performance of the 2 Qsr,n statistic
in detecting symmetrical alternatives. Note also that the modified versions of the
Cramér–von Mises and Anderson–Darling statistics are biased for A2–A5.

5 Applications

In the context of reliability analysis, the Weibull distribution is perhaps the most
widely used lifetime distribution model. The test based on 2 Qrn turns out to be useful
in detecting the Weibull family of distributions from the standard exponential. We
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Fig. 5 Power functions of the
5% significance level
goodness-of-fit tests based on
2 Qrn , 2 Drn , 2W 2

rn and 2 A2
rn

for a p = 0.8 proportion of data
in a sample of size n = 25, to
detect the Weibull alternative
from the standard exponential
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illustrate this behavior in Fig. 5, where we depict the power functions obtained from
N = 1000 Type II right-censored samples of size n = 25 and p = 0.8 to test the
null hypothesis of standard exponentiality versus the alternative of a Weibull distri-
bution with scale parameter λ = 1 and shape parameter θ > 0. These power curves
are evaluated on 30 different values of the parameter. Note the good performance of
the test based on 2 Qrn in front of the classical ones based on Kolmogorov–Smirnov,
Cramér–von Mises and Anderson–Darling.

6 Concluding remarks

We adapt the goodness-of-fit test based on Qn , introduced in Fortiana and Grané
(2003), for censored samples. We give tables of exact critical values for different
sample sizes and significance levels making these tests easy to implement. The tests
based on the modifications of Qn are consistent for all the families of alternatives
studied, and are more powerful than those based on classical statistics, such as the
Kolmogorov–Smirnov, Cramér–von Mises and Anderson–Darling statistics in detect-
ing symmetrical alternatives.
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