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Abstract The family of skew-symmetric distributions is a wide set of probabil-
ity density functions obtained by suitably combining a few components which can
be quite freely selected provided some simple requirements are satisfied. Although
intense recent work has produced several results for certain sub-families of this con-
struction, much less is known in general terms. The present paper explores some
questions within this framework and provides conditions for the above-mentioned
components to ensure that the final distribution enjoys specific properties.

Keywords Central symmetry · Log-concavity · Peakedness ·
Quasi-concavity · Skew-symmetric distributions · Stochastic ordering ·
Strong unimodality · Unimodality

1 Introduction and motivation

1.1 Distributions generated by perturbation of symmetry

In recent years, there has been quite intense work on a broad class of absolutely con-
tinuous probability distributions which are generated starting from symmetric density
functions and applying suitable forms of perturbation of the symmetry. The key repre-
sentative of this formulation is the skew-normal distribution, whose density function
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in the scalar case is given by

f (x;α) = 2 φ(x)�(α x), (x ∈ R), (1)

where φ(x) and �(x) denote the N(0,1) density function and distribution function,
respectively, and α is an arbitrary real parameter. When α = 0, (1) reduces to familiar
N(0, 1) distribution; otherwise, an asymmetric distribution is obtained, with skewness
having the same sign as α. The properties of (1) studied by Azzalini (1985) and other
authors show a number of similarities with the normal distribution and support the
adoption of the name ‘skew-normal’.

The same sort of mechanism leading from the normal density function to (1) has
also been applied to other symmetric distributions, including extensions to more elab-
orate forms of perturbation and constructions in a multivariate setting. Introductory
accounts to this research area are provided by the book edited by Genton (2004) and the
review paper of Azzalini (2005), to which readers are referred for a general overview.

For the aims of the present paper, we rely largely on the following lemma, pre-
sented by Azzalini and Capitanio (2003). This is very similar to a result developed
independently by Wang et al. (2004); the precise interconnections between the two
statements will be discussed in the course of the paper.

Before stating the result, let us recall that the concept of a symmetric density func-
tion has a single simple definition only in the univariate case, but different formulations
exist in the multivariate case; see Serfling (2006) for an overview. In this paper, we
adopt the concept of central symmetry which, in the case of continuous distribution
on R

d , requires a density function p which satisfies p(x − x0) = p(x0 − x) for all
x ∈ R

d , for some centre of symmetry x0.

Lemma 1 Denote a d-dimensional probability density function centrally symmetric
about 0 by f0, a continuous distribution function on the real line by G0(·), so that
g0 = G ′

0 exists a.e. and is an even density function, and an odd real-valued function
on R

d by w, so that w(−x) = −w(x). Thus

f (x) = 2 f0(x) G0{w(x)}, (x ∈ R
d), (2)

is a density function.

It is useful to recall the essence of the proof, which is very simple. Denote a con-
tinuous random variable with density f0 by X0, and a univariate continuous random
variable with distribution function G0, independent of X0, by U . It is easy to see that
w(X0) has distribution symmetric about 0, and so the same is true for T = U −w(X0).
We can then write

1

2
= P{T ≤ 0} = E{P{U ≤ w(X0)|X0}} =

∫
Rd

G{w(x)} f0(x) dx (3)

which states that (2) is a density function.
Lemma 1 provides a general mechanism for modifying initial symmetric ‘base’

density f0 via the perturbation factor G(x) = G0{w(x)}, whose components G0 and
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w can be chosen from a wide set of options. Clearly, the prominent case (1) can be
obtained by setting d = 1, f0 = φ, G0 = �,w(x) = α x in (2). The term ‘skew-
symmetric’ is often adopted for distributions of type (2).

Note that twice the integrand of the last term in (3) can be written as

f (x) = 2 f0(x) P{T < 0|X0 = x} (4)

and this provides an interpretation of (2) as the effect of a selection mechanism on
a population with distribution f0 via the condition {T < 0|X0 = x}. Although this
representation is mentioned here in connection with the above-mentioned result by
Azzalini and Capitanio (2003), it has been a persistent idea in this stream of literature
since its very beginning. See Azzalini (1985, 1986) for early occurrences; more recent
works focusing especially on this direction are those of Arnold and Beaver (2000),
Arellano-Valle et al. (2002, 2006).

The above argument is also the basis for the important stochastic representation of
variable X with density (2) as

X =
{

X0 if U ≤ w(X0),

−X0 if U ≥ w(X0),
(5)

and (5) immediately supplies the following important corollary.

Proposition 1 (Perturbation invariance) If random variable X0 has density f0 and X
has density f , where f0 and f satisfy the conditions required in Lemma 1, then the
equality

t (X)
d= t (X0), (6)

where ‘
d=’ denotes equality in distribution, holds for any even q-dimensional function

t on R
d , irrespective, of factor G(x) = G0{w(x)}.

1.2 A wealth of open questions

The intense research work devoted to distributions of type (2) has provided us with a
wide collection of important results. However, many of these have been established
for specific subclasses of (2). The most intensively studied instance is given by the
skew-normal density which, in the case of d = 1, takes the form (1). Important results
have been obtained also for other subclasses, especially when f0 is Student’s t density
or Subbotin’s density (also called exponential power distribution).

Much less is known in general terms, in the sense that there still is a relatively
limited set of results which allows us to establish in advance, on the basis of qualita-
tive properties of the components f0, G0, w of (2), what the formal properties of the
resulting density function f will be. Results of this kind do exist, and Proposition 1
is the most prominent example, since it is both completely general and of paramount
importance in associated distribution theory; several results on quadratic forms and
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even order moments follow from this property. Little is known about the distribution
of non-even transformations. Among the limited results of the latter type, some gen-
eral properties of odd moments of (2) have been presented by Umbach (2006, 2008).
However, there are many other questions which arise quite naturally in connection
with Lemma 1; the following is a non-exhaustive list.

– When d = 1, which assumptions on G(x) ensure that the median of f is larger
than 0? More generally, when can we say that the pth quantile of f is larger than
the pth quantile of f0? Obviously, ‘larger’ here may be replaced by ‘smaller’.

– The even moments of f and those of f0 coincide, because of (6). What can be said
about the odd moments? For instance, is there an ordering of moments associated
with some form of ordering of G(x)?

– If f0 is unimodal, which are the additional assumptions on G0 and w which ensure
that f is still unimodal?

– When d > 1, a related but distinct question is whether high density regions of the
type Cu = {x : f (x) > u}, for an arbitrary positive u, are convex.

Although the aim of the present paper is partly to tackle the above questions, at the
same time we take a broader view, attempting to take a step forward in understanding
the general properties of set of distributions (2). The latter target is the reason for the
preliminary results of Sect. 2, which lead to a characterization result in Sect. 2.2 and
provide the basis for the subsequent sections which deal with more specific results.
In Sect. 3, we deal with the case d = 1 and tackle some of the questions listed above.
Specifically, we obtain quite general results on stochastic ordering of skew-symmetric
distributions with common base f0, which imply orderings of quantiles and expected
values of suitable transformations of the original variate. The final part of Sect. 3
concerns the uniqueness of the mode of density f . Section 4 deals with the general
case of d, where various results are obtained. One of these is to establish the convexity
of sets Cu for the more important subclass of the skew-elliptical family, provided the
parent elliptical family enjoys a slightly more stringent property. We also examine the
connection between the formulation of skew-elliptical densities of type (2) and those
of Branco and Dey (2001) and prove the conjecture of Azzalini and Capitanio (2003)
that the first formulation strictly includes the second one. Last, we give conditions for
the log-concavity of skew-elliptical distributions not generated by the conditioning
mechanism of Branco and Dey (2001).

One reviewer of this paper asked to examine the above sort of problems not only in
connection with representations (2) and the corresponding one of Wang et al. (2004)
but also with other types of related constructions. A case of special interest is based on a
selection mechanism, leading to a form like (4) or similar. However, it is clear from (4)
that, when the selection mechanism operates via a condition of type (T < 0|X0 = x),
the ensuing distribution is of type (2), and we are already considering this situation.
If the selection mechanism is modified, even simply to the form (T < c|X0 = x) for
some arbitrary but fixed c, then the whole picture changes completely: the normal-
izing constant of (2) varies with c, f0 and G, instead of being fixed at 2, stochastic
representation (5) does not hold, at least in this form, and the property of perturbation
invariance disappears. Given this radical modification of the context, its systematic
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exploration would correspondingly affect the present paper. Therefore, we do not
pursue this direction, apart from a specific case discussed at the end of the paper.

2 Skew-symmetric densities with a common base

2.1 Preliminary facts

Clearly, f in (2) depends on G0 and w only via perturbation function G(x) =
G0{w(x)}. The assumptions on G0 and w in Lemma 1 ensure that

G(x) ≥ 0, G(x) + G(−x) = 1, (x ∈ R
d), (7)

and, conversely, it is true that a function G satisfying these conditions ensures that

f (x) = 2 f0(x) G(x) (8)

is a density function. So that (7)–(8) represent the formulation adopted by Wang et al.
(2004) for their result essentially equivalent to Lemma 1.

Each of the formulations has its own advantages. As noted by Wang et al. (2004),
the representation of G(x) in the form G(x) = G0{w(x)} is not unique. In fact, given
one such representation,

G(x) = G∗{w∗(x)}, w∗(x) = G−1∗ [G0{w(x)}]

is another one, for any strictly increasing distribution function G∗ with even density
function on R.

Conversely, finding a function G fulfilling conditions (7) is immediate if we build
it via expression G(x) = G0{w(x)}; in fact, this is the usual way in the literature
to select suitable G functions. Wang et al. (2004) also showed that the opposite fact
holds: any function G satisfying (7) can be written in the form G0{w(x)}, and this can
be done in infinitely many ways. One choice of this representation which we find ‘of
minimal modification’ is

G0(t) = (
t + 1

2

)
I(−1,1)(2t) + I[1,+∞)(2t), (t ∈ R),

w(x) = G(x) − 1
2 , (x ∈ R

d),
(9)

where IA(x) denotes the indicator function of set A. More simply, this G0 is the
distribution function of a U (− 1

2 , 1
2 ) variate.

Another important finding of Wang et al. (2004, Proposition 3) is that any positive
density function f on R

d admits a representation of type (8), as indicated in their
result, which we reproduce next, slightly modified as regards the arbitrariness of G(x)

outside the support of f0. Here and in the following, we denote by −A the set formed
by reversing the sign of all elements of A, if A denotes a subset of a Euclidean space.
If A = −A, we say that A is a symmetric set.
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Proposition 2 Let f be a density function with support S ⊆ R
d . A representation of

type (8) thus holds, with

f0(x) =
{

1
2 { f (x) + f (−x)} i f x ∈ S0,

0 otherwise,

G(x) =
⎧⎨
⎩

f (x)

2 f0(x)
i f x ∈ S0,

arbitrary otherwise,

(10)

where S0 = (−S) ∪ S, and the arbitrary branch of G satisfies (7). In addition, f0 is
unique, and G is uniquely defined over S0.

Let us now consider a density function with representation of type (8). We first intro-
duce a property of cumulative distribution function F which is also of independent
interest. We rewrite the first relation in (10) as

f (−x) = 2 f0(x) − f (x). (11)

for any x = (x1, . . . , xd). If F0 is the cumulative distribution function of f0, then
integration of (11) on (−∞, x1] × · · · × (−∞, xd ] gives

F(−x) = 2 F0(x) − F(x) (12)

where F denotes the survival function, that is

F(x) = P{X1 ≥ x1, . . . , Xd ≥ xd}. (13)

Equation (12) can be written as

F(−x) + F(x) = F0(x) + F0(−x)

and this in turn is equivalent to Proposition 1, as stated in Proposition 3 below.

2.2 A characterization

The five single statements composing the next proposition are known for the case
d = 1, and some of them also for general d. The most important new fact is that they
are equivalent, which therefore represents a characterization type of result.

More explicitly, while several papers have investigated implications of the assump-
tion of a skew-symmetric representation, the result shown below states that some
reverse implications also hold. The most notable of these is that, if perturbation invari-
ance property (6) holds for all even t (·), this implies a skew-symmetric representation
with common base f0 for the underlying distributions.
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Proposition 3 Consider random variables X = (X1, . . . Xd)
 and Y = (Y1, . . . Yd)

with distribution functions F and H, and density functions f and h, respectively;
denote by F and H the survival functions of F and H, defined as in (13). The follow-
ing conditions then are equivalent:

(a) densities f (x) and h(x) admit a representation of type (8) with the same symmetric
base density f0(x),

(b) t (X)
d= t (Y ), for any even q-dimensional function t on R

d ,

(c) P(X ∈ A) = P(Y ∈ A), for any symmetric set A ⊂ R
d ,

(d) F(x) + F(−x) = H(x) + H(−x),

(e) f (x) + f (−x) = h(x) + h(−x), (a.e.).

Proof (a)⇒ (b) This follows from the perturbation invariance property of Proposi-
tion 1.

(b)⇒ (c) Simply note that the indicator function of a symmetric set A is an even
function.

(c)⇒ (d) On setting

A+ = {s = (s1, . . . , sd) ∈ R
d : s j ≤ x j ,∀ j},

A− = {s = (s1, . . . , sd) ∈ R
d : −s j ≤ x j ,∀ j} = −A+,

A∪ = A+ ∪ A−,

A∩ = A+ ∩ A−,

both A∪, A∩ are symmetric sets; hence we obtain

F(x) + F(−x) = P(X ∈ A+) + P(X ∈ A−),

= P(X ∈ A∪) + P(X ∈ A∩).

(d)⇒ (e) Taking the dth mixed derivative of (d), relationship (e) follows.
(e)⇒ (a) This follows from the representation given in Proposition 2. ��
In the special case of d = 1, the above statements may be re-written in more directly

interpretable expressions. Specifically, (12) leads to

1 − F(−x) = 2 F0(x) − F(x), (14)

which will turn out to be useful later, and

F(x) − F(−x) = F0(x) − F0(−x).

In addition, when d = 1, conditions (c) and (d) in Proposition 3 may be replaced
by the following more directly interpretable forms:

(c′) |X | d= |Y |,
(d′) F(x) − F(−x) = H(x) − H(−x),
the first of which appeared in Azzalini (1986) and the second is an immediate conse-
quence.
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3 Some results when d = 1

3.1 Stochastic ordering

For d = 1, we start by considering the problem of finding conditions under which
two perturbations of same base density f0 are stochastically ordered. Let us recall the
standard concept of stochastic ordering of distributions functions: if F1 and F2 are
univariate distributions functions and F1(s) ≥ F2(s) for all real s, then F2 is stochas-
tically larger than F1. For background information on stochastic ordering, see Whitt
(2006).

To exemplify the motivation in a basic case, it is natural to think that density func-
tions 2 f0(x) G0(αx), under the conditions stated earlier, correspond to distributions
“increasing with α”, but this ordering seems to have been examined only for special
cases, such as skew-normal distribution.

To proceed, we need to introduce a type of ordering on the set of functions which
satisfy (7). This is much the same as the concept of peakedness order introduced by
Birnbaum (1948) to compare the variability of distributions about some given points.
However, the two concepts are distinct in the sense that Birnbaum’s peakedness only
applies to distribution functions, whereas the functions that we consider do not need
to be probability distributions, although they must satisfy symmetry condition (7), not
required for peakedness.

Definition 1 If G1 and G2 satisfy (7), we say that G2 is greater than G1 on the right,
denoted G2 ≥G R G1, if G2(x) ≥ G1(x) for all x > 0.

Of course it is equivalent to require that G2(x) ≤ G1(x) for all x < 0. Another
equivalent condition is that

G2(s) − G2(r) ≥ G1(s) − G1(r), (r < 0 < s).

If we now consider a fixed symmetric ‘base’ density f0 and the perturbed distribu-
tion functions associated with G1 and G2, i.e.

Fk(x) =
∫ x

−∞
2 f0(u) Gk(u) du, (k = 1, 2), (15)

ordering G2 ≥G R G1 immediately implies stochastic ordering of F1 and F2. To see
this, consider first s ≤ 0; then G1(x) ≥ G2(x) for all x ≤ s, and this clearly implies
F1(s) ≥ F2(s). If s > 0, the same conclusion holds using (14) with x = −s. We have
thus reached the following conclusion.

Proposition 4 If G1 and G2 satisfy condition (7), and G2 ≥G R G1, then distribution
functions (15) satisfy

F1(x) ≥ F2(x), (x ∈ R). (16)

In addition, if G1 and G2 are continuous and not identical, (16) holds strictly for
some x.
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Fig. 1 Cauchy density function f0(x) perturbed by G0 equal to Cauchy distribution, choosing w1(x) =
x3 − x , and w2(x) = x3. Left panel G1 (continuous line) and G2 (dashed line); right panel F1 (continuous
line) and F2 (dashed line)

An important special case of Proposition 4 arises when G1 ≡ 1
2 , so that f1 coin-

cides with base density f0. If G2(x) ≥ 1
2 for all x > 0, then perturbed distribution

F2 is stochastically larger than F0, the distribution function of base density f0. The
reverse happens when 1

2 ≥G R G2.
Another important special case occurs when G(x) = I[0,∞)(x) so that G2(x) ≥G R

G1(x) for any G1(x) of type (7), and consequently ordering F1(x) ≥ F2(x) holds for
all x .

Since G0 is a monotonically increasing function, it may be easier to check the
ordering of G1 and G2 via the ordering of the corresponding w(x).

Proposition 5 If G1 = G0(w1(x)) and G2 = G0(w2(x)), where G0 is as in Lemma 1
and w1 and w2 are odd functions so that w2(x) ≥ w1(x) for all x > 0, then G2 ≥G R

G1 and (16) holds. In addition, if w1 and w2 are continuous and not identical, (16)
holds strictly for some x.

Figure 1 illustrates order G2 ≥G R G1 and the stochastic order between the cor-
responding distribution functions F1(x) ≥ F2(x), as stated by Proposition 4. Here,
f0 is the Cauchy density, G0 is the Cauchy distribution function, and two forms of
w(x) are considered, namely, w1(x) = x3 − x, w2(x) = x3. The two perturbation
functions G1(x) = G0(w1(x)) and G2(x) = G0(w2(x)) are plotted in the left panel;
the corresponding distribution functions F1(x) and F2(x) are shown in the right panel.

Stochastic ordering of the Fk translates immediately into a set of implications about
the ordering of moments and quantiles of those Fk’s. Specifically, if Xk is a random
variable with distribution function Fk , for k = 1, 2, then the following statements
hold.

– If Qk(p) denotes the pth quantile of Xk for any 0 < p < 1, then

Q1(p) ≤ Q2(p).
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In those cases when (16) holds strictly for some x , the above inequality is strict
for some p.

– For any non-decreasing function t such that expectations exist,

E{t (X1)} ≤ E{t (X2)} (17)

and the inequality is strict if t is increasing and (16) is strict for some x .

A further specialized case occurs when t (x) = x2n−1 in (17), for n = 1, 2, . . .,
which corresponds to the set of odd moments. Therefore, (17) extends one of the
results of Umbach (2006) stating that

E
{

X2n−1
0

} ≤ E
{

X2n−1
1

} ≤ E
{

X2n−1∗
}

where X0 has density f0 and X∗ has density 2 f0 on the positive axis, which corre-
sponds to G(x) = I[0,∞)(x) in (8), and the density of X1 corresponds to a G1 which
is a distribution function.

It can be noted that, if G2 ≥G R G1 ≥G R G+ ≡ 1
2 , then the variances of the cor-

responding variables Xk decrease with respect to ≥G R , so that var{X2} ≤ var{X1} ≤
var{X0}; the reverse holds if G+ ≥G R G1 ≥G R G2.

A simple but popular setting to which Proposition 5 applies is when w(x) = αx ,
for some real α, leading to the following immediate implication.

Proposition 6 If f0 and G0 are as in Lemma 1, then the set of densities

f (x;α) = 2 f0(x) G0(αx) (18)

indexed by the real parameter α are associated with distribution functions which are
stochastically ordered with α.

Note that, when α in (18) is positive, it has a direct interpretation as an inverse scale
parameter for G0, but it acts as a shape parameter for f (x).

Another case of interest is given by

w(x) = αx

√
ν + 1

ν + x2 ,

which occurs in connection with the skew Student’s t distribution with ν degrees
of freedom, studied by Azzalini and Capitanio (2003) and others, where f0 and G0
are of Student’s t type with ν and ν + 1 degrees of freedom, respectively. Because
of Proposition 5, the distribution functions associated with (2) with this choice of
w(x) are stochastically ordered with respect to α, whether f0 and G0 correspond to a
Student’s t distribution or not.
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3.2 On the uniqueness of the mode

To examine the problem of the uniqueness of the mode of f when d = 1, it is equivalent
and more convenient to study log f . If f ′

0(x) and g(x) = G ′(x) exist, then

h(x) = d

dx
log f (x)

= f ′
0(x)

f0(x)
+ g(x)

G(x)

= −h0(x) + hg(x), say.

The modes of f are a subset of the solutions of the equation

h0(x) = hg(x), (19)

or they are on the extremes of the support. Since at least one mode always exists, we
look for conditions which rule out the existence of other modes.

For the rest of this subsection, we assume that G(x) is a strictly monotone function
satisfying (7). Without loss of generality, we deal with the case that G is monotonically
increasing; for decreasing functions, dual conclusions hold.

In the most common cases, f0 is unimodal at 0, and hence non-decreasing for
x ≤ 0. Therefore, product f0(x) G(x) is increasing, and no negative mode can exist.
The same conclusion holds if f0 is increasing and G(x) is non-decreasing for x ≤ 0.

To ensure that there is at most one positive mode, some additional conditions are
required. For simplicity of argument, we assume that f0 and G have continuous deriv-
atives everywhere on support S0 of f0; this means that we are concerned with the
uniqueness of the solution of (19). A sufficient set of conditions for this uniqueness
is that h0(x) is increasing and g(x) is decreasing. These requirements imply that
hg(0) > 0 and hg is decreasing, so that 0 = h0(0) < hg(0) and the two functions can
cross at most once for x > 0. When S0 is unbounded, a solution of (19) always exists,
since g → 0 and hg → 0 as x → ∞. If S0 is bounded, (19) may have no solution; in
this case, f (x) is increasing for all x and its mode occurs at the supremum of S0. We
summarize this discussion in the following statement.

Proposition 7 If G(x) in (8) is a increasing function and f0(x) is unimodal at 0,
then no negative mode exists. If we assume that f0 and G have continuous derivatives
everywhere on support f0, G(x) is concave for x > 0 and f0(x) is log-concave, where
at least one of these properties holds in a strict sense, then there is a unique positive
mode of f (x). If G(x) is decreasing, similar statements hold, with reversed sign of the
mode; the uniqueness of the negative mode requires that G(x) is convex for x < 0.

It should be recalled that the property of log-concavity of a univariate density func-
tion is equivalent to strong unimodality; see for instance Section 1.4 of Dharmadhikari
and Joag-dev (1988).

To check the above conditions in specific instances, it is convenient to work with
functions h0 and g′, if the latter exists. In the case of increasing w(x), the uniqueness
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Table 1 Some commonly used densities f0 and associated components

Distribution f0(x) h0(x) h′
0(x)

Standard normal φ(x) x 1

Logistic
ex

(1 + ex )2
ex − 1

ex + 1

2 ex

(ex + 1)2

Subbotin cν exp

(
−|x |ν

ν

)
sgn(x) |x |ν−1 sgn(x) (ν − 1)|x |ν−2

Student’s tν cν

(
1 + x2

ν

)− ν+1
2 ν + 1

ν

x

1 + x2/ν

(ν + 1)(ν − x2)

(ν + x2)2

of the mode is ensured if g′(x) < 0 for x > 0 and h0(x) is an increasing positive
function. In the linear case w(x) = α x , the log-concavity of f0(x) and unimodality
of g0(x) at 0 suffice to ensure the unimodality of f (x).

Table 1 lists some of the more commonly employed density functions f0 and their
associated functions h0 and h′

0. For the first two distributions of Table 1, and for Sub-
botin’s distribution when ν > 1, h0 is increasing. If we combine one of these three
choices of f0 with the distribution function of a symmetric density having a unique
mode at 0, then the uniqueness of the mode of f (x) follows. Clearly, the condition
of unimodality of g(x) holds if g0 is unimodal at 0 and w(x) = αx . The criterion of
Proposition 7 does not apply for Student’s distribution, since h0(x) is increasing only
in the interval (−√

ν,
√

ν). Hence, a second intersection with hg cannot be ruled out,
even if g(x) is decreasing for all x > 0. However, for skew-t distribution, unimo-
dality was established in the multivariate case by Capitanio (2008) and Jamalizadeh
and Balakrishnan (2010), and it also follows as a corollary of a stronger result to be
presented in Sect. 4.

The requirement of the differentiability of f0 and G in Proposition 7 rules out
a limited number of practically relevant cases. This is why we did not dwell on a
specific discussion of less regular cases. One of the very few relevant distributions
which are excluded occurs when f0 is the Laplace density function. However, this
case is included in the discussion of multivariate Subbotin distribution, developed in
Sect. 4.3, when ν = 1 and d = 1.

Although Proposition 7 only gives a set of sufficient conditions for unimodality,
the condition that g(x) is decreasing for x > 0 cannot be avoided completely. In
other words, when f is represented in the form of (2), the sole condition of increasing
w(x) is not sufficient for unimodality. This fact is demonstrated by the simple case
with f0 = φ, G0 = �,w(x) = x3, key features of which are shown in Fig. 2. Since
w′(0) = 0, then g(0) = 0; hence (19) has a solution in 0, but the left panel of Fig. 2
shows that there are two more intersections of h0 and hg for x > 0, one correspond-
ing to an anti-mode and one to a second mode of f (x), as shown in the right-hand
panel.

This case falls under the setting examined by Ma and Genton (2004), who showed
that, for f0 = φ, G0 = �,w(x) = α x + β x3, there are at most two modes. Some
additional conditions may ensure unimodality: one such set of conditions is α, β > 0
and α3 > 6β. To prove that they imply the unimodality of f , consider
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Fig. 2 Case with f0 = φ, G0 = �, w(x) = x3. Left functions h0 (continuous line), g (dashed line),
hg (dot-dashed line); right function f (x)

d2 log �(w(x))

dx2 = − φ(w(x))

�(w(x))2

×
{
�(w(x))[(βx3 + αx)(3βx2 + α)2 − 6β x]
+φ(w(x))(3βx2 + α)2

}
,

whose terms in curly brackets, except −6β x , are all positive for x ≥ 0. Since α3 > 6β,
then (α3 − 6β)x is positive, so that this derivative is negative and G0(w(x)) is log-
concave for x ≥ 0. For x < 0, we use this other argument: since G0 is increasing
and log-concave and w(x) is concave in subset x < 0, composition G0(w(x)) is log-
concave in the subset x < 0; see Proposition 8 (iii) below. Since the above second
derivative is continuous everywhere, G0(w(x)) is log-concave everywhere.

4 Quasi-concave and unimodal densities in d dimensions

A real-valued function f defined on subset S of R
d is said to be quasi-concave if the

sets of the form Cu = {x : f (x) ≥ u} are convex for all positive u. When d = 1,
quasi-concavity coincides with the uniqueness of the maximum, provided a pole is
regarded as a maximum point, but for d > 1 the two concepts separate. This motivates
the following digression about concavity and related concepts, to develop some tools
which will be used later on for our main target.

4.1 Concavity, quasi-concavity and unimodality

Let us first recall some standard concepts available, for instance, in Chapter 16 of
Marshall and Olkin (1979). A real function f defined on a convex subset S of R

d is
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said to be concave if, for every x and y ∈ S and θ ∈ (0, 1), we have

f (θx + (1 − θ)y) ≥ θ f (x) + (1 − θ) f (y);

in this case, − f is a convex function. A function f is said to be log-concave if log f
is concave; that is, for every x and y ∈ S and θ ∈ (0, 1) we have

f (θx + (1 − θ)y) ≥ f (x)θ f (y)1−θ .

The terms ‘strictly concave’ and ‘strictly log-concave’ apply if the above inequalities
hold in a strict sense for all x �= y and all θ .

Concave and log-concave functions defined on an open set are continuous. A twice
differentiable function is also concave (strictly concave) if and only if its Hessian
matrix is negative semi-definite (negative definite) everywhere on S.

The next proposition provides the concave and log-concave extension of classical
composition properties for convex functions like that of statement (i) which can be
found, for example, in Marshall and Olkin (1979, p. 451) together with its proof. The
proofs of the other statements are very similar.

Proposition 8 Let h be a real function defined on a convex set S, a subset of R
d ,

and H a monotone real function defined on a convex subset of R, so that composition
H(h) is defined on S. Then the following properties hold.

(i) If h is convex and H non-decreasing and convex, then H(h) is convex. In addi-
tion, H(h) is strictly convex if H is strictly convex, or if h is strictly convex and
H strictly monotone.

(ii) If h is convex and H non-increasing and log-concave, then H(h) is log-con-
cave. Also, H(h) is strictly log-concave if H is strictly log-concave, or if h is
strictly convex and H strictly monotone. The same statements hold if the term
log-concave is replaced by concave throughout.

(iii) If h is concave and H non-decreasing and log-concave, then H(h) is log-con-
cave. Also, H(h) is strictly log-concave if H is strictly log-concave, or if h is
strictly concave and H strictly monotone. The same statements hold if the term
log-concave is replaced by concave throughout.

We defined quasi-concavity by requiring convexity of all sets Cu . An equivalent
condition is that, for every x and y ∈ S ⊆ R

d and θ ∈ (0, 1), we have

f (θx + (1 − θ)y) ≥ min{ f (x), f (y)}.

Obviously, a function which is concave or log-concave is also quasi-concave. Simi-
larly, both strict concavity and strict log-concavity imply strict quasi-concavity.

We now apply the above concepts to the case in which f represents a probability
density function on a set S ⊆ R

d . The concept of unimodality has a friendly formal
definition in the univariate case, given for instance by Dharmadhikari and Joag-dev
(1988, p. 2), but this has no direct equivalent in the multivariate case. Informally, we
say that the term ‘mode of a density’ refers to a point at which the density takes a

123



Some properties of skew-symmetric distributions 871

maximum value, either globally or locally. While a boring formal definition which
allows for the non-uniqueness of the density function could be given, it is not really
necessary for the main aims of the present paper, since the density functions with
which we are concerned are so regular that their modes are either points of (local)
maxima or poles.

The set of the modes of a quasi-concave density is a convex set. Also, if f is strictly
quasi-concave, then the mode is unique. When this is so, we say that density f is uni-
modal, and that f is c-unimodal if the set of its modes is a convex set. If X is a random
variable with density function f which is unimodal, we say that X is unimodal, with
a slightly extended terminology. The same convention is adopted for log-concavity,
quasi-concavity and other properties.

Another important concept is s-concavity, which helps to make the concept of
quasi-concavity more tractable. A systematic discussion of s-concavity is given in
Dharmadhikari and Joag-dev (1988); see specifically their Section 3.3, of which we
now recall the main points. Given a real number s �= 0, a density is said to be s-concave
on S if

f (θx + (1 − θ)y) ≥ {θ f (x)s + (1 − θ) f (y)s}1/s,

for all x, y ∈ S and all θ ∈ (0, 1).
Clearly, concavity corresponds to s = 1. A density f is s-concave with s < 0 if

and only if f s is convex; similarly, a density f is s-concave with s > 0 if and only
if f s is concave. If a function which is quasi-concave is said to be (−∞)-concave,
and a function which is log-concave is said to be 0-concave, then the class of sets of
s-concave functions increases as s decreases; in other words, if f is s-concave, then it
is r -concave for any r < s. Last, note that it is easy to adapt Proposition 8 to s-concave
functions.

Closure with respect to marginalization of s-concave densities depends on the value
of s and on the dimensions of the spaces, as indicated by the next proposition.

Proposition 9 Let f be an s-concave density on a convex set S in R
d+m, and fd

the marginal density of f on a d-dimensional subspace. If s ≥ −1/m, then fd is
sm-concave on the projection of the support of f , where sm = s/(1 + ms), with the
convention that, if s = −1/m, then sm = −∞. In addition, the marginal densities
are strictly sm-concave provided f is strictly s-concave or the set S is strictly convex.

The first statement is essentially Theorem 3.21 of Dharmadhikari and Joag-dev
(1988); the second statement follows by applying their argument for proving the first
part also to the new context. Note that the above result includes the fact that the class
of log-concave densities is closed with respect to marginalization.

4.2 Skew-elliptical distributions generated by conditioning

A d-dimensional random variable U is said to have elliptical density, with density
generator function f̃ , if its density fU is of the form

fU (y) = kd,� f̃ (y
�−1 y), (20)
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where � is a d-dimensional positive definite matrix, function f̃ : (0,+∞) → R
+

is such that xd/2−1 f̃ (x) has a finite integral on (0,+∞), and kd,� is a suitable con-
stant which depends on d and on � only via det(�). In this case, we use the notation
U ∼ Ed(0,�, f̃ ).

Note that an elliptical density f is c-unimodal if and only if its density generator
is non-increasing, and it is unimodal if and only if its density generator is decreasing.
Then it turns out that f is c-unimodal if and only if it is quasi-concave, and unimodal
if and only if it is strictly quasi-concave.

An initial formulation of skew-elliptical distribution was examined by Azzalini
and Capitanio (1999) and was of type (2) with f0 of elliptical class and w(x) linear.
Another formulation of skew-elliptical distribution was put forward by Branco and
Dey (2001), the key points of which are now recalled. Consider a (d +1)-dimensional
random variable

U =
(

U0
U1

)
∼ Ed+1(0,�+, f̃ ), where �+ =

(
1 δ

δ �

)
> 0, (21)

and U0 and U1 have dimensions 1 and d, respectively. For our aims, there is no loss
of generality in assuming that the diagonal elements of �+ are all 1. Then a random
variable Z = (U1|U0 > 0) is said to have a skew-elliptical distribution, and its density
function at u1 ∈ R

d is

fZ (u1) = 2
∫ +∞

0
kd+1,�+ f̃ (u
�−1+ u) du0 (22)

where u
 = (u0, u

1 ). This construction arises as an extension of one of the mecha-

nisms for generating skew-normal distribution to the case of elliptical densities, but
study of connections with other densities of type (2) was not one of the aims of Branco
and Dey (2001).

Consequently, one question examined by Azzalini and Capitanio (2003) was
whether all distributions of type (22) are of type (2), with the requirement that f0
is the density of an elliptical d-dimensional distribution. The conjecture was proven
for a set of important cases, notably multivariate skew-normal and skew-t distribu-
tions, among others, but a general statement could not be reached. However, this
general conclusion is quite simple to reach with representation (8), and recalling that
Branco and Dey (2001) proved that (22) amy be written as

fZ (y) = 2 f0(y) Fy(α

 y), (y ∈ R

d), (23)

where f0 is the density of an elliptical d-dimensional distribution, and Fy is a cumu-
lative distribution function of a symmetric univariate distribution, which depends on
y only through y
�−1 y. Since Fy = F−y , it is immediate that G(y) = Fy(α


 y)

satisfies (7). Hence, (23) allows a representation of type (8) and, via (9), also of type
(2).

Proposition 10 Assume that random variable U in (21) is c-unimodal. If f̃ is log-
concave, then the elliptical densities of U and U1 and the skew-elliptical density of Z
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are log-concave. They are also strictly log-concave if U is unimodal or f̃ is strictly
log-concave, or the support of f̃ is bounded.

Proof Function h(u) = u
�−1+ u is strictly convex. Since U is c-unimodal, f̃ is
non-increasing. It is also log-concave; therefore, f̃ (u
�−1+ u) is log-concave accord-
ingly to Proposition 8 (ii). Both U and (U |U0 > 0), therefore, have log-concave
densities. Since the marginals of a log-concave density are log-concave, the log-con-
cavity of U1 and Z holds from (22). Now, if U is unimodal, f̃ is decreasing and
f̃ (u
�−1+ u) is strictly log-concave from Proposition 8 (i). If f̃ is strictly log-con-
cave, then f̃ (u
�−1+ u) is strictly log-concave. Last, if the support of f̃ is bounded,
then the support of U is strictly convex and, from Proposition 8 (i), also in this case
f̃ (u
�−1+ u) is strictly log-concave. So, in all three cases, the strict log-concavity of
U1 and Z holds, accordingly to the final part of Proposition 9. ��

Proposition 10 is a special case of the more general result which follows, but we
keep it separate both because of the special role of log-concavity and because this
arrangement allows more compact exposition of the combined discussion.

Proposition 11 Assume that the random variable U in (21) is c-unimodal. If f̃ is
s-concave, with s ≥ −1, then U has s-concave density, whereas the elliptical density
of U1 and the skew-elliptical density of Z are s1-concave, with s1 = s/(1 + s). All
conclusions also hold strictly if U is unimodal or f̃ is strictly s-concave, or if the
support of f̃ is bounded.

Proof Function h(u) = u
�−1+ u is strictly convex. Since U is c-unimodal, f̃ is
non-increasing and also s-concave. We now examine the properties of concavity sep-
arating cases s < 0 and s > 0; the case s = 0, which corresponds to log-concavity,
has already been handled in Proposition 10. If s < 0, then f̃ s is non-decreasing
and convex. So f̃ s(u
�−1+ u) = { f̃ (u
�−1+ u)}s is convex from Proposition 8 (i) and
f̃ (u
�−1+ u) is s-concave. Instead, if s > 0 then f̃ s is non-increasing and concave. So
f̃ s(u
�−1+ u) = { f̃ (u
�−1+ u)}s is concave from Proposition 8 (ii) and f̃ (u
�−1+ u)

is s-concave. This means that both U and (U |U0 > 0) have s-concave densities.
Now, the claim about the densities of U1 and Z follows from Proposition 9 according
to (22). The final statement follows the same type of argument used in the proof of
Proposition 10. ��

Note that, in the special case of a concave density generator, the support is bounded,
and both the marginal density on R

d and the skew-symmetric density of Z are not nec-
essarily concave. However, using Proposition 11 with s = 1, the strict (1/2)-concavity
of their densities follows, and this fact implies strictly log-concavity.

The results of Propositions 10 and 11 allow us to handle several classes of distri-
butions, of which we now describe the more noteworthy cases.

An important specific instance is the multivariate skew-normal density which may
be represented by a conditioning method. For an expression of multivariate skew-nor-
mal density, see, for instance, (16) of Azzalini (2005). Since the density generator of
the normal family, f̃ (x) = exp(−x/2), is decreasing and log-concave, from Prop-
osition 10 we obtain the log-concavity of the skew-normal family. However, this
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conclusion is a special case of a more general result on log-concavity of the SUN
distribution obtained by Jamalizadeh and Balakrishnan (2010); see their Theorem 1.

The (d + 1)-dimensional Pearson type II distributions for which f̃ (x) = (1 − x)ν ,
where x ∈ (0, 1) and ν ≥ 0, satisfies the conditions of Proposition 11, being non-
increasing and ν−1-concave on a bounded support. So the skew-elliptical d-dimen-
sional density is strictly (ν + 1)−1-concave and therefore strictly log-concave. The
density function of the skew-type II density function is given by (22) of Azzalini and
Capitanio (2003).

Proposition 11 also holds for Pearson type VII distributions and in particular for
the Student’s distribution. In this case, the density generator is given by

f̃ (x) = (1 + x/ν)−M (ν > 0, (d + 1)/2 < M). (24)

and M = (d + ν + 1)/2 for Student’s density. This generator is decreasing and s-con-
cave with s = −1/M ; f̃ (x)−1/M is in fact convex. Since s ≥ −1, then Proposition 11
applies and the skew-t is s1-concave with s1 = −1/(M −1) and s1 = −2/(d +ν −1)

in Student’s case. These densities are not log-concave, but they are still strictly quasi-
concave. Hence, unimodality follows. For expressions of multivariate skew-type VII
and skew-t density, see (21) and (26) of Azzalini and Capitanio (2003), respectively.

The above results establish not only the unimodality of the more appealing subset
of the skew-elliptical family of distributions, i. e. those of type (22), but also the much
stronger conclusion of quasi-concavity of these densities. It is intrinsic to the nature of
skew-elliptical densities that their highest density regions are not of elliptical shape,
but it is reassuring that they maintain qualitatively similar behaviour, in the sense
that the convexity of these regions, Cu in our notation, holds as long as the parent
(d + 1)-dimensional elliptical density enjoys a qualitatively similar property but in a
somewhat stronger variant, i. e. s-concavity with s ≥ −1.

Note that there is no hope of extending Proposition 10 to quasi-concave densi-
ties, since a skew-symmetric generated by conditioning a quasi-concave density is not
necessarily quasi-concave, as demonstrated by the following construction.

Example Consider U = (U0, U1)

 ∼ E2(0,�+, f̃ ), where

f̃ = I(0,1) + I(0,42) and �+ =
(

1 1/2
1/2 1

)
,

so that its density function is

fU (x, y) = k{IS1(x, y) + IS4(x, y)}

where S j = {(x, y) ∈ R
2 : x2 + y2 − xy ≤ 3 j2/4}, j = 1, 4, and k is the normalizing

constant given by k = 1/(A1 + A4) ≈ 0.0216 where A j = π
√

3 j2/2. Then both U0,
and U1 have common support [−4, 4] and density functions

fU0(x) = fU1(x) = k
(√

3(1 − x2) I(−1,1)(x) +
√

3(16 − x2)
)

.
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Fig. 3 Density function fZ (x), exhibiting lack of quasi-concavity, obtained by conditioning of a bivariate
elliptical quasi-concave distribution

Because of (20) and (22), the density of Z = (U1|U0 > 0) is given by

fZ (y) = k{ f1(y) + f4(y)}

where

f j (y) = 2
∫ +∞

0
IS j (x, y) dx =

⎧⎨
⎩

y + √
3( j2 − y2) i f − √

3 j/2≤ y ≤√
3 j/2,

2
√

3( j2 − y2) i f
√

3 j/2 ≤ y ≤ j,
0 otherwise,

for j = 1, 4, and it is shown in Fig. 3. The global maximum of fZ occurs when
k(2y + √

3(16 − y2) + √
3(1 − x2)) takes its maximum value, that is, at y ≈ 0.699.

When y > 1, fZ = k f4, and there is another local maximum at y = 2. Therefore, fZ

is not unimodal.
To conclude, although the density of U is quasi-concave, the skew-elliptical variable

Z generated by conditioning is not.

4.3 Log-concavity of other families of distributions

There are several other families of distributions which belong to the area of inter-
est of the stream of literature described at the beginning of this paper, but they are
not included in the conditioning mechanism of elliptical distributions considered in
Sect. 4.2. This section deals with the log-concavity of some of these other families,
making use of the following immediate implication of Proposition 8.
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Corollary 1 If q0 is a log-concave function defined on a convex set S ⊆ R
d , and H

and h are as in Proposition 8, either (i i) or (i i i), then

q(x) = q0(x) H{h(x)}, (x ∈ S), (25)

is log-concave on S.

Example The density function on the real line introduced by Subbotin (1923) has
been variously denoted by subsequent authors as exponential power distribution, gen-
eralized error distribution and normal distribution of order ν. Its multivariate version
is

fν(x) = cν det(C)1/2 exp

(
− (x
Cx)ν/2

ν

)
, (x ∈ R

d),

where C is a symmetric positive definite matrix, ν a positive parameter and cν a
normalization constant. For ν = 2 and ν = 1, fν lends the multivariate normal and
multivariate Laplace densities, respectively.

We first need to show that fν is log-concave if ν ≥ 1. Consider h(x) = (x
Cx)1/2,
the Hessian matrix of which is

∂2 h(x)

∂x ∂x
 = h(x)−3
(

x
CxC − Cxx
C
)

= h(x)−3 M, say.

To show that this matrix is positive semi-definite, it is sufficient to prove this fact for
matrix M , since h(x) ≥ 0. For any u ∈ R

d , write

u
Mu = (x
Cx)(u
Cu) − (u
Cx)(x
Cu) = ‖ũ‖2 ‖x̃‖2 − (ũ
 x̃)2

where ũ = C1/2u and x̃ = C1/2x for any square root C1/2 of C and, from the
Cauchy–Schwarz inequality, we conclude that u
Mu ≥ 0. Then h is convex. Next,
write

− log fν(x) = constant + h(x)ν/ν

and observe that, since tν is strictly convex for t ≥ 0, − log fν is convex for ν ≥ 1 and
strictly convex for ν > 1 from Proposition 8 (i). Hence fν is log-concave for ν ≥ 1
and strictly log-concave for ν > 1.

We now introduce a skewed version of fν of type (2). If we aim at obtaining a den-
sity which fulfils the requirements of both Lemma 1 and Corollary 1, then H = G0
is non-decreasing, while function h = w must be odd and concave; hence, it must be
linear. We then focus on the density function

f (x) = 2 fν(x) G0(α

x), (x ∈ R

d), (26)

where G0 is a distribution function on R, symmetric around 0.
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Among the many options for G0, a natural choice is to make G0 equal to the
distribution function of fν in the scalar case, which is

G0(t) = 1

2

(
1 + sgn(t)

γ (|t |ν/ν, 1/ν)


(1/ν)

)
, t ∈ R,

where γ denotes the lower incomplete gamma function. This choice of G0 was exam-
ined by Azzalini (1986) in the case of d = 1 of (26). That author showed that G0 is
strictly log-concave if ν > 1, leading to the log-concavity of (26) when d = 1. The
case of ν = 1 which corresponds to the Laplace distribution function is easily handled
by direct computation of the second derivative to show the strict log-concavity of G0.
Now, combining strict log-concavity of G0 with log-concavity of fν , proven above,
an application of Corollary 1 shows that (26) is strictly log-concave on R

d , if ν ≥ 1.
Although (26) is of skew-elliptical type, it does not appear to be of the type gen-

erated by the conditioning mechanism of the (d + 1)-dimensional elliptical variate
considered in Sect. 4.2. In fact, the results of Kano (1994) show that the set of den-
sities fν is not closed under marginalization, and this also affects the conditioning
mechanism (22).

As an example of non-elliptical distribution, we can consider a d-fold product of
Subbotin’s univariate densities, which is

f ∗
ν (x) =

d∏
j=1

cν exp(−|x j |ν/ν), x = (x1, . . . , xd) ∈ R
d ,

and this density can be used as a replacement of fν in (26). Since each factor of this
product is log-concave, if ν ≥ 1, the same property holds for f ∗

ν . Strict log-concavity
also holds for 2 f ∗

ν (x)G0(α

x), if again we assume the strict log-concavity of G0.

Example To illustrate the applicability of Corollary 1 to distributions outside the set of
type (2), consider the so-called extended skew-normal density which, in the d-dimen-
sional case, takes the form

f (x) = φd(x;�)
�(α0 + α
 x)

�(τ)
, (x ∈ R

d), (27)

where τ ∈ R and α0 = τ(α
�α)1/2. Although this distribution does not quite fall
under the umbrella of Lemma 1 unless τ = 0, its constructive argument is closely
related.

To show the log-concavity of (27), first recall the well-known fact that φd(x;�) is
strictly log-concave. Next, note that � is log-concave, as it follows by direct calculation
of the second derivative of log �, if we take into account the fact that −y �(y) < φ(y)

for every y ≤ 0. In addition, as � is strictly increasing and α0 + α
 x is concave in
a non-strict sense, Corollary 1 applies, allowing us to conclude that (27) is strictly
log-concave.
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Although this conclusion is a special case of the result of Jamalizadeh and Balakr-
ishnan (2010) concerning the log-concavity of the SUN distribution, it was presented
here because the above argument is different. The log-concavity of other related sub-
classes of distributions is reported by Gupta and Balakrishnan (2010).
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