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Abstract This paper uses a decision theoretic approach for updating a probability
measure representing beliefs about an unknown parameter. A cumulative loss function
is considered, which is the sum of two terms: one depends on the prior belief and the
other one on further information obtained about the parameter. Such information is
thus converted to a probability measure and the key to this process is shown to be
the Kullback–Leibler divergence. The Bayesian approach can be derived as a natural
special case. Some illustrations are presented.

Keywords Bayesian inference · Posterior distribution · Loss function ·
Kullback–Leibler divergence · g-divergence

1 Introduction and preliminaries

Unstructured information, denoted by I , is used by a Bayesian to construct a prior
distribution about a parameter of interest, say θ0, and stochastic observations can then
be used to update the prior to the posterior, see e.g. Bernardo and Smith (1994). How-
ever, if future unstructured or non-stochastic information is subsequently available,
there is no formal procedure for updating the belief probability measure. This paper
works on the idea of updating a belief probability measure using unstructured informa-
tion, of the type a Bayesian would use to construct a prior distribution, where the only
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1140 P. G. Bissiri, S. G. Walker

requirement is to be able to connect the information and parameter of interest via a loss
function. If information I is represented by pieces from a finite set I = (I0, I1, . . . , In)

then the idea here is that I j and Ik are, for j �= k, disjoint, in the sense that nothing
about Ik could be inferred from knowledge of I j , and vice versa.

Hence, we are interested in taking an initial or prior distribution π0(θ), given infor-
mation I , to a posterior distribution. We point out that such information need not be
stochastic: “word of mouth” information can also be used and such information is
often available from experts in a Bayesian approach. Therefore, here “information” is
just knowledge that is connected in some way, to be explained exactly how later on,
to θ0. Such knowledge can be of different kinds. For instance, the information may
consist of learning that θ0 is a value close to zero. More examples will be considered
later.

For us, as we have indicated, information pieces about θ0 are represented by
(I0, I1, . . . , In), which for any 0 ≤ m ≤ n is equivalent to (πm, Im+1, . . . , In) where
πm is the probability measure constructed from (I0, . . . , Im). We translate the infor-
mation to the probability measure via the use of cumulative loss functions; specifically,
and to be defined further later on, we use a loss function L(ν, I (n), π0), where I (n)

stands for (I1, . . . , In), ν is the action and hence πn minimizes L(ν, I (n), π0), i.e.
L(πn, I (n), π0) = minν L(ν, I (n), π0), for every n ≥ 1.

To approach statistical problems in a decision theoretical framework is a well-estab-
lished practice, see for instance, Berger (1980). Therefore, our plan is to use decision
theory to select a probability measure which represents information about a particular
object. The decision space is the space of probability measures which are absolutely
continuous with respect to π0.

The loss L(ν, I (n), π0) will be required to satisfy a certain type of coherence. By
this coherence we mean that no matter which m we use, the problem based on loss
functions is the same; that is the minimizer of L(ν, I (m+1, n), πm), where I (m+1, n)

stands for (Im+1, . . . , In), is the same for all 0 ≤ m < n.
Let the unknown quantity θ0 belong to some space �. Moreover, assume that I0

belongs to some set I0 and Ii belongs to some set I for every i ≥ 1. Let H(ν, I )
denote the loss when the information I in I ∪ I0 is summarized by a probability
measure ν on �. The prior π0 is defined as the probability measure on � that min-
imizes the loss H(ν, I0) corresponding to the initial piece of information I0, i.e.
H(π0, I0) = minν H(ν, I0).

Then consider the following cumulative loss function:

L(ν, I (n), π0) :=
n∑

i=1

H(ν, Ii )+ l(ν, π0), (1)

where ν is a probability measure on�. Here, the loss l is chosen to be the g-divergence
Dg defined by

Dg(Q1, Q2) =
∫

g

(
dQ1

dQ2

)
dQ2, (2)
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Converting information into probability measures 1141

for any couple (Q1, Q2) of probability measures such that Q1 � Q2, where g is
a convex function from (0,∞) into R such that g(1) = 0. The class (2) of proba-
bility divergences has been introduced and studied independently by Ali and Silvey
(1966) and Csiszár (1967). We use a g-divergence as the loss function, based on
certain characterizations of such divergences, including decomposability and infor-
mation monoticity. See, for example, Amari (2009). Such characteristics are obviously
important for a loss function.

Choosing l(ν, π0) to be Dg(ν, π0), then ν is required to be absolutely continuous
with respect to π0. Indeed, the updated probability πn should be zero on every event
whose prior π0 probability is zero.

The loss H is most suitably taken in integral form, i.e. the average loss

H(ν, I ) =
∫

�

h(θ, I ) ν(dθ), (3)

for every I in I and every ν � π0 for which such an integral exists. Since θ0 is the
object of interest, it is more realistic to be able to construct h(θ, I ), i.e. a loss relating
information to θ0. Then, obviously, the appropriate H(ν, I ) becomes the average loss.
In this way, the loss (1) becomes

L(ν) := L(ν, I (n), π0) :=
∫

�

hn(θ, I (n)) ν(dθ) + Dg(ν, π0), (4)

where

hn(θ, I (n)) =
n∑

i=1

h(θ, Ii ). (5)

The loss (4) is defined on the class of probability measures ν on� that are absolutely
continuous with respect to π0 and such that the integral

∫
�

hn(θ, I (n)) ν(dθ) exists.
Denote such a class by P(�, π0, I (n)).

The loss defined by (5) is cumulative and moreover is symmetric with respect to
(I1, . . . , In). Therefore, the order in which the single pieces of information are given
is not relevant.

A difference to the Bayesian approach here is that we are not demanding that the
pieces of information are specifically an independent sample from a probability den-
sity function indexed by the parameter θ , say f (x, θ). Or even that θ is a parameter
of a probability density function. Nevertheless, if it is, and information are samples
from such a density, then we can recover the Bayesian approach by taking Dg to be
the Kullack–Leibler divergence and h(θ, I ) = h(θ, X) = − log f (X, θ), which is the
self-information loss function and the most commonly used and “honest” loss function
in such cases.

When combining (4) and (5), our loss becomes:

L(ν) := L(ν, I (n), π0) =
n∑

i=1

∫
h(θ, Ii ) ν(dθ)+ Dg(ν, π0). (6)
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A loss of the form given by (6) has been previously considered by Walker (2006)
for general parametric models and by Bissiri and Walker (2010) for Bernoulli obser-
vations. These authors took g(x) = x log(x) for x > 0, so that Dg turns out to be the
Kullback–Leibler divergence; so Dg(ν, π0) = ∫

ν(dθ) log{ν(dθ)/π0(dθ)}.
The next proposition provides the solution for the general case, where Dg is the

Kullback–Leibler divergence.

Proposition 1 Let Dg be the Kullback–Leibler divergence. There exists a probability
measure πn in P(�, π0, I (n)) that minimizes the loss L in (4) if and only if

∫

�

e−hn(θ; I (n)) π0(dθ) < ∞. (7)

If such a πn exists, then it is unique and a version of πn(dθ)/π0(dθ) is equal to

exp{−hn(θ; I (n))}
/∫

�

exp{−hn(τ ; I (n))}π0(dτ). (8)

In a statistical problem, the place of I1, I2, . . . is taken by the observations
X1, X2, . . ., which are stochastic, i.e. random variables on a probability space
(�,F , P), where the unknown probability measure P is assumed to belong to a
family of distributions {Pθ : θ ∈ �} and θ0 plays the role of the true value of the
parameter. The support�0 ⊂ � of the prior π0 is sometimes chosen to be an infinite-
dimensional space so that the model turns out to be non-parametric.

Generally, the observations X1, X2, . . . are taken identically distributed and the
law of each observation is absolutely continuous with respect to some measure μ.
Denote by f (x, θ) the density of X1 with respect to μ under the probability measure
Pθ , for every θ in �0. If

h(θ, x) = − log f (x, θ) (9)

for every θ in �, then the minimizing probability distribution (8) is the classical pos-
terior obtained under the assumption that the observations (Xi )i≥1 are conditionally
i.i.d. given θ . This is tantamount to taking

hn(θ; x1, . . . , xn) = −
n∑

i=1

log f (xi , θ), (10)

for each θ ∈ �. It is known that if a maximum likelihood estimator exists for the model
�0, then it has to minimize (10). Moreover, in a Bayesian setting, the (unconditional)
distribution of the sequence of observations turns out to be exchangeable. Exchange-
ability expresses the idea that the order in which the observations are sampled does
not provide any information about θ0. In the present paper, this idea is generalized to
the case where the observations are replaced by non-stochastic pieces of informations
I (n) by taking a function hn that is symmetric with respect to I1, . . . , In as in (5). If
the observed information is stochastic, then the most natural choice for h is (9). In
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Converting information into probability measures 1143

fact, this choice yields the only smooth, proper and local utility function, see Bernardo
(1979), Good (1952), and also Aczel and Pfanzagl (1966).

The layout of the paper is as follows: Sect. 2 contains a statement of the key
preliminary results and Sect. 3 the main result which determines the necessity of the
Kullback–Leibler divergence from the class of g-divergences when a coherence prop-
erty is required. Section 4 provides two examples in which we believe it is useful to
adopt the approach presented in this paper, Sect. 5 concludes with a brief discussion
and the proofs are contained in the Appendix.

2 The minimization problem

To begin with, notice that if hn(θ ; I (n)) is a constant function of θ, π0-a.s., then the
prior minimizes L . In fact, in such case, L(ν; I (n); π0) = Dg(ν, π0). The following
proposition deals with the opposite implication.

Proposition 2 Let π0 be a probability measure on � and let g be differentiable at
one. If π0 belongs to P(�, π0, I (n)) and

L(π0, I (n), π0) = min
ν∈P(�,π0),I (n)

L(ν, I (n), π0), (11)

then hn(θ ; I (n)) is a constant map of θ, π0 - a.s.

Before proceeding, recall that being convex, g admits left and right derivatives and
denote by g′− and g′+ the left and the right derivative of g, respectively.

Theorem 1 If there is a probability measure πn ∈ P(�, π0, I (n)) such that

ess inf
θ∈� hn(θ; I (n)) + g′+

(
dπn

dπ0
(θ)

)
≥ ess sup

θ∈�
hn(θ; I (n)) + g′−

(
dπn

dπ0
(θ)

)
,

(12)

then πn satisfies

L(πn) = min
ν∈P(�,π0,I (n))

L(ν). (13)

At this stage, recall that a subderivative φ of g is a function defined on (0,∞) such
that g′−(x) ≤ φ(x) ≤ g′+(x), for every positive x . The inequality (12) is tantamount
to the existence of a subderivative φ such that hn + φ(dπn/dπ0) is a constant map,
π0-a.s.

Before proceeding, some additional notation and a few remarks are useful. If g is
differentiable, denote by g′ its derivative and denote limx↑∞ g′(x) = g′(∞), recall-
ing that this limit exists since g′ is non-decreasing by convexity of g. If g is strictly
convex and E denotes the image of g′, then g′ : (0,∞) → E is strictly increasing
and therefore there exists its inverse, which will be denoted by G, defined on E .

The following proposition gives a necessary and sufficient condition for the solution
of the minimization problem in the case g is differentiable.
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1144 P. G. Bissiri, S. G. Walker

Proposition 3 Let g be differentiable. A probability measure πn in P(�, π0, I (n))
minimizes L if and only if hn(θ, I (n)) + g′(dπn(θ)/dπ0(θ)) is constant, π0-a.s.

Corollary 1 Let g be differentiable and strictly convex and denote by G : E →
(0,∞) the inverse function of g′ and by E the image of g′.

Hence, there exists a probability measure πn ∈ P(�, π0, I (n)) minimizing L if
and only if there exists a real constant c such that c − hn(θ, I (n)) belongs to E for
every θ in � and

∫
�

G(c − hn(θ, I (n))) dπ0 exists and is equal to one.
Moreover, if πn exists, then it is unique and satisfies:

πn(A) =
∫

A
G(c − hn(θ, I (n))) π0(dθ), (14)

for every measurable subset A of �.

For different relevant g-divergences, the function g is strictly convex and Corol-
lary 1 can be applied. The Kullback–Leibler divergence was already considered by
Proposition 1. Here are a few other examples:

(i) If Dg is the χ2-distance (g(x) = (x − 1)2), then there exists a probability
measure πn in P(�, π0, I (n)) that minimizes L if and only if hn(θ, I (n)) <
2+∫

�
hn(θ, I (n)) for every θ in�, the integral

∫
�

|hn(θ, I (n))|π0(dθ) is finite

and dπn(θ)/dπ0(θ) = 1 + 1

2

∫
�

hn(τ, I (n)) π0(dτ)− 1

2
hn(θ, I (n)).

(ii) If Dg is the square of the Hellinger metric (g(x) = (
√

x −1)2) and a minimizing
probability measureπn exists for L , then dπn(θ)/dπ0(θ) = (hn(θ, I (n))+c)−2

for some real constant c.

(iii) If Dg is the power divergence (g(x) = {xα − α(x − 1) − 1}/{α(α − 1)}
where α /∈ {0, 1}) and a minimizing probability measure πn exists for L , then
dπn(θ)/dπ0(θ) = {1+ (α−1)(c −hn(θ, I (n)))}1/(α−1) for some real constant
c. Note that α = 1/2 gives (ii) and α = 2 gives (i).

The following proposition provides sufficient conditions for the existence and
uniqueness of a probability measure πn in P(�, π0, I (n)) that minimizes L .

In what follows, given a map ψ : � → R, denote by ess supψ and ess inf ψ the
essential supremum and the essential infimum of ψ with respect to π0, respectively.
Given two real numbers x and y, let x ∧ y be their minimum.

Proposition 4 Assume that g is a strictly convex and differentiable function such that
g(1) = 0 and that

ess sup
θ∈�

hn(θ, I (n)) − ess inf
θ∈� hn(θ, I (n))

≤ (g′(1)− g′+(0)) ∧ (g′(∞)− g′(1)). (15)

Moreover, assume that hn(·, I (n)) is essentially bounded (with respect to π0), i.e.

ess inf
θ∈� hn(θ, I (n)) > −∞, ess sup

θ∈�
hn(θ, I (n)) < ∞.
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Converting information into probability measures 1145

Hence, there exists a unique probability measure πn ∈ P(�, π0, I (n)) such that
(13) holds true. By Corollary 1, πn satisfies (14), for some real constant c.

3 The coherence property

Given the prior π0 and the sequence of pieces of information (In)n≥1, denote by
H (π0) the class of measurable functions h : �×I → R such that h(·, I ) : � → R

is measurable for every I ∈ I and that a probability measure minimizing the loss
L(ν) := L(ν , I (n), π0) defined by (6) exists for every n ≥ 1. In other words, H (π0)

is the class of all available functions that the loss h can match. Moreover, denote by
P(h, I (n)) the class of probability measures π on � such that there is a probability
measure minimizing L(· , I (n), π).

At this stage, it is possible to define a rule to update the probability measure on
� representing our believes on the base of the observed information. Formally, given
the information I (n) = (I1, . . . , In) and n ≥ 1, there is an operator Un( · , I (n)) :=
Un( · , I (n), h) from P(h, I (n)) into the space of probability measures on� such that:

L(Un(π, I (n)), I (n), π) = min
ν∈P(�,π)

L(ν, I (n), π), (16)

for every probability measure π in P(h, I (n)). So, the operator Un(π, I (n)) updates
any probability measure π in P(h, I (n)) on the basis of the information I (n). Clearly,
the sequence of operators (Un(·, I (n)))n≥1 has to satisfy a natural coherence property.
Indeed, given n, m ≥ 1 and a probability measure π on �, updating π on the basis
of I (n+m) = (I1, . . . , In+m) and updating Un(π, I (n)) on the basis of I (n+1, n+m) =
(In+1, . . . , In+m), should yield the same probability measure. One can easily verify
that such coherence property is satisfied if Dg is the Kullback–Leibler divergence
and therefore Un(π0, I (n)) is given by (8). The following theorem shows that such
coherence property is satisfied only if Dg is the Kullback–Leibler divergence.

Theorem 2 Let g : (0,∞) → R be a convex function such that g(1) = 0 and define
the loss L by (6). Moreover, assume that for every two integer m, n ≥ 1, the following
coherence condition

Un+m(π0, I (n+m)) = Um(Un(π0, I (n)), I (n+1, n+m)) (17)

holds true for every sequence (In)n≥1 ∈ I∞, every prior π0 on � and every map
h : �× I → R in H (π0).

Then Dg is the Kullback–Leibler divergence, i.e. Dg(ν, μ) = k
∫
�

ln(dν/dμ)dν,
for some positive constant k. Therefore, a map h : �× I → R belongs to H (π0) if
and only if

∫

�

e−k h(θ; I )π0(dθ) < ∞, (18)

123



1146 P. G. Bissiri, S. G. Walker

for every I in I, and

Un(π0, I (n))(A) =
∫

A e−k hn(θ, I (n))π0(dθ)∫
�

e−k hn(τ, I (n)) π0(dτ)
, (19)

holds true for every measurable subset A of �.

It is important that (17) holds for every possible loss function h, i.e. for every h in
the class H (π0). In fact, we need to take into consideration any possible information
I which the loss h(θ, I ) could be based on.

A relevant special case for the updating operator Un defined by (19) is given by the
posterior distribution in a Bayesian dominated model. Indeed, if I (n) is a sample of n
i.i.d. random variables X1, . . . , Xn with common density fθ0 and π0 is the prior for
the unknown parameter θ0, then (19) is the posterior distribution, provided that h is
the self-information loss function, i.e. the opposite of the log-likelihood function.

4 Illustrations

In this section, we provide two examples in which we believe it is useful to adopt
the approach presented in this paper. The first one deals with stochastic information,
whereas the second one deals with non-stochastic information. Both are based on the
results in Sect. 3 and hence both use the Kullback–Leibler divergence.

Example 1 In this example, we consider stochastic information about the parameter
of interest using loss functions that are used in robust estimation such as M-estimators
and are not based on any density function. Let h(θ; X) be the loss in adopting θ as
the true value of the parameter in the presence of information X . Assume that the
observed information is stochastic and consists of n i.i.d. observations X1, . . . , Xn .
Under these circumstances, minimization of the loss

n∑

i=1

h(θ, Xi ) (20)

should yield a reasonable frequentist estimator of the parameter. Estimators minimiz-
ing a loss of that form are called M-estimators and their usage has been motivated by
robustness reasons. One can take, for instance, h(θ, Xi ) = (θ − Xi )

2 if θ0 is the mean
of the probability distribution from which the Xi ’s are coming. If it is the median,
then one can take h(θ, Xi ) = |Xi − θ |. For more examples of M-estimators and more
details about them, see Huber and Ronchetti (2009) and references cited therein.

From a Bayesian point of view, the loss (20) can be used to update a prior distribu-
tion π0 of θ on the basis of the information given by (X1, . . . , Xn) according to our
approach, i.e. by minizing the loss

L̃(ν) =
n∑

i=1

∫

�

h(θ, Xi ) ν(dθ) + Dg(ν, π0). (21)
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The distribution πn minimizing (21) is given by

dπn/dπ0(θ) = exp

(
−

n∑

i=1

h(θ, Xi )

)
/

∫

�

exp

(
−

n∑

i=1

h(τ, Xi )

)
π0(dτ).

In this way, one can obtain a Bayesian estimator that is the counterpart of the M-
estimator and such an estimator is given by the mean of the probability distribution
πn , i.e.

∫

�

θ exp

{
−

n∑

i=1

h(θ, Xi )

}
π0(dθ)/

∫

�

exp

{
−

n∑

i=1

h(θ, Xi )

}
π0(dθ).

Example 2 Here we present another example whereby information is non-stochastic
about a parameter of interest. Assume that θ is the mean of the probability distribution
with density f (x, θ) and that θ0 is known to be close to zero due to the information
I1 given by an expert. Hence, it is natural to assess h(θ, I1) = w θ2, where w is a
positive weight, and the probability distribution minimizing the loss (4) with prior π0
is given by

π1(A) =
∫

A
e−w θ2

π0(dθ)/
∫

�

e−w θ2
π0(dθ),

for every measurable subset A of �. A Bayes estimator would be the mean of π1,
i.e.

∫
�
θ e−w θ2

π0(dθ)/
∫
�

e−w θ2
π0(dθ). This is an interesting example. We have a

framework for which it is possible to update word of mouth information which is
common to the Bayesian approach when employing so-called expert opinions. More
interestingly, we have a coherent framework whereby it is of no matter exactly when
this word of mouth information is received. It could be post data, i.e. after a stochastic
sample from a density f (x; θ) has been observed. If such information is provided to
a Bayesian post data then there is currently no framework in which this information
can be processed.

For more on Bayesian constructions from expert opinion, see Johnson et al. (2010)
and references therein.

5 Discussion

A general framework has been presented for the translation of information into prob-
ability measure for a parameter θ of interest, using principles of standard decision
theory. For general piece of information I it is only required to establish a loss func-
tion connecting θ and I . This encompasses, using a natural loss function, the Bayesian
learning approach in the case when θ is a parameter of a density function and the infor-
mation are samples from the density.
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1148 P. G. Bissiri, S. G. Walker

The key for coherence of this translation is the Kullback–Leibler divergence. By
coherence, it is meant that the n stage solution, πn , must serve as the prior for the n +1
piece of information.

Appendix

Here we provide the proofs of Propositions 1, 2, Theorem 1 and Propositions 3, 4.

Proof (of Proposition 1) If Dg is the Kullback–Leibler divergence, then

L(ν; I (n); π0) = Dg(ν, πn)− log

( ∫

�

e−hn(θ ; I (n)) π0(dθ)

)
,

where πn is the probability measure such that a version of dπn/dπ0 is (8). Clearly, if
(7) holds true, then πn is the unique probability measure (absolutely continuous with
respect to π0) that minimizes L .

If the integral in (7) diverges, then consider a sequence (Am)m≥1 of measurable
subsets of � such that Am ↑ � and the integral

km :=
∫

Am

e−hn(θ ; I (n)) π0(dθ)

is finite. One can take, for instance, Am = {θ ∈ � : hn(θ ; I (n)) > cm}, where
cm ↓ −∞. Moreover, define the sequence (μm)m≥1 of probability measures on �

such that dμm(θ)/dπ0(θ) = IAm e−hn(θ ; I (n))/km, π0-a.s. By the monotone conver-
gence theorem, km → ∞ as m diverges. This entails that L(μm) = − log km diverges
to −∞ and therefore L does not attain a minimum. ��

To proceed with the other proofs, let us introduce some further notation. Define

F : = F (�, π0)

: =
{

f ∈ L1(�, π0) :
∫

�

f dπ0 = 1, hn(· , I (n)) f + g ◦ f ∈ L1(�, π0)

}
.

To minimize L : P(�, π0, I (n)) → R is equivalent to minimizing the loss L̄ : F →
R defined as follows:

L̄( f ) := L̄( f, I (n), π0) =
∫

�

hn(θ, I (n)) f (θ)+ g ◦ f (θ) π0(dθ).

Proof (of Proposition 2) The proof will be done by contradiction. Assume that (11)
holds true, i.e. f0 ≡ 1 belongs to F and satisfies:

min
f ∈F (�,π0)

L̄( f, I (n), π0) = L̄( f0, I (n), π0) =
∫

�

hn(θ, I (n)) π0(dθ). (22)
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Moreover, assume that hn(θ; I (n)) is not constant on a set with positive π0 - proba-
bility, i.e. there exists c ∈ R such that π0{θ ∈ � : hn(θ; I (n)) > c} and π0{θ ∈ � :
hn(θ; I (n)) ≤ c} are both positive. For every 0 < ε < 1, define

fε(θ) = 1 + k(ε) IAc − ε IA,

where A := {θ ∈ � : hn(θ; I (n)) > c}, Ac is the complementary of A and k(ε) :=
ε π0(A)/π0(Ac).

Notice that fε belongs to F for every ε ∈ (0, 1). In fact, its integral is one and

∫

�

∣∣hn(θ, I (n)) fε(θ) + g ◦ fε(θ)
∣∣π0(dθ)

≤ (1 + k(ε) + ε)

∫

�

∣∣∣hn(θ, I (n))
∣∣∣π0(dθ) + |g(1 + k(ε))| + |g(1 − ε)| ,

which is finite. In fact, f0 ≡ 1 is assumed to belong to F and therefore∫
�

∣∣hn(θ, I (n))
∣∣ π0(dθ) is finite. Notice that

L̄( fε)− L̄( f0) =
∫

�

hn(θ; I (n))( fε(θ)− 1) + g( fε(θ)) π0(dθ)

= k(ε)
∫

Ac
hn(θ, I (n)) π0(dθ)− ε

∫

A
hn(θ, I (n)) π0(dθ)

+π0(A
c) g(1 + k(ε)) + π0(A) g(1 − ε). (23)

Being π0(A) positive, there is δ > 0 such that the set B := {θ ∈ � : hn(θ; I (n)) >
c + δ} has positive π0 - probability. Therefore,

∫

A
hn(θ, I (n)) π0(dθ)

=
∫

B
hn(θ, I (n)) π0(dθ) +

∫

A\B
hn(θ, I (n)) π0(dθ)

> (c + δ) π0(B) + c π0(A \ B)

= δ π0(B) + c π0(A). (24)

Combination of (23) with (24) entails that

L̄( fε)− L̄( f0) < − ε δ π0(B) + π0(A
c) g(1 + k(ε)) + π0(A) g(1 − ε). (25)

Being g convex and g(1) = 0, g(1 + η) = g(1 + η) − g(1) ≤ g′−(1 + η) η and
g(1 −η) = g(1 −η)− g(1) ≤ − g′+(1 −η) η for every 0 < η < 1 (see for instance,
Zǎlinescu 2002, page 49). Hence, (25) entails:

L̄( fε)− L̄( f0) < − δ π0(B) ε + (g′−(1 + k(ε))− g′+(1 − ε)) π0(A) ε.
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Being g differentiable at one, there is ε̄ > 0 such that g′−(1 + k(ε)) − g′+(1 − ε) <

δ π0(B)/π0(A) for every 0 ≤ ε ≤ ε̄. Therefore, L̄( fε) < L̄( f0) for some ε > 0,
which contradicts (22) and the proof is complete. ��
Proof (of Theorem 1) Define ϕθ (x) := hn(θ, I (n)) x + g(x), for every x > 0 and
every θ ∈ �. For every θ ∈ �,ϕθ : (0,∞) → R is a convex function and therefore,
denoting by ∂+

∂x ϕθ (x) and by ∂−
∂x ϕθ (x) the right and left derivatives of ϕθ respectively,

ϕθ (x)− ϕθ (x0) ≥ ∂+
∂x
ϕθ (x)

∣∣∣
x=x0

(x − x0)

ϕθ (x)− ϕθ (x0) ≥ ∂−
∂x
ϕθ (x)

∣∣∣
x=x0

(x − x0)

holds true for every (x, x0) in (0,∞)× (0,∞). Hence, letting f0 = dπn/dπ0,

ϕθ ◦ f (θ)− ϕθ ◦ f0(θ) ≥ ∂+
∂x
ϕθ (x)

∣∣∣
x= f0(θ)

( f (θ)− f0(θ)) I{ f> f0}(θ)

+∂−
∂x
ϕθ (x)

∣∣∣
x= f0(θ)

( f (θ)− f0(θ)) I{ f< f0}(θ), (26)

holds true for every f ∈ F . By hypothesis, there exists a real constant c such that

∂+
∂x
ϕθ (x)

∣∣∣
x= f0(θ)

= hn(θ; I (n)) + g′+ ◦ f0(θ) ≥ c

∂−
∂x
ϕθ (x)

∣∣∣
x= f0(θ)

= hn(θ; I (n)) + g′− ◦ f0(θ) ≤ c,

for every θ ∈ �. Therefore, (26) yields:

ϕθ ◦ f (θ)− ϕθ ◦ f0(θ) ≥ c ( f (θ)− f0(θ)), (27)

for every θ ∈ �. Integrating both sides of (27) with respect to π0, one obtains that
L̄( f ) ≥ L̄( f0) for every f ∈ F . ��

To prove Proposition 3, it is useful to state and prove the following lemma, which
gives a necessary condition for the solution of this minimization problem. Notice that
the map L̄ is convex and therefore, any local minimum of L is a global minimum.

Lemma 1 If f0, f1 ∈ F and L̄( f0) = min f ∈F L̄( f ), then

∫

{ f1> f0}
ξ+ ( f1 − f0) dπ0 +

∫

{ f1< f0}
ξ− ( f1 − f0) dπ0 ≥ 0, (28)

where ξ+(θ) := hn(θ; I (n)) + g′+ ◦ f0(θ), ξ−(θ) := hn(θ; I (n)) + g′− ◦ f0(θ), for
every θ ∈ �.
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Proof Define ϕθ (x) := hn(θ; I (n)) x + g(x), for every x > 0 and every θ ∈ �.
Notice that F is a convex set. In fact, if f2 and f3 belongs to F and 0 < ε < 1, then
ε f2 + (1 − ε) f3 is a density and by convexity of ϕθ and Jensen’s inequality,

∫

�

∣∣ϕθ (ε f2(θ) + (1 − ε) f3(θ))
∣∣π0(dθ)

≤ ε

∫

�

∣∣ϕθ ( f2(θ))
∣∣π0(dθ) + (1 − ε)

∫

�

∣∣ϕθ ( f3(θ))
∣∣π0(dθ) < ∞.

Therefore the function fε := (1 − ε) f0 + ε f1 belongs to F , for every 0 ≤ ε ≤ 1.
Denote ψm(θ) := {ϕθ ( f1/m(θ)) − ϕθ ( f0(θ))}/{1/m}, for every integer m ≥ 1.
Recall that a convex function η of real variable has non-decreasing incremental ratios
and admits one sided derivatives η′+(x) = ∂+

∂x η(x) and η′−(x) = ∂−
∂x η(x). Hence, by

convexity of ϕθ , ψm(θ)
⏐� ∂+
∂ε
ϕθ ( fε(θ))

∣∣∣
ε=0

as m diverges, for every fixed θ ∈ �.

Moreover,
∫
�
ϕθ ◦ fε(θ) π0(dθ) < ∞ (being fε ∈ F ) for every 0 ≤ ε ≤ 1 and

therefore ψm is in L1(�, π0) for each m ≥ 1. Hence, by the monotone convergence
theorem, it is possible to differentiate L̄( fε) under the integral sign, obtaining:

∂+
∂ε

L̄( fε)

∣∣∣∣
ε=0

=
∫

�

∂+
∂ε
ϕθ ( fε(θ))

∣∣∣∣
ε=0

π0(dθ)

=
∫

{ f1 > f0}

{
hn(θ; I (n)) + g′+ ◦ f0(θ)

}
( f1 − f0) π0(dθ)

+
∫

{ f1 < f0}

{
hn(θ; I (n)) + g′− ◦ f0(θ)

}
( f1 − f0) π0(dθ)

which must be nonnegative since the map ε → L̄( fε) defined on (0, 1) attains its
minimum at ε = 0 and (28) is proved. ��

Proof (of Proposition 3) It needs to be proved that a density f0 ∈ F satisfies

L̄( f0) = min
f ∈F

L̄( f ) (29)

if and only if

hn(θ; I (n)) + g′ ◦ f0(θ) (30)

is constant, π0- a.s.
The “if” part trivially follows from Theorem 1. In fact, if g is differentiable, g′ =

g′+ = g′− and therefore the fact that (30) is constant with f0 = dπn/dπ0 implies (12).
Now, let us prove the “only if” part. Let

Dn := {θ ∈ � : 1/n ≤ f0 ≤ n, −n ≤ hn(θ, I (n)) f (θ) ≤ n},
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for a fixed positive integer n, which is big enough so that π0(Dn) > 0. Moreover, fix
a measurable subset A of � such that

∫

Ac∩Dn

f0 dπ0 ≥
∫

A∩Dn

f0 dπ0, (31)

and
∫

Ac∩Dn

f0 dπ0 > 0. (32)

Moreover, set:

f1 := IDc
n

f0 + (1 + ε) IA∩Dn f0 + c IAc∩Dn f0, (33)

where 0 < ε < 1 and c := 1 − ε
∫

A∩Dn
f0 dπ0/

∫
Ac∩Dn

f0 dπ0. Notice that f1 is
nonnegative by (31) and its integral with respect to π0 is one. Moreover, it belongs to
F . In fact,

∫

�

∣∣hn(θ ; I (n)) f1(θ) + g( f1(θ))
∣∣π0(dθ)

≤
∫

Dc
n

∣∣hn(θ ; I (n)) f0(θ) + g( f0(θ))
∣∣π0(dθ)

+ 2
∫

Dn

∣∣hn(θ ; I (n)) f0(θ)
∣∣π0(dθ)

+
∫

A∩Dn

|g((1 + ε) f0(θ))| π0(dθ)

+
∫

Ac∩Dn

|g(c f0(θ))| π0(dθ) (34)

is finite. This follows from the fact that each integrand of each addendum of the right
term in (34) is bounded. For the first addendum this is true since f0 ∈ F , for the
second one it follows from the way Dn is defined, for the third and the fourth one it
follows from that fact that g, being convex, is also continuous and therefore bounded
on every compact interval.

At this stage, one can consider the function f2 := 2 f0 − f1, which is nonnegative
since f1 ≤ 2 f0. One can easily verify that f2 is a density with respect to π0 and
also that it belongs to F , similarly as we did for f1. Moreover, f1 − f0 = f0 − f2.
Therefore, defining the function ξ such that ξ(θ) := hn(θ; I (n)) + g′ ◦ f0(θ), for
every θ ∈ �, one can write that

∫

�

ξ ( f1 − f0) =
∫

�

ξ ( f0 − f2). (35)

Since g is differentiable, the map ξ coincides with the maps ξ+ and ξ− defined in the
statement of Lemma 1. By Lemma 1, the two integrals

∫
�
ξ ( f1− f0) and

∫
�
ξ ( f2− f0)
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are both nonnegative since f1 and f2 belong to F . Hence, by (35), they must equal
to zero. In particular,

∫
�
ξ ( f1 − f0) = 0, which by (33) yields:

∫

A∩Dn

ξ f0 dπ0

∫

Ac∩Dn

f0 dπ0 =
∫

Ac∩Dn

ξ f0 dπ0

∫

A∩Dn

f0 dπ0. (36)

Adding
∫

A∩Dn
ξ f0 dπ0

∫
A∩Dn

f0 dπ0 to each side of (36), one can see that (36) is
equivalent to:

∫

A∩Dn

ξ f0 dπ0

∫

Dn

f0 dπ0 =
∫

A∩Dn

f0 dπ0

∫

Dn

ξ f0 dπ0. (37)

Notice that (36) is trivially true if (32) is not satisfied. Moreover, it is true when
A is replaced by Ac and viceversa. Clearly, for each measurable subset A of �,
either (31) holds true or the equivalent inequality obtained replacing A with Ac

and viceversa holds true. Therefore, (37) must be satisfied by every measurable
subset A of �. In other words, for every measurable subset A of �, the integral∫

A IDn f0

(
ξ

∫
Dn

f0 dπ0 − ∫
Dn
ξ f0 dπ0

)
dπ0 is zero and therefore the integrand

is constantly zero, π0-a.s. This implies that

IDn ξ =
(∫

Dn

ξ f0 dπ0/

∫

Dn

f0 dπ0

)
IDn ,

π0-a.s., i.e. the function ξ is constant on Dn, π0-a.s. Since this is true eventually for
every n and Dn ↑ { f0 > 0} as n diverges, ξ is constant on { f0 > 0}, π0-a.s. Being
g convex and differentiable, g′ is continuous (in particular at zero) and therefore ξ is
constant on �,π0-a.s. ��
Proof (of Proposition 4) By Corollary 1, if g is differentiable and strictly convex,
then (14) is equivalent to (13). Therefore, the existence of a probability measure πn

satisfying (14) needs to be proved. To this aim, denote

c1 = g′+(0) + ess sup
θ∈�

hn(θ, I (n))

c2 = g′(∞) + ess inf
θ∈� hn(θ, I (n)) (38)

and define

fc(θ) := G(c − hn(θ, I (n))), (39)

for every c ∈ (c1, c2). Notice that fc is properly defined. In fact, by (38), for every
c ∈ (c1, c2) and every θ ∈ �, c − hn(θ; I (n)) belongs to (g′+(0), g′(∞))(π0-a.s.),
which is the domain of G.

It needs to be proved that for some c∗ ∈ (c1, c2), fc∗ is a density on�with respect
to π0. Since the image of G is the domain (0,∞) of g′, fc is nonnegative for every
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c ∈ (c1, c2). Moreover, it is measurable. In fact, hn(· , I (n)) is measurable being
the integral (4) defined, and G is the inverse of a measurable function and therefore
measurable. Therefore, its integral Ic := ∫

�
fc dπ0 is properly defined.

At this stage, it needs to be proved that there exists c∗ ∈ (c1, c2) such that Ic∗ = 1.
To this aim, for every fixed c̄ ∈ (c1, c2), take 0 < ε < c2 − c̄. Hence, being G strictly
increasing, if c ∈ (c̄ − ε, c̄ + ε), then sup� fc < G(c2 − ess inf� h(·; I (n))) = ∞.
Therefore, one can apply the dominated convergence theorem to write:

lim
c→c̄

Ic =
∫

�

lim
c→c̄

fc dπ0. (40)

Moreover, for every fixed θ ∈ �, fc(θ) is a continuous function of c ∈ (c1, c2).
In fact, G is continuous, since its inverse g′ is a continuous function defined on an
interval, i.e. (0,∞). Hence, by (40), Ic is a continuous function of c on the interval
(c1, c2).

Notice that being G increasing, (15) yields that

fc1 ≤ G(c1 − ess inf
θ∈� hn(θ , I (n)))

≤ G(g′+(0) + ess sup
θ∈�

hn(θ, I (n)) − ess inf
θ∈� hn(θ , I (n))) ≤ 1,

and

fc2 ≥ G(c2 − ess sup
θ∈�

hn(θ , I (n)))

≥ G(g′(∞) + ess inf
θ∈� hn(θ, I (n)) − ess sup

θ∈�
hn(θ , I (n))) ≥ 1.

Therefore, integrating with respect to π0, one can see that Ic1 ≤ 1 ≤ Ic2 . Being Ic a
continuous function defined on an interval, which is (c1, c2), one can apply the inter-
mediate value theorem to prove that there exists c∗ ∈ (c1, c2) such that Ic∗ = 1. Hence,
one can properly define a probability measure πn such that dπn/dπ0 = fc∗ , π0-a.s.,
where

fc∗(θ) := G(c∗ − hn(θ, I (n))), (41)

for some real constant c∗.
Since g is a strictly convex map, so is L̄ and therefore L̄ admits at most one mini-

mum point. Therefore, f0 must be the only one. In other words, (41) implies (29) and
the proof is complete. ��

6 Proof of Theorem 2

Assume that � contains at least two distinct points, say θ0 and θ1. Otherwise, π0 is
degenerate and is equal to Un(π0; I ) for every I ∈ In and every n ≥ 1, and therefore
(19) is trivially satisfied.
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To prove Theorem 2, a very specific choice for π0 will be considered. Let

π0 = p0δθ0 + (1 − p0)δθ1, (42)

where 0 < p0 < 1. Hence,

ν = p1δθ0 + (1 − p1)δθ1 , (43)

where 0 ≤ p1 ≤ 1 so that ν � π0.
Hence, the probability measure ν is identified by a real number p1 and the functional

(4) can be replaced by a function of real variable of the following form:

l(p) = l(p, p0, I ) : = hn(θ0, I ) p + g

(
p

p0

)
p0

+ hn(θ1, I ) (1 − p) + g

(
1 − p

1 − p0

)
(1 − p0) (44)

where I ∈ In . Under (42), the minimization problem in (16) is tantamount to mini-
mizing the function l(p) with the constraint: 0 ≤ p ≤ 1.

In this simple situation, the operator Un satisfying (16) can be replaced by a map
Ūn : [0, 1] × In → [0, 1] such that l(Ūn(p0, I ), p0, I ) = minp∈[0,1] l(p, p0, I ), for
every I ∈ In , every n ≥ 1 and every 0 < p0 < 1. Being ν � π0,

Ūn(0, I ) = 0, Ūn(1, I ) = 1, (45)

for every I ∈ In and every n ≥ 1. In the rest of the proof, it will be assumed that
0 < p0 < 1 so that Ū (p0 , I ) is the minimum point of l(· , p0, I ), for every I ∈ In .

Assumption (17) entails that

Ūn(Ūm(p0, I ), I ′) = Ūn+m(p0, I, I ′) (46)

holds true for every 0 ≤ p0 ≤ 1, I ∈ In, I ′ ∈ Im, n,m ≥ 1. Hence,

Ūn(Ūm(p0, I ′), I ) = Ūm(Ūn(p0, I ), I ′) (47)

for every 0 ≤ p0 ≤ 1, I ∈ In, I ′ ∈ Im, n,m ≥ 1.
Recalling that composition with an affine function and weighted summation pre-

serve convexity, one notices that by (44), l is convex and

l ′+(p) = hn(θ0, I ) + g′+
(

p

p0

)
− hn(θ1, I ) − g′−

(
1 − p

1 − p0

)
, (48a)

l ′−(p) = hn(θ0, I ) + g′−
(

p

p0

)
− hn(θ1, I ) − g′+

(
1 − p

1 − p0

)
, (48b)

for every 0 < p < 1. An analogous equality is satisfied by the derivatives l ′(p) and
g′(p) for every p at which g is differentiable.
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Before proceeding, we need to prove the following lemma.

Lemma 2 If the hypotheses of Theorem 2 are satisfied, then g′+(0) must be −∞ and
moreover 0 < Ūn(p0, I ) < 1 for every p0 ∈ (0, 1), every I ∈ In and every n ≥ 1.

In other words, if the updating mechanism Un is consistent and the prior π0 sat-
isfies (42), then Un(π0, I (n)) cannot be degenerated and g′+(0) is not finite, as for
g(x) = x log x , which yields the Kullback–Leibler divergence. Recall also it is impor-
tant that (17) holds for every possible loss function h, i.e. for every h in the class
H (π0). In fact, we need to take into consideration any possible information I which
the loss h(θ, I ) could be based on.

Proof The fact that g′+(0) = −∞ will be proved by contradiction. To this aim, assume
that g′+(0) is finite and denote

d =
{

g′−(1/(1 − p0)) if hn(θ0; I )− hn(θ1; I ) > 0
g′−(1/p0) if hn(θ0; I )− hn(θ1; I ) < 0.

Let us consider the case in which |hn(θ0, I )− hn(θ1, I )| > d − g′+(0). Recalling
(48a), notice that if hn(θ0, I )− hn(θ1, I ) > d − g′+(0), then l ′+(0) > 0. Since l ′+ is a
non decreasing function by convexity of l, this entails that l ′+ is positive on (0, 1). In
this case, zero is the (unique) minimum point for l. By (48b), if hn(θ1, I )−hn(θ0, I ) >
d − g′+(0), then l ′−(1) < 0. In this other case, l turns out to be decreasing on (0, 1)
and therefore one is its (unique) minimum point.

At this stage, consider a function h in H (π0) and two pieces of information I and
I ′ in In (for some n ≥ 1) such that

hn(θ0, I )− hn(θ1, I ) > d − g′+(0) (49)

and that

hn(θ1, I ′)− hn(θ0, I ′) > d − g′+(0), (50)

where hn satisfies (5) and g′+(0) is finite by hypothesis.
By (49) Ūn(p0, I ) = 0 and, recalling (45), (47) becomes

Ūn(Ūn(p0, I ′), I ) = 0. (51)

By (50), Ūn(p0, I ′) = 1 and therefore the left hand side of (51) is one, which yields
a contradiction. Hence, g′+(0) = −∞. By (48), this entails that l ′+(0) = −∞ and
l ′−(1) = ∞. Therefore, l cannot attain its minimum at zero or one, i.e. p1 := Ūn(p0, I )
must belong to (0, 1). ��

The following lemma provides necessary and sufficient conditions for a minimum
point of l(· , p0, I ) with 0 < p0 < 1 under the hypotheses of Theorem 2.
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Lemma 3 Assume that the hypotheses of Theorem 2 are satisfied and let 0 < p0 < 1.
Hence, p1 = Un(p0, I ) if and only if

g′−
(

p1

p0

)
− g′+

(
1 − p1

1 − p0

)
≤ hn(θ1, I ) − hn(θ0, I ) (52a)

hn(θ1, I ) − hn(θ0, I ) ≤ g′+
(

p1
p0

)
− g′−

(
1−p1
1−p0

)
. (52b)

Proof If 0 < p0 < 1 and p1 is the minimum point of l(·, p0, I ), then by Lemma 2,
p1 must belong to (0, 1). Hence, l ′−(p1) and l ′+(p1) exist and

l ′−(p1) ≤ 0 ≤ l ′+(p1). (53)

Since l(· , p0, I ) is a convex function and its minimum point must be an interior point
of (0, 1), (53) is a sufficient and necessary condition for p1 to be the minimum point
of l. By (48), the inequality (53) is tantamount to (52). ��

At this stage, denote by H the class of all maps h : �×I → R such that h(· , I1)

is measurable for every I1 ∈ I.

Lemma 4 If 0 < p0, p1, p2 < 1, n is a positive integer and I, I ′ ∈ In, I �= I ′ then
there exists h ∈ H , such that p1 is the minimum point of l(·; p0; I ), and p2 is the
minimum point of l(·; p1; I ′).

Proof At this stage, let ψ : (0, 1) → R be the following function:

ψ(p, p0) = p0 g

(
p

p0

)
+ (1 − p0) g

(
1 − p

1 − p0

)
.

Hence, (52) can be re-written in the following form:

∂−
∂p1
ψ(p1, p0) ≤ hn(θ1; I ) − hn(θ0; I ) ≤ ∂+

∂p1
ψ(p1, p0). (54)

By Lemma 3, p2 is the minimum point of l(·, p1, I ′) if and only if

∂−
∂p2
ψ(p2, p1) ≤ hn(θ1; I ′) − hn(θ0; I ′) ≤ ∂+

∂p2
ψ(p2, p1). (55)

Take a function h satisfying (54), and (55) under (5), and the thesis follows. ��
Lemma 5 If the assumptions of Theorem 2 are satisfied, then g is a differentiable
function and its derivative g′ is continuous. Moreover,

g′ (xy) = g′ (x) + g′ (y) − g′(1) (56)

holds true for every x, y > 0.
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Proof Fix p0 ∈ (0, 1), n > 0, I, I ′ ∈ In and let p1 = Ūn(p0, I ) and p2 =
Ūn(p1, I ′). Since (52) is satisfied by every 0 < p0 < 1 with p1 = Ūn(p0; I ) and
I ∈ In , one can write mutatis mutandis:

g′−
(

p2

p1

)
− g′+

(
1 − p2

1 − p1

)
≤ hn(θ1; I ′) − hn(θ0; I ′) (57a)

hn(θ1; I ′) − hn(θ0; I ′) ≤ g′+
(

p2
p1

)
− g′−

(
1−p2
1−p1

)
. (57b)

By (47), p2 = Ū2n(p0, I, I ′). Moreover, by (5) h2n(· , I, I ′) = hn(· , I ) +
hn(· , I ′), and therefore by Lemma 3,

g′−
(

p2

p0

)
− g′+

(
1 − p2

1 − p0

)

≤ hn(θ1, I ) + hn(θ1, I ′) − hn(θ0, I ) − hn(θ0, I ′), (58a)

and

hn(θ1, I ) + hn(θ1, I ′) − hn(θ0, I ) − hn(θ0, I ′)

≤ g′+
(

p2

p0

)
− g′−

(
1 − p2

1 − p0

)
. (58b)

Summing up term by term (52b) and (57b) and considering (58a), one obtains:

g′−
(

p2

p0

)
− g′+

(
1 − p2

1 − p0

)

≤ g′+
(

p1

p0

)
− g′−

(
1 − p1

1 − p0

)
+ g′+

(
p2

p1

)
− g′−

(
1 − p2

1 − p1

)
. (59a)

In an analogous way, (52a),(57a) and (58b) yield:

g′+
(

p2

p0

)
− g′−

(
1 − p2

1 − p0

)

≥ g′−
(

p1

p0

)
− g′+

(
1 − p1

1 − p0

)
+ g′−

(
p2

p1

)
− g′+

(
1 − p2

1 − p1

)
. (59b)

In virtue of Lemma 4, (59) needs to hold for every p0, p1, p2 ∈ (0, 1). By substi-
tuting t = p0, x = p1/p0, y = p2/p1, one obtains that

g′− (xy) − g′+
(

1 − t xy

1 − t

)

≤ g′+ (x) − g′−
(

1 − t x

1 − t

)
+ g′+ (y) − g′−

(
1 − t xy

1 − t x

)
, (60a)
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and

g′+ (xy) − g′−
(

1 − t xy

1 − t

)

≥ g′− (x) − g′+
(

1 − t x

1 − t

)
+ g′− (y) − g′+

(
1 − t xy

1 − t x

)
. (60b)

must hold for every 0 < t < 1 and every x, y > 0 such that x < 1/t and y < 1/(t x).
At this stage, recall that being g convex,

lim
u↓u0

g′+(u) = lim
u↓u0

g′−(u) = g′+(u0) (61a)

lim
u↑u0

g′+(u) = lim
u↑u0

g′−(u) = g′−(u0), (61b)

for every u0 > 0. See, for instance, Zǎlinescu (2002).
Hence, taking x = 1 + ε, y = 1 − ε and 0 < t < 1 so that as ε ↓ 0, x ↓ 1, y ↑

1, xy ↑ 1, (60b) entails that g′+(1) ≤ g′−(1). By convexity of g, g′− ≤ g′+ and there-
fore g′+(1) = g′−(1). Hence, g is differentiable at one and therefore letting t ↓ 0,
(60a) entails that for every x, y > 0

g′− (xy) ≤ g′+ (x) + g′+ (y) − g′(1). (62)

Hence, taking x = x0 − ε, y = (x0 + ε)/(x0 − ε), for some fixed x0 > 0 and
letting ε ↓ 0 (so that x ↑ x0, y ↓ 1, xy ↓ x0), (62) yields that g′−(x0)− g′+(x0) ≥ 0.
By convexity of g, g′− ≤ g′+ and therefore g′+(x0) = g′−(x0) for every x > 0. Hence,
the derivative g′ of g exists and g′ = g′+ = g′−. In virtue of (61), the derivative g′ is
continuous.

Being g′− = g′+, letting t ↓ 0, (60) entails that (56) holds true for every x, y > 0.
��

At this stage, it is possible to prove Theorem 2.

Proof (of Theorem 2) It can be proved by induction from (56) that

g′ (yn) = n (g′ (y) − g′(1)) + g′(1), (63)

holds true for every y > 0 and every integer n > 0. In fact, notice that the case n = 1
is trivial and that applying (56) taking x = yn and then (63), one can write:

g′(yn+1) = g′(yn) + g′(y) − g′(1)
= (n + 1) (g′(y) − g′(1)) + g′(1). (64)

Notice that (63) implies that

g′(y1/m) = 1
m (g

′ (y) − g′(1)) + g′(1), (65)
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for every integer m > 0 and every y > 0. Applying (65) and (63), one obtains that

g′(yn/m) = 1
m (g

′(yn)− g′(1))+ g′(1)
= n

m (g
′(y) − g′(1)) + g′(1) (66)

holds true for every pair of positive integers (n,m) and every y > 0. At this stage, fix
y = 2. By continuity of g′, this entails that

g′(2z) = z (g′(2)− g′(1))+ g′(1)

holds true for every z > 0. By substituting x = 2z , this implies that

g′(x) = k ln(x) + g′(1), (67)

where k = (g′(2) − g′(1))/ ln(2). Being g convex, g′ is not decreasing and therefore
k ≥ 0. If k = 0, then g′ is constant, which is impossible since g′+(0) = −∞ by
Lemma 2. Therefore, k must be positive. Being g(1) = 0 by assumption, (67) implies
that

g(x) = k x ln(x) + (g′(1)− k)(x − 1). (68)

Hence, Dg(Q1, Q2) = k
∫

ln(dQ1/dQ2) dQ1 holds true for some k > 0 and for
every couple of measures (Q1, Q2) such that Q1 � Q2. Therefore, Dg turns out to
be the Kullback–Leibler divergence, which yields (18) and (19) by Proposition 1. ��
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