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Abstract In this paper, we discuss empirical likelihood-based inferences for the
Lorenz curve. The profile empirical likelihood ratio statistics for the Lorenz ordinate
are defined under the simple random sampling and the stratified random sampling
designs. It is shown that the limiting distributions of the profile empirical likelihood
ratio statistics are scaled Chi-square distributions with one degree of freedom. We
also derive the limiting processes of the associated empirical likelihood-based Lorenz
processes. Hybrid bootstrap and empirical likelihood intervals for the Lorenz ordinate
are proposed based on the newly developed empirical likelihood theory. Extensive
simulation studies are conducted to compare the relative performances of various con-
fidence intervals for Lorenz ordinates in terms of coverage probability and average
interval length. The finite sample performances of the empirical likelihood-based con-
fidence bands are also illustrated in simulation studies. Finally, a real example is used
to illustrate the application of the recommended intervals.
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2 G. Qin et al.

1 Introduction

The Lorenz (1905) curve was introduced to investigate the problem of measuring
concentrations of wealth in a population. It plots the percentage of total income earned
by various portions of the population when the population is ordered by the size of their
incomes (Csörgö et al. 1998; Gastwirth 1971). Let X be a non-negative random vari-
able with a cumulative distribution function F(x). Assume that F(x) is differentiable.
Gastwirth (1971) provided a general definition of Lorenz curve as follows:

η(t) = 1

μ

∫ ξt

0
xdF(x), t ∈ [0, 1], (1)

where μ = ∫∞
0 xdF(x) is the mean of F , and ξt = F−1(t) is the t th quantile of

F . For a fixed t ∈ [0, 1], the Lorenz ordinate η(t) is the fraction of the total income
owned by holders of the lowest t th fraction of incomes.

The Lorenz curve has been widely utilized in economics and social sciences. It
provides a way for the partial ordering of income distributions (Atkinson 1970). Econ-
omists have used Lorenz dominance to analyze income and earning inequality (Doiron
and Barrett 1996; Sen 1973). The Lorenz curve analysis have been applied in other
areas such as industrial concentration (Hart 1971), reliability (Gail and Gastwirth
1978), and medical and health services research (Chang and Halfon 1997; Hallas and
Støvring 2006).

Since income distribution F is rarely known in practice, the Lorenz curve has to
be estimated from the income data. Let X1, X2, . . . , Xn be independent copies of X .
The Lorenz curve can be empirically estimated by

η̂(t) = 1

μ̂

∫ ξ̂t

0
x dFn(x), (2)

where μ̂ is the sample mean, Fn is the empirical distribution function of the sample,
and ξ̂t = inf{y : Fn(y) ≥ t} is the t th sample quantile.

The asymptotic theory for η̂(t) has been developed in Beach and Davidson (1983).
In addition, Zheng (2002) showed that the empirical Lorenz ordinates are asymptot-
ically and normally distributed when samples are not simple random. Goldie (1977)
and Csörgö et al. (1986) derived the limiting Gaussian processes of the Lorenz process
{̂η(t) : t ∈ [0, 1]}. These asymptotic theories can be used to make inference for the
Lorenz curve. However, the existing normal approximation-based inferential methods
have poor performance when the population distribution F is skewed and t falls in the
tails of the Lorenz curve.

Empirical likelihood (EL), introduced by Owen (1988, 1990), is a powerful non-
parametric method and its advantages over the normal approximation-based methods
have been well-recognized (Hall and La Scala 1990). Over last two decades, empirical
likelihood has been widely applied in many areas such as survey sampling, medical
studies, and econometrics. For survey sampling, Chen and Qin (1993) proposed EL-
based inferences for finite populations with auxiliary information. Zhong and Rao
(2000) and Wu (2004) extended Chen and Qin (1993) approach to data in complex
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Empirical likelihood for the Lorenz curve 3

surveys. In the area of health care, Zhou et al. (2006) developed EL-based inferences
in censored cost regression models and showed that the EL-based method outperforms
the existing method. The other extreme is the skewness of zero costs for some healthy
individuals. Chen and Qin (2003) developed EL-based inferences for data containing
observations that are zero. Finally, we observe that most income data are skewed or
highly skewed data in economics study. Belinga-Hill (2007) considered the interval
estimation for the generalized Lorenz curve. Through some simulation studies, she
showed that the EL method has better performance than that of the normal approxima-
tion method. This motivates us to develop new EL-based methods to make inferences
for the Lorenz curve.

The paper is organized as follows. In Sect. 2, we first define the profile EL ratio
statistic for the Lorenz ordinate under simple random sampling design. Secondly, the
asymptotic distribution of the statistic is shown to be a scaled Chi-square distribu-
tion. Finally, we also derive the limiting process of the EL-based Lorenz process. In
Sect. 3, we extend the EL theory for the Lorenz curve to the stratified random sample.
In Sect. 4, we propose various confidence intervals for the Lorenz ordinate; we also
propose the EL-based confidence bands for the Lorenz curve based on the limiting
Lorenz process. Simulation studies are conducted to evaluate the small sample per-
formances of these intervals and confidence bands. In Sect. 5, we apply the proposed
intervals to a real income data set. Finally, the proof of the EL theorems are given in
Appendix.

2 Empirical likelihood for the Lorenz curve with simple random sample

Let {X1, . . . , Xn} be a simple random sample drawn from the population of X with
c.d.f. F . N is the population size. For a fixed t ∈ (0, 1), the Lorenz ordinate η(t)
satisfies E[X (I (X ≤ ξt ) − η(t))] = 0. So, the empirical likelihood for η(t) can be
defined as follows:

L̃1(η(t)) = sup
p

{
n∏

i=1

pi :
n∑

i=1

pi = 1,
n∑

i=1

pi Di (t) = 0

}
, (3)

where p = (p1, . . . , pn) is a probability vector, Di (t) = Xi [I (Xi ≤ ξt )− η(t)], i =
1, . . . , n. Since Di (t) in (3) depends on unknown population quantile ξt , we substitute
ξt with its consistent estimator ξ̂t = X([nt]), where X([nt]) is the [nt]th ordered value
of Xi s. Then, we get the profile empirical likelihood for η(t):

L1(η(t)) = sup
p

{
n∏

i=1

pi :
n∑

i=1

pi = 1,
n∑

i=1

pi D̂i (t) = 0

}
, (4)

where D̂i (t) = Xi [I (Xi ≤ ξ̂t )− η(t)], i = 1, . . . , n.
A unique maximum for p in (4) exists ifη(t) is inside the convex hull of {X1[I (X1 ≤

ξ̂t )− η(t)], . . . , Xn[I (Xn ≤ ξ̂t )− η(t)]}. By Lagrange multiplier method, the supre-
mum occurs at pi = 1

n {1 + ν(t)D̂i (t)}−1, i = 1, . . . , n, where ν(t) is the solution
to
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4 G. Qin et al.

1

n

n∑
i=1

D̂i (t)

1 + ν(t)D̂i (t)
= 0. (5)

Note that
∏n

i=1 pi , subject to
∑n

i=1 pi = 1, pi ≥ 0, i = 1, 2, . . . , n, attains its
maximum n−n at pi = n−1. So, the profile empirical likelihood ratio for η(t) can be
defined as

R1(η(t)) =
n∏

i=1

(npi ) =
n∏

i=1

{1 + ν(t)D̂i (t)}−1.

The corresponding profile empirical log-likelihood ratio for η(t) is:

l1(η(t)) = −2 log R1(η(t)) = 2
n∑

i=1

log{1 + ν(t)D̂i (t)}. (6)

The following result, proved in Appendix, gives the limiting distribution of l1(η(t)).

Theorem 1 If E(X2) < ∞, n/N −→ 0 and η(t0) = E[X I (X ≤ ξt0)]/E(X) for a
given t = t0 ∈ (0, 1), then the limiting distribution of l1(η(t0)) is a scaled Chi-square

distribution with degree of freedom 1. That is, r1l1(η(t0))
L−→ χ2

1 ,where the scale con-
stant r1 = s2

p(t0)/s
2
d (t0) with s2

p(t0) = ∫∞
0 {x[I (x ≤ ξt0) − η(t0)]}2dF(x), s2

d (t0) =∫∞
0 [(x − ξt0)I (x ≤ ξt0)− xη(t0)]2dF(x)− (t0ξt0)

2.

Theorem 1 can be used to make inference for the Lorenz ordinate η(t) at a fixed t .
However, to make inference for the full Lorenz curve, we need the following theorem:

Theorem 2 If E(X2) < ∞, and n/N −→ 0, then the EL-based Lorenz process
{l1(η(t)) : t ∈ [0, 1]} converges to J 2(t)/s2

p(t) in distribution, where

J (t) = 1

μ

[∫ ξt

0
B(F(x))dx − η(t)

∫ ∞

0
B(F(x))dx

]
, (7)

B is the Brownian bridge on [0, 1], and J (t) is a Gaussian process with mean zero
and the following covariance function:

Cov(J (s), J (t)) = μ−2[σ1(s, t)+ η(s)η(t)σ1(1, 1)− η(t)σ1(s, 1)− η(s)σ1(t, 1)],

with σ1(s, t) = ∫ ξs
0

∫ ξt
0 (F(x ∧ y)− F(x)F(y))dxdy.

3 Empirical likelihood for the Lorenz curve with stratified random sample

Stratified random sampling is an often used sample design in collecting economic
data. Suppose a population X with c.d.f. F(x) is divided into H independent strata
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and the j th stratum X j has the c.d.f Fj (x), for j = 1, . . . , H . Assume that the
population size of the j th stratum is N j , N = ∑H

j=1 N j is the whole population
size. Let X j1, . . . , X jn j be a simple random sample from the j th stratum X j , for

j = 1, . . . , H . Then the stratified random sample has a sample size of n =∑H
j=1 n j .

Furthermore, we assume that n j/N j is small for each j , and sample size of each stra-

tum is proportional to its population size, i.e.,
N j
N = n j

n , j = 1, . . . , H . This set-up for
the stratified random sample has been used in Zheng (2002) for testing Lorenz curves
with non-simple random samples.

Under the stratified random sample design, the Lorenz ordinate η(t) is

η(t) = 1

μ

H∑
j=1

N j

N

∫ ξt

0
xdFj (x) = 1

μ

H∑
j=1

N j

N
E[X j I (X j ≤ ξt )],

where μ = ∫∞
0 xdF(x) = ∑H

j=1
N j
N

∫∞
0 xdFj (x) = ∑H

j=1
N j
N μ j , and μ j =

E(X j ), j = 1, . . . , H . Therefore,

H∑
j=1

N j

N
[E(X j I (X j ≤ ξt ))− μ jη(t)] = 0. (8)

Let pj = (p j1, . . . , p jn j ) be a probability vector, for j = 1, . . . , H . Using (8), the
profile empirical likelihood for η(t) can be defined as follows:

L2(η(t)) = sup

⎧⎨
⎩

H∏
j=1

n j∏
k=1

p jk :
n j∑

k=1

p jk = 1, j = 1, . . . , H,

×
H∑

j=1

N j

N

n j∑
k=1

p jk D̂ jk(t) = 0

⎫⎬
⎭ , (9)

where D̂ jk(t) = X jk I (X jk ≤ ξ̂t ) − X̄ jη(t), k = 1, . . . , n j , X̄ j = 1
n j

∑n j
k=1 X jk,

and ξ̂t = X([nt]) is the [nt]th order statistic of the stratified random sample.
To solve (9), a two-step procedure (see also Zhong and Rao 2000) is proposed here.

The first step is to find the profile EL for η̃1(t), η̃2(t), . . . , η̃H (t):

L21(̃η1(t), . . . , η̃H (t)) = sup

⎧⎨
⎩

H∏
j=1

n j∏
k=1

p jk :
n j∑

k=1

p jk = 1,

×
n j∑

k=1

p jk D̃ jk(t) = 0, j = 1, . . . , H

}

where D̃ jk(t) = X jk I (X jk ≤ ξ̂t )− η̃ j (t), k = 1, . . . , n j , and η̃ j (t) = E[X j I (X j ≤
ξt )], j = 1, . . . , H .
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6 G. Qin et al.

Using the Lagrange multiplier method, the supremum occurs at p jk = 1
n j

1
1+ν j (t)D̃ jk(t)

, where ν1(t), ν2(t), . . . , νH (t) are Lagrange multipliers determined by

estimating functions

1

n j

n j∑
k=1

D̃ jk(t)

1 + ν j (t)D̃ jk(t)
= 0, j = 1, 2, . . . , H. (10)

Then we get that

log L21(̃η1(t), . . . , η̃H (t)) = −
H∑

j=1

n j∑
k=1

log(1 + ν j (t)D̃ jk(t))−
H∑

j=1

n j log n j .

The second step is to solve the following optimal problem to find the profile empir-
ical likelihood for η(t):

L2(η(t))= sup
η̃ j (t), j=1,...,H

⎧⎨
⎩L21(̃η1(t), . . . , η̃H (t)) :

H∑
j=1

N j

N
η̃ j (t) =

H∑
j=1

N j

N
X̄ jη(t)

⎫⎬
⎭.

We use the Lagrange multiplier method once again. Let

L L2 = −
H∑

j=1

n j∑
k=1

log(1 + ν j (t)D̃ jk(t))− nν̃(t)
H∑

j=1

N j

N
(̃η j (t)− X̄ jη(t)).

By (10) and 1
n j

∑n j
k=1

1
1+ν j (t)D̃ jk(t)

= 1, j = 1, . . . , H, solving ∂L L2
∂η j (t)

= 0, we get

that ν j (t) = n
n j

N j
N ν̃(t) = ν̃(t), and

log L2(η(t)) = −
H∑

j=1

n j∑
k=1

log(1 + ν̃(t)D̃ jk(t))−
H∑

j=1

n j log n j ,

where ν̃(t), η̃1(t), η̃2(t), . . . , η̃H (t) satisfy the following system of equations:

1

n j

n j∑
k=1

D̃ jk(t)

1 + ν̃(t)D̃ jk(t)
= 0, j = 1, 2, . . . , H. (11)

η(t) =
∑H

j=1
N j
N η̃ j (t)∑H

j=1
N j
N X̄ j

. (12)

Note that
∏H

j=1
∏n j

k=1 p jk , under the constraint
∑n j

k=1 p jk = 1 for all j, k, attains

its maximum at p jk = N
N j n = n−1

j . So, the profile empirical log-likelihood ratio for
η(t) is:
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Empirical likelihood for the Lorenz curve 7

l2(η(t)) = 2
H∑

j=1

n j∑
k=1

log(1 + ν̃(t)D̃ jk(t)). (13)

To find the limiting distribution of l2(η(t)), we need the Bahadur’s representation
for the sample quantile with stratified samples (see Appendix). Under a series of condi-
tions, Francisco and Fuller (1991) proved the validity of the Bahadur’s representation.
These conditions are not presented here but they are needed in the following theorem.
We refer readers to see Francisco and Fuller’s article for details.

Theorem 3 Under the conditions of Theorem 3 in Francisco and Fuller (1991), if

j = 1, . . . , H, and η(t0) =
∑H

j=1
N j
N E[X j I (X j ≤ξt0 )]∑H
j=1

N j
N E(X j )

for a given t0 ∈ (0, 1), then

the limiting distribution of l2(η(t0)) is a scaled Chi-square distribution with degree

of freedom 1. That is, r2l2(η(t0))
L−→ χ2

1 , where r2 = ψ2
p(t0)

ψ2
d (t0)

with ψ2
p(t0) =∑H

j=1 ρ j V ar [X j I (X j ≤ ξt0)], ψ2
d (t0) =∑H

j=1 ρ j V ar [(X j − ξt0)I (X j ≤ ξt0)].
Remark 1 To calculate l2(η(t0)), existing Splus/R functions like nlmin(g, x, …) can
be used to solve the system of equations (11)–(12) for a given η(t0). We can also use
the following algorithm to compute it: (i) Choose an initial value of ν̃(t0) = 0, (ii)

solve (11) for η̃1(t0), . . . , η̃H (t0), and then compute ηnew(t0) =
∑H

j=1
N j
N η̃ j (t0)∑H

j=1
N j
N X̄ j

, (iii) if

|ηnew(t0)− η(t0)| > ε (ε is a pre-selected small value, e.g., ε = 0.001), then update
ν̃(t0) and go to step (ii), otherwise use (4) to find the value of l2(η(t0)).

Theorem 4 Assume the same conditions as those in Theorem 3. Then the EL-based
Lorenz process {l2(η(t)) : t ∈ [0, 1]} converges to W 2(t)/ψ2

p(t) in distribution, where
W (t) is a Gaussian process with mean zero and the following covariance function:

Cov(W (t),W (s)) =
H∑

j=1

ρ j Cov((X j − ξt )I (X j ≤ ξt ), (X j − ξs)I (X j ≤ ξs)).

4 Confidence intervals/bands for the Lorenz curve and simulation studies

In this section, we construct confidence intervals for the Lorenz ordinate η(t0) with
fixed t0 ∈ (0, 1) and confidence bands for the Lorenz curve under simple random
sampling design, respectively. Simulation studies are also conducted to evaluate finite
sample performances of these intervals and bands.

4.1 Confidence intervals for the Lorenz ordinate

4.1.1 Normal approximation and bootstrap-based intervals for η(t0)

It is well known that the estimate η̂(t0) is asymptotically normal with variance s2
d (t0)

(see Zheng 2002). i.e.,
√

n(̂η(t0)−η(t0)) −→ N (0, s2
d (t0)). So, a (1−α) level normal

approximation (NA)-based confidence interval for η(t0) can be constructed as follows:
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8 G. Qin et al.

(l1, u1) = (̂η(t0)− z1− α
2

ŝd(t0)/
√

n, η̂(t0)+ z1− α
2

ŝd(t0)/
√

n),

where z1−α/2 is the (1 − α/2)th quantile of the standard normal distribution, and
ŝ2

d (t0) = ∫∞
0 [(x − ξ̂t0)I (x ≤ ξ̂t0)− x η̂(t0)]2dFn(x)− (t0ξ̂t0)

2.

Since the estimation of the asymptotic variance of η̂(t0) involves in estimation of
unknown quantile and Lorenz ordinate as well as distribution function, the NA-based
interval may have poor small sample performance particularly when the underlying
income distribution is skewed or have outliers. Instead, bootstrap-based methods could
be useful alternatives for the interval estimation of Lorenz ordinates. Let {X∗

1, . . . , X∗
n}

be a bootstrap re-sample from the original data. The bootstrap version of η̂(t0) is:

η̂∗(t0) =
∑n

i=1 X∗
i I (X∗

i ≤ ξ̂∗
t0)∑n

i=1 X∗
i

, where ξ̂∗
t0 is the t0th sample quantile of X∗′

i s.

After repeatedly drawing bootstrap re-samples from the original data, we gener-
ate K bootstrap copies of η̂(t0) : {̂η∗

k (t0) : k = 1, 2, . . . , K }, where K ≥ 200 is
recommended. The asymptotic variance of η̂(t0) can be estimated by

V ∗ = 1

K − 1

K∑
k=1

(̂η∗
k (t0)− η̄∗(t0))2, where η̄∗(t0) = 1

K

K∑
k=1

η̂∗
k (t0).

Based on this bootstrap variance estimate, two (1 − α) level confidence intervals
(called BV1 and BV2) for η(t0) can be constructed as follows:

(i) BV1 interval: (l2, u2) = (̂η(t0)− z1−α/2V ∗ 1
2 , η̂(t0)+ z1−α/2V ∗ 1

2 ).

(ii) BV2 interval: (l3, u3) = (η̄∗(t0)− z1−α/2V ∗ 1
2 , η̄∗(t0)+ z1−α/2V ∗ 1

2 ).

Another confidence interval for η(t0) is the bootstrap bias correction and acceler-
ation (BCa) interval defined as follows:

(iii) BCa interval: (l4, u4) = (̂η∗
([Kβ1])(t0), η̂

∗
([Kβ2])(t0)), where

β1 = 

(
q + q + zα/2

1 − p(q + zα/2)

)
, β2 = 

(
q + q + z1−α/2

1 − p(q + z1−α/2)

)
,

with p = 1
6

∑n
j=1 ϕ

3
j /(
∑n

j=1 ϕ
2
j )

3
2 , q = −1( 1

K

∑K
k=1 I (̂η∗

k (t0) ≤ η̂(t0))), ϕ j =
η̂(.)(t0)− η̂(− j)(t0), and η̂(− j)(t0) is the η̂(t0) computed by deleting the j th observa-
tion in original data, and η̂(.)(t0) = 1

n

∑n
j=1 η̂(− j)(t0).

4.1.2 Empirical likelihood-based confidence intervals for η(t0)

By Theorem 1, the EL interval for η(t0) can be constructed as follows.

(l5, u5) = {η(t0) : r̂1l1(η(t0)) ≤ χ2
1,1−α},
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Empirical likelihood for the Lorenz curve 9

whereχ2
1,1−α is the (1−α)th quantile of Chi-square distribution with degree of freedom

one, and r̂1 = ŝ2
p(t0)/ŝ

2
d (t0) is a plug-in estimate for r1 with ŝ2

p(t0) = ∫∞
0 {x[I (x ≤

ξ̂t0)− η̂(t0)]}2dFn(x), ŝ2
d (t0) = ∫∞

0 [(x − ξ̂t0)I (x ≤ ξ̂t0)− x η̂(t0)]2dFn(x)− (t0ξ̂t0)
2.

Hybrid bootstrap and empirical likelihood (HBEL) approach has been introduced
in statistical literature to produce confidence intervals for unknown parameters (see
Chen et al. 2003). The EL theory developed in Sect. 2 can be employed to construct
HBEL intervals for η(t0). We summarize the procedure in the following steps:

1. Draw a bootstrap sample of size n, X∗
i s, with replacement from the sample Xi s.

2. Calculate the bootstrap versions of ŝ2
p(t0), ŝ2

d (t0) and l1(η(t0)), respectively:
ŝ∗2

p (t0) = ∫∞
0 {x[I (x ≤ ξ̂∗

t0) − η̂∗(t0)]}2dF∗
n (x), ŝ∗2

d (t0) = ∫∞
0 [(x − ξ̂∗

t0)I (x ≤
ξ̂∗

t0)− x η̂∗(t0)]2dF∗
n (x)− (t0ξ̂∗

t0)
2, l∗1 (̂η(t0)) = 2

∑n
i=1 log{1 + ν∗ D̂∗

i (t0)}, where
F∗

n is the empirical distribution of X∗
i ’s, ξ̂∗

t0 is the t0th quantile of F∗
n , D̂∗

i (t0) =
X∗

i [I (X∗
i ≤ ξ̂∗

t0)− η̂(t0)], and ν∗ is the solution to 1
n

∑n
i=1

D̂∗
i (t0)

1+ν∗ D̂∗
i (t0)

= 0.

3. Repeat the first two steps K times to obtain three sets of bootstrap replications:
{̂s∗2

p,k(t0) : k = 1, . . . , K }, {̂s∗2
d,k(t0) : k = 1, . . . , K }, {l∗1,k (̂η(t0)) : k =

1, . . . , K } (it is recommended that K ≥ 200; in this paper, we take K = 300).

Two new HBEL intervals for η(t0) are defined as follows.

(i) HBEL1 interval: (l6, u6) = {η(t0) : l1(η(t0)) ≤ l∗1,([K (1−α)])(̂η(t0))}, where
l∗1,(k)(̂η(t0)) is the kth ordered value of l∗1,k (̂η(t0))’s.

(ii) HBEL2 interval: (l7, u7) = {η(t0) : r̂1l1(η(t0)) ≤ L∗
([K (1−α)])(̂η(t0))}, where

r̂1 = ŝ2
p(t0)/̂s

2
d (t0), and L∗

(k) is the kth ordered value of {L∗
k = ŝ∗2

p,k

ŝ∗2
d,k

l∗1,k (̂η(t0)) :
k = 1, . . . , K }.

4.2 Empirical likelihood confidence band for the Lorenz curve

Based on Theorem 2, we can construct an asymptotic 100(1 − α)% confidence band
for η(t) on [0, 1]: � = {(t, η(t)) : l1(η(t)) ≤ cα for t ∈ [0, 1]},where cα is the upper
αth quantile of the limiting process {J 2(t)/s2

p(t) : t ∈ [0, 1]} of the EL-based Lorenz
process {l1(η(t)) : t ∈ [0, 1]}. To find cα , we suggest using the bootstrap distribution
of l∗1 (̂η(t)) to approximate the distribution of l1(η(t)) (see also Hall and Owen 1993).
Similar to the procedure used in the previous section, we can generate a large number
of bootstrap copies {l∗1,k (̂η(t)) : k = 1, . . . , K }. Then cα is approximately the upper
αth quantile of {supt∈[0,1] l∗1,1(̂η(t)), . . . , supt∈[0,1] l∗1,K (̂η(t))}.

4.3 Simulation studies

Seven confidence intervals for the Lorenz ordinate η(t0) have been proposed in
Sect. 4.1. In order to compare finite sample performances of these intervals, simu-
lation studies are conducted in this section.

In the simulation studies, the Weibull distribution with the shape parameter a = 1
and the scale parameter b = 2 is chosen to be the underlying income distribution
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Fig. 1 Coverage probabilities of the 95% confidence intervals for the Lorenz ordinates

F(x), respectively. The sample size n is chosen to be 100, 200, respectively. Under
these simulation settings, we generate 10,000 random samples of size n from F(x),
and calculate the coverage probabilities and average interval lengths of 95% level con-
fidence intervals for η(t0) at different t0 using the simulated data. In the computation
of bootstrap and HBEL intervals, we draw K = 300 bootstrap re-samples from the
original samples.

Figures 1 and 2 display the simulation results. From these figures, we observe that
the coverage probabilities of all the intervals are closer to the nominal level as sample
size increases. When t0 falls in both the lower and the upper tails of the Lorenz curve,
the coverage probabilities of the NA intervals are much lower than the nominal level
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Fig. 2 Average length of the 95% confidence intervals for the Lorenz ordinates

particularly when sample size is small (n = 100). The EL intervals have coverage
probabilities closer to the nominal level than those of the NA intervals. However, the
performances of the EL intervals are not stable due to the plug-in estimate of the scale
constant. The HBEL1, HBEL2, BCa, and BV2 intervals outperform the other intervals
in most cases considered here. All the intervals have similar lengths except in the right
tails where the EL and NA intervals have shorter length. Therefore, we recommend
the use of the HBEL1, HBEL2, BCa, and BV2 intervals for the Lorenz ordinate when
income data are skewed data.

To illustrate finite sample performances of the EL-based confidence band defined
in Sect. 4.2, we plot the asymptotic 100(1 − α)% confidence bands for η(t) on [0, 1].
To calculate the critical value cα , we draw K = 5,000 bootstrap re-samples from the
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Fig. 3 The 95% empirical likelihood-based confidence bands for the Lorenz curve. eta = true value of
η(t), etahat = estimated value of η(t), lo EL = lower confidence band, up EL = upper confidence band

original samples. Figure 3 displays the confidence bands. We can see that the bands
cover the true Lorenz curve almost everywhere and the widths of the bands decrease
as sample size increases.

5 Application to real data

The Panel Study of Income Dynamics (PSID) is a longitudinal survey of men, women,
children, and families in the USA. Since 1968, the PSID has been conducted at the
University of Michigan Survey Research Center. It has annually collected information
on US families and to date, approximately 37,500 individuals have been interviewed.
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Fig. 4 95% confidence intervals for the Lorenz ordinates in real data example

The PSID User Guide notes that one commendable aspect of their data lies in the fact
that adults are followed as they grow older, and children are observed as they become
adults and form families of their own. Hill (1992) explained that another feature of
the PSID data came from the fact that they initially collected data in order to study
the dynamics of poverty; as a result too many low income and Black households were
included in the samples. In this paper, we apply our recommended methods to the
total family income data of the year 2000. The sample consists of 7,406 families. The
non-parametric estimates for the Lorenz ordinates with their 95% confidence intervals
are presented in Fig. 4. From this figure, we can see that the proposed intervals have
short interval length for any fixed t . The lower panel in the figure is the enlarged graph
for 100 ∗ (lower/upper confidence bounds − η̂(t)). From the graph, it can be seen that
HBEL1 interval is more stable and has generally shorter interval length.
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6 Appendix: Proof of Theorems

Lemma 1 Under the conditions in Theorem 1, we have

(i)
1

n

∑n

i=1
D̂2

i (t0)
p−→ s2

p(t0), (ii).
1√
n

∑n

i=1
D̂i (t0)

L−→ N (0, s2
d (t0)).

Proof (i) For a given t0, let Di (t0) = Xi (I (Xi ≤ ξt0) − η(t0)). By the law of large
number, we have

1

n

n∑
i=1

D2
i (t0) = 1

n

n∑
i=1

[Xi (I (Xi ≤ ξt0)− η(t0))]2 p−→ E[X (I (X ≤ ξt0)− η(t0))]2

=
∫ ∞

0
{x[I (x ≤ ξt0)− η(t0)]}2dF(x) =: s2

p(t0).

So, we only need to prove that I1(t0) ≡ ∣∣ 1
n

∑n
i=1 D̂2

i (t0)− 1
n

∑n
i=1 D2

i (t0)
∣∣ =

op(1). By the strong consistency of the sample quantile ξ̂t0 , we have that |I (Xi ≤
ξ̂t0)− I (Xi ≤ ξt0)|

p−→ 0, for i = 1, 2, . . . , n. From 1
n

∑n
i=1 |Xi |2−→E(X2) < ∞

a.s., it follows that

|I1(t0)| ≤ 1

n

n∑
i=1

|D̂i (t0)+ Di (t0)||D̂i (t0)− Di (t0)|

≤ 2

n

n∑
i=1

|Xi ||Xi ||I (Xi ≤ ξ̂t0)− I (Xi ≤ ξt0)|
p−→ 0.

(ii) From the Bahadur representation for the sample quantile ξ̂t0 , following (2.3) and

(2.5) in Zheng (2002), i.e., ξ̂t − ξt = t− 1
n

∑n
i=1 I (Xi ≤ξt )

f (ξt )
+ op(n− 1

2 ), and

1

n

n∑
i=1

Xi [I (Xi ≤ ξ̂t )− η(t)] = 1

n

n∑
i=1

[(Xi − ξt )I (Xi ≤ ξt )+ tξt − Xiη(t)]

+op(n
− 1

2 ),

we get that

1√
n

n∑
i=1

D̂i (t0) = 1√
n

n∑
i=1

[Xi (I (Xi ≤ ξ̂t0)− η(t0))]

= √
n

[
1

n

n∑
i=1

(Xi −ξt0)I (Xi ≤ξt0)+ t0ξt0 − 1

n

n∑
i=1

Xiη(t0)

]
+op(1).
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From E[(X − ξt0)I (X ≤ ξt0)− Xη(t0)] = −t0ξt0 , and

Var

(
1√
n

n∑
i=1

[(Xi − ξt0)I (Xi ≤ ξt0)− Xiη(t0)]
)

=
(

1 − n

N

)
Var[(x − ξt0)I (x ≤ ξt0)− xη(t0)]

→
∫ ∞

0
[(x − ξt0)I (x ≤ ξt0)− xη(t0)]2dF(x)− (t0ξt0)

2 =: s2
d (t0),

it follows that 1√
n

∑n
i=1 D̂i (t0)

L−→ N (0, s2
d (t0)). �

The Proof of Theorem 1. Using Lemma 1(i) and the similar method used in Owen
(1990), we can prove that |ν| = Op(n−1/2).By E |X |2 < ∞, we have maxi |D̂i (t0)| ≤
C maxi |Xi | = o(n1/2) a.s.. Then, applying Taylor’s expansion to (6), we have

l1(η(t0)) = 2
n∑

i=1

log{1 + ν D̂i (t0)} = 2
n∑

i=1

(ν D̂i (t0)− 1

2
(ν D̂i (t0))

2)+ r1n (14)

with |r1n| ≤ C
∑n

i=1 |ν D̂i (t0)|3 ≤ C |ν|3 maxi |D̂i (t0)|∑i D̂2
i (t0) = op(1). From

(5), and

n∑
i=1

D̂i (t0)

1 + ν D̂i (t0)
=

n∑
i=1

D̂i (t0)

[
1 − ν D̂i (t0)+ (ν D̂i (t0))2

1 + ν D̂i (t0)

]

=
n∑

i=1

D̂i (t0)−
(

n∑
i=1

D̂2
i (t0)

)
ν +

n∑
i=1

D̂i (t0)(ν D̂i (t0))2

1 + ν D̂i (t0)
,

it follows that ν =
∑n

i=1 D̂i (t0)∑n
i=1 D̂2

i (t0)
+ op(n−1/2). Furthermore, we can get that

n∑
i=1

ν D̂i (t0) =
n∑

i=1

(ν D̂i (t0))
2 + op(1). (15)

Therefore, by Lemma 1, we get that

r1l1(η(t0)) = s2
p(t0)

s2
d (t0)

n∑
i=1

(ν D̂i (t0))
2 + op(1)

=
(

1√
n

∑n
i=1 D̂i (t0)

)2

s2
d (t0)

s2
p(t0)

1
n

∑n
i=1 D̂2

i (t0)
+ op(1) = χ2

1 + op(1).

�
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Lemma 2 Under the conditions in Theorem 2, we have

(i).
1

n

∑n

i=1
D̂2

i (t)
p−→s2

p(t), uniformly on [0, 1]. (ii). 1√
n

∑n

i=1
D̂i (t)

L−→ J (t),

where J (t) is a Gaussian process defined in Theorem 2.

Proof (i) Since {Xi I (Xi ≤ ξt ) : t ∈ [0, 1]} and {X2
i I (Xi ≤ ξt ) : t ∈ [0, 1]}, i =

1, . . . , n, are two sequences of manageable processes with integrable envelops
{|Xi |, i = 1, 2, . . . , n} and {X2

i , i = 1, . . . , n}, respectively, by the uniform law
of large number (Pollard 1990), we get that

1

n

n∑
i=1

D2
i (t)

p−→ s2
p(t), uniformly on [0, 1]. (16)

Note that

∣∣∣∣∣
1

n

n∑
i=1

D̂2
i (t)− 1

n

n∑
i=1

D2
i (t)

∣∣∣∣∣ = op(1), uniformly on [0, 1]. (17)

Then, Lemma 2(i) follows immediately from (16) and (17).
(ii) From Csörgö et al. (1986), we get that

1√
n

n∑
i=1

D̂i (t) = 1√
n

n∑
i=1

Xi [I (Xi ≤ ξ̂t )− η(t)]

= 1√
n

n∑
i=1

[(Xi − ξt )I (Xi ≤ ξt )+ tξt − Xiη(t)] + op(1)

L−→ J (t) = 1

μ

[∫ ξt

0
B(F(x))dx − η(t)

∫ ∞

0
B(F(x))dx

]
,

where J (t) is the Gaussian process defined in Theorem 2. �
The Proof of Theorem 2. By Lemma 2, following the same lines as the proof of The-
orem 1, we have that

l1(η(t)) =
n∑

i=1

(ν D̂i (t))
2 + op(1)

=
(

1√
n

∑n
i=1 D̂i (t)

)2

1
n

∑n
i=1 D̂2

i (t)
+ op(1)

L−→ J 2(t)/s2
p(t),

where op(1) is uniformly on [0,1]. �
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Lemma 3 Under the conditions in Theorem 3, we have

(i) 1
n j

∑n j
k=1 D̃2

jk(t0)
p−→ V ar [X j (I (X j ≤ ξt0)], j = 1, 2, . . . , H.

(ii) 1√
n

∑H
j=1
∑n j

k=1 D̃ jk(t0)
L−→ N (0, ψ2

d (t0)).

Proof (i) Let D jk(t0) = X jk I (X jk ≤ ξt0)− E[X j I (X j ≤ ξt0)]. By the law of large

number, we have that 1
n j

∑n j
k=1 X jk I (X jk ≤ ξt0)

p−→ E[X j I (X j ≤ ξt0)], and

1

n j

n j∑
k=1

D2
jk(t0) = 1

n j

n j∑
k=1

{X jk I (X jk ≤ ξt0)− E[X j I (X j ≤ ξt0)]}2

p−→ Var[X j I (X j ≤ ξt0)]. (18)

Lemma (i) follows from (18) and
∣∣∣ 1

n j

∑n j
k=1 D̃2

jk(t0)− 1
n j

∑n j
k=1 D2

jk(t0)
∣∣∣ = op(1).

(ii) Under the conditions of Theorem 3 in Francisco and Fuller (1991), the following
Bahadur’s representation for the sample quantile ξ̂t0 with stratified random sample is
still valid (see (2.9) and (2.10) in Zheng (2002)), i.e.,

ξ̂t − ξt =
t −∑H

j=1
N j
N

[
1

n j

∑n j
k=1 I (X jk ≤ ξt )

]

f (ξt )
+ op(n

− 1
2 ),

H∑
j=1

N j

N

1

n j

n j∑
k=1

X jk I (X jk ≤ ξ̂t0)

=
H∑

j=1

N j

N

1

n j

n j∑
k=1

(X jk − ξt0)I (X jk ≤ ξt0)+ t0ξt0 + op(n
−1/2).

From 1
n

∑H
j=1
∑n j

k=1 D̃ jk(t0) =∑H
j=1

N j
N

1
n j

∑n j
k=1 D̃ jk(t0), we get that

1√
n

H∑
j=1

n j∑
k=1

D̃ jk(t0) = √
n

H∑
j=1

N j

N

(
1

n j

n j∑
k=1

X jk I (X jk ≤ ξ̂t0)− E[X j I (X j ≤ ξt0)]
)

= √
n

H∑
j=1

N j

N

(
1

n j

n j∑
k=1

(X jk − ξt0)I (X jk ≤ ξt0)

−E[X j I (X j ≤ ξt0)] + t0ξt0

)
+ op(1).

From E( 1
n j

∑n j
k=1 X jk I (X jk ≤ ξt0)) = E[X j I (X j ≤ ξt0)], E( 1

n j

∑n j
k=1 I (X jk

≤ ξt0)ξt0) = Fj (ξt0)ξt0 , E(
∑H

j=1
N j
N

1
n j

∑n j
k=1 I (X jk ≤ ξt0)ξt0) = t0ξt0 , and
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18 G. Qin et al.

Var

⎛
⎝√

n
H∑

j=1

N j

N

1

n j

n j∑
k=1

D̃ jk(t0)

⎞
⎠

= Var

⎛
⎝√

n
H∑

j=1

N j

N

1

n j

n j∑
k=1

(X jk − ξt0)I (X jk ≤ ξt0)

⎞
⎠

=
H∑

j=1

(
N j

N

)2 n

n j

N j − n j

N j
Var[(X j − ξt0)I (X j ≤ ξt0)]

→
H∑

j=1

ρ j Var[(X j − ξt0)I (X j ≤ ξt0)] =: ψ2
d (t0),

it follows that 1√
n

∑H
j=1
∑n j

k=1 D̃ jk(t0)
L−→ N (0, ψ2

d (t0)). �
The Proof of Theorem 3. Using Lemma 3(i) and the similar method used in Owen
(1990), we can prove that |̃ν(t0)| = Op(n−1/2). By E |X j |2 < ∞, j = 1, 2, . . . , H ,

we have maxk |X jk | = o(n1/2
j ) = o(n1/2) a.s. for j = 1, 2, . . . , H . Hence,

maxk |D̃ jk(t0)| ≤ C maxk |X jk | = o(n1/2) a.s., j = 1, 2, . . . , H . Using Taylor’s
expansion to (4), we get

l2(η(t0)) = 2
H∑

j=1

n j∑
k=1

log(1 + ν̃(t0)D̃ jk(t0))

= 2
H∑

j=1

n j∑
k=1

[
ν̃(t0)D̃ jk(t0)− 1

2
(̃ν(t0)D̃ jk(t0))

2
]

+ r2n, (19)

where

|r2n| ≤ C
H∑

j=1

n j∑
k=1

∣∣̃ν(t0)D̃ jk(t0)
∣∣3 ≤ Cn−3/2 max

j,k
|D̃ jk(t0)|

H∑
j=1

n j∑
k=1

D̃2
jk(t0) = op(1).

By (11) and Lemma 3(i), similar to the proof of (15), we have

n j∑
k=1

ν̃(t0)D̃ jk(t0) =
n j∑

k=1

(̃ν(t0)D̃ jk(t0))
2 + op(1), for j = 1, 2, . . . , H.

Hence, l2(η(t0)) =∑H
j=1
∑n j

k=1 ν̃(t0)D̃ jk(t0)+ op(1). By (11), and

0 = 1

n j

n j∑
k=1

D̃ jk(t0)

1 + ν̃(t0)D̃ jk(t0)

= 1

n j

n j∑
k=1

(X jk I (X jk ≤ ξ̂t0)− η̃ j (t0))− ν̃(t0)

n j

n j∑
k=1

D̃2
jk(t0)+ op(n

−1/2
j ),
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we get that

ν̃(t0)
H∑

j=1

N j

N

1

n j

n j∑
k=1

D̃2
jk(t0) =

H∑
j=1

N j

N

1

n j

n j∑
k=1

(X jk I (X jk ≤ ξ̂t0)− η̃ j (t0))

+op(n
−1/2),

=
H∑

j=1

N j

N

1

n j

n j∑
k=1

D̃ jk(t0)+ op(n
−1/2) (20)

Observing that η(t0) =
∑H

j=1
N j
N η̃ j (t0)∑H

j=1
N j
N X̄ j

, it follows from (20) and
N j
N = n j

n that

ν̃(t0) =
∑H

j=1
N j
N

1
n j

∑n j
k=1 X jk(I (X jk ≤ ξ̂t0)− η(t0))∑H

j=1
N j
N

1
n j

∑n j
k=1 D̃2

jk(t0)
+ op(n

−1/2)

=
1
n

∑H
j=1
∑n j

k=1 D̃ jk(t0)∑H
j=1

N j
N

1
n j

∑n j
k=1 D̃2

jk(t0)
+ op(n

−1/2).

Therefore,

l2(η(t0)) =
(

1√
n

∑H
j=1
∑n j

k=1 D̃ jk(t0)
)2

∑H
j=1

N j
N

1
n j

∑n j
k=1 D̃2

jk(t0)
+ op(1). (21)

By Lemma 3(i)–(ii), and (21), we get that

r2l2(η0(t0)) =
⎡
⎣

1√
n

∑H
j=1
∑n j

k=1 D̃ jk(t0)

ψd(t0)

⎤
⎦

2
ψ2

p(t0)∑H
j=1

n j
n

1
n j

∑n j
k=1 D̃2

jk(t0)
+ op(1)

= χ2
1 + op(1).

�

Lemma 4 Under the conditions in Theorem 4, we have

(i) 1
n j

∑n j
k=1 D̃2

jk(t)
p−→ Var(X j (I (X j ≤ ξt )), uniformly on [0,1], for j =

1, . . . , H.

(ii) 1√
n

∑H
j=1
∑n j

k=1 D̃ jk(t)
L−→ W (t),

where W (t) is a Gaussian process defined in Theorem 4.
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Proof The proof of Lemma 4(i) is similar to those of Lemma 3(i) and Lemma 2(i),
hence omitted here.

For the proof of Lemma 4(ii), using the similar methods to the proofs of Lemma
3(ii) and Lemma 2(ii), we get that

1√
n

H∑
j=1

n j∑
k=1

D̃ jk(t)

= √
n

H∑
j=1

N j

N

(
1

n j

n j∑
k=1

(X jk − ξt )I (X jk ≤ ξt )− E[X j I (X j ≤ ξt )] + tξt

)

+op(1)
L−→ W (t),

where W (t) is a Gaussian process with mean zero and the following covariance func-
tion:

Cov

⎛
⎝ 1√

n

H∑
j=1

n j∑
k=1

D̃ jk(t),
1√
n

H∑
j=1

n j∑
k=1

D̃ jk(s)

⎞
⎠

= Cov

⎛
⎝√

n
H∑

j=1

N j

N

1

n j

n j∑
k=1

(X jk − ξt )I (X jk ≤ ξt ),

×√
n

H∑
j=1

N j

N

1

n j

n j∑
k=1

(X jk − ξs)I (X jk ≤ ξs)

⎞
⎠

=
H∑

j=1

(
N j

N

)2 n

n j

(
1 − n j

N j

)
Cov((X j − ξt )I (X j ≤ ξt ), (X j − ξs)I (X j ≤ ξs))

→
H∑

j=1

ρ j Cov((X j − ξt )I (X j ≤ ξt ), (X j − ξs)I (X j ≤ ξs))

=: Cov(W (t),W (s)). �
The Proof of Theorem 4. Using Lemma 4 and the similar methods in the proof of
Theorem 2, we can easily get Theorem 4. �
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