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Abstract This article considers a broad class of kernel mixture density models on
compact metric spaces and manifolds. Following a Bayesian approach with a nonpara-
metric prior on the location mixing distribution, sufficient conditions are obtained on
the kernel, prior and the underlying space for strong posterior consistency at any con-
tinuous density. The prior is also allowed to depend on the sample size n and sufficient
conditions are obtained for weak and strong consistency. These conditions are verified
on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere
using a von Mises-Fisher kernel and on the planar shape space using complex Watson
kernels.

Keywords Nonparametric Bayes · Density estimation · Posterior consistency ·
Sample-dependent prior · Riemannian manifold · Hypersphere · Shape space

1 Introduction

Density estimation on compact metric spaces, such as manifolds, is a fundamen-
tal problem in nonparametric inference on non-Euclidean spaces. Some applications
include directional and axial data analysis, spatial modeling, shape analysis and dimen-
sionality reduction problems in which the data lie on an unknown lower dimensional
space. However, the literature on statistical theory and methods of density estimation in
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688 A. Bhattacharya, D. B. Dunson

non-Euclidean spaces is still underdeveloped. Our focus is on Bayesian nonparametric
approaches.

For nonparametric Bayes density estimation on the real line �, there is a rich litera-
ture, with Dirichlet process mixtures of Gaussian kernels providing a commonly used
approach (Escobar and West 1995) that leads to dense support (Lo 1984) and weak
and strong posterior consistency (Ghosal et al. 1999). From the celebrated theorem
of Schwartz (1965), weak posterior consistency results when the true density f0 is in
the Kullback–Leibler (KL) support of the prior, meaning that all KL neighborhoods
around f0 are assigned positive probability. In general, it is quite difficult to show KL
support for new priors for a density, though Wu and Ghosal (2008) provide useful
conditions for a class of kernel mixture priors, with Bhattacharya and Dunson (2010a)
extending these conditions to general compact metric spaces. It is widely accepted that
weak consistency is an insufficient property when the focus is on density estimation.
For example, if f0 is a density with respect to Lebesgue measure, weak consistency
does not even ensure that the posterior assigns positive probability to the set of den-
sities with respect to Lebesgue measure. Hence, it is important to provide stronger
results.

Until very recently, essentially all the literature on theory of nonparametric Bayes
density estimation focused on one-dimensional Euclidean spaces. An important devel-
opment in multivariate Euclidean spaces is the article of Wu and Ghosal (2010) who
provide sufficient conditions for strong consistency in nonparametric Bayes density
estimation from Dirichlet process mixtures of multivariate Gaussian kernels. How-
ever, severe tail restrictions are imposed on the kernel covariance, which become
overly restrictive when the data are very high dimensional. Also the theory devel-
oped in their paper is specialized and cannot be easily generalized to arbitrary kernel
mixtures on more general spaces.

We are particularly interested in density estimation in the special case in which the
compact metric space M corresponds to a Riemannian manifold. To extend kernel mix-
ture models used in Euclidean spaces to manifolds M , the kernel needs to be carefully
chosen. One approach is to introduce an invertible coordinate map between a subset
of M and a Euclidean space (Hirsch 1976). Under such an approach, the density prior
on M can be induced through a kernel mixture model in a Euclidean space. However,
several major problems arise in using such an approach. First, it is not possible to
cover the entire manifold with a single smooth coordinate chart except for very simple
manifolds, so unless the data are very concentrated one may obtain poor performance.
Different local charts can be patched together to form an atlas, but this may introduce
artifactual discontinuities in the resulting density. Because the coordinate map is not
isometric, the geometry of the manifold can be heavily distorted. As good choices
of coordinate frames necessarily depend on the observations, additional uncertainty
is automatically induced. Due to these and other shortcomings of coordinate-based
methods, we focus on modeling approaches that are coordinate free in the sense that
we build density models with respect to the invariant volume form on the manifold.

In Bhattacharya and Dunson (2010a), a density model is presented on a general
compact metric space with respect to any fixed base measure using a random mixture
of probability kernels. Under mild conditions on the kernel and the mixing prior, it
is shown that the prior probability of any uniform neighborhood of any continuous
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Nonparametric Bayes density estimation on manifolds 689

density f0 is positive and if f0 is positive everywhere, it lies in the KL support of the
prior. This in turn implies posterior consistency in the weak sense. Density estimation
on the planar shape space is presented as a special case. However, strong posterior
consistency is not addressed. The everywhere positivity restriction on the true density
cannot be easily relaxed. Also besides the location mixing distribution, the only other
parameter in the model is a scalar bandwidth. This restricts the flexibility when the
sample size is small.

Focusing on kernel mixture priors for densities on a compact metric space M , in
this article, we provide sufficient conditions on the kernel, prior and the underlying
space to ensure strong consistency. Theorem 2 and Corollary 1 provide sufficient con-
ditions to ensure that all total variation neighborhoods around f0 will be assigned
probability converging to one as the sample size increases. The theoretical develop-
ment relies on the method of sieves and exponentially consistent tests discussed in
Barron (1989). However, applying this framework outside multivariate spaces is not
standard and requires careful use of differential geometry. Through Theorem 1, we
prove weak consistency for a bigger class of kernels than Bhattacharya and Dunson
(2010a). The only requirement on the true density is that it is continuous everywhere.
To illustrate the theory, we focus on density estimation on the unit hypersphere using
von Mises-Fisher kernels and on the planar shape space using complex Watson ker-
nels. In both these cases, it is shown that the kernels satisfy the sufficient conditions.
The results also apply to Gaussian mixture densities on �d whenever the true density
has compact support. In that case, a truncated and transformed Wishart prior on the
covariance inverse, the transformation depending on the data dimension is shown to
suffice as in Wu and Ghosal (2010). Appropriate kernel choices are presented on other
manifolds such as axial spaces, Stiefel manifolds and Grassmannians which arise as
generalizations of the two manifolds.

When the manifold is high-dimensional, priors satisfying conditions for strong
consistency tend to put too little probability near bandwidths close to 0, which is
undesirable for applications. A gamma prior on the inverse-bandwidth, for example,
cannot be shown to satisfy the conditions. Hence, we extend the consistency results
to cover cases with priors depending on the sample size n. Theorem 3 extends the
Schwartz theorem to prove weak consistency, while Theorem 4 proves strong consis-
tency using such priors. A gamma prior with scale decreasing with n at an appropriate
rate satisfies the conditions for both weak and strong posterior consistency at an expo-
nential rate. When using multivariate Gaussian mixtures, a truncated Wishart prior
with hyper-parameters depending on n, is shown to work.

To maintain a free flow while reading, we put all the proofs together at the end in
a section called Appendix.

2 Consistency theorems on compact metric spaces

2.1 Weak posterior consistency

Let (M, ρ) be a compact metric space, ρ being the distance metric, and let X be a
random variable on M (from some measurable space (�,B, Q)). We assume that the
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distribution of X has a density with respect to some fixed finite base measure λ on
M . The natural choice for such a λ when M is a Riemannian manifold is the invari-
ant volume form. We are interested in modeling this unknown density via a flexible
model. Let K (m;μ,K) be a probability kernel on M with location μ ∈ M and other
parameters K ∈ N , N being a Polish space, that is, it is homeomorphic to a complete
separable metric space. In the special case, we choose N = (0,∞) and then K may
be called a location-scale kernel.

Given the parameters (μ,K), K satisfies
∫

M K (m;μ,K)λ(dm) = 1. Then a loca-
tion mixture density model for X is defined as

f (m; P,K) =
∫

M
K (m;μ,K)P(dμ) (1)

with parameters P in the space M(M) of all probability distributions on M and
K ∈ N . We call P the location mixing distribution. When N = (0,∞), we view K−1

as the bandwidth of the kernel and hence call K the precision or inverse bandwidth
parameter. More generally K comprises of many other parameters in different spaces
determining the kernel shape, modality, etc., and the precision is a particular function
of K. The upcoming consistency theorems and examples will illustrate that function.
Kernel mixture models are used routinely in Bayesian density estimation in Euclid-
ean spaces, with Lennox et al. (2009) applying such an approach to bivariate angular
data and Bhattacharya and Dunson (2010a,b) considering kernel mixtures on general
metric spaces.

A prior �1 on (P,K) induces a prior � on the space of densities D(M) on M
through the model (1). Given a random realization X1, . . . , Xn of X , we can compute
the posterior of f . The Schwartz theorem provides a useful tool in proving that the
posterior assigns probability converging to one in arbitrarily small neighborhoods of
the true density f0 as the sample size n → ∞. Let F0 denote the probability distribu-
tion corresponding to f0, let KL( f0; f ) = ∫M f0(m) log{ f0(m)/ f (m)}λ(dm) denote
the KL divergence of another density f from f0, and let Kε( f0) denote the KL neigh-
borhood { f ∈ D(M) : KL( f0; f ) < ε}. f0 is said to be in the KL support of�, or�
is said to satisfy the KL condition at f0 if �{Kε( f0)} > 0 for all ε > 0.

Proposition 1 (Schwartz theorem) If (1) f0 is in the KL support of �, and (2) U ⊂
D(M) is such that there exists a uniformly exponentially consistent sequence of test
functions for testing H0: f = f0 versus H1: f ∈ U c, then �(U |X1, . . . , Xn) → 1
as n → ∞ a.s. F∞

0 .

The posterior probability of U c can be expressed as

�(U c|X1, . . . , Xn) =
∫

U c

∏n
i=1

f (Xi )
f0(Xi )

�(d f )
∫ ∏n

1
f (Xi )
f0(Xi )

�(d f )
(2)
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Nonparametric Bayes density estimation on manifolds 691

Condition (1), known as the KL condition, ensures that for any β > 0,

lim inf
n→∞ exp(nβ)

∫ n∏

i=1

f (Xi )

f0(Xi )
�(d f ) = ∞ a.s. (3)

while condition (2) implies that

lim
n→∞ exp(nβ0)

∫

U c

n∏

i=1

f (Xi )

f0(Xi )
�(d f ) = 0 a.s.

for some β0 > 0 (depending on U ) and therefore

lim
n→∞ exp(nβ0/2)�(U

c|X1, . . . , Xn) = 0 a.s.

Hence Proposition 1 provides conditions for posterior consistency at an exponential
rate. Theorem 1 derives sufficient conditions on the kernel and the prior so that f0 is
in the uniform support and hence KL support of �. They are

A1 The kernel K is continuous in its arguments.
For any continuous function f : M → � [written as f ∈ C(M)], for any ε > 0,
there exists a compact subset Nε of N with non-empty interior, such that
A2 supm∈M,K∈Nε

∣
∣ f (m)− ∫ M K (m;μ,K) f (μ)λ(dμ)

∣
∣ < ε.

A3 For any ε > 0, the set {F0}× N o
ε intersects with the (weak) support of�1. Here

Ao denotes the interior of a set A.
A4 f0 is a continuous density.

Theorem 1 Under assumptions A1–A4, for any ε > 0,

�
{

f ∈ D(M) : sup
m∈M

| f (m)− f0(m)| < ε
}
> 0,

which implies that f0 is in the KL support of �.

As a corollary, we obtain the KL property for the location-scale kernel, derived in
Bhattacharya and Dunson (2010a). However, unlike in there, we need not assume f0
to be positive everywhere.

When U is a weakly open neighborhood of f0, condition (2) in Proposition 1 is
always satisfied. Hence under assumptions A1–A4, weak posterior consistency at an
exponential rate follows. Assumptions A1 and A2 impose some mild conditions on
the kernel choice, which are easily satisfied by several parametric families. In par-
ticular, A2 implies that as a probability distribution on M, K (;μ,K) can be made
arbitrarily close in weak sense to the degenerate point mass at μ, uniformly in μ, for
appropriate K choice, thereby justifying the name ‘location’ for μ. When the compact
neighborhood Nε can be represented as the inverse image under some function ψ
(ψ : N → �+) of some neighborhood around infinity, then ψ(K) can be viewed as
the precision parameter. We will provide examples of kernels on some non-Euclidean
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manifolds arising in shape and directional data analysis which satisfy A1 and A2. A
common choice for �1 satisfying A3 can be a full support product prior such as a
Dirichlet process DP(w0 P0) prior on P satisfying supp(P0) = M and an independent
everywhere positive density prior on K.

2.2 Strong consistency

When U is a total variation neighborhood of f0, LeCam (1973); Barron (1989) show
that condition (2) of Proposition 1 will not be satisfied in most cases. In Barron (1989)
(also see Ghosal et al. 1999), a sieve method is considered to obtain sufficient con-
ditions for the numerator in (2) to decay at an exponential rate and hence get strong
posterior consistency at an exponential rate. This is stated in Proposition 2. In its state-
ment, for F ⊆ D(M) and ε > 0, the L1-metric entropy N (ε,F) is defined as the
logarithm of the minimum number of ε-sized (or smaller) L1 subsets needed to cover
F .

Proposition 2 If there exists a Dn ⊆ D(M) such that (1) for n sufficiently large,
�(Dc

n) < exp(−nβ) for some β > 0, and (2) N (ε,Dn)/n → 0 as n → ∞ for
any ε > 0, then for any total variation neighborhood U of f0, there exists a β0 > 0

(depending on U) such that lim supn→∞ exp(nβ0)
∫

U c

∏n
1

f (Xi )
f0(Xi )

�(d f ) = 0 a.s. F∞
0 .

Hence if f0 is in the KL support of �, the posterior probability of any total variation
neighborhood of f0 converges to 1 almost surely.

Theorem 2, which is the main theorem of this paper, describes a Dn which satisfies
condition (2). We assume that there exists a continuous function φ : N → [0,∞) for
which the following assumptions hold:

A5 There exists positive constants κ1, a1, A1 such that for all κ ≥ κ1, μ, ν ∈ M ,

sup
m∈M,K∈φ−1[0,κ]

∣
∣K (m;μ,K)− K (m; ν,K)∣∣ ≤ A1κ

a1ρ(μ, ν).

A6 There exists positive constants a2, A2 such that for all K1,K2 ∈ φ−1[0, κ], κ ≥
κ1,

sup
m,μ∈M

∣
∣K (m;μ,K1)− K (m;μ,K2)

∣
∣ ≤ A2κ

a2ρ2(K1,K2),

ρ2 metrizing the topology of N .
A7 For any κ ≥ κ1, the subset φ−1[0, κ] is compact and given ε > 0, the minimum
number of ε (or smaller) radius balls covering it (known as the ε-covering number)
can be bounded by (κε−1)b2 for appropriate positive constant b2 (independent of κ
and ε).
A8 There exists a3, A3 > 0 such that the ε-covering number of M is bounded by
A3ε

−a3 for any ε > 0.

For two positive sequences {an} and {bn}, {an} is said to be ‘little-o’ of {bn}, written
as an = o(bn), if the sequence {an/bn} converges to 0 as n → ∞.
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Nonparametric Bayes density estimation on manifolds 693

Theorem 2 For a positive sequence {κn} diverging to ∞, define

Dn = { f (P,K) : P ∈ M(M), K ∈ φ−1[0, κn]}.

Under assumptions A5–A8, given any ε > 0, for n sufficiently large, N (ε,Dn) ≤
C(ε)κa1a3

n for some C(ε) > 0. Hence, N (ε,Dn) is o(n) whenever κn is o
(

n(a1a3)
−1
)

.

As a corollary, we derive conditions on the prior�1 on (P,K) under which strong
posterior consistency at an exponential rate follows:

Corollary 1 Under the hypothesis of Theorems 1 and 2 and A9 �1(M(M) × φ−1

(na,∞)) < exp(−nβ) for some a < (a1a3)
−1 and β > 0, the posterior probability

of any total variation neighborhood of f0 converges to 1 a.s. F∞
0 .

Theorem 1 ensures that f0 is in the KL support of �. Theorem 2 and assumption
A9 ensure that Dn satisfies conditions (1) and (2) of Proposition 2. Hence from the
Proposition, the proof follows.

When we use a location-scale kernel, that is, when N = (0,∞), choose a prior�1 =
�11⊗π1 having full support, setφ to be the identity map, then a choice forπ1 for which
Assumption A9 is satisfied is a Weibull density W eib(K;α, β) ∝ Kα−1 exp(−βKα)

whenever the shape parameter α exceeds a1a3 (a1, a3 as in Assumptions A5 and A8).

Remark 1 A gamma prior on K satisfies the requirements for weak consistency but
not A9 (unless a1a3 < 1). However, that does not prove that it is not eligible for strong
consistency because Corollary 1 provides only sufficient conditions. In Section 2.3,
we prove it to be eligible as long as the hyperparameters are allowed to depend on
sample size n in a suitable way.

When the underlying space is non-compact such as �d , Corollary 1 applies to any
true density f0 supported on a compact set, say M . Then the kernel can be chosen
to have non-compact support, such as Gaussian, but to apply Theorem 2, we need to
restrict the prior on the location mixing distribution to have support in M(M). We
can weaken assumptions A5 and A6 to

A5′ supK∈φ−1[0,κ]
∥
∥K (μ,K)− K (ν,K)∥∥ ≤ A1κ

a1ρ(μ, ν) and
A6′ supμ∈M

∥
∥K (μ,K1) − K (μ,K2)

∥
∥ ≤ A2κ

a2ρ2(K1,K2) ∀K1,K2 ∈ φ−1[0, κ],
respectively. Here ‖ f − g‖ denotes the L1 distance between densities f and g.
The proof of Theorem 2 can be easily modified to show consistency under the new
assumptions and is left to the reader.

The multivariate Gaussian kernel can be represented as

K (m, μ,K) = (2π)−d/2det(K)1/2 exp
(− 1/2(m − μ)′K(m − μ)

)
m,

μ ∈ �d ,K ∈ M+(d),

M+(d) being the space of all d ×d positive matrices. Hence K−1 is the kernel covari-
ance. It satisfies A5′ and A6′ as shown in Proposition 3. Here by λ1(K), . . . , λd(K),
we denote the eigenvalues of K in increasing order.
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694 A. Bhattacharya, D. B. Dunson

Proposition 3 The multivariate Gaussian kernel satisfies A5′ with φ being the largest
eigenvalue function,φ(K) = λd(K) and a1 = 1/2. It also satisfies A6′ once we restrict
N to be the space of all positive matrices with the least eigenvalue being bounded
below by some pre-specified positive constant, say, λ1, i.e., N = {K ∈ M+(d) :
λ1(K) ≥ λ1}. The space M+(d) (and hence N) satisfies A7 while any compact subset
M of �d satisfies A8 from Theorem 2 with a3 = d. Hence if

�1
(M(M)× {K ∈ N : λd(K) > na}) < exp(−nβ)

for some a < 2/d and β > 0, and if f0 is in the KL support of �, strong posterior
consistency follows.

Theorem 4 in Ghosal et al. (1999) provides sufficient conditions on f0 and �1 for
the KL condition to be satisfied while using a Gaussian mixture model in the univari-
ate setting to model a compactly supported density. It assumes �1 = �11 ⊗ π1 with
F0 ∈ supp(�11) and ∞ ∈ supp(π1). The theorem can be extended to multivariate
setting with the condition on�1 relaxed to, for any κ > 0, there exists a K ∈ M+(d)
with λ1(K) ≥ κ such that (F0,K) ∈ supp(�1). Therefore, λ1(K) can be viewed as
the kernel precision in this case. A full support product�1 on M(M)× N will satisfy
these requirements. Using a product prior, a choice forπ1 for which strong consistency
also follows can be the so called truncated transformed Wishart defined as follows:
Set K = �a for any a ∈ (0, 2/d) with � following a Wishart distribution restricted
to N . Then K is said to follow a truncated transformed Wishart with transformation
power a.

Remark 2 The truncation restriction on the space N is not undesirable, because for
more precise fit, we are interested in low bandwidths and the least eigenvalue of K
can be viewed as the inverse of the bandwidth. However, the lower the transformation
power, the lower is the prior probability for high precisions which is undesirable when
sample sizes are not high.

In Wu and Ghosal (2010), strong consistency is proved in the special case of
Dirichlet process Gaussian mixtures used to model density f0 having support as �d . It
requires a to be less than 1/d resulting in even smaller precision. In the next section,
we prove that no transformation is required (a = 1) as long as the hyper-parameters
are allowed to depend on the sample size appropriately.

2.3 Consistency with sample size-dependent priors

When the dimension of the manifold is large, as is the case in shape analysis with a
large number of landmarks, the constraints on the shape parameter in the proposed
Weibull prior on the inverse bandwidth become overly restrictive. In particular, for
strong posterior consistency, the shape parameter needs to be very large in high-dimen-
sional cases, implying a prior on the bandwidth that places very small probability in
neighborhoods close to zero, which is undesirable in many applications. By instead
allowing the prior to depend on sample size n, we can potentially obtain priors that
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Nonparametric Bayes density estimation on manifolds 695

may have better small sample operating characteristics, while still leading to strong
consistency. However, for n-dependent priors, the KL condition is no longer sufficient
to ensure that (3) holds and hence the Schwartz theorem breaks down. In this section,
we will modify the conditions and derive weak and strong consistency results for
n-dependent priors.

As recommended in earlier sections, we let P and K be independent under �1.
Then, assuming P ∼ �11 is a constant prior, we focus on the case in which K has
a sample size-dependent prior density πn with respect to some base measure λ1 on
N ,K ∼ πn(K)λ1(dK). We pick λ1 to have full support. Depending on the context,
πn will refer to both the density and distribution of K. Denote the resulting sequence of
induced priors on D(M) as �n . Theorem 3 proves weak posterior consistency under
the following assumptions on the prior:

A10 The prior �11 contains F0 in its support.
A11 For any ε > 0, for all K ∈ Nε ,

lim inf
n→∞ exp(nε)πn(K) = ∞.

Here Nε is as defined in Assumption A2.

Theorem 3 Under assumptions A1 and A2 on the kernel, A4 on the true density f0,
and, A10 and A11 on the prior, the posterior probability of any weak neighborhood
of f0 converges to one a.s. F∞

0 .

The proof is immediate from the following two lemmas:

Lemma 1 Under assumptions A1–A2, A4 and A10–A11, for any ε > 0,

lim inf
n→∞ exp(nε)

∫ n∏

1

f (Xi )

f0(Xi )
�n(d f ) = ∞ (4)

a.s. F∞
0 .

Lemma 2 If there exists a uniformly exponentially consistent sequence of test func-
tions for testing H0: f = f0 versus H1: f ∈ U c, and�n(U c) > 0 for all n > C with
C a sufficiently large constant, then for some β0 > 0,

lim
n→∞ exp(nβ0)

∫

U c

n∏

1

f (Xi )

f0(Xi )
�n(d f ) = 0

a.s. F∞
0 .

The proof of Lemma 2 is related to that of Lemma 4.4.2. from Ghosh and
Ramamoorthi (2003) which is stated for a constant prior �, but with the set U c

depending on n, they call this Vn . There it is assumed that lim infn→∞�(Vn) > 0,
but that is not necessary as long as �(Vn) > 0 for all large n. Lemma 1 is proved in
the Appendix.
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With a location-scale kernel, N being (0,∞), a gamma prior πn(K) ∝ exp(−βnK)
Kα−1, α, βn > 0, denoted by Gam(α, βn), satisfies Assumption A11 on entire of N ,
as long as βn is o(n).

With a multivariate Gaussian kernel on �d with dispersion K−1, a Wishart prior
on K,

πn(K;βn, q) = 2−dq/2�d(q/2)β
dq/2
n exp(−βn/2Tr(K))det(K)(q−d−1)/2,

q > d − 1, βn > 0,

denoted as Wish(β−1
n Id , q) satisfies A11 on entire M+(d), as long as βn is o(n). Here

�d(.) denotes the multivariate gamma function defined as

�d(q/2) =
∫

M+(d)
exp(−Tr(K))det(K)(q−d−1)/2dK.

For strong consistency, we impose the following additional condition on πn . Let a1
and a3 be as in Assumptions A5 (or A5′) and A8, respectively.

A12 For some β0 > 0 and a < (a1a3)
−1,

lim
n→∞ exp(nβ0)πn{φ−1(na,∞)} = 0.

This assumption is in place of A9 used for constant priors.

Theorem 4 Under Assumptions A1–A2 and A4–A8 and A10–A12, the posterior prob-
ability of any total variation neighborhood of f0 converges to 1 a.s F∞

0 .

The proof is very similar to that of Corollary 1. This is because under assump-
tions A1–A2, A4 and A10–A11, the conclusion (4) of Lemma 1 holds. The other
assumptions are to show that the L1-metric entropy of Dn is o(n) while �n(Dc

n) is
exponentially small, Dn being defined in Theorem 2. Under these assumptions, the
proof of Proposition 2 goes through to prove strong consistency with sample size-
dependent priors. This is also mentioned in §5 of Ghosal et al. (1999). They require
lim infn→∞�n(Kε( f0)) > 0 in place of the assumption�(Kε( f0)) > 0 for constant
priors, but this is only to ensure that (4) holds.

Again as in Sect. 2.2, we can weaken assumptions A5 and A6 to A5′ and A6′,
respectively.

For a location-scale kernel, a Gam(α, βn) prior on precision K satisfies A12 when
n1−a is o(βn) for some a ∈ (0, (a1a3)

−1). Hence, for example, we have weak and
strong posterior consistency with βn = b1n/{log(n)}b2 for any b1, b2 > 0.

For a multivariate Gaussian kernel, to satisfy assumption A6′, we need to truncate
the space N to {K ∈ M+(d) : λ1(K) ≥ λ1}, as proved in Proposition 3. Then we may
set a truncated Wishart prior on K, defined as

πn(K) = exp(−βn/2Tr(K))det(K)(q−d−1)/2
∫

A∈N exp(−βn/2Tr(A))det(A)(q−d−1)/2dA
, K ∈ N . (5)

123



Nonparametric Bayes density estimation on manifolds 697

Then for Assumption A12 to be satisfied, we require n1−a to be o(βn) for some
a ∈ (0, (a1a3)

−1). This is shown in Proposition 4. Hence we have weak and strong
posterior consistency once we set βn = b1n/{log(n)}b2 for any b1, b2 > 0. Unlike in
Sect. 2.2, we impose no transformation constraints, which is very helpful especially
when sample sizes are not that high while the data dimensions are huge.

Proposition 4 For a positive sequence {βn} diverging to infinity, Assumption A12
is satisfied for the truncated Wishart density sequence πn in (5) if there exists an
a ∈ (0, (a1a3)

−1) for which βn satisfies n1−a/βn −→ 0 as n → ∞.

In the subsequent sections, we present kernel choices for density estimation on
some specific non-Euclidean manifolds that arise in several applications. We illustrate
how to apply Theorems 1, 2, 3 and 4 and obtain weak and strong posterior consistency.

3 Application to unit hypersphere

Let M be the unit sphere Sd embedded in �d+1. It is a compact Riemannian mani-
fold of dimension d and a compact metric space under the chord distance ρ(u, v) =
‖u − v‖2, ‖.‖2 denoting the L2-norm. Spherical data on S2 arise in the context of
directional data analysis. Most of the shape spaces are quotients of high-dimensional
spheres. Hence it is important to develop consistent inference procedures on this space,
and very few results exist in the context of Bayesian nonparametrics.

To define a probability density model as in (1) with respect to the volume form V ,
we need a suitable kernel which satisfies the assumptions in Sect. 2. One of the most
commonly used probability densities on this space is the von Mises-Fisher (vMF)
density which is given by

vMF(m;μ,K) = c−1(K) exp(KmTμ), m, μ ∈ Sd , K ∈ [0,∞), (6)

with c being the normalizing constant which can be derived to be

2πd/2

�
( d

2

)
∫ 1

−1
exp(Kt)(1 − t2)d/2−1dt . (7)

The vMF density on S1 was first derived in von Mises (1918) and the density in case of
S2 was given by Fisher (1953). Watson and Williams (1953) generalized this distribu-
tion to Sd and examined many of its properties. It can be shown that the parameterμ is
the extrinsic mean (as defined in Bhattacharya and Patrangenaru 2003) and hence can
be interpreted as the distribution location. The parameter K is a measure of concen-
tration, with K = 0 corresponding to the uniform distribution having constant density
equal to 1/

∫
Sd V (dm). As K diverges to ∞, the vMF distribution converges to a point

mass at μ in an L1 sense uniformly. This is proved in Theorem 5.

Theorem 5 The vMF kernel satisfies Assumptions A1 and A2.

Hence from Theorem 1, weak posterior consistency follows using the location mix-
ture density model (1) with a Dirichlet Process prior on P and an independent gamma
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698 A. Bhattacharya, D. B. Dunson

prior on K. In the d = 2 special case, Lennox et al. (2009) proposed a closely related
model but did not consider theoretical properties. Theorem 6 verifies the assumptions
for strong consistency.

Theorem 6 With φ(K) = K, the vMF kernel on Sd satisfies assumption A5 with
a1 = d/2 + 1 and A6 with a2 = d/2. The compact metric-space (Sd , ρ) satisfies
assumption A8 with a3 = d.

As a result a Weibull prior on K with shape parameter exceeding (d +d2/2)−1 sat-
isfies the condition of Corollary 1 and strong posterior consistency follows. The proofs
of Theorems 5 and 6 use the following lemma which establishes certain properties of
the normalizing constant:

Lemma 3 Define c̃(K) = exp(−K)c(K),K ≥ 0. Then c̃ is decreasing and for K ≥ 1,

c̃(K) ≥ CK−d/2

for some appropriate positive constant C.

When d is large, as is often the case for spherical data, a more appropriate prior on
K for which weak and strong consistencies hold can be Gam(α, βn) as mentioned at
the end of Sect. 2.3.

It is easy to check that the vMF density is the conditional distribution, given
‖X‖ = 1, of a Gaussian random vector X on �d+1 with mean μ and dispersion
matrix K−1 Id+1. A more general family of distribution on Sd may be obtained as
the conditional distribution, given ‖X‖ = 1, of a Normal X on �d+1 with mean μ
and dispersion matrix K−1,K in the space M+(d + 1) of (d + 1)× (d + 1) positive
matrices. Then we obtain the Fisher–Bingham family of kernels. It can be interesting
to show that the resulting kernel mixture satisfies the assumptions of Theorems 1, 2,
3 and 4 and obtain posterior consistency. We postpone that to later works.

A generalization of the sphere is the Stiefel manifold Vd+1,k , the space all k dimen-
sional orthonormal frames in �d+1. One can easily extend the vMF kernel to the
so-called Fisher kernel on this manifold and carry out density estimation. Again,
proving that consistency holds is postponed for future works.

Another important manifold arising in axial data analysis is R Pd , the space of all
rays in �d+1. This manifold can be obtained as the quotient of Sd after identifying
antipodal points p and −p as identical. In the next section, we illustrate density esti-
mation on its complex analog, the complex projective space. It is easy and simpler to
obtain analogous results on the real version.

4 Planar shape space

4.1 Background

Let M be the planar shape space �k
2 which is defined as follows: Consider a set of k

landmark locations, k > 2, on a 2D image, not all points being the same. We refer to
such a set as a k-ad. The similarity shape of this k-ad is what remains after removing
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the Euclidean rigid body motions of translation, rotation and scaling. We use the fol-
lowing shape representation first proposed by Kendall (1984): Denote the k-ad by a
complex k-vector z in Ck . To remove the effect of translation from z, let zc = z − z,
with z = (

∑k
j=1 z j )/k being the centroid. The centered k-ad zc lies in a k − 1 dimen-

sional complex subspace, and hence we can use k −1 complex coordinates. The effect
of scaling is then removed by normalizing the coordinates of zc to obtain a point w
on the complex unit sphere CSk−2 in Ck−1. Since w contains the shape information
of z along with rotation, it is called the preshape of z. The similarity shape of z is the
orbit of w under all rotations in 2D which is

[w] = {eiθw : θ ∈ (−π, π ]}.

This represents a shape as the set of all intersection points of a unique complex line
passing through the origin with CSk−2 and the planar shape space�k

2 is then the set of
all such shapes. Hence�k

2 can be identified with the space of all complex lines passing
through the origin in Ck−1 which is the complex projective space and is a compact
Riemannian manifold of dimension 2k − 4. The �k

2 can be embedded into the space
of all order k − 1 complex Hermitian matrices via the embedding J ([w]) = ww∗, ∗
denoting the complex conjugate transpose. This embedding induces a distance on �k

2
called the extrinsic distance which generates the manifold topology and is given by

dE ([u], [v]) = ‖J ([u])− J ([v])‖ =
√

2(1 − |u∗v|2) ([u], [v] ∈ �k
2).

For more details, see Bhattacharya and Dunson (2010a) and the references cited
therein.

4.2 Density model

We define a location-mixture density on �k
2 as in (1) with respect to the Riemannian

volume form V and the kernel being a complex Watson density. This complex Watson
density was used in Dryden and Mardia (1998) for parametric density modeling and
is given by

CW(m;μ,K) = c−1(K) exp{K(|z∗ν|2 − 1)} (m = [z], μ = [ν]) (8)

with c(K) = πk−2K2−k

(

1 − exp(−K)
k−3∑

r=0

Kr

r !

)

. (9)

It is shown in Bhattacharya and Dunson (2010a) that the complex Watson kernel
satisfies assumptions A1 and A2 in Sect. 2. Using a Dirichlet Process prior on the
location mixing distribution and an independent gamma prior on the precision param-
eter, Theorem 1 implies that the density model (1) has full support in the space of all
positive continuous densities on �k

2 in uniform and KL sense and hence the posterior
is weakly consistent.
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700 A. Bhattacharya, D. B. Dunson

Theorem 7 verifies that the complex Watson kernel also satisfies the regularity
conditions in A5 and A6.

Theorem 7 The complex Watson kernel CW(m;μ,K) on the compact metric space
�k

2 endowed with the extrinsic distance dE satisfies assumption A5 with a1 = k − 1
and A6 with a2 = 3k − 8.

The proof uses Lemma 4 which verifies certain properties of the normalizing con-
stant.

Lemma 4 Let c(K) be the normalizing constant for CW(μ,K) as defined in (9). Then
c is decreasing on [0,∞) with

lim
κ→0

c(K) = πk−2

(k − 2)! and lim
K→∞

c(K) = 0.

If we define

c̃(K) = 1 − exp(−K)
k−3∑

r=0

Kr

r ! ,

it follows that c̃ is increasing with

lim
K→0

c̃(K) = 0, lim
K→∞

c̃(K) = 1 and

c̃(K) ≥ (k − 2)!−1 exp(−K)Kk−2.

The proof follows from direct computations.
Theorem 8 verifies that assumption A8 holds on �k

2 .

Theorem 8 The compact metric space (�k
2 , dE ) satisfies assumption A8 with a3 =

2k − 3.

As a result, Corollary 1 implies that strong posterior consistency holds with �1 =
(D P)(ω0 P0)⊗ π1, for Weibull π1 with shape parameter exceeding (2k − 3)(k − 1).
Alternatively, one may use a gamma prior on K with inverse-scale increasing with n
at a suitable rate and we have consistency using Theorems 3 and 4.

The complex Watson kernel is a special case of the complex Bingham kernel which
has density proportional to exp(z∗ Az) with respect to the volume form. This kernel
has location corresponding to the shape of a eigen-vector corresponding to the largest
eigenvalue of A. Since it has more parameters, we expect better fit in smaller samples.
We will prove that weak and strong posterior consistency holds while using this kernel
in a later work.

When the landmarks are obtained from a 3D object, it is more appropriate to carry
out an affine shape analysis, that is, identify two k-configurations as identical if they
are related by an affine transformation. One can identify the resulting shape space with
the Grassmannian manifold—the space of all 3D subspaces of �k−1, a result of Sparr
(1992). The Grassmannian is an extension of the real projective space and hence one
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Nonparametric Bayes density estimation on manifolds 701

may consider (real) Bingham kernels and construct kernel mixture density models on
this space.

5 Summary and future work

We consider kernel mixture density models on general compact manifolds and obtain
sufficient conditions on the kernel, priors and the space for the density estimate to
be strongly consistent. Thereby we extend the existing literature on strong posterior
consistency on �d using Gaussian kernels to more general non-Euclidean manifolds.
The conditions are verified for specific kernels on two important manifolds, namely
the hypersphere and the planar shape space. It is discussed how to extend the kernel
choice on these manifolds and construct their counterparts on other manifolds aris-
ing as generalizations. The multivariate Gaussian mixture model with an appropriate
truncated and transformed Wishart prior on the within cluster covariance inverse is
also shown to satisfy the consistency conditions when used to model a compactly sup-
ported density on �d . We also allow the prior to depend on the sample size and obtain
sufficient conditions for weak and strong consistency, while expecting better small
sample operating characteristics. As a result a truncated Wishart prior on the covari-
ance inverse of a multivariate Gaussian kernel is shown to satisfy the requirements for
strong consistency.

In later works we plan to prove the results for other kernels on additional manifolds
arising in applications. We also plan to extend the results to cover densities with non-
compact support, in particular �d . Since most of the non-Euclidean manifolds arising
in applications are compact, that is not a high priority.

6 Appendix

6.1 Proof of Theorem 1

The proof runs on the lines of that of Theorem 1 in Bhattacharya and Dunson (2010a).

Proof First of all we show that the set

{

P ∈ M(M) : sup
m∈M,K∈Nε

| f (m; P,K)− f (m; F0,K)| < ε

}

(10)

contains a weakly open neighborhood of F0, F0 being the distribution corresponding
to f0. The kernel K being continuous from assumption A1, for any (m,K) ∈ M × Nε ,

Wm,K =
{

P : | f (m; P,K)− f (m; F0,K)| < ε/3

}

defines an open neighborhood of F0. The mapping from (m,K) to f (m; P,K) is a
uniformly equicontinuous family of functions on M × Nε , labeled by P ∈ M(M),
because, for m1,m2 ∈ M ; K1,K2 ∈ Nε ,
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702 A. Bhattacharya, D. B. Dunson

| f (m1; P,K1)− f (m2; P,K2)| ≤
∫

M
|K (m1;μ,K1)− K (m2;μ,K2)|P(dμ)

and K is uniformly continuous on M × M × Nε . Therefore, there exists a δ > 0 such
that ρ12((m1,K1), (m2,K2)) < δ implies that

sup
P

| f (m1; P,K1)− f (m2; P,K2)| < ε/3.

Here ρ12 denotes any distance on M ×N inducing the product topology. Cover M ×Nε
by finitely many balls of radius δ: M × Nε = ⋃J

i=1 B
{
(mi ,Ki ), δ

}
. Let Wε =

⋂J
i=1 Wmi ,Ki which is an open neighborhood of F0. Let P ∈ Wε and (m,K) ∈

M × Nε . Then there exists a (mi ,Ki ) such that (m,K) ∈ B
{
(mi ,Ki ), δ

}
. Then

| f (m; P,K)− f (m; F0,K)| ≤ | f (m; P,K)− f (mi ; P,Ki )| + | f (mi ; P,Ki )

− f (mi ; F0,Ki )| + | f (mi ; F0,Ki )− f (m; F0,K)| < ε

3
+ ε

3
+ ε

3
= ε.

This proves that the set in (10) contains Wε , an open neighborhood of F0.

For P ∈ Wε and K ∈ Nε, supm | f0(m)− f (m; P,K)|
≤ supm | f0(m)− f (m; F0,K)| + supm | f (m; F0,K)− f (m; P,K)| < 2ε

because of assumptions A2 and A4. Hence

�
{

f : sup
m∈M

| f (m)− f0(m)| < 2ε
}

≥ �1(Wε × Nε) > 0

because of assumption A3 and the fact that int(Wε × Nε) interects with supp(�1).
This implies the KL property when f0 is strictly positive (and hence bounded below),
as shown in Corollary 1 of Bhattacharya and Dunson (2010a).

In case f0 is not bounded below, we use Lemma 4 in Wu and Ghosal (2008) to
get a continuous everywhere positive density f1 (depending on f0 and ε) for which
�(Kε( f1)) ≤ �(K2ε+√

ε( f0)). From what we have proved above, �(Kε( f1)) > 0
and as a result the KL condition follows for f0. ��

6.2 Proof of Theorem 2

In this proof and the subsequent ones, we shall use a general symbol C for any constant
not depending on n (but possibly on ε).

Proof Given δ1 > 0 (≡ δ1(ε, n)), cover M by N1 (≡ N1(δ1)) many disjoint subsets
of diameter at most δ1: M = ∪N1

i=1 Ei . Assumption A8 implies that for δ1 sufficiently

123



Nonparametric Bayes density estimation on manifolds 703

small, N1 ≤ Cδ−a3
1 . Pick μi ∈ Ei , i = 1, . . . , N1 and define for a probability P ,

Pn =
N1∑

i=1

P(Ei )δμi , Pn(E) = (P(E1), . . . , P(EN1))
T . (11)

Denoting the L1-norm as ‖.‖, for any K with φ(K) ≤ κn ,

‖ f (P,K) − f (Pn,K)‖ ≤
N1∑

i=1

∫

Ei

‖K (μ,K)− K (μi ,K)‖P(dμ)

≤ C
∑

i

∫

Ei

supm∈M |K (m;μ,K)− K (m;μi ,K)|P(dμ) (12)

≤ Cκa1
n δ1. (13)

The inequality in (13) follows from (12) using Assumption A5.
For K, K̃ in φ−1[0, κn], P ∈ M(M),

‖ f (P,K)− f (P, K̃)‖ ≤ C sup
m,μ∈M

|K (m;μ,K)− K (m;μ, K̃)|

≤ Cκa2
n ρ2(K, K̃), (14)

the inequality in (14) following from Assumption A6. Given δ2 > 0 (≡ δ2(ε, n)),
cover φ−1[0, κn] by finitely many subsets of diameter at most δ2, the number of such
subsets required being at most C(κnδ

−1
2 )b2 , from Assumption A7. Call the collection

of these subsets W (δ2, n).
Letting Sd = {x ∈ [0, 1]d : ∑ xi ≤ 1}, Sd is compact under the L1-metric

(‖x‖L1 = ∑ |xi |, x ∈ �d ), and hence given any δ3 > 0 (≡ δ3(ε)), can be covered
by finitely many subsets of the cube [0, 1]d each of diameter at most δ3. In particular,
cover Sd with cubes of side length δ3/d lying partially or totally in Sd . Then an upper
bound on the number N2 ≡ N2(δ3, d) of such cubes can be shown to be λ(Sd (1+δ3))

(δ3/d)d
, λ

denoting the Lebesgue measure on �d and Sd(r) = {x ∈ [0,∞)d :∑ xi ≤ r}. Since
λ(Sd(r)) = rd/d!; hence

N2(δ3, d) ≤ dd

d!
(

1 + δ3

δ3

)d

.

Let W(δ3, d) denote the partition of Sd as constructed above.
Let dn = N1(δ1). For 1 ≤ i ≤ N2(δ3, dn), 1 ≤ j ≤ C(κnδ

−1
2 )b2 , define

Di j = { f (P,K) : Pn(E) ∈ Wi , K ∈ W j },

with Wi and W j being elements of W(δ3, dn) and W (δ2, n), respectively. We claim
that this subset of Dn has L1 diameter of at most ε. For f (P,K), f (P̃, K̃) in this set,
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704 A. Bhattacharya, D. B. Dunson

‖ f (P,K)− f (P̃, K̃)‖
≤ ‖ f (P,K)− f (Pn,K)‖ + ‖ f (Pn,K)− f (P̃n,K)‖

+‖ f (P̃n,K)− f (P̃,K)‖ + ‖ f (P̃,K)− f (P̃, K̃)‖. (15)

From inequality (13), it follows that the first and third terms in (15) are at most Cκa1
n δ1.

The second term can be bounded by

dn∑

i=1

|P(Ei )− P̃(Ei )| < δ3

and from the inequality in (14), the fourth term is bounded by Cκa2
n δ2. Hence the

claim holds if we choose δ1 = Cκ−a1
n , δ2 = Cκ−a2

n , and δ3 = C . The number of
such subsets covering Dn is at most C N2(δ3, dn)(κnδ

−1
2 )b2 . From Assumption A8, it

follows that for n sufficiently large,

dn = N1(δ1) ≤ Cκa1a3
n .

Using the Stirling’s formula, we can bound log(N2(δ3, dn)) by Cdn . Also κnδ
−1
2 is

bounded by Cκa2+1
n , so that

N (ε,Dn) ≤ C + C log(κn)+ Cdn ≤ Cκa1a3
n

for n sufficiently large. ��

6.3 Proof of Proposition 3

Proof In Lemma 5 of Wu and Ghosal (2010), it is shown that

‖K (μ,K)− K (ν,K)‖ ≤ Cλd(K)1/2ρ(μ, ν)

for all μ, ν ∈ R
d and K ∈ M+(d). This means that A5′ is satisfied with a1 = 1/2.

Also by the geometry of �d ,A8 is satisfied with a3 = d.
To show A7, note that φ−1[0, κ] is a subset of M+(d) consisting of those positive

matrices whose eigenvalues are bounded by κ . We equip M+(d) with the L2 norm
distance, i.e.,

ρ2(K1,K2) = ‖K1 − K2‖2, ‖K‖2
2 =

∑

i j

K2
i j = Trace(K2)

and view it as a subset of M(d)—the space of all order d real matrices. Then φ−1[0, κ]
is contained in a ball of radius

√
dκ around the zero matrix. The ε-covering number

of a such a ball is of the order (
√
κ/ε)d

2
. Hence A7 is also satisfied.
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Remains to check A6′. Since φ−1[0, κ] is a convex subset of M(d), use the Taylor’s
theorem to get

|K (x;μ,K1)− K (x;μ,K2)| ≤ ρ2(K1,K2) sup
K∈φ−1[0,κ]

∥
∥
∥
∥
∂

∂K K (x;μ,K)
∥
∥
∥
∥

2

for all x, μ ∈ �d , and K1,K2 ∈ φ−1[0, κ]. This in turn implies that

‖K (μ,K1)− K (μ,K2)‖ ≤ ρ2(K1,K2)

∫

�d
sup

K∈φ−1[0,κ]

∥
∥
∥
∥
∂

∂K K (x;μ,K)
∥
∥
∥
∥

2
dx .

Some calculation will show that

∥
∥
∥
∥
∂

∂K K (x;μ,K)
∥
∥
∥
∥

2
≤ C K (x;μ,K)

⎛

⎝

√√
√
√

d∑

1

λ−2
j (K)+ ‖x − μ‖2

2

⎞

⎠ ,

C being some constant independent of x, μ or K. Since φ−1[0, κ] consists of all
positive matrices K whose eigenvalues lie in [λ1, κ], this will imply that

‖K (μ,K1)− K (μ,K2)‖ ≤ Cκd/2ρ2(K1,K2)

which means that A6′ is also satisfied with a2 = d/2. Here C denotes a constant
independent of μ,K1,K2 or κ . The rest of the proof follows from Theorem 2 and
Proposition 2. ��

6.4 Proof of Lemma 1

Proof Fix ε > 0. Under assumptions A1, A2 and A4, it follows from the proof of
Theorem 1 that there exists a weakly open neighborhood W of F0 (depending on ε)
such that Kε( f0) contains { f (P,K) : P ∈ W,K ∈ Nε}. Hence

∫ n∏

1

f (Xi )

f0(Xi )
�n(d f ) ≥

∫

Kε ( f0)

n∏

1

f (Xi )

f0(Xi )
�n(d f )

≥
∫

W×Nε

n∏

1

f (Xi ; P,K)
f0(Xi )

πn(K)�11(dP)λ1(dK).

By the law of large numbers, for any f ∈ Kε( f0),

1

n

∑

i

log{( f0/ f )(Xi )} → KL( f0; f ) < ε
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a.s. F∞
0 as n → ∞. Therefore, for any P ∈ W and K ∈ Nε ,

lim inf
n

exp(2nε)
n∏

1

f (Xi ; P,K)
f0(Xi )

= lim inf
n

exp

[

n

[

2ε − (1/n)
∑

i

log{ f0(Xi )/ f (Xi ; P,K)}
]]

= ∞ a.s. F∞
0 .

Also from Assumption A11, lim infn exp(nε)πn(K) = ∞∀K ∈ Nε and hence

lim inf
n

exp(3nε)
n∏

1

f (Xi ; P,K)
f0(Xi )

πn(K) = ∞ a.s. F∞
0 .

By Fubini–Tonelli theorem, there exists a �0 ⊂ � with probability 1 such that for
any ω ∈ �0,

lim inf
n

exp(3nε)
n∏

1

f (Xi (ω); P,K)
f0(Xi (ω))

πn(K) = ∞

for all (P,K) ∈ W × Nε outside of a �11(dP) ⊗ λ1(dK) measure 0 subset. By
Assumption A10 and since λ1 has full support and Nε has a non-empty interior,
(�11 ⊗ λ1)(W × Nε) > 0. Therefore, using the Fatou’s lemma, we conclude that

lim inf
n

exp(3nε)
∫ n∏

1

f (Xi )

f0(Xi )
�n(d f )

≥
∫

W×Nε
lim inf

n

{

exp(3nε)
n∏

1

f (Xi ; P,K)
f0(Xi )

πn(K)
}

×�11(dP)λ1(dK)=∞ a.s. F∞
0 .

Since ε was arbitrary, the proof is completed. ��

6.5 Proof of Proposition 4

Proof For any a > 0,

πn{φ−1(na,∞)} = Pr(λd(K) > na), K ∼ πn

= Pr(λd(X) > na |λ1(X) ≥ λ1), X ∼ Wish(β−1
n Id , q)

≤ Pr(λd(X) > na)/Pr(λ1(X) ≥ λ1)

= Pr(λd(Z) > βnna)/Pr(λ1(Z) ≥ βnλ1), Z ∼ Wish(Id , q),
(16)
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the last identity following because X equals to β−1
n Z in distribution. The numerator

in (16) is less than Pr(Tr(Z) > βnna). The trace of Z follows a Gam(1/2, qd/2)
distribution which has exponentially decaying tail. Hence the numerator is less than
exp(−Cβnna) for some C > 0 when n is sufficiently large.

Now we derive a lower bound for the probability in the denominator of (16). In
Mallik (2003), the joint density of λ1(Z), . . . , λd(Z) has been shown to be

f (x1, . . . , xd) =
(∏d

i=1 xi

)q−d
exp
(
−∑d

i=1 xi

)∏
1≤i< j≤d(xi − x j )

2

∏d
i=1(d − i)!(q − i)! ,

0 < x1 < · · · < xd < ∞.

Hence Pr(λ1(Z) ≥ βnλ1) = Pr(λ j (Z) ≥ βnλ1 ∀ j)

= C
∫

βnλ1≤x1<···<xd<∞

(
d∏

i=1

xi

)q−d

exp

(

−
d∑

i=1

xi

)
∏

1≤i< j≤d

(xi − x j )
2

d∏

i=1

dxi

≥ C
∫

βnλ1≤x1<···<xd<∞
exp

(

−2
d∑

i=1

xi

)
∏

1≤i< j≤d

(xi − x j )
2

d∏

i=1

dxi (17)

for n sufficiently large. Integrate (17) by parts to get Pr(λ1(Z) ≥ βnλ1) ≥ exp(−Cβn)

for appropriate C > 0 when n is sufficiently large. Hence there exists a C > 0 such
that the ratio in (16) is less than exp(−Cβnna). If we pick a as in the Proposition, for
any β0 > 0, it follows that

exp(nβ0)πn{φ−1(na,∞)} < exp{−n(Cβnna−1 − β0)}
which converges to zero because βnna−1 diverges to infinity. This verifies Assumption
A12 with a as in the Proposition and β0 being any positive constant. ��

6.6 Proof of Theorem 5

Proof Denote by M the unit sphere Sd and by ρ the chord distance on it. Express the
vMF kernel as

K (m;μ,K) = c−1(K) exp[K{1 − ρ2(m, μ)/2}] (m, μ ∈ M;K ∈ [0,∞)).

Since ρ is continuous on the product space M × M and c is continuous and non-van-
ishing on [0,∞), K is continuous on M × M × [0,∞) and assumption A1 follows:

For a given continuous function f on M,m ∈ M,K ≥ 0, define

I (m,K) = f (m)−
∫

M
K (m;μ,K) f (μ)V (dμ)

=
∫

M
K (m;μ,K){ f (m)− f (μ)}V (dμ).
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Then assumption A2 follows once we show that

lim
K→∞

( sup
m∈M

|I (m,K)|) = 0.

To simplify I (m,K), make a change of coordinates μ �→ μ̃ = U (m)Tμ, μ̃ �→ θ ∈
�d ≡ (0, π)d−1 × (0, 2π) where U (m) is an orthogonal matrix with first column
equal to m and θ = (θ1, . . . , θd)

T are the spherical coordinates of μ̃ ≡ μ̃(θ) which
are given by

μ̃ j = cos θ j

∏

h< j

sin θh, j = 1, . . . , d, μ̃d+1 =
d∏

j=1

sin θ j .

Using these coordinates, the volume form can be written as

V (dμ) = V (dμ̃) = sind−1(θ1) sind−2(θ2) · · · sin(θd−1)dθ1 · · · dθd

and hence I (m,K) equals

∫

�d

c−1(K) exp
{K cos(θ1)

}{
f (m)− f (U (m)μ̃)

}
sind−1(θ1) · · · sin(θd−1)dθ1 · · · dθd

= c−1(K)
∫

�d−1×(−1,1)
exp(Kt)

{
f (m)− f (U (m)μ̃)

}
(1 − t2)d/2−1

× sind−2(θ2) · · · sin(θd−1)dθ2 · · · dθddt (18)

where t = cos(θ1), μ̃ = μ̃
(
θ(t)

)
and θ(t) = (arccos(t), θ2, . . . , θd)

T . In the integrand
in (18), the distance between m and U (m)μ̃ is

√
2(1 − t). Substitute t = 1 − K−1s

in the integral with s ∈ (0, 2K). Define

�(s,K) = sup
{| f (m)− f (m̃)| : m, m̃ ∈ M, ρ(m, m̃) ≤

√
2K−1s

}
.

Then

∣
∣ f (m)− f (U (m)μ̃)

∣
∣ ≤ �(s,K).

Since f is uniformly continuous on (M, ρ), � is bounded on (�+)2 and limK→∞
�(s,K) = 0. Hence from (18), we deduce that

sup
m∈M

|I (m,K)|

≤ c−1(K)K−1
∫

�d−1×(0,2K)
exp(K − s)�(s,K)(K−1s(2 − K−1s))d/2−1

× sind−2(θ2) · · · sin(θd−1)dθ2 · · · dθdds

≤ CK−d/2c̃−1(K)
∫ ∞

0
�(s,K)e−ssd/2−1ds. (19)
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From Lemma 3, it follows that

lim sup
K→∞

K−d/2c̃−1(K) < ∞.

This in turn, using the Lebesgue Dominated Convergence Theorem implies that the
expression in (19) converges to 0 as K → ∞. This verifies assumption A2. ��

6.7 Proof of Theorem 6

In the proof, Bd(r) denotes the ball of radius r around 0 in �d :

Bd(r) = {x ∈ �d : ‖x‖2 ≤ r}

and Bd refers to Bd(1).

Proof It is clear from (6) and (7) that the vMF kernel K is continuously differentiable
on �d+1 × �d+1 × [0,∞). Hence

sup
m∈Sd ,K∈[0,κ]

∣
∣K (m;μ,K)− K (m; ν,K)∣∣

≤ sup
m∈Sd ,x∈Bd+1,K∈[0,κ]

∥
∥
∥
∂

∂x
K (m; x,K)

∥
∥
∥

2
‖μ− ν‖2.

Since

∂

∂x
K (m; x,K) = Kc̃−1(K) exp{−K(1 − mT x)}m,

its norm is bounded by Kc̃−1(K). Lemma 3 implies that this in turn is bounded by

κ c̃−1(κ) ≤ Cκd/2+1

for K ≤ κ and K ≥ 1. This proves assumption A5 with a1 = d/2 + 1.
To verify A6, given K1,K2 ≤ κ , use the inequality,

sup
m,μ∈Sd

∣
∣K (m;μ,K1)− K (m;μ,K2)

∣
∣ ≤ sup

m,μ∈Sd ,K≤κ

∣
∣
∣
∂

∂κ
K (m;μ,K)

∣
∣
∣|K1 − K2|.

By direct computations, one can show that

∂

∂K K (m;μ,K) = − ∂

∂K c̃(K)c̃−2(K) exp{−K(1 − mTμ)}
− c̃−1(K) exp{−K(1 − mTμ)}(1 − mTμ),
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710 A. Bhattacharya, D. B. Dunson

∂

∂K c̃(K) = −C
∫ 1

−1
exp{−K(1 − t)}(1 − t)(1 − t2)d/2−1dt,

∣
∣
∣
∂

∂K c̃(K)
∣
∣
∣ ≤ Cc̃(K).

Therefore, using Lemma 3,

∣
∣
∣
∂

∂K K (m;μ,K)
∣
∣
∣ ≤ Cc̃−1(K) ≤ Cc̃−1(κ) ≤ Cκd/2

for any K ≤ κ and κ ≥ 1. Hence A6 is verified with a2 = d/2.
Finally to verify A8, note that Sd ⊂ Bd+1 ⊂ [−1, 1]d+1 which can be covered

by finitely many cubes of side length ε/(d + 1). Each such cube has L2 diameter ε.
Hence their intersections with Sd provides a finite ε-cover for this manifold. If ε < 1,
such a cube intersects with Sd only if it lies entirely in Bd+1(1 + ε) ∩ Bd+1(1 − ε)c.
The number of such cubes, and hence the ε-cover size can be bounded by

Cε−(d+1){(1 + ε)d+1 − (1 − ε)d+1} ≤ Cε−d

for some C > 0 not depending on ε. This verifies A8 for appropriate positive constant
A3 and a3 = d. ��

6.8 Proof of Lemma 3

Proof Express c̃(K) as

C
∫ 1

−1
exp{−K(1 − t)}(1 − t2)d/2−1dt

and it is clear that it is decreasing. This expression suggests that

c̃(K) ≥ C
∫ 1

0
exp{−K(1 − t)}(1 − t2)d/2−1dt

≥ C
∫ 1

0
exp{−K(1 − t2)}(1 − t2)d/2−1dt

= C
∫ 1

0
exp(−Ku)ud/2−1(1 − u)−1/2du

≥ C
∫ 1

0
exp(−Ku)ud/2−1du
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= CK−d/2
∫ K

0
exp(−v)vd/2−1dv

≥ C

{∫ 1

0
exp(−v)vd/2−1dv

}

K−d/2

if K ≥ 1. ��

6.9 Proof of Theorem 7

Proof Express the complex Watson kernel as

K (m;μ,K) = c−1(K) exp

(−K
2

d2
E (m, μ)

)

.

Given K ≥ 0, define

φ(t) = exp

(−K
2

t2
)

, t ∈ [0,√2].

Then |φ ′
(t)| ≤ √

2K, so that

|φ(t)− φ(s)| ≤ √
2K|s − t |, s, t ∈ [0,√2]

which implies that

|K (m;μ,K)− K (m; ν,K)| ≤ c−1(K)
√

2K|dE (m, μ)− dE (m, ν)|
≤ √

2Kc−1(K)dE (μ, ν). (20)

For K ≤ κ , from Lemma 4, it follows that

Kc−1(K) ≤ κc−1(κ) = π2−kκk−1c̃−1(κ)

≤ π2−kκk−1c̃−1(1)

provided κ ≥ 1. Hence for any κ ≥ 1,

sup
K∈[0,κ]

Kc−1(K) ≤ Cκk−1

and from inequality (20), a1 = k − 1 follows.
By direct computation, one can show that

∂

∂K K (m;μ,K) = πk−2 exp

{

−1

2
Kd2

E (m, μ)− K
}

×c−2(K)K2−k

[ ∞∑

r=k−1

Kr−1

r !
{
k − 2 − r

2
d2

E (m, μ)
}
]

. (21)
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Denote by S the sum in the second line of (21). Since d2
E (m, μ) ≤ 2, it can be shown

that

|k − 2 − r

2
d2

E (m, μ)| ≤
{

k − 2 if k − 1 ≤ r ≤ 2k − 4,

r − k + 2 if 2k − 3 ≤ r,

so that

|S| ≤ (k − 2)
2k−4∑

r=k−1

Kr−1

r ! +
∞∑

r=2k−3

Kr−1

r ! (r − k + 2)

= (k − 2)Kk−2
k−3∑

r=0

Kr

(r + k − 1)! + K2k−4
∞∑

r=0

Kr

(r + 2k − 3)! (r + k − 1)

≤ CKk−2eK + K2k−4eK.

Plug the above inequality in (21) to get

∣
∣
∣
∣
∂

∂K K (m;μ,K)
∣
∣
∣
∣ ≤ Cc−2(K)K2−k exp

{

−1

2
Kd2

E (m, μ)

}

(CKk−2 + K2k−4)

≤ Cc−2(K)(C + Kk−2). (22)

For K ≤ κ and κ ≥ 1, using Lemma 4, we bound the expression in (22) by

Cc−2(κ)(C + κk−2) = Cκ2k−6c̃−2(κ)(C + κk−2)

≤ Cκ2k−6c̃−2(1)(C + κk−2) ≤ Cκ3k−8 (23)

for κ sufficiently large. Since K is a continuously differentiable in K, from (23) it
follows that there exists κ1 > 0 such that for all κ ≥ κ1,K1,K2 ≤ κ ,

sup
m,μ∈�k

2

|K (m;μ,K1)− K (m;μ,K2)| ≤ sup
m,μ∈�k

2 ,K∈[0,κ]

∣
∣
∣
∣
∂

∂K K (m;μ,K)
∣
∣
∣
∣ |K1 − K2|

≤ Cκ3k−8|K1 − K2|.

This proves Assumption A6 with a2 = 3k − 8. ��

6.10 Proof of Theorem 8

In the proof, Ci , i = 1, 2, . . . denote positive constants possibly depending on k.
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Proof The preshape sphere CSk−2, as a real manifold, can be identified with the real
unit sphere S2k−3. Endow it with the chord distance induced by the L2-norm

‖u‖2 =
√√
√
√

k−1∑

i=1

|ui |2 (u = (u1, . . . , uk−1)
T ).

Then from Theorem 6, it follows that given any δ > 0, CSk−2 can be covered by
finitely many subsets of diameter less than or equal to δ, the number of such subsets
being bounded by C1δ

−(2k−3) + C2. The extrinsic distance dE on�k
2 can be bounded

by the chord distance on CSk−2 as follows: For u, v ∈ CSk−2,

‖u − v‖2
2 = 2 − 2Re(u∗v) ≥ 2 − 2|u∗v| = 2(1 − |u∗v|)

≥ (1 + |u∗v|)(1 − |u∗v|) = 1

2
d2

E ([u], [v]).

Hence dE ([u], [v]) ≤ √
2‖u − v‖2, so that given any ε > 0, the shape image of a

δ-cover for CSk−2 with δ = ε/
√

2 provides an ε-cover for �k
2 . Hence the ε-covering

size for �k
2 can be bounded by C1ε

−(2k−3) + C2. ��
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