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Abstract Estimation of the ratio of probability densities has attracted a great deal
of attention since it can be used for addressing various statistical paradigms. A naive
approach to density-ratio approximation is to first estimate numerator and denomi-
nator densities separately and then take their ratio. However, this two-step approach
does not perform well in practice, and methods for directly estimating density ratios
without density estimation have been explored. In this paper, we first give a com-
prehensive review of existing density-ratio estimation methods and discuss their pros
and cons. Then we propose a new framework of density-ratio estimation in which a
density-ratio model is fitted to the true density-ratio under the Bregman divergence.
Our new framework includes existing approaches as special cases, and is substantially
more general. Finally, we develop a robust density-ratio estimation method under the
power divergence, which is a novel instance in our framework.
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1010 M. Sugiyama et al.

1 Introduction

The ratio of probability densities can be used for various statistical data processing
purposes (Sugiyama et al. 2009, 2012) such as discriminant analysis (Silverman 1978),
non-stationarity adaptation (Shimodaira 2000; Sugiyama and Müller 2005; Sugiyama
et al. 2007; Quiñonero-Candela et al. 2009; Sugiyama and Kawanabe 2011), multi-
task learning (Bickel et al. 2008), outlier detection (Hido et al. 2008, 2011; Smola
et al. 2009), two-sample test (Keziou and Leoni-Aubin 2005; Sugiyama et al. 2011a)
change detection in time series (Kawahara and Sugiyama 2009), conditional den-
sity estimation (Sugiyama et al. 2010), and probabilistic classification (Sugiyama
2010).

Furthermore, mutual information—which plays a central role in information the-
ory (Cover and Thomas 2006)—can be estimated via density-ratio estimation (Suzuki
et al. 2008, 2009b). Since mutual information is a measure of statistical indepen-
dence between random variables, density-ratio estimation can also be used for vari-
able selection (Suzuki et al. 2009a), dimensionality reduction (Suzuki and Sugiyama
2010), independent component analysis (Suzuki and Sugiyama 2009), causal inference
(Yamada and Sugiyama 2010), clustering (Kimura and Sugiyama 2011), and cross-
domain object matching (Yamada and Sugiyama 2011) Thus, density-ratio estimation
is a versatile tool for statistical data processing.

A naive approach to approximating a density-ratio is to separately estimate the two
densities corresponding to the numerator and denominator of the ratio, and then take
the ratio of the estimated densities. However, this naive approach is not reliable in
high-dimensional problems since division by an estimated quantity can magnify the
estimation error of the dividend. To overcome this drawback, various approaches to
directly estimating density-ratios without going through density estimation have been
explored recently, including the moment matching approach (Gretton et al. 2009), the
probabilistic classification approach (Qin 1998; Cheng and Chu 2004), the density
matching approach (Sugiyama et al. 2008; Tsuboi et al. 2009; Yamada and Sugiyama
2009; Nguyen et al. 2010; Yamada et al. 2010), and the density-ratio fitting approach
(Kanamori et al. 2009).

The purpose of this paper is to provide a general framework of density-ratio estima-
tion that accommodates the above methods. More specifically, we propose a new den-
sity-ratio estimation approach called density-ratio matching—a density-ratio model
is fitted to the true density-ratio function under the Bregman divergence (Bregman
1967). We further develop a robust density-ratio estimation method under the power
divergence (Basu et al. 1998), which is a novel instance in our general framework.
Note that the Bregman divergence has been widely used in machine learning literature
so far (Collins et al. 2002; Murata et al. 2004; Tsuda et al. 2005; Dhillon and Sra 2006;
Cayton 2008; Wu et al. 2009), and the current paper explores a new application of the
Bregman divergence in the framework of density-ratio estimation.

The rest of this paper is organized as follows. After the problem formulation below,
we give a comprehensive review of density-ratio estimation methods in Sect. 2. In
Sect. 3, we describe our new framework for density-ratio estimation. Finally, we con-
clude in Sect. 4.
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Density-ratio matching under the Bregman divergence 1011

Problem formulation: The problem of density-ratio estimation addressed in this
paper is formulated as follows. Let X (⊂ R

d) be the data domain, and suppose we
are given independent and identically distributed (i.i.d.) samples {xnu

i }nnu
i=1 from a dis-

tribution with density p∗
nu(x) defined on X and i.i.d. samples {xde

j }nde
j=1 from another

distribution with density p∗
de(x) defined on X .

{xnu
i }nnu

i=1
i.i.d.∼ p∗

nu(x) and {xde
j }nde

j=1
i.i.d.∼ p∗

de(x).

We assume that p∗
de(x) is strictly positive over the domain X . The goal is to estimate

the density-ratio,

r∗(x) := p∗
nu(x)

p∗
de(x)

,

from samples {xnu
i }nnu

i=1 and {xde
j }nde

j=1. ‘nu’ and ‘de’ indicate ‘numerator’ and ‘denom-
inator’, respectively.

2 Existing density-ratio estimation methods

In this section, we give a comprehensive review of existing density-ratio estimation
methods.

2.1 Moment matching

Here, we describe a framework of density-ratio estimation based on moment matching.

2.1.1 Finite-order approach

First, we describe methods of finite-oder moment-matching for density-ratio estima-
tion.

The simplest implementation of moment matching would be to match the first-order
moment (i.e., the mean):

argmin
r

∥
∥
∥
∥

∫

xr(x)p∗
de(x)dx −

∫

x p∗
nu(x)dx

∥
∥
∥
∥

2

,

where ‖ · ‖ denotes the Euclidean norm. Its non-linear variant can be obtained using
some non-linear function φ(x) : R

d → R
t as

argmin
r

MM′(r),
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1012 M. Sugiyama et al.

where

MM′(r) :=
∥
∥
∥
∥

∫

φ(x)r(x)p∗
de(x)dx −

∫

φ(x)p∗
nu(x)dx

∥
∥
∥
∥

2

.

‘MM’ stands for ‘moment matching’. Let us ignore the irrelevant constant in MM′(r)
and define the rest as MM(r):

MM(r) :=
∥
∥
∥
∥

∫

φ(x)r(x)p∗
de(x)dx

∥
∥
∥
∥

2

−2

〈∫

φ(x)r(x)p∗
de(x)dx,

∫

φ(x)p∗
nu(x)dx

〉

, (1)

where 〈·, ·〉 denotes the inner product.
In practice, the expectations over p∗

nu(x) and p∗
de(x) in MM(r) are replaced by

sample averages. That is, for an nde-dimensional vector

r∗
de := (r∗(xde

1 ), . . . , r
∗(xde

nde
))
,

where 
 denotes the transpose, an estimator r̂de of r∗
de can be obtained by solving the

following optimization problem.

r̂de := argmin
r∈Rnde

M̂M(r), (2)

where

M̂M(r) := 1

n2
de

r
Φ

deΦder − 2

ndennu
r
Φ


deΦnu1nnu . (3)

1n denotes the n-dimensional vector with all ones. Φnu and Φde are the t × nnu and
t × nde design matrices defined by

Φnu := (φ(xnu
1 ), . . . ,φ(x

nu
nnu
)) and Φde := (φ(xde

1 ), . . . ,φ(x
de
nde
)),

respectively. Taking the derivative of the objective function (3) with respect to r and
setting it to zero, we have

2

n2
de

Φ

deΦder − 2

ndennu
Φ


deΦnu1nnu = 0t ,

where 0t denotes the t-dimensional vector with all zeros. Solving this equation with
respect to r , one can obtain the solution analytically as

r̂de = nde

nnu
(Φ


deΦde)
−1Φ


deΦnu1nnu .
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Density-ratio matching under the Bregman divergence 1013

One may add a normalization constraint

1

nde
1


nde
r = 1

to the optimization problem (2). Then the optimization problem becomes a convex
linearly constrained quadratic program. Since there is no known method for obtain-
ing the analytic-form solution for convex linearly constrained quadratic programs, a
numerical solver may be needed to compute the solution. Furthermore, a non-nega-
tivity constraint

r ≥ 0nde

and/or an upper bound for a positive constant B, i.e.,

r ≤ B1nde

may also be incorporated in the optimization problem (2), where inequalities for
vectors are applied in the element-wise manner. Even with these modifications, the
optimization problem is still a convex linearly constrained quadratic program, so its
solution can be numerically computed by standard optimization software.

The above fixed-design method gives estimates of the density-ratio values only
at the denominator sample points {xde

j }nde
j=1. Below, we consider the induction setup,

where the entire density-ratio function r∗(x) is estimated (Qin 1998; Kanamori et al.
2012).

We use the following linear density-ratio model for density-ratio function learning:

r(x) =
b
∑

�=1

θ�ψ�(x) = ψ(x)
θ , (4)

where ψ(x) : R
d → R

b is a basis function vector and θ (∈ R
b) is a parameter vector.

We assume that the basis functions are non-negative.

ψ(x) ≥ 0b.

Then model outputs at {xde
j }nde

j=1 are expressed in terms of the parameter vector θ as

(r(xde
1 ), . . . , r(x

de
nde
))
 = Ψ


deθ ,

where Ψ de is the b × nde design matrix defined by

Ψ de := (ψ(xde
1 ), . . . ,ψ(x

de
nde
)). (5)
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1014 M. Sugiyama et al.

Then, following Eq. (2), the parameter θ is learned as follows.

θ̂ := argmin
θ∈Rb

[

1

n2
de

θ
Ψ deΦ


deΦdeΨ



deθ − 2

ndennu
θ
Ψ deΦ



deΦnu1nnu

]

. (6)

Taking the derivative of the above objective function with respect to θ and setting it
to zero, we have the solution θ̂ analytically as

θ̂ = nde

nnu
(Ψ deΦ



deΦdeΨ



de)

−1Ψ deΦ


deΦnu1nnu .

One may include a normalization constraint, a non-negativity constraint (given that the
basis functions are non-negative), and a regularization constraint to the optimization
problem (6):

1
nde

1

nde
Ψ


deθ = 1, θ ≥ 0b, and θ ≤ B1b.

Then the optimization problem becomes a convex linearly constrained quadratic pro-
gram, whose solution can be obtained by a standard numerical solver.

The upper-bound parameter B, which works as a regularizer, may be optimized
by cross-validation (CV) with respect to the moment-matching error MM defined by
Eq. (1). Availability of CV would be one of the advantages of the inductive method
(i.e., learning the entire density-ratio function).

2.1.2 Infinite-order approach: KMM

Matching a finite number of moments does not necessarily lead to the true density-ratio
function r∗(x), even if infinitely many samples are available. In order to guarantee
that the true density-ratio function can always be obtained in the large-sample limit,
all moments up to the infinite order need to be matched. Here we describe a method of
infinite-oder moment-matching called kernel mean matching (KMM), which allows
one to efficiently match all the moments using kernel functions (Huang et al. 2007;
Gretton et al. 2009).

The basic idea of KMM is essentially the same as the finite-order approach, but a
universal reproducing kernel K (x, x′) (Steinwart 2001) is used as a non-linear trans-
formation. The Gaussian kernel

K (x, x′) = exp

(

−‖x − x′‖2

2σ 2

)

(7)

is an example of universal reproducing kernels. It has been shown that the solution
of the following optimization problem agrees with the true density-ratio (Huang et al.
2007; Gretton et al. 2009):

min
r∈H

∥
∥
∥
∥

∫

K (x, ·)p∗
nu(x)dx −

∫

K (x, ·)r(x)p∗
de(x)dx

∥
∥
∥
∥

2

H
,
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Density-ratio matching under the Bregman divergence 1015

where H denotes a universal reproducing kernel Hilbert space and ‖ · ‖H denotes its
norm.

An empirical version of the above problem is expressed as

min
r∈Rnde

[

1

n2
de

r
 K de,der − 2

ndennu
r
 K de,nu1nnu

]

,

where K de,de and K de,nu denote the kernel Gram matrices defined by

[K de,de] j, j ′ = K (xde
j , xde

j ′ ) and [K de,nu] j,i = K (xde
j , xnu

i ), (8)

respectively. In the same way as the finite-order case, the solution can be obtained
analytically as

r̂de = nde

nnu
K−1

de,de K de,nu1nnu . (9)

If necessary, one may include a non-negativity constraint, a normalization constraint,
and an upper bound in the same way as the finite-order case. Then the solution can be
numerically obtained by solving a convex linearly constrained quadratic programming
problem.

For a linear density-ratio model (4), an inductive variant of KMM is formulated as

min
θ∈Rb

[

1

n2
de

θ
Ψ de K de,deΨ


deθ − 2

ndennu
θ
Ψ de K de,nu1nnu

]

,

and the solution θ̂ is given by

θ̂ = nde

nnu
(Ψ de K de,deΨ de)

−1Ψ de K de,nu1nnu .

2.1.3 Remarks

The infinite-order moment matching method, kernel mean matching (KMM), can effi-
ciently match all the moments by making use of universal reproducing kernels. Indeed,
KMM has an excellent theoretical property that it is consistent (Huang et al. 2007;
Gretton et al. 2009). However, KMM has a limitation in model selection—there is no
known method for determining the kernel parameter (i.e., the Gaussian kernel width).
A popular heuristic of setting the Gaussian width to the median distance between
samples (Schölkopf and Smola 2002) would be useful in some cases, but this may not
always be reasonable.

In the above, moment matching was performed in terms of the squared norm, which
led to an analytic-form solution (if no constraint is imposed). As shown in Kanamori
et al. (2012), moment matching can be systematically generalized to various diver-
gences.
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2.2 Probabilistic classification

Here, we describe a framework of density-ratio estimation through probabilistic clas-
sification.

2.2.1 Basic framework

The basic idea of the probabilistic classification approach is to obtain a probabilis-
tic classifier that separates numerator samples {xnu

i }nnu
i=1 and denominator samples

{xde
j }nde

j=1.

Let us assign a label y = +1 to {xnu
i }nnu

i=1 and y = −1 to {xde
j }nde

j=1, respectively.
Then the two densities p∗

nu(x) and p∗
de(x) are written as

p∗
nu(x) = p∗(x|y = +1) and p∗

de(x) = p∗(x|y = −1),

respectively. Note that y is regarded as a random variable here. An application of
Bayes’ theorem,

p∗(x|y) = p∗(y|x)p∗(x)
p∗(y)

,

yields that the density-ratio r∗(x) can be expressed in terms of y as follows:

r∗(x) = p∗
nu(x)

p∗
de(x)

=
(

p∗(y = +1|x)p∗(x)
p∗(y = +1)

)(
p∗(y = −1|x)p∗(x)

p∗(y = −1)

)−1

= p∗(y = −1)

p∗(y = +1)

p∗(y = +1|x)
p∗(y = −1|x) .

The ratio p∗(y = −1)/p∗(y = +1) may be simply approximated by the ratio of the
sample size:

p∗(y = −1)

p∗(y = +1)
≈ nde/(nde + nnu)

nnu/(nde + nnu)
= nde

nnu
.

The ‘class’-posterior probability p∗(y|x)may be approximated by separating {xnu
i }nnu

i=1
and {xde

j }nde
j=1 using a probabilistic classifier. Thus, given an estimator of the class-pos-

terior probability, p̂(y|x), a density-ratio estimator r̂(x) can be constructed as

r̂(x) = nde

nnu

p̂(y = +1|x)
p̂(y = −1|x) . (10)

A practical advantage of the probabilistic classification approach would be its easy
implementability. Indeed, one can directly use standard probabilistic classification
algorithms for density-ratio estimation. Another, more important advantage of the
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Density-ratio matching under the Bregman divergence 1017

probabilistic classification approach is that model selection (i.e., tuning the basis func-
tions and the regularization parameter) is possible by standard cross-validation since
the estimation problem involved in this framework is a standard supervised classifi-
cation problem.

Below, two probabilistic classification algorithms are described. For making the
explanation simple, we consider a set of paired samples {(xk, yk)}n

k=1, where, for
n = nnu + nde,

(x1, . . . , xn) := (xnu
1 , . . . , xnu

nnu
, xde

1 , . . . , xde
nde
),

(y1, . . . , yn) := (+1, . . . ,+1
︸ ︷︷ ︸

nnu

,−1, . . . ,−1
︸ ︷︷ ︸

nde

).

2.2.2 Logistic regression

Here, a popular probabilistic classification algorithm called logistic regression (Hastie
et al. 2001) is explained.

A logistic regression classifier employs a parametric model of the following form
for expressing the class-posterior probability p∗(y|x),

p(y|x; θ) = 1

1 + exp
(−yψ(x)
θ

) ,

where ψ(x) : R
d → R

b is a basis function vector and θ (∈ R
b) is a parameter

vector. The parameter vector θ is determined so that the penalized log-likelihood is
maximized, which can be expressed as the following minimization problem:

θ̂ := argmin
θ∈Rb

[
n
∑

k=1

log
(

1 + exp
(

−ykψ(xk)

θ
))

+ λθ
θ
]

, (11)

where λθ
θ is a penalty term included for regularization purposes.
Since the objective function in Eq. (11) is convex, the global optimal solution can be

obtained by a standard non-linear optimization technique such as the gradient descent
method or (quasi-)Newton methods (Hastie et al. 2001; Minka 2007).

Finally, a density-ratio estimator r̂LR(x) is given by

r̂LR(x) = nde
nnu

1+exp
(

ψ(x)
 θ̂
)

1+exp
(−ψ(x)
 θ̂ ) = nde

nnu
exp

(

ψ(x)
θ̂
)

,

where ‘LR’ stands for ‘logistic regression’.
Suppose that the logistic regression model p(y|x; θ) satisfies the following two

conditions:

– The constant function is included in the basis functions, i.e., there exists θ◦ such
that

ψ(x)
θ◦ = 1.
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– The model is correctly specified, i.e., there exists θ∗ such that

p(y|x; θ∗) = p∗(y|x).

Then it was proved that the logistic regression approach is optimal among a class
of semi-parametric estimators in the sense that the asymptotic variance is minimized
(Qin 1998). However, when the model is misspecified (which would be the case in
practice), the density matching approach explained in Sect. 2.3 would be more pref-
erable (Kanamori et al. 2010).

When multi-class logistic regression classifiers are used, density-ratios among mul-
tiple densities can be estimated simultaneously (Bickel et al. 2008). This is useful, e.g.,
for solving multi-task learning problems (Caruana et al. 1997).

2.2.3 Least-squares probabilistic classifier

Although the performance of these general-purpose non-linear optimization tech-
niques has been improved together with the evolution of computer environment in
the last decade, training logistic regression classifiers is still computationally expen-
sive. Here, an alternative probabilistic classification algorithm called least-squares
probabilistic classifier (LSPC; Sugiyama 2010) is described. LSPC is computation-
ally more efficient than logistic regression, with comparable accuracy in practice.

In LSPC, the class-posterior probability p∗(y|x) is modeled as

p(y|x; θ) :=
b
∑

�=1

θ�ψ(x, y) = ψ(x, y)
θ ,

where ψ(x, y) (∈ R
b) is a non-negative basis function vector, and θ (∈ R

b) is a
parameter vector. The class label y takes a value in {1, . . . , c}, where c is the number
of classes.

The basic idea of LSPC is to express the class-posterior probability p∗(y|x) in terms
of the equivalent density-ratio expression: p∗(x,y)

p∗(x) p∗(x, y)/p∗(x). Then the density-
ratio estimation method called unconstrained least-squares importance fitting (uLSIF;
Kanamori et al. 2009) is used for estimating this density-ratio. Since uLSIF will be
reviewed in detail in Sect. 2.4.3, we only describe the final solution here.

Let

Ĥ := 1

n

n
∑

k=1

c
∑

y=1

ψ(xk, y)ψ(xk, y)
 and ĥ := 1

n

n
∑

k=1

ψ(xk, yk).

Then the uLSIF solution is given analytically as θ̂ = (Ĥ +λIb)
−1 ĥ, where λ (≥0) is

the regularization parameter and Ib is the b-dimensional identity matrix. In order to
assure that the output of LSPC is a probability, the outputs are normalized and negative
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Density-ratio matching under the Bregman divergence 1019

outputs are rounded up to zero (Yamada et al. 2011):

p̂(y|x) = max(0,ψ(x, y)
θ̂)
∑c

y′=1 max(0,ψ(x, y′)
θ̂)
.

A standard choice of basis functions ψ(x, y) would be a kernel model:

p(y|x; θ) =
n
∑

�=1

θ
(y)
� K (x, x�), (12)

where K (x, x′) is some kernel function such as the Gaussian kernel (7). Then the
matrix Ĥ becomes block-diagonal. Thus, we only need to train a model with n param-
eters separately c times for each class y = 1, . . . , c. Since all the diagonal block
matrices are the same, the computational complexity for computing the solution is
O(n3 + cn2).

Let us further reduce the number of kernels in model (12). To this end, we focus
on a kernel function K (x, x′) that is “localized”. Examples of such localized kernels
include the popular Gaussian kernel. The idea is to reduce the number of kernels by
locating the kernels only at samples belonging to the target class:

p(y|x; θ) =
ny
∑

�=1

θ
(y)
� K (x, x(y)� ), (13)

where ny is the number of training samples in class y and {x(y)k }ny
k=1 is the training

input samples in class y. The rationale behind this model simplification is as fol-
lows. By definition, the class-posterior probability p∗(y|x) takes large values in the
regions where samples in class y are dense; conversely, p∗(y|x) takes smaller val-
ues (i.e., close to zero) in the regions where samples in class y are sparse. When
a non-negative function is approximated by a localized kernel model, many kernels
may be needed in the region where the output of the target function is large; on the
other hand, only a small number of kernels would be enough in the region where the
output of the target function is close to zero. Following this heuristic, many kernels
are allocated in the region where p∗(y|x) takes large values, which can be achieved by
Eq. (13).

This model simplification allows one to further reduce the computational cost since
the size of the target blocks in matrix Ĥ is further reduced. In order to determine the
ny-dimensional parameter vector θ (y) = (θ

(y)
1 , . . . , θ

(y)
ny )


 for each class y, we only
need to solve the following system of ny linear equations:

(Ĥ
(y) + λIny )θ

(y) = ĥ
(y)
, (14)

where Ĥ
(y)

is the ny × ny matrix, and ĥ
(y)

is the ny-dimensional vector defined
as
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1020 M. Sugiyama et al.

Ĥ (y)
�,�′ := 1

ny

ny
∑

k=1

K (x(y)k , x(y)� )K (x(y)k , x(y)
�′ ) and ĥ(y)� := 1

ny

ny
∑

k=1

K (x(y)k , x(y)� ).

Let θ̂
(y)

be the solution of Eq. (14). Then the final solution is given by

p̂(y|x) =
max

(

0,
∑ny
�=1 θ̂

(y)
� K (x, x(y)� )

)

∑c
y′=1 max

(

0,
∑ny′
�=1 θ̃

(y′)
� K (x, x(y

′)
� )

) . (15)

For the simplified model (13), the computational complexity for computing the
solution is O(cn3

y)—when ny = n/c for all y, this is equal to O(c−2n3). Thus, this
approach is computationally highly efficient for multi-class problems with large c.

A MATLAB® implementation of LSPC is available from http://sugiyama-www.
cs.titech.ac.jp/~sugi/software/LSPC/.

2.2.4 Remarks

Density-ratio estimation by probabilistic classification can successfully avoid density
estimation by casting the problem of density-ratio estimation as the problem of estimat-
ing the ‘class’-posterior probability. An advantage of the probabilistic classification
approach over the moment matching approach explained in Sect. 2.1 is that cross-val-
idation can be used for model selection. Furthermore, existing software packages of
probabilistic classification algorithms can be directly used for density-ratio estimation.

The probabilistic classification approach with logistic regression was shown to have
a suitable theoretical property (Qin 1998): if the logistic regression model is correctly
specified, the probabilistic classification approach is optimal among a broad class of
semi-parametric estimators. However, this strong theoretical property is not true when
the correct model assumption is not fulfilled.

An advantage of the probabilistic classification approach is that it can be used
for estimating density-ratios among multiple densities by multi-class probabilistic
classifiers. In this context, the least-squares probabilistic classifier (LSPC) would be
practically useful due to its computational efficiency.

2.3 Density matching

Here, we describe a framework of density-ratio estimation by density matching under
the KL divergence.

2.3.1 Basic framework

Let r(x) be a model of the true density-ratio r∗(x) = p∗
nu(x)/p∗

de(x). Then the numer-
ator density p∗

nu(x) may be modeled by pnu(x) = r(x)p∗
de(x). Now let us consider

the KL divergence from p∗
nu(x) to pnu(x):
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KL′(p∗
nu‖pnu) :=

∫

p∗
nu(x) log

p∗
nu(x)

pnu(x)
dx = C − KL(r),

where C := ∫

p∗
nu(x) log p∗

nu(x)
p∗

de(x)
dx is a constant irrelevant to r , and KL(r) is the

relevant part:

KL(r) :=
∫

p∗
nu(x) log r(x)dx ≈ 1

nnu

nnu∑

i=1

log r(xnu
i ).

Since pnu(x) is a probability density function, its integral should be one:

1 =
∫

pnu(x)dx =
∫

r(x)p∗
de(x)dx ≈ 1

nde

nde∑

j=1

r(xde
j ).

Furthermore, the density pnu(x) should be non-negative, which can be achieved by
r(x) ≥ 0 for all x. Combining these equations together, we have the following opti-
mization problem.

max
r

1

nnu

nnu∑

i=1

log r(xnu
i )

s.t.
1

nde

nde∑

j=1

r(xde
j ) = 1 and r(x) ≥ 0 for all x.

This formulation is called the KL importance estimation procedure (KLIEP; Sugiyama
et al. 2008).

Possible hyper-parameters in KLIEP (such as basis parameters and regularization
parameters) can be optimized using cross-validation with respect to the KL diver-
gence, where the numerator samples {xnu

i }nnu
i=1 appearing in the objective function may

only be cross-validated (Sugiyama et al. 2008).
Below, practical implementations of KLIEP for various density-ratio models are

described.

2.3.2 Linear and kernel models

Let us employ a linear model for density-ratio estimation.

r(x) =
b
∑

�=1

θ�ψ�(x) = ψ(x)
θ , (16)

where ψ(x) : R
d → R

b is a non-negative basis function vector, and θ (∈R
b) is

a parameter vector. Then the KLIEP optimization problem for the linear model is
expressed as follows (Sugiyama et al. 2008).
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max
θ∈Rb

1

nnu

nnu∑

i=1

log(ψ(xnu
i )


θ) s.t. ψ


deθ = 1 and θ ≥ 0b,

where ψde := 1
nde

∑nde
j=1 ψ(x

de
j ).

Since the above optimization problem is convex, there exists the unique global
optimum solution. Furthermore, the KLIEP solution tends to be sparse, i.e., many
parameters take exactly zero, because of the non-negativity constraint. Such spar-
sity would contribute to reducing the computation time when computing estimated
density-ratio values. As can be confirmed from the above optimization problem, the
denominator samples {xde

j }nde
j=1 appear only in terms of the basis-transformed mean

ψde. Thus, KLIEP for linear models is computationally efficient even when the number
nde of denominator samples is very large.

The performance of KLIEP depends on the choice of the basis functions ψ(x). As
explained below, the use of the following Gaussian kernel model would be reasonable:

r(x) =
nnu∑

�=1

θ�K (x, xnu
� ), (17)

where K (x, x′) is the Gaussian kernel (7). The reason why the numerator samples
{xnu

i }nnu
i=1, not the denominator samples {xde

j }nde
j=1, are chosen as the Gaussian centers

is as follows. By definition, the density-ratio r∗(x) tends to take large values if p∗
de(x)

is small and p∗
nu(x) is large. Conversely, r∗(x) tends to be small (i.e., close to zero) if

p∗
de(x) is large and p∗

nu(x) is small. When a non-negative function is approximated by
a Gaussian kernel model, many kernels may be needed in the region where the output
of the target function is large. On the other hand, only a small number of kernels
would be enough in the region where the output of the target function is close to zero.
Following this heuristic, many kernels are allocated in the region where p∗

nu(x) takes
large values, which can be achieved by setting the Gaussian centers at {xnu

i }nnu
i=1.

The KLIEP methods for linear/kernel models are referred to as linear KLIEP (L-
KLIEP) and kernel KLIEP (K-KLIEP), respectively. A MATLAB® implementation of
the K-KLIEP algorithm is available from http://sugiyama-www.cs.titech.ac.jp/~sugi/
software/KLIEP/.

2.3.3 Log-linear models

Another popular model choice would be the log-linear model (Tsuboi et al. 2009;
Kanamori et al. 2010):

r(x; θ , θ0) = exp
(

ψ(x)
θ + θ0

)

, (18)

where θ0 is a normalization parameter. From the normalization constraint

1

nde

nde∑

j=1

r(xde
j ; θ , θ0) = 1,

123

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/KLIEP/
http://sugiyama-www.cs.titech.ac.jp/~sugi/software/KLIEP/


Density-ratio matching under the Bregman divergence 1023

θ0 is determined as

θ̂0 = − log

⎛

⎝
1

nde

nde∑

j=1

exp
(

ψ(xde
j )


θ
)

⎞

⎠ .

Then the density-ratio model is expressed as

r(x; θ) = exp
(

ψ(x)
θ
)

1
nde

∑nde
j=1 exp

(

ψ(xde
j )


θ
) .

By definition, outputs of the log-linear model r(x; θ) are non-negative for all x.
Thus, we do not need the non-negativity constraint on the parameter. Then the KLIEP
optimization criterion is expressed as

max
θ∈Rb

⎡

⎣ψ


nuθ − log

⎛

⎝
1

nde

nde∑

j=1

exp(ψ(xde
j )


θ)

⎞

⎠

⎤

⎦ ,

where ψnu := 1
nnu

∑nnu
i=1 ψ(x

nu
i ). This is an unconstrained convex optimization prob-

lem, so the global optimal solution can be obtained by, e.g., the gradient method
and (quasi-)Newton methods. Since the numerator samples {xnu

i }nnu
i=1 appear only in

terms of the basis-transformed mean ψnu, KLIEP for log-linear models is compu-
tationally efficient even when the number nnu of numerator samples is very large
(cf. KLIEP for linear/kernel models is computationally efficient when nde is very
large; see Sect. 2.3.2).

The KLIEP method for log-linear models is called log-linear KLIEP (LL-KLIEP).

2.3.4 Gaussian mixture models

In the Gaussian kernel model (17), the Gaussian shape is spherical and its width is con-
trolled by a single width parameter σ . It is possible to use correlated Gaussian kernels,
but choosing the covariance matrix via cross-validation would be computationally
intractable.

Another option is to also estimate the covariance matrix directly from data. For this
purpose, the Gaussian mixture model comes in handy (Yamada and Sugiyama 2009):

r(x; {θk,μk,Σk}c
k=1) =

c
∑

k=1

θk K (x;μk,Σk), (19)

where c is the number of mixing components, {θk}c
k=1 are mixing coefficients, {μk}c

k=1
are means of Gaussian functions, {Σk}c

k=1 are covariance matrices of Gaussian func-
tions, and K (x;μ,Σ) is the Gaussian kernel with mean μ and covariance matrix
Σ :
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K (x;μ,Σ) := exp

(

−1

2
(x − μ)
Σ−1(x − μ)

)

. (20)

Note thatΣ should be positive definite, i.e., all the eigenvectors ofΣ should be strictly
positive.

For the Gaussian mixture model (19), the KLIEP optimization problem is expressed
as

max
{θk ,μk ,Σk }c

k=1

1

nnu

nnu∑

i=1

log

(
c
∑

k=1

θk K (xnu
i ;μk,Σk)

)

s.t.
1

nde

nde∑

j=1

c
∑

k=1

θk K (xde
j ;μk,Σk) = 1,

θk ≥ 0 and Σk � O for k = 1, . . . , c,

where Σk � O means that Σk is positive definite.
The above optimization problem is non-convex, and there is no known method for

obtaining the global optimal solution. In practice, a local optimal solution may be
numerically obtained by, e.g., a fixed-point method.

The KLIEP method for Gaussian mixture models is called Gaussian-mixture KLIEP
(GM-KLIEP).

2.3.5 Probabilistic PCA mixture models

The Gaussian mixture model explained above would be more flexible than linear/ker-
nel/log-linear models and suitable for approximating correlated density-ratio func-
tions. However, when the target density-ratio function is (locally) rank-deficient, its
behavior could be unstable since inverse covariance matrices are included in the Gauss-
ian function (see Eq. (20)). To cope with this problem, the use of a mixture of probabi-
listic principal component analyzers (PPCA; Tipping and Bishop 1999) was proposed
for density-ratio estimation (Yamada et al. 2010).

The PPCA mixture model is defined as

r(x; {θk,μk, σ
2
k ,W k}c

k=1) =
c
∑

k=1

θk K (x;μk, σ
2
k ,W k),

where c is the number of mixing components and {θk}c
k=1 are mixing coefficients.

K (x;μ, σ 2,W) is a PPCA model defined by

K (x;μ, σ 2,W) = (2πσ 2)−
d
2 det(C)−

1
2 exp

(

−1

2
(x − μ)
C−1(x − μ)

)

,

where ‘det’ denotes the determinant, μ is the mean of the Gaussian function, σ 2

is the variance of the Gaussian function, W is a d × m ‘projection’ matrix onto a
m-dimensional latent space (where m ≤ d), and C = W W
 + σ 2 Id .
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Then the KLIEP optimization criterion is expressed as

max
{θk ,μk ,σ

2
k ,W k }c

k=1

1

nnu

nnu∑

i=1

log

(
c
∑

k=1

θk K (xnu
i ;μk, σ

2
k ,W k)

)

s.t.
1

nde

nde∑

j=1

c
∑

k=1

θk K (xde
j ;μk, σ

2
k ,W k) = 1,

θk ≥ 0 for k = 1, . . . , c.

The above optimization is non-convex, so a local optimal solution may be found by
some algorithm in practice. When the dimensionality of the latent space, m, is equal to
the entire dimensionality d, PPCA models are reduced to ordinary Gaussian models.
Thus, PPCA models can be regarded as an extension of Gaussian models to (locally)
rank-deficient data.

The KLIEP method for PPCA mixture models is called PPCA-mixture KLIEP
(PM-KLIEP).

2.3.6 Remarks

Density-ratio estimation by density matching under the KL divergence allows one to
avoid density estimation when estimating density-ratios (Sect. 2.3.1). Furthermore,
cross-validation with respect to the KL divergence is available for model selection.

The method, called the KL importance estimation procedure (KLIEP), is applica-
ble to a variety of models such as linear models, kernel models, log-linear models,
Gaussian mixture models, and probabilistic principal-component-analyzer mixture
models.

2.4 Density-ratio fitting

Here, we describe a framework of density-ratio estimation by least-squares density-
ratio fitting (Kanamori et al. 2009).

2.4.1 Basic framework

The model r(x) of the true density-ratio function r∗(x) = p∗
nu(x)/p∗

de(x) is learned
so that the following squared error SQ′ is minimized:

SQ′(r) := 1

2

∫
(

r(x)− r∗(x)
)2

p∗
de(x)dx.

= 1

2

∫

r(x)2 p∗
de(x)dx −

∫

r(x)p∗
nu(x)dx + 1

2

∫

r∗(x)p∗
nu(x)dx,

where the last term is a constant and therefore can be safely ignored. Let us denote
the first two terms by SQ:

123



1026 M. Sugiyama et al.

SQ(r) := 1

2

∫

r(x)2 p∗
de(x)dx −

∫

r(x)p∗
nu(x)dx.

Approximating the expectations in SQ by empirical averages, we obtain the following
optimization problem:

min
r

⎡

⎣

nde∑

j=1

r(xde
j )

2 − 1

nnu

nnu∑

i=1

r(xnu
i )

⎤

⎦ . (21)

We refer to this formulation as least-squares importance fitting (LSIF). Possible hyper-
parameters (such as basis parameters and regularization parameters) can be optimized
by cross-validation with respect to the SQ criterion (Kanamori et al. 2009).

Below, two implementations of LSIF for the following linear/kernel models are
described:

r(x) =
b
∑

�=1

θ�ψ�(x) = ψ(x)
θ ,

where ψ(x) : R
d → R

b is a non-negative basis function vector, and θ (∈R
b) is a

parameter vector. Since this model is the same form as that used in KLIEP for lin-
ear/kernel models (Sect. 2.3.2), we may use the same basis design idea described
there.

For the above linear/kernel models, Eq. (21) is expressed as

min
θ∈Rb

[
1

2
θ
 Ĥθ − ĥ



θ

]

,

where

Ĥ := 1

nde

nde∑

j=1

ψ(xde
j )ψ(x

de
j )


 and ĥ := 1

nnu

nnu∑

i=1

ψ(xnu
i ). (22)

2.4.2 Implementation with non-negativity constraint

Here, we describe an implementation of LSIF with non-negativity constraint.
Let us impose non-negativity constraint θ ≥ 0b since the density-ratio function is

non-negative by definition. Let us further add the following regularization term to the
objective function:

1

b θ = ‖θ‖1 :=

b
∑

�=1

|θ�|.

The term 1

b θ works as the �1-regularizer if it is combined with the non-negativity

constraint. Then the optimization problem is expressed as follows.
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min
θ∈Rb

[
1

2
θ
 Ĥθ − ĥ



θ + λ1


b θ

]

s.t. θ ≥ 0b,

where λ (≥ 0) is the regularization parameter. We refer to this method as constrained
LSIF (cLSIF; Kanamori et al. 2009). The cLSIF optimization problem is a convex qua-
dratic program, so the unique global optimal solution may be computed by a standard
optimization software.

We can also use the �2-regularizer θ
θ , instead of the �1-regularizer 1

b θ , without

changing the computational property (i.e., the optimization problem is still a convex
quadratic program). However, using the �1-regularizer would be more advantageous
since the solution tends to be sparse, i.e., many parameters take exactly zero (Williams
1995; Tibshirani 1996; Chen et al. 1998). Furthermore, as shown in Kanamori et al.
(2009), the use of the �1-regularizer allows one to compute the entire regulariza-
tion path efficiently (Best 1982; Efron et al. 2004; Hastie et al. 2004), which highly
improves the computational cost in the model selection phase.

An R implementation of cLSIF is available from http://www.math.cm.is.nagoya-u.
ac.jp/~kanamori/software/LSIF/.

2.4.3 Implementation without non-negativity constraint

Here, we describe another implementation of LSIF without the non-negativity con-
straint called unconstrained LSIF (uLSIF).

Without the non-negativity constraint, the linear regularizer 1

b θ used in cLSIF

does not work as a regularizer. For this reason, a quadratic regularizer θ
θ is adopted
here. Then we have the following optimization problem.

min
θ∈Rb

[
1

2
θ
 Ĥθ − ĥ



θ + λ

2
θ
θ

]

. (23)

Equation (23) is an unconstrained convex quadratic program, and the solution can be
computed analytically by solving the following system of linear equations:

(Ĥ + λIb)θ = ĥ,

where Ib is the b-dimensional identity matrix. The solution θ̂ of the above equation
is given by

θ̂ = (Ĥ + λIb)
−1 ĥ.

Since the non-negativity constraint θ ≥ 0b was dropped, some of the obtained
parameters could be negative. To compensate for this approximation error, the solu-
tion may be modified as follows (Kanamori et al. 2012):

max(0,ψ(x)
θ̂).
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This is the solution of the approximation method called unconstrained LSIF (uLSIF;
Kanamori et al. 2009). An advantage of uLSIF is that the solution can be analytically
computed just by solving a system of linear equations. Therefore, its computation is
stable when λ is not too small.

A practically important advantage of uLSIF over cLSIF is that the score of leave-
one-out cross-validation (LOOCV) can be computed analytically (Kanamori et al.
2009)—thanks to this property, the computational complexity for performing LOO-
CV is the same order as just computing a single solution.

A MATLAB® implementation of uLSIF is available from http://sugiyama-www.
cs.titech.ac.jp/~sugi/software/uLSIF/ and an R implementation of uLSIF is available
from http://www.math.cm.is.nagoya-u.ac.jp/~kanamori/software/LSIF/.

2.4.4 Remarks

One can successfully avoid density estimation by least-squared density-ratio fitting.
The least-squares methods for linear/kernel models are computationally more advanta-
geous than alternative approaches such as moment matching (Sect. 2.1), probabilistic
classification (Sect. 2.2), and density matching (Sect. 2.3). Indeed, the constrained
method (cLSIF) for the �1-regularizer is equipped with a regularization path tracking
algorithm. Furthermore, the unconstrained method (uLSIF) allows one to compute
the density-ratio estimator analytically; the leave-one-out cross-validation score can
also be computed in a closed form. Thus, the overall computation of uLSIF including
model selection is highly efficient.

The fact that uLSIF has an analytic-form solution is actually very useful beyond its
computational efficiency. When one wants to optimize some criterion defined using
a density-ratio estimate (e.g., mutual information, see Cover and Thomas, 2006), the
analytic-form solution of uLSIF allows one to compute the derivative of the target
criterion analytically. Then one can develop, e.g., gradient-based and (quasi-)Newton
algorithms for optimization. This property can be successfully utilized, e.g., in identify-
ing the central subspace in sufficient dimension reduction (Suzuki and Sugiyama 2010),
finding independent components in independent component analysis (Suzuki and
Sugiyama 2011), performing dependence-minimizing regression in causality learning
(Yamada and Sugiyama 2010), and identifying the hetero-distributional subspace in
direct density-ratio estimation with dimensionality reduction (Sugiyama et al. 2011b).

3 Unified framework by density-ratio matching

As reviewed in the previous section, various density-ratio estimation methods have
been developed so far. In this section, we propose a new framework of density-ratio
estimation by density-ratio matching under the Bregman divergence (Bregman 1967),
which includes various useful divergences (Banerjee et al. 2005; Stummer 2007). This
framework is a natural extension of the least-squares approach described in Sect. 2.4,
and includes the existing approaches reviewed in the previous section as special cases
(Sect. 3.2). Then we provide interpretation of density-ratio matching from two different
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views in Sect. 3.3. Finally, we give a new instance of density-ratio matching based on
the power divergence in Sect. 3.4.

3.1 Basic framework

A basic idea of density-ratio matching is to directly fit a density-ratio model r(x) to
the true density-ratio function r∗(x) under some divergence. At a glance, this den-
sity-ratio matching problem is equivalent to the regression problem, which is aimed
at estimating a real-valued function. However, density-ratio matching is essentially
different from regression since samples of the true density-ratio function are not avail-
able. Here, we employ the Bregman (BR) divergence for measuring the discrepancy
between the true density-ratio function and the density-ratio model.

The BR divergence is an extension of the Euclidean distance to a class of diver-
gences that share similar properties. Let f be a differentiable and strictly convex
function. Then the BR divergence associated with f from t∗ to t is defined as

BR′
f (t

∗‖t) := f (t∗)− f (t)− ∂ f (t)(t∗ − t),

where ∂ f is the derivative of f . Note that

f (t)+ ∂ f (t)(t∗ − t)

is the value of the first-order Taylor expansion of f around t evaluated at t∗. Thus,
the BR divergence evaluates the difference between the value of f at point t∗ and its
linear extrapolation from t (see Fig. 1). BR′

f (t
∗‖t) is a convex function with respect

to t∗, but not necessarily convex with respect to t .
Here, the discrepancy from the true density-ratio function r∗ to a density-ratio

model r is measured using the BR divergence as

BR′
f

(

r∗‖r
) :=

∫

p∗
de(x)

(

f (r∗(x))− f (r(x))− ∂ f (r(x))(r∗(x)− r(x))
)

dx.

(24)

Fig. 1 Bregman divergence
BR′

f (t
∗‖t)
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Table 1 Summary of density-ratio estimation methods

Method (Sect.) f (t) Model selection Optimization

LSIF (3.2.1) (t − 1)2/2 Available Analytic

KMM (3.2.2) (t − 1)2/2 Partially unavailable Analytic

LR (3.2.3) t log t − (1 + t) log(1 + t) Available Convex

KLIEP (3.2.4) t log t − t Available Convex

Robust (3.4) (t1+α − t)/α, α > 0 Available Convex (0 < α ≤ 1)
Non-convex (α > 1)

LSIF least-squares importance fitting, KMM kernel mean matching, LR logistic regression, KLIEP Kull-
back–Leibler importance estimation procedure

A motivation for this choice is that the BR divergence allows one to directly obtain
an empirical approximation for any f . Indeed, let us first extract a relevant part of
BR′

f (r
∗‖r) as

BR′
f

(

r∗‖r
) = BR f (r)+ C,

where C := ∫

p∗
de(x) f (r∗(x))dx is a constant independent of r , and

BR f (r) :=
∫

p∗
de(x)

(

∂ f (r(x))r(x)− f (r(x))
)

dx −
∫

p∗
nu(x)∂ f (r(x))dx.

(25)

Then an empirical approximation B̂R f (r) of BR f (r) is given by

B̂R f (r) := 1

nde

nde∑

j=1

(

∂ f (r(xde
j ))r(x

de
j )− f (r(xde

j ))
)

− 1

nnu

nnu∑

i=1

∂ f (r(xnu
i )).

(26)

This immediately gives the following optimization criterion.

min
r

B̂R f (r) ,

where r is searched within some class of functions.

3.2 Existing methods as density-ratio matching

Here, we show that various density-ratio estimation methods reviewed in the previous
section can be accommodated in the density-ratio matching framework (see Table 1).
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3.2.1 Least-squares importance fitting

Here, we show that the least-squares importance fitting (LSIF) approach introduced
in Sect. 2.4.1 is an instance of density-ratio matching. More specifically, there exists a
BR divergence such that the optimization problem of density-ratio matching is reduced
to that of LSIF.

When

f (t) = 1

2
(t − 1)2,

BR (24) is reduced to the squared (SQ) distance:

SQ′(t∗‖t) := 1

2
(t∗ − t)2.

Following Eqs. (25) and (26), let us denote SQ without an irrelevant constant term by
SQ (r) and its empirical approximation by ŜQ (r), respectively:

SQ (r) := 1

2

∫

p∗
de(x)r(x)

2dx −
∫

p∗
nu(x)r(x)dx,

ŜQ (r) := 1

2nde

nde∑

j=1

r(xde
j )

2 − 1

nnu

nnu∑

i=1

r(xnu
i ).

This agrees with the LSIF formulation given in Sect. 2.4.1.

3.2.2 Kernel mean matching

Here, we show that the solution of the moment matching method, kernel mean match-
ing (KMM) introduced in Sect. 2.1, actually agrees with that of unconstrained LSIF
(uLSIF; see Sect. 2.4.3) for specific kernel models. Since uLSIF was shown to be
an instance of density-ratio matching in Sect. 3.2.1, the KMM solution can also be
obtained in the density-ratio matching framework.

Let us consider the following kernel density-ratio model:

r(x) =
nde∑

�=1

θ�K (x, xde
� ), (27)

where K (x, x′) is a universal reproducing kernel (Steinwart 2001) such as the Gauss-
ian kernel (7). Note that uLSIF and KLIEP use the numerator samples {xnu

i }nnu
i=1 as

Gaussian centers, while the model (27) adopts the denominator samples {xde
j }nde

j=1 as

Gaussian centers. For the density-ratio model (27), the matrix Ĥ and the vector ĥ
defined by Eq. (22) are expressed as

Ĥ = 1

nde
K 2

de,de and ĥ = 1

nnu
K de,nu1nnu ,
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where K de,de and K de,nu are defined in Eq. (8). Then the (unregularized) uLSIF solu-
tion (see Sect. 2.4.3 for details) is expressed as

θ̂uLSIF = Ĥ
−1

ĥ = nde

nnu
K−2

de,de K de,nu1nnu . (28)

On the other hand, let us consider an inductive variant of KMM for the kernel
model (27) (see Sect. 2.1.2). For the density-ratio model (27), the design matrix Ψ de
defined by Eq. (5) agrees with K de,de. Then the KMM solution is given as follows
(see Sect. 2.1.2):

θ̂KMM = nde

nnu
(Ψ de K de,deΨ de)

−1Ψ de K de,nu1nnu = θ̂uLSIF.

3.2.3 Logistic regression

Here, we show that the logistic regression approach introduced in Sect. 2.2.2 is an
instance of density-ratio matching. More specifically, there exists a BR divergence
such that the optimization problem of density-ratio matching is reduced to that of the
logistic regression approach.

When

f (t) = t log t − (1 + t) log(1 + t),

BR (24) is reduced to the binary Kullback–Leibler (BKL) divergence:

BKL′(t∗‖t) := (1 + t∗) log
1 + t

1 + t∗
+ t∗ log

t

t∗
.

The name ‘BKL’ comes from the fact that BKL′(t∗‖t) is expressed as

BKL′(t∗‖t) = (1 + t∗)KLbin

(
1

1 + t∗

∥
∥
∥
∥

1

1 + t

)

,

where KLbin is the KL divergence for binary random variables defined as

KLbin(p, q) := p log
p

q
+ (1 − p) log

1 − p

1 − q

for 0 < p, q < 1. Thus, BKL′ agrees with KLbin up to the constant factor (1 + t∗).
Following Eqs. (25) and (26), let us denote BKL without an irrelevant constant

term by BKL (r) and its empirical approximation by B̂KL (r), respectively:

BKL (r) := −
∫

p∗
de(x) log

1

1 + r(x)
dx −

∫

p∗
nu(x) log

r(x)
1 + r(x)

dx,
(29)

B̂KL (r) := − 1

nde

nde∑

j=1

log
1

1 + r(xde
j )

− 1

nnu

nnu∑

i=1

log
r(xnu

i )

1 + r(xnu
i )
.
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Equation (29) is a generalized expression of logistic regression (Qin 1998). Indeed,
when nde = nnu, the ordinary logistic regression formulation (11) can be obtained
from Eq. (29) (up to a regularizer) if the log-linear density-ratio model (18) without
the constant term θ0 is used.

3.2.4 Kullback–Leibler importance estimation procedure

Here, we show that the KL importance estimation procedure (KLIEP) introduced in
Sect. 2.3.1 is an instance of density-ratio matching. More specifically, there exists a BR
divergence such that the optimization problem of density-ratio matching is reduced to
that of the KLIEP approach.

When

f (t) = t log t − t,

BR (24) is reduced to the unnormalized Kullback–Leibler (UKL) divergence:

UKL′(t∗‖t) := t∗ log
t∗

t
− t∗ + t.

Following Eqs. (25) and (26), let us denote UKL without an irrelevant constant term
by UKL (r) and its empirical approximation by ÛKL (r), respectively:

UKL (r) :=
∫

p∗
de(x)r(x)dx −

∫

p∗
nu(x) log r(x)dx, (30)

ÛKL (r) := 1

nde

nde∑

j=1

r(xde
j )− 1

nnu

nnu∑

i=1

log r(xnu
i ). (31)

Let us further impose that the ratio model r(x) is non-negative for all x and is nor-
malized with respect to {xde

j }nde
j=1:

1

nde

nde∑

j=1

r(xde
j ) = 1.

Then the optimization criterion is reduced to as follows.

max
r

1

nnu

nnu∑

i=1

log r(xnu
i )

s.t.
1

nde

nde∑

j=1

r(xde
j ) = 1 and r(x) ≥ 0 for all x.

This agrees with the KLIEP formulation reviewed in Sect. 2.3.1.
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3.3 Interpretation of density-ratio matching

Here, we show the correspondence between the density-ratio matching approach and
a divergence estimation method, and the correspondence between the density-ratio
matching approach and a moment-matching approach.

3.3.1 Divergence estimation view

We first show that our density-ratio matching formulation can be interpreted as diver-
gence estimation based on the Ali-Silvey-Csiszár (ASC) divergence (Ali and Silvey
1966; Csiszár 1967), which is also known as the f -divergence.

Let us consider the ASC divergence for measuring the discrepancy between two
probability density functions. An ASC divergence is defined using a convex function
f such that f (1) = 0 as follows:

ASC f (p
∗
nu‖p∗

de) :=
∫

p∗
de(x) f

(
p∗

nu(x)
p∗

de(x)

)

dx. (32)

The ASC divergence is reduced to the Kullback–Leibler (KL) divergence (Kullback
and Leibler 1951) if f (t) = t log t , and the Pearson (PE) divergence (Pearson 1900)
if f (t) = 1

2 (t − 1)2.
Let ∂ f (t) be the sub-differential of f at a point t (∈ R), which is a set defined as

follows (Rockafellar 1970):

∂ f (t) := {z ∈ R | f (s) ≥ f (t)+ z(s − t), ∀s ∈ R}.

If f is differentiable at t , then the sub-differential is reduced to the ordinary derivative.
Although the sub-differential is a set in general, for simplicity, we treat ∂ f (r) as a
single element if there is no confusion. Below, we assume that f is closed, i.e., its
epigraph is a closed set (Rockafellar 1970).

Let f ∗ be the conjugate dual function associated with f defined as

f ∗(u) := sup
t

[tu − f (t)] = − inf
t

[ f (t)− tu].

Since f is a closed convex function, we also have

f (t) = − inf
u

[ f ∗(u)− tu]. (33)

For the KL divergence where f (t) = t log t , the conjugate dual function is given by
f ∗(u) = exp(u − 1). For the PE divergence where f (t) = (t − 1)2/2, the conjugate
dual function is given by f ∗(u) = u2/2 + u.

Substituting Eq. (33) into Eq. (32), we have the following lower bound (Keziou
2003):

ASC f (p
∗
nu‖p∗

de) = − inf
g

ASC′
f (g),
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where

ASC′
f (g) :=

∫

f ∗(g(x))p∗
de(x)dx −

∫

g(x)p∗
nu(x)dx. (34)

By taking the derivative of the integrand for each x and equating it to zero, we can
show that the infimum of ASC′

f is attained at g such that

∂ f ∗(g(x)) = p∗
nu(x)

p∗
de(x)

= r∗(x).

Thus, minimizing ASC′
f (g) yields the true density-ratio function r∗(x).

For some g, there exists r such that

g = ∂ f (r).

Then f ∗(g) is expressed as

f ∗(g) = sup
s

[

s∂ f (r)− f (s)
]

.

According to the variational principle (Jordan et al. 1999), the supremum in the right-
hand side of the above equation is attained at s = r . Thus, we have

f ∗(g) = r∂ f (r)− f (r).

Then the lower bound ASC′
f (g) defined by Eq. (34) can be expressed as

ASC′
f (g) =

∫

p∗
de(x)

(

r(x)∂ f (r(x))− f (r(x))
)

dx −
∫

∂ f (r(x))p∗
nu(x)dx.

This is equivalent to the criterion BR f defined by Eq. (25). Thus, density-ratio match-
ing under the BR divergence can be interpreted as divergence estimation under the
ASC divergence.

3.3.2 Moment matching view

Next, we investigate the correspondence between the density-ratio matching approach
and a moment-matching approach. To this end, we focus on the ideal situation where
the true density-ratio function r∗ is included in the density-ratio model r .

The non-linear version of finite-order moment matching (see Sect. 2.1.1) learns the
density-ratio model r so that the following criterion is minimized:

∥
∥
∥
∥

∫

φ(x)r(x)p∗
de(x)dx −

∫

φ(x)p∗
nu(x)dx

∥
∥
∥
∥

2

,
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where φ(x) : R
d → R

m is some vector-valued function. Under the assumption that
the density-ratio model r can represent the true density-ratio r∗, we have the following
estimation equation:

∫

φ(x)r(x)p∗
de(x)dx −

∫

φ(x)p∗
nu(x)dx = 0m, (35)

where 0m denotes the m-dimensional vector with all zeros.
On the other hand, the density-ratio matching approach described in Sect. 3.1 learns

the density-ratio model r so that the following criterion is minimized:

∫

p∗
de(x)∂ f (r(x))r(x)dx −

∫

p∗
de(x) f (r(x))dx −

∫

p∗
nu(x)∂ f (r(x))dx.

Taking the derivative of the above criterion with respect to parameters in the density-
ratio model r and equate it to zero, we have the following estimation equation:

∫

p∗
de(x)r(x)∇r(x)∂2 f (r(x))dx −

∫

p∗
nu(x)∇r(x)∂2 f (r(x))dx = 0b,

where ∇ denotes the differential operator with respect to parameters in the density-
ratio model r , and b is the number of parameters. This implies that putting

φ(x) = ∇r(x)∂2 f (r(x))

in Eq. (35) gives the same estimation equation as density-ratio matching, resulting in
the same optimal solution.

3.4 Basu’s power divergence for robust density-ratio estimation

Finally, we introduce a new instance of density-ratio matching based on Basu’s power
divergence (BA divergence; Basu et al. 1998).

3.4.1 Derivation

For α > 0, let

f (t) = t1+α − t

α
.

Then BR (24) is reduced to the BA divergence:

BA′
α(t

∗‖t) := tα(t − t∗)− t∗(tα − (t∗)α)
α

.
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Following Eqs. (25) and (26), let us denote BA′
α without an irrelevant constant term

by BAα (r) and its empirical approximation by B̂Aα (r), respectively:

BAα (r) :=
∫

p∗
de(x)r(x)

α+1dx −
(

1 + 1

α

)∫

p∗
nu(x)r(x)

αdx + 1

α
,

B̂Aα (r) := 1

nde

nde∑

j=1

r(xde
j )
α+1 −

(

1 + 1

α

)
1

nnu

nnu∑

i=1

r(xnu
i )

α + 1

α
.

The density-ratio model r is determined so that B̂Aα(r) is minimized.
When α = 1, the BA divergence is reduced to the twice SQ divergence (see

Sect. 2.4):

B̂A1 = 2ŜQ.

Similarly, the fact

lim
α→0

tα − 1

α
= log t

implies that the BA divergence tends to the UKL divergence asα → 0 (see Sect. 3.2.4):

lim
α→0

B̂Aα (r) = 1

nde

nde∑

j=1

r(xde
j )− 1

nnu

nnu∑

i=1

log r(xnu
i ) = ÛKL (r) .

Thus, the BA divergence essentially includes the SQ and UKL divergences as special
cases, and is substantially more general.

3.4.2 Robustness

Let us take the derivative of B̂Aα (r)with respect to parameters included in the density-
ratio model r , and equate it to zero. Then we have the following estimation equation:

1

nde

nde∑

j=1

r(xde
j )
α∇r(xde

j )− 1

nnu

nnu∑

i=1

r(xnu
i )

α−1∇r(xnu
i ) = 0b, (36)

where ∇ is the differential operator with respect to parameters in the density-ratio
model r, b denotes the number of parameters, and 0b denotes the b-dimensional vec-
tor with all zeros.

As explained in Sect. 3.4.1, the BA method with α → 0 corresponds to KLIEP
(using the UKL divergence). According to Eq. (31), the estimation equation of KLIEP
is given as follows (this also agrees with Eq. (36) with α = 0):

1

nde

nde∑

j=1

∇r(xde
j )− 1

nnu

nnu∑

i=1

r(xnu
i )

−1∇r(xnu
i ) = 0b.
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Comparing this with Eq. (36), we see that the BA method can be regarded as a weighted
version of KLIEP according to r(xde

j )
α and r(xnu

i )
α . When r(xde

j ) and r(xnu
i ) are less

than 1, the BA method down-weights the effect of those samples. Thus, ‘outlying’
samples relative to the density-ratio model r tend to have less influence on parameter
estimation, which will lead to robust estimators (Basu et al. 1998).

Since LSIF corresponds to α = 1, LSIF is more robust against outliers than KLIEP
(which corresponds to α → 0) in the above sense, and BA with α > 1 would be even
more robust.

3.4.3 Numerical examples

Here we illustrate the behavior of the robust density-ratio estimation method based on
the BA divergence using artificial data sets.

Let the numerator and denominator densities be defined as follows (Fig. 2a):

p∗
nu(x) = 0.7N

(

x; 0, 0.252
)

+ 0.3N
(

x; 1, 0.52
)

and p∗
de(x) = N (x; 0, 12),

where N (x;μ, σ 2) denotes the Gaussian density with mean μ and variance σ 2. We
draw nnu = nde = 300 samples from each density, which are illustrated in Fig. 2b.

Here, we employ the Gaussian-kernel density-ratio model (17), and determine the
model parameters so that B̂Aα (r) with a quadratic regularizer is minimized under the
non-negativity constraint:

min
θ∈Rb

[
1

nde

nde∑

j=1

(
nnu∑

�=1

θ�K (xnu
j , xnu

� )

)α+1

−
(

1 + 1

α

)
1

nnu

nnu∑

i=1

(
nnu∑

�=1

θ�K (xde
i , xnu

� )

)α

+ λθ
θ
]

s.t. θ ≥ 0b. (37)

Note that this optimization problem is convex for 0 < α ≤ 1. In our implementation,
we solve the above optimization problem by gradient-projection, i.e., the parameters
are iteratively updated by gradient descent with respect to the objective function, and
the solution is projected back to the feasible region by rounding-up negative parameters
to zero. Before solving the optimization problem (37), we run uLSIF (see Sect. 2.4.3)
and obtain cross-validation estimates of the Gaussian width σ and the regularization
parameter λ. We then fix the Gaussian width and the regularization parameter in the
BA method to these values, and solve the optimization problem (37) by gradient-pro-
jection with θ = 1b/b as the initial solution.

Figure 2c shows the true and estimated density-ratio functions by the BA meth-
ods for α = 0, 1, 2, 3. The true density-ratio function has two peaks—higher one
at x = 0 and lower one at around x = 1.2. The graph shows that, as α increases,
estimated density-ratio functions tend to focus on approximating the higher peak and
ignore the lower peak. Thus, if numerator samples drawn from the right-hand Gaussian
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Fig. 2 Numerical examples

(i.e., N (x; 1, 0.52)) are regarded as outliers, the BA methods with larger α are more
robust against these outliers.

We further investigate the issue of robustness against outliers more systematically.
Let

p∗
nu(x) = (1 − ρ)N

(

x; 0, 0.252
)

+ ρN
(

x; 1, 0.52
)

,

p∗
de(x) = (1 − η)N

(

x; 0, 12
)

+ ηN
(

x; 0, 0.52
)

,

where ρ and η are the numerator and denominator outlier ratio, respectively; sam-
ples drawn from the second densities N (x; 1, 0.52) and N (x; 0, 0.52) are regarded
as outliers. Let nnu = nde = 300, and we evaluate how the accuracy of density-
ratio estimation is influenced by outliers. In the first set of experiments, we fix the
denominator outlier ratio to η = 0 (i.e., no outlier) and change the numerator out-
lier ratio as ρ = 0, 0.05, 0.1, . . . , 0.3. In the second set of experiments, we fix the
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Fig. 3 The median and standard deviation of UKL values for KLIEP and uLSIF over 100 runs when the
number of outlier samples is changed. For clear visibility, the standard deviation is divided by 5 in the plots

numerator outlier ratio to ρ = 0 (i.e., no outlier) and change the denominator outlier
ratio as η = 0, 0.05, 0.1, . . . , 0.3. The approximation error of a density-ratio esti-
mator r̂ is evaluated by UKL (̂r) defined by Eq. (30), which correspond to the BA
divergence with α → 0 as explained in Sect. 3.4.1. Here, UKL (̂r) is numerically
approximated using 1,000 samples independently taken following p∗

nu(x) with ρ = 0
(i.e., no outliers) and 1,000 samples independently taken following p∗

de(x)with η = 0
(i.e., no outliers). Note that these samples are not used for obtaining a density-ratio
estimator r̂ . For obtaining density-ratio estimators, we use off-the-shelf MATLAB
implementation of KLIEP (which corresponds to the BA method with α → 0) and
uLSIF (which corresponds to the BA method with α = 1) available from the web
(see Sects. 2.3 and 2.4). This renders a more practical setup of density-ratio estima-
tion.

The median and standard deviation of UKL values for KLIEP and uLSIF over 100
runs are plotted in Fig. 3. Note that the standard deviation is divided by 5 in the plots
for clear visibility. The graphs show that KLIEP works better than uLSIF when the
outlier ratio is small. This is natural consequences since KLIEP tries to minimizes
UKL (see Sect. 3.2.4). However, as the outlier ratio increases, the approximation error
of KLIEP grows rapidly. On the other hand, the approximation error of uLSIF grows
rather mildly, showing the robustness of uLSIF against outliers. This phenomenon
well agrees with the argument in Sect. 3.4.2.

However, the error bars of uLSIF are much larger than KLIEP. This would be caused
by the fact that the ‘effective’ number of samples used in uLSIF is smaller than that of
KLIEP due to the down-weighting effect explained in Sect. 3.4.2. Thus, the statistical
efficiency of uLSIF would be lower than KLIEP, which is a common trade-off in robust
statistical methods (Huber 1981).

Another observation from these experimental results is that numerator outliers more
strongly degrade the accuracy of KLIEP than denominator outliers.
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4 Conclusions

In this paper, we addressed the problem of density-ratio estimation. We first provided
a comprehensive review of density-ratio estimation methods, including the moment
matching approach (Sect. 2.1), the probabilistic classification approach (Sect. 2.2),
the density matching approach (Sect. 2.3), and the density-ratio fitting approach
(Sect. 2.4). Then we proposed a novel framework of density-ratio estimation by den-
sity-ratio fitting under the Bregman divergence (Sect. 3.1). We showed that our novel
framework accommodates the existing approaches reviewed above, and is substan-
tially more general. Within this novel framework, we developed a robust density-ratio
estimation method based on Basu’s power divergence.

The power divergence method allows us to systematically compare the robustness
of the density matching approach based on the KL divergence (KLIEP) and the den-
sity-ratio fitting approach based on the Pearson divergence (uLSIF). However, the
robustness of the probabilistic classification approach is still unknown, which needs
to be investigated in our future work.

Experimentally, we observed that numerator outliers tend to more significantly
degrade the accuracy of KLIEP than denominator samples, while uLSIF is reason-
ably stable for both cases. It is interesting to investigate this experimental tendency
theoretically, together with convergence properties of the robust method.

In the power divergence method, the choice of robustness parameter α is an open
issue. Although there seems to be no universal way for this (Basu et al. 1998; Jones
et al. 2001; Fujisawa and Eguchi 2008), a practical approach would be to use cross-
validation over a fixed divergence such as the squared distance.
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