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Abstract We consider the estimation of coefficients of a structural equation with
many instrumental variables in a simultaneous equation system. It is mathematically
equivalent to the estimating equations estimation or a reduced rank regression in the
statistical multivariate linear models when the number of restrictions or the dimension
of estimating equations increases with the sample size. As a semi-parametric method,
we propose a class of modifications of the limited information maximum likelihood
(LIML) estimator to improve its asymptotic properties as well as the small sample
properties for many instruments and persistent heteroscedasticity. We show that an
asymptotically optimal modification of the LIML estimator, which is called AOM-
LIML, improves the LIML estimator and other estimation methods. We give a set of
sufficient conditions for an asymptotic optimality when the number of instruments or
the dimension of the estimating equations is large with persistent heteroscedasticity
including a case of many weak instruments.

Keywords Estimation of structural equation · Estimating equation estimation ·
Reduced rank regression · Many instruments · Persistent heteroscedasticity ·
AOM-LIML · Asymptotic optimality

1 Introduction

In recent analysis of micro-econometric data, many explanatory or instrumental vari-
ables are sometimes used in estimating an important structural equation. Then there
have been increasing interest and research on the statistical inference problem of
a structural equation in a system of simultaneous equations when the number of
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instruments (the number of exogenous variables excluded from the structural equa-
tion), say K2, is large relative to the sample size, say n. Asymptotic distributions of
estimators and test criteria have been investigated on the basis when both K2 → ∞
and n → ∞. These asymptotic distributions are used as approximations to the distri-
butions of the estimators and criteria when K2 and n are large. The early studies on the
case of many instruments, which we call the large-K2 asymptotic theory or the many
instruments asymptotics, are Kunitomo (1980, 1981, 1982, 1987), Morimune (1983)
and Bekker (1994). Several semi-parametric estimation methods have been developed
including the estimating equation method [or the generalized method of moments
(GMM) in econometrics] and the maximum empirical likelihood (MEL) method (see
Hayashi 2000; Qin and Lawless 1994; Owen 2001). However, it has been recently
recognized in econometrics that the classical limited information maximum likeli-
hood (LIML) estimation, originally developed by Anderson and Rubin (1949, 1950),
has some advantage with many instruments in micro-econometric applications. There
has been a growing literature in econometrics on the problem of many instruments
including Chao and Swanson (2005), Hansen et al. (2008), Anderson et al. (2005,
2008, 2010) and their references. This problem is mathematically equivalent to an
estimating equation estimation or a reduced rank regression with the statistical linear
models when the number of restrictions or the dimension of explanatory variables
increases with the sample size.

For sufficiently large sample sizes, the LIML estimator and the two-stage least
squares (TSLS) estimator have approximately the same distribution in the standard
large-sample asymptotic theory, but their exact distributions can be quite different for
the sample size occurring in practice with many instruments. Anderson et al. (2005,
2010) have shown that the LIML estimator has an asymptotic optimal property when
K2 and n are large under a set of conditions. On the other hand, the Jackknife Instru-
mental Variables Estimation (JIVE) method has been proposed and its properties have
been investigated. (See for instance Angrist et al. 1999; Chao and Swanson 2004)
Also, Hausman et al. (2007) proposed the jackknife version of the LIML estimator
(called HLIM or JLIML) and the Fuller modification. They suggested that the HLIM
estimator improves the bias property of the LIML estimator in case of the persistent
heteroscedasticity, which we shall define precisely in Sect. 3.1.

The main purpose of this paper is to propose an asymptotically optimal modifica-
tion of the LIML estimator, which we shall call AOM-LIML as an abbreviation. Our
motivation is to remove the main cause of possible bias of the LIML estimation when
we have the persistent heteroscedasticity and many instruments, while we want to keep
the information contained in observations in the form of sufficient statistics in the clas-
sical case when the number of instruments is fixed. As we shall explain in Sect. 3.2, the
possible information loss caused by our modification can be asymptotically negligi-
ble in the first-order asymptotic sense. We shall show that the AOM-LIML estimator
improves some properties of the LIML estimator. The AOM-LIML estimator has
good asymptotic properties and it attains the lower bound of the asymptotic variance
in a class of estimators when the disturbances are heteroscedastic and there are many
instruments or many weak instruments under a set of assumptions as we shall state in
Sect. 3. When the number of instruments grows with the sample size, we have inci-
dental parameters and we cannot apply the standard arguments on the semi-parametric
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asymptotic optimality. The GMM estimator, which is semi-parametrically efficient in
the standard asymptotic theory, is badly biased when there are many instruments, for
example. (See Kunitomo and Matsushita (2009); Anderson et al. 2008.) In this paper,
we also relate the AOM-LIML estimator to other estimation methods known and show
that the HLIM estimator is asymptotically equivalent to the AOM-LIML estimator in
the large-K2 asymptotic theory. Hence both the AOM-LIML estimator and the HLIM
estimator dominate many non-LIML type estimators, but they cannot be improved
asymptotically in the class of estimators including the Jackknife Instrumental Vari-
ables Estimators. The results of this paper show new light on the asymptotic efficiency
when there are many incidental parameters (i.e. the number of instruments is large)
and the disturbances have persistent heteroscedasticity.

In Sect. 2, we state the structural equation model and the alternative estimation
methods of unknown parameters in simultaneous equation models with possibly many
instruments. Then in Sect. 3, we develop a new way of improving the LIML estima-
tion and discuss a set of sufficient conditions for the asymptotic normality and the
asymptotic lower bound when the number of instruments is large with the persistent
heteroscedasticity. We shall give a small number of numerical evidence on the finite
sample properties of the LIML, the AOM-LIML and the HLIM estimators. For an
illustration of our results in Sect. 3.3, we shall give some figures in Appendix. Finally,
some concluding remarks will be given in Sect. 4. The proof of our theorems will be
gathered in Sect. 5.

2 Alternative estimation methods of a structural equation with many
instruments

Let a single linear structural equation be

y1i = β ′
2 y2i + γ ′

1z1i + ui (i = 1, . . . , n), (1)

where y1i and y2i are a scalar and a vector of G2 endogenous variables, respectively,
z1i is a vector of K1 (included) exogenous variables, γ 1 and β2 are K1 ×1 and G2 ×1
vectors of unknown parameters (K1 and G2 are fixed integers), ui are mutually inde-
pendent disturbance terms with E(ui |z(n)

i ) = 0 and E(u2
i |z(n)

i ) = σ 2
i , and the Kn × 1

vectors z(n)
i (i = 1, . . . , n) are the instrumental variables. We assume that (1) is the

structural equation in a system of 1 + G2 endogenous variables y′
i = (y1i , y′

2i )
′ and

Y = (y(n)
1 , Y(n)

2 ) is an n × (1 + G2) vector of observations with y(n)
1 = (y1i ) and

Y(n)
2 = (y′

2i ).

In this paper, we shall consider the cases when (i) (y′
i , z(n)′

i ) are a sequence of
mutually independent random variables or (ii) y′

i are mutually independent random

variables and z(n)′
i are a sequence of non-random vectors, while ui are conditionally

heteroscedastic (independent) disturbances.
As a typical situation we have

Y(n)
2 = �

(z)
2n + V(n)

2 , (2)
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where �
(z)
2n = (π ′

2i (z
(n)
i )) is an n × G2 matrix, each row π ′

2i (z
(n)
i ) depends on Kn × 1

vector z(n)
i , V(n)

2 is an n × G2 matrix, v(n)
1 = u + V(n)

2 β2 and V = (v(n)
1 , V(n)

2 ). Here
V = (v′

i ) is an n × (1 + G2) matrix of disturbances (the i th row v′
i is a 1 × (1 + G2)

vector) with E(vi |z(n)
i ) = 0 and

E(vi v′
i |z(n)

i ) = �i =
[

ω11.i ω′
2.i

ω2.i �22.i

]
.

We further assume that the conditional covariance matrix �i and the conditional var-
iance σ 2

i = E(u2
i |z(n)

i ) are bounded.
The formulation of (1) and (2) includes the statistical linear models as special cases.

We write

Y = Z�n + V, (3)

�n is a Kn × (1 + G2) matrix of coefficients and the n × Kn matrix Z = (Z1, Z2n) =
(z(n)′

i ) (the i th row z(n)′
i = (z′

1i , z(n)′
2i ) is the vector of Kn (= K1 + K2n) instruments).

The K2n × 1 (K2n = Kn − K1) vector z(n)
2i is the set of instruments excluded from

(1), but they are included in (2).
When γ 1 = 0 and β2 in (1) is uniquely identified (Kn ≥ G2), the rank of �n in (3)

is G2 and it corresponds to a reduced rank regression model. See Anderson (1984) for
the classical arguments on the relations among statistical models with different names
including the linear functional relationships, the simultaneous equations models, the
errors-in-variables models and factor models.

Since we assume that the vector of Kn (Kn = K1 + K2n) instruments z(n)
i satisfies

the orthogonal condition

E[ui z(n)
i ] = 0 (i = 1, . . . , n), (4)

the model of (1) and (2) is the same as an estimation equation problem well known
in statistics literature, but it may be important to mention that we shall mainly investi-
gate the situation when the number of orthogonal conditions (Kn) increases with the
sample size n. This situation has been called the case of many instruments in recent
econometrics. The relation between (1) and (2) [or (3)] gives ui = (1,−β ′

2)vi and

σ 2
i = (1,−β ′

2)�i

(
1

−β2

)
= β ′�iβ,

where β ′ = (1,−β ′
2). Since we are interested in the analysis of a large number of

cross-section micro-data as typical applications, we impose the condition

1

n

n∑
i=1

�i
p−→ � (5)

and � is a positive definite (constant) matrix. Then
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1

n

n∑
i=1

σ 2
i

p−→ σ 2 = β ′�β > 0. (6)

Define the (1 + G2) × (1 + G2) matrices by

G = Y′Z2.1A−1
22.1Z′

2.1Y, (7)

and

H = Y′(In − Z(Z′Z)−1Z′)Y, (8)

where Z2.1 = Z2n − Z1A−1
11 A12, A22.1 = Z′

2.1Z2.1 and

A =
(

Z′
1

Z′
2n

)
(Z1, Z2n) =

(
A11 A12
A21 A22

)

is a non-singular matrix (a.s.). Then the LIML estimator β̂LI (= (1,−β̂
′
2.LI)

′) of
β = (1,−β ′

2)
′ is the solution of

(
1

n
G − 1

qn
λnH

)
β̂LI = 0, (9)

where qn = n − Kn (qn > G2 + 1) and λn is the smallest root of

∣∣∣∣1

n
G − l

1

qn
H

∣∣∣∣ = 0. (10)

The solution to (9) and (10) gives the minimum of the variance ratio

Rn

= [∑n
i=1 z(n)′

i (y1i − γ ′
1z1i − β ′

2y2i )][∑n
i=1 z(n)

i z(n)′
i ]−1[∑n

i=1 z(n)
i (y1i − γ ′

1z1i − β ′
2y2i )]∑n

i=1(y1i − γ ′
1z1i − β ′

2y2i )2
.

(11)

The TSLS estimator β̂TS (= (1,−β̂
′
2.TS)′) of β = (1,−β ′

2)
′ is given by

Y(n)′
2 Z2.1A−1

22.1Z′
2.1Y

(
1

−β̂2.TS

)
= 0.

It minimizes the numerator of the variance ratio (11). The LIML and the TSLS esti-
mators of γ 1 are γ̂ 1 = (Z′

1Z1)
−1Z′

1Yβ̂, where β̂ is β̂LI or β̂TS, respectively.
The estimation methods we shall consider in this paper are closely related to other

methods, which have been commonly used in a large number of econometric analyses,
and we shall explain some practical implications of the results reported in this paper.
The GMM estimation (or the estimating equation method in statistical literatures)
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can be regarded as a semi-parametric extension of the TSLS estimator and they have
similar finite sample properties. The MEL estimator and the LIML estimator have
similar finite sample properties. as discussed by Anderson et al. (2008) and Kunitomo
and Matsushita (2009). It has been known that the GMM estimator has a significant
bias when Kn is large, while the MEL estimator often does not have such bias and has
similar finite sample properties as long as K2n is not large. However, the calculation
of MEL becomes extremely difficult when Kn is large and its use has not been imple-
mented in such a situation. See Anderson et al. (2005, 2008, 2010) and Kunitomo
and Matsushita (2009) on the finite sample properties of the GMM, MEL, TSLS and
LIML estimators in more detail.

3 An asymptotically optimal modification of LIML

3.1 Alternative modifications of the LIML estimator

Anderson et al. (2005, 2010) have considered a set of sufficient conditions for an
asymptotic optimality of the LIML estimator in a linear structural equation estimation
with �

(z)
2n = Z1�12 + Z2�

(n)
22 (�(n)

22 is a K2n × G2 coefficient matrix) when there are
many instruments and the disturbances are homoscedastic. The basic conditions are

K2n

n
−→ c (0 ≤ c < 1) (A-I)

and

1

d2
n
�

(z)′
2n Z′

2.1A−1
22.1Z2.1�

(z)
2n

p−→ �22.1 (A-II
′
)

as dn
p→ ∞ (n → ∞), where �22.1 is a G2 × G2 non-singular constant matrix and

d2
n = tr(�(z)′

2n Z′
2.1A−1

22.1Z2.1�
(z)
2n )

is the non-centrality parameter.
In the following analysis, we shall mainly discuss the corresponding standard case

when d2
n ∼ n and (A-II

′
) can be regarded as one type of the non-degeneracy condition

for the limiting distribution of estimators when G2 > 1. However, it is straightfor-
ward to extend the results to other cases including the case of many weak instruments,
which we shall mention briefly in Sect. 3.3. The cases when c > 0 in (A-I) have been
often called many instruments in recent econometrics. Since there can often be many
instruments available and the sample size can be large in some micro-econometric
applications, the large-K2 asymptotic theory can be relevant to investigate the prop-
erties of alternative estimators. It may be interesting to note that it was exactly the
same situation in the earlier developments by Kunitomo (1980, 1981, 1982, 1987),
Morimune (1983) and Bekker (1994) with slightly different notations.
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Since the estimation of structural coefficients depends on G in (7), the projection
matrix P2.1 = (p(2.1)

i j ) = Z2.1A−1
22.1Z′

2.1 has an important role for the small sample
properties of estimators. In Anderson et al. (2010) the condition

plim
n→∞

1

n

n∑
i=1

[p(2.1)
i i − c]2 = 0 (A-VI)

plays a crucial role, where p(2.1)
i i are the diagonal elements of P2.1.

The typical example of (A-VI) is the case when we have orthogonal dummy vari-
ables which have 1 or −1 in their all components so that (1/n)A22.1 = IK2n and

p(2.1)
i i = K2n/n (i = 1, . . . , n). Since K1 (the number of included instrumental

variables in the structural equation of interest) is fixed and Kn = K1 + K2n , (A-I)
is equivalent to the condition that Kn/n = cn → c and then (A-VI) is equiva-

lent to the condition that (1/n)
∑n

i=1[p(n)
i i − c]2 p→ 0 with the projection operator

PZ = (p(n)
i j ) = Z(Z′Z)−1Z′.

When both (5) [and (6)] and (A-VI) hold,

plim
n→∞

[
1

n

n∑
i=1

p(2.1)
i i �i − c�

]
= O (WH)

by applying the Cauchy–Schwarz inequality. We say the weak heteroscedasticity con-
dition holds if we have (WH). If it is not satisfied, we say the persistent heteroscedastic-
ity condition holds and we shall denote this condition as (PH). The related problem has
been investigated systematically by Hausman et al. (2007) in a slightly different, but a
more general setting. Under (WH), the LIML estimator has some desirable asymptotic
properties in the sense that it has consistency, asymptotic normality and it attains the

lower bound of the asymptotic variance in a class of estimators as dn
p→ ∞ (n → ∞)

as stated in Section 4 of Anderson et al. (2010).
In the more general cases with (PH), however, the distribution of the LIML estima-

tor could be significantly affected by the presence of (conditional) heteroscedasticity
of disturbance terms with many instruments. It is mainly because the condition (WH)
is not necessarily satisfied. In this respect, there can be several ways to improve the
LIML estimation method. Since the projection matrix of instruments has a key role,
it is useful to summarize its property as a proposition. The proof will be in Sect. 5.

Lemma 1 Let PZ = (p(n)
i j ) = Z(Z′Z)−1Z′ and QZ = (q(n)

i j ) = In − Z(Z′Z)−1Z′.
We assume that the rank of matrix Z is Kn (>G2). Then 0 ≤ p(n)

i i < 1 (i = 1, . . . , n)

and 0 < q(n)
i i ≤ 1 (i = 1, . . . , n). (A-I) implies

p̄(n) = 1

n

n∑
i=1

p(n)
i i = Kn

n
−→ c,

123



888 N. Kunitomo

and

q̄(n) = 1

n

n∑
i=1

q(n)
i i = 1 − Kn

n
−→ 1 − c,

where cn = Kn/n → c as n → ∞.

The main reason why the LIML estimator does not necessarily have good properties
when the disturbances are heteroscedastic with many instruments is the presence of the
possible correlation between the conditional covariance �i and p(n)

i i (i = 1, . . . , n),

which prevents from satisfying (WH). Then we could use this characterization of the
diagonal elements of the projection matrix to improve the LIML estimation. If we
replace p(2.1)

i i (i = 1, . . . , n) by some quantities near K2n/n, we automatically sat-
isfy the crucial conditions of (A-VI) and then (WH). Hence. we would expect that the
resulting modification improves the original LIML estimation while we do not destroy
the basic structure and keep the desirable aspects. When we have many instruments
under the standard homoscedasticity situation, we do not need to change the essential
condition of the original LIML estimation.

For PZ = (p(n)
i j ) = Z(Z′Z)−1Z′, QZ = (q(n)

i j ) = In − PZ and PZ1 =
Z1(Z′

1Z1)
−1Z′

1, we utilize the relations P2.1 = (In − PZ1)PZ (In − PZ1) and

QZ = (In −PZ1)(In −PZ )(In −PZ1). We construct PM = (p(m)
i j ) and QM = (q(m)

i j ) =
In − PM such that p(m)

i j = p(n)
i j (i �= j), p(m)

i i − K2n/n → 0 (i, j = 1, . . . , n) and

plim
n→∞

1

n

n∑
i=1

[p(m)
i i − c]2 = 0. (12)

Then we define two (K1 + 1 + G2) × (K1 + 1 + G2) matrices by

GM =
(

Z′
1

Y′
)

PM (Z1, Y) , HM =
(

Z′
1

Y′
)

QM (Z1, Y) . (13)

By using GM and HM , we define a class of modifications of the LIML estimator

(we call it as AOM-LIML) such that θ̂MLI (= (−γ̂
′
1.MLI, β̂

′
MLI)

′) and β̂MLI (=
(1,−β̂

′
2.MLI)

′) of θ = (−γ ′
1, 1,−β ′

2)
′ is the solution of

[
1

n
GM − 1

qn
λnHM

]
θ̂MLI = 0, (14)

where qn = n − Kn (>0) and λn is the (non-negative) smallest root of

∣∣∣∣1

n
GM − l

1

qn
HM

∣∣∣∣ = 0. (15)
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As the simplest case, the AOM-LIML estimator is defined by using the deterministic
sequences p(m)

i i = cn, p(m)
i j = p(n)

i j (i �= j; i, j = 1, . . . , n).

When p(n)
i i (i = 1, . . . , n) are close to cn or cn is small, the AOM-LIML estimator

is very close to the LIML estimator for practical purposes. Hausman et al. (2007)
have defined the HLIM estimator by setting PH = (p∗

i j ), p∗
i i = 0 (i = 1, . . . , n) and

replacing PM and QM by PH and QH = In − PH in (13), (14) and (15) but without
(12). Then we find that it is not in the class of the AOM-LIML estimation with (12).
Numerically, however, the AOM-LIML estimator can be close to the HLIM estimator
in some situation when cn is close to zero. When cn is not 0, however, there can be
some differences in finite samples. The asymptotic property of the HLIM estimator
and its relation to the AOM-LIML estimator shall be discussed at the end of Sect. 3.2.

Our construction of the AOM-LIML estimation includes a class of modified LIML
estimators. For instance, if we perturb the latent root of (14) such as λ∗

n = λn − a/n
(a is a positive constant), we have the Fuller type modification (Fuller 1977), which
is asymptotically equivalent to the AOM-LIML estimator in the first order asymp-

totic sense because
√

n[λn − λ∗
n]

p→ 0. (See the proof of Theorem 1 in Section 5.)
It is also possible to define the corresponding modifications of the TSLS estimator
and the GMM estimator as we have constructed the AOM-LIML estimator and the
HLIM estimator. An estimation method called JIVE (Jackknife Instrumental Variables
Estimator) has been proposed and its properties have been investigated by Chao and
Swanson (2005), and also Chao et al. (2009), for instance.

We note that GM with PM should be positive definite (a.s.) to define the AOM-LIML
estimation. This condition is weaker than the corresponding one with PH . Hence, we
expect that the AOM-LIML estimator may be more stable than the HLIM estimator in
some cases. In the actual computation, we should check if two matrices are in violation
of the positive definiteness. Such situations rarely occur in our limited experiments
as reported in Sect. 3.2, but we can modify them further in our method without any
difficulty if it occurred.

3.2 Asymptotic optimality of AOM-LIML

We shall investigate the asymptotic properties of the AOM-LIML estimator when there
are many instruments. One of the attractive features of the AOM-LIML estimator is
that it satisfies (12) while it is very similar to the original LIML estimator in many
cases. Since we have incidental parameters when the number of instruments grows
with the sample size, we cannot apply the standard arguments on the semi-parametric
asymptotic optimality and the asymptotic optimality of the AOM-LIML estimation in
the proper sense is not obvious.

We have the consistency and the asymptotic normality of the AOM-LIML estima-
tor when the disturbances are heteroscedastic with many instruments under a set of
conditions. The proof will be given in Sect. 5.

Theorem 1 Let vi (i = 1, 2, . . . , n) be a set of (1 + G2) × 1 independent random
vectors such that E(vi |z(n)

i ) = 0 and E(vi v′
i |z(n)

i ) = �i (a.s.) is a bounded function

of z(n)
i , say, �i [n, z(n)

i ]. We also assume that E[‖vi‖4] are bounded. For (1) and (2),
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suppose (A-I), (5), (12),

1

n
max

1≤i≤n
‖π∗i (z

(n)
i )‖2 p−→ 0, (16)

1

n
�(z)′∗n (PM − c∗QM )�(z)∗n

p−→ �∗, (17)

and �∗ is a positive definite (constant) matrix as n → ∞, Kn → ∞ and qn →
∞, where �

(z)∗n = (Z1,�
(z)
2n ) = (π∗i (z

(n)
i )′). We denote (1/n)�

(z)′∗n PM�
(z)∗n

p−→
�∗

1, (1/qn)�
(z)′∗n QM�

(z)∗n
p−→ �∗

2 and c∗ = c/(1 − c). Then

√
n

[(
γ̂ 1.MLI

β̂2.MLI

)
−

(
γ 1
β2

)]
d−→ N (0,
∗)

where


∗ = �∗−1 [

∗

1 + 
∗
2

]
�∗−1, (18)


∗
1 = plim

n→∞
1

n

n∑
i, j,k=1

π∗i (z
(n)
i )[p(m)

i j − c∗q(m)
i j ]σ 2

j [p(m)
jk − c∗q(m)

jk ]π∗k(z
(n)
k )′,


∗
2 = plim

n→∞
1

n

n∑
i, j=1

[σ 2
i E(w∗ j w′∗ j |z(n)

j ) + E(w∗i ui |z(n)
i )E(w′∗ j u j |z(n)

j )]

×[p(m)
i j − c∗q(m)

i j ]2,

provided that we have the convergence of 
∗
1 and 
∗

2 in probability as n →
∞, π∗i (z

(n)
i ) = (z′

1i ,π
′
2i (z

(n)
i ))′, w∗i = (0′, w′

2i )
′, and w2i =v2i −ui (0, IG2)�β/σ 2

(i = 1, . . . , n).

Condition (17) is slightly stronger than (A-II
′
), but they are equivalent when c = 0.

The first term of (18) is due to the non-centrality parameter and the second term
is due to the covariance estimation. We could interpret many weak instruments as
the case when the first term is negligible as we shall discuss in Sect. 3.3. When

(1/n)
∑n

i=1 z(n)
i z(n)′

i ∼ IKn and (1/Kn)z(n)′
i z(n)

j ∼ 0 for all i �= j (= 1, . . . , n), for
instance, �∗ could be singular. Since these conditions are extreme and often unre-
alistic, the asymptotic distribution in Theorem 1 gives a reasonable approximation
to the finite sample distribution of the AOM-LIML estimator as we shall indicate in
Sect. 3.3.

When (2) is linear, we have (3) and (4), and then we partition the (K1 + K2n) ×
(1 + G2) coefficient matrix as

�n =
(

π11 �12

π
(n)
21 �

(n)
22

)
.
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An optimal modification of the LIML estimation 891

Suppose the disturbances have the homoscedasticity or weakly heteroscedastic in the
sense

max
1≤i≤n

‖�i − �‖ p→ 0 (WH
′
)

and assume the condition (A-VI). Then by setting p(m)
i j = p(n)

i j (i, j = 1, . . . , n), that
is the LIML estimator, we find that �∗

2 = O and


∗
1 = σ 2 plim

n→∞
1

n
�

(n)′
22 A22.1�

(n)
22 = σ 2�22.1,

which is non-singular when we have (A-II
′
) and A22.1 = A22 − A21 A−1

11 A12. In this
case we have

E(w2i w′
2i ) =

[
� − 1

β ′�β
�ββ ′�

]
22

and [ · ]22 is the G2 ×G2 right-lower corner of the corresponding (1+G2)×(1+G2)

matrix. We also use the relations
∑n

i, j=1 p(n)2
i j = ∑n

i=1 p(n)
i i = Kn,

∑n
i, j=1 q(n)2

i j =∑n
i=1 q(n)

i i = n − Kn and
∑n

i, j=1 p(n)2
i j = ∑n

i=1 p(n)
i i = Kn . When the disturbance

terms are homoscedastic, we have E[w2i ui ] = 0 and then the second term of 
∗
2 is

zero. Hence the right-lower corner of 
∗
2 is reduced to

[
∗
2]22 = σ 2 plim

n→∞
1

n

n∑
i, j=1

[p(n)
i j − c∗q(n)

i j ]2E(w2i w′
2i )

=
[

c

1 − c

]
σ 2

[
� − 1

σ 2 �ββ ′�
]

22
.

Then 
∗ in (18) corresponds to


∗
A = σ 2�∗−1 + c∗�∗−1[O, IG2 ]′[�σ 2 − �ββ ′�]22[O, IG2 ]�∗−1, (19)

where σ 2 = β ′�β and c∗ = c/(1−c). We find that (19) reduces to (3.8) of Theorem 2
in Anderson et al. (2010).

For the estimation of the parameters in the structural equation of interest θ (=
(−γ ′

1, 1,−β ′
2)

′), it may be natural to investigate the estimation procedures based on
two (K1 + 1 + G2) × (K1 + 1 + G2) matrices GM and HM (by modifying G and
H for the persistent heteroscedasticity) and hence we consider a class of estimators
which are functions of these matrices. Typical examples of this class are the modified
versions of the OLS estimator, the TSLS estimator, and the LIML estimator including
the one proposed by Fuller (1977) for instance. It also includes other estimators which
are asymptotically equivalent to these estimators. Then we have a new result on the
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892 N. Kunitomo

asymptotic optimality of the AOM-LIML estimator in a class of estimators. We will
give the proof in Sect. 5.

Theorem 2 Assume that (1) and (2) hold and the regularity conditions of Theorem 1.
Define the class of consistent estimators for (γ ′

1,β
′
2)

′ by

(
γ̂ 1

β̂2

)
= φ

(
1

n
GM ,

1

qn
HM

)
, (20)

where φ is continuously differentiable and its derivatives are bounded at the proba-
bility limits of random matrices in (20) as K2n → ∞ and n → ∞ and 0 ≤ c < 1.
Then under the assumptions of Theorem 1,

√
n

[(
γ̂ 1

β̂2

)
−

(
γ 1
β2

)]
d−→ N (0,
),

where


 ≥ 
∗ (21)

and 
∗ is given in Theorem 1.

When the conditions (WH
′
) and (A-VI) are satisfied, the result of Theorem 2 cor-

responds to an extension of Theorem 4 of Anderson et al. (2010). When the equations
of (2) are linear, the disturbances are normally distributed with the homoscedastic
disturbances and the instrumental variables are deterministic,

In(θ) = 1

σ 2 �(z)′∗n PZ�(z)∗n

∼ 1

σ 2 �(z)′∗n PM�(z)∗n + 1

σ 2 �(z)′∗n (Dn − cnIn)�(z)∗n , (22)

which corresponds to the Fisher information and Dn = diag(PZ ).
Hence, the condition (A-VI) or the classical case when c = 0 in (A-I) in the linear

models is the sufficient condition such that we do not lose the information amount
essentially by modifying the LIML estimation, because the asymptotic loss of infor-
mation is of higher order asymptotically. If they were not satisfied, the AOM-LIML
estimator has possible information loss asymptotically although it is still consistent
and it has the asymptotic normality. Theorems 1 and 2 imply that the AOM-LIML
estimator has an asymptotic optimality even when the number of instruments is fixed
(i.e. c = 0) because the information loss is quite small.

Also Anderson et al. (2010) have investigated an asymptotic optimality of alter-
native estimators in three possible cases on the sequences of dn and n when both dn

and n go to infinity under homoscedasticity assumption. From our construction of
the AOM-LIML method, it is straightforward to obtain the corresponding asymptotic
results for alternative parameter sequences when the disturbances are heteroscedastic
and there are many instruments at the same time.
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An optimal modification of the LIML estimation 893

Let θ̂HLI (= (−γ̂
′
1.HLI, 1,−β̂

′
2.HLI)

′) be the HLIM estimator defined by Hausman
et al. (2007). Then it is possible to show that the HLIM estimator cannot be improved
asymptotically further. Since Hausman et al. (2007) have investigated its asymptotic
properties in detail, our derivation shall be brief and we focus on the asymptotic
equivalence of two estimation methods.

Theorem 3 Let PH = (p∗
i j ) such that p∗

i i = 0, p∗
i j = p(n)

i j (i �= j; i, j =
1, · · · , n), QH = In − PH in (13), (14) and (15) instead of P M and QM . Suppose
(A-I), (7),

1

n
�(z)′∗n (PZ − Dn)�(z)∗n

p−→ �∗
D (23)

and �∗
D is a positive definite (constant) matrix as n → ∞ and Kn → ∞, where

Dn = diag(PZ ). Also suppose that E[‖vi‖2|z(n)
i ] and E[‖vi‖4] are bounded. Then

√
n

[(
γ̂ 1.HLI

β̂2.HLI

)
−

(
γ 1
β2

)]
d−→ N (0,
∗),

where 
∗ is given by (18).

This result has some interesting aspects because the HLIM estimator does not use
PM and QM explicitly. As we shall show in Sect. 5 [for instance (36) and (37)] that
the scaling factor (the denominator of the asymptotic variance) �∗

D = (1 − c)�∗
is strictly smaller than �∗, which is the scaling factor of the AOM-LIML estimator,
when 0 < c < 1 while the effects on the asymptotic variance are cancelled out asymp-
totically at the end. (Since c∗ = c/(1 − c), we have (1 + c∗)−1 = (1 − c) in (37) of
Section 5.) Theorem 3 together with Theorem 2 implies that the HLIM (or JLIML)
estimation cannot be improved asymptotically in a class of estimators which depend
on the functions of GM and QM with some PH and QH .

Anderson et al. (2010) have shown that the LIML estimator dominates the bias-
corrected TSLS estimator asymptotically, for instance, when 0 < c < 1 under the
condition of (WH). The Jackknife Instrumental Variables Estimators such as the
Jackknife-TSLS estimator, except the LIML type, cannot be efficient asymptotically
because they cannot attain the asymptotic bound under (PH). Since both AOM-LIML
and HLIM estimators attain the same asymptotic bound, they cannot be improved in
the class of estimators (14) with GM and HM (PM and QM or PH and QH ) in the
sense of their asymptotic distributions in the large-K2 asymptotics.

3.3 On alternative parameter sequences

It is possible to extend our results on the asymptotic optimality of the LIML esti-
mation to alternative parameter sequences, which correspond to alternative different
(practical) situations. For this purpose, we consider the linear model (1) and (3) and
we define the non-centrality parameter
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894 N. Kunitomo

d2∗n = tr[�(z)′∗n (PM − c∗QM )�(z)∗n ].

Then we can consider alternative parameter sequences and the corresponding asymp-
totic theories. (In our notations d∗n is the analogous quantity to dn at the beginning
of Sect. 3.1.) When c = 0 and d∗n ∼ √

n (or it is of greater order than
√

n), we
may call the classical asymptotic sequence. When c > 0 and d∗n ∼ √

n, we have
the asymptotic sequence of many instruments, which has been reported in Sect. 3.2.
These cases in the linear models with θn and dn in Sect. 3.1 have been investigated by
Anderson et al. (2010) in a systematic way under the assumption of homoscedastic
disturbances.

Although it may be possible to develop our analysis to alternative asymptotic
sequences, we shall illustrate one important result in this subsection. We consider
the linear model (1) and (3) when the normalizing factor d∗n = op(n1/2) and√

n/d2∗n
p→ 0, which may correspond to the case of many weak instruments with

the persistently heteroscedastic disturbances. Then we still have the asymptotic opti-
mality result even in this situation. Since the proof is quite similar to that of Theorem 5
in Anderson et al. (2010), we shall give a brief derivation in Sect. 5.

Theorem 4 Consider the linear model of (1) and (3). Suppose (A-I) and (5) hold

and let d∗n = op(n1/2) and
√

n/d2∗n
p→ 0 as n → ∞ and Kn → ∞. Assume

1

d2∗n
max

1≤i≤n
‖π∗i (z

(n)
i )‖2 p−→ 0,

1

d2∗n
�(z)′∗n (PM − c∗QM )�(z)∗n

p−→ �∗∗

and �∗∗ is a positive definite (constant) matrix as n → ∞, Kn → ∞ and qn →
∞, where �

(z)∗n = (Z1,�
(z)
2n ) = (π∗i (z

(n)
i )′). Also suppose that E[‖vi‖2|z(n)

i ] and

E[‖vi‖4] are bounded. We use the notations (1/d2∗n)�
(z)′∗n P∗

Z�
(z)∗n

p−→ �∗
1, (1/d2∗n)

�
(z)′∗n Q∗

Z�
(z)∗n

p−→ �∗
2 and c∗ = c/(1 − c). As n → ∞, for the AOM-LIML estimator,

[
d2∗n√

n

] [(
γ̂ 1.MLI

β̂2.MLI

)
−

(
γ 1
β2

)]
d−→ N (0,
∗∗)

and for any estimator θ̂ in the class of (20),

[
d2∗n√

n

] [(
γ̂ 1

β̂2

)
−

(
γ 1
β2

)]
d−→ N (0,
),

where 
 ≥ 
∗∗,


∗∗ = �∗−1
∗∗
2 �∗−1, (24)
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and


∗∗
2 = plim

n→∞
1

n

n∑
i, j=1

[σ 2
i E(w∗ j w′∗ j |z(n)

j ) + E(w∗i ui |z(n)
i )E(w′∗ j u j |z(n)

j )]

×[p(m)
i j − c∗q(m)

i j ]2,

provided that 
∗∗
2 converge in probability as n → ∞.

The variance of the limiting distribution of the AOM-LIML estimator [i.e. (24)] is
simpler than (18) because the effects of n dominate the first term of (18) in Theorem 1.
This result illustrates that the AOM-LIML estimation has the asymptotic optimality
in a wide range of alternative (such as the non-centrality and the normalizing factor)
parameter sequences.

3.4 On finite sample distributions of LIML and AOM-LIML

The finite sample properties of the LIML estimator and semi-parametric estimators
including the GMM and MEL estimators have been investigated by Anderson et al.
(2005, 2008) in a systematic way. As an example, we present only three figures (Figs. 1,
2, 3) in Appendix when we have the linear structural equation model with (3), (4) and
G2 = 1 for simplicity. We take a typical case of many instruments when K2 (or K2n) is
relatively large. Here we have used the method of numerical evaluation for the cumu-
lative distribution function (cdf) of the LIML estimator based on the simulation. We
have enough numerical accuracy in most cases by using the same simulation setting
except for the factor of heteroscedasticity of disturbances, which has been explained
by Anderson et al. (1982) and Anderson et al. (2005, 2008) in more detail.

We first generate a sequence of independent random vectors vi and z(n)
i (i =

1, . . . , n), and then generate a large number of empirical distributions for the nor-
malized forms of alternative estimators by fixing the several key parameters in the
structural equation of interest with (1) and (3). It is important to mention that the nor-
malization makes the numerical comparison of the finite sample distributions of alter-
native estimators quite accurate even if the finite moments of some estimators do not
necessarily exist. (The standard use of MSE of estimators in simulations is not neces-
sarily meaningful in such cases.) We take the key parameters under the homoscedastic
disturbances (� = �i ) and the linear model of (1) and (3) as the benchmark case, and
we control the effects of the key parameters K2 (or K2n), n − K (or n − Kn), α =
[ω22/|�|1/2](β2 − ω12/ω22) (the standardized coefficient) with (� = (ωi j )) and

δ2 = �
(n)′
22 A22.1�

(n)
22 /ω22 (the non-centrality) when G2 = 1. See Anderson et al.

(1982, 2005, 2008) for the details of the computation method of simulations including
the various cases of non-normal disturbances and the precise parameterization of key
quantities in figures.

As a simple example of the LIML modification, we set G2 = K1 = 1, zi ∼
N (0, IK ) (i = 1 · · · , n), vi |z(n)

i ∼ N (0,�i ) (i = 1, . . . , n). In order to make
comparison easier, we concentrate the effects of Z1 in (14) and (15), and use the
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representation

[
1

n
Y′P(m)

2.1 Y − λn
1

qn
Y′Q(m)

Z Y
]

β̂ = 0 , (25)

where β̂ = (1,−β̂2)
′, (P(m)

2.1 )i j = (P2.1)i j (i �= j), (Q(m)
Z )i j = (QZ )i j (i �= j),

(P(m)
2.1 )i i = 1 − (Q(m)

Z )i i = Kn

n
+

[
z2

1i∑n
j=1 z2

1 j

− 1

n

]

and z1i (i = 1, . . . , n) is the included exogenous variable in the structural equation of
interest. We have taken this setting mainly because p(m)

i i are not exactly the same as
K/n (or Kn/n) and we allow some variability. Then we have investigated the finite
sample properties of β̂2 for the coefficient β2 by the simulated β̂2 with the LIML,
HLIM and AOM-LIML estimators. The number of replications of the simulations are
10,000.

Figures 1 and 2 correspond to the homoscedastic disturbance cases, while Fig. 3
corresponds to the case of persistent heteroscedasticity which is quite similar to the
one reported by Hausman et al. (2007). (We have tried to replicate their example.)
Three figures in Appendix show the estimated cdf of estimators in the standard form,
i.e.

√
n[
]∗−1/2

22 (β̂2 − β2), (26)

where [
∗]22 is the right-lower corner of 
∗, which is given by Theorem 1. The
limiting distribution of the AOM-LIML estimator in the form of (26) is N (0, 1) in the
large-K2 asymptotics and it is denoted by “o”.

From these three figures, we have found that the distribution function of the AOM-
LIML estimator is very similar to that of the LIML estimator in the homoscedastic
disturbance cases. At the same time, we also have found that the distribution function
of the AOM-LIML estimator is very similar to that of the HLIM estimator in the par-
ticular heteroscedastic disturbance case treated by Hausman et al. (2007). In that case,
the finite sample distribution of the LIML estimator is different from the AOM-LIML
and HLIM estimators considerably as well as the standard normal distribution, because
the effects of correlation between pii (Z) and �i (i = 1, . . . , n) do not decrease as Kn

and n increase. In this case, the AOM-LIML estimator with (14) and (15) improves
both the LIML and HLIM estimators in the finite samples. These observations on the
finite sample properties of alternative estimators agree with our theoretical results of
Sect. 3.2, although we have covered only some cases among many possibilities.

4 Concluding remarks

In this paper, we have introduced a class of modifications of the LIML estimation
methods and investigated their statistical properties. We have excluded the GMM type
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An optimal modification of the LIML estimation 897

estimation methods in our consideration because they are badly biased when there are
many instruments. (See Anderson et al. 2005, 2008, 2010; Kunitomo and Matsushita
2009.) When there are many instruments and the disturbances have heteroscedasticity,
it might be argued that the LIML estimator does lose good asymptotic properties in
the extremely heteroscedastic cases. However, as we have shown, a simple modifica-
tion of the LIML estimation, called the AOM-LIML estimator, gives consistency, the
asymptotic normality and an asymptotic optimality under a set of assumptions. The
AOM-LIML estimator is close to the LIML estimator, when the disturbances are homo-
scedastic or weakly heteroscedastic while it can be different when the disturbances
have persistent heteroscedasticity. We have also shown that the AOM-LIML estimator
improves the LIML estimator, and the HLIM (or JLIML) estimator is asymptotically
equivalent to a simple case of the AOM-LIML estimator when there are many instru-
ments and the persistent heteroscedasticity in disturbances exists at the same time.
Although these estimators are asymptotically the same in the sense of the first-order
large−K2 asymptotics, there are some differences in the finite samples.

Several important issues still remain for further investigations. For the more gen-
eral non-linear estimating equation models with (4), the non-linear LIML and TSLS
estimators can be defined by substituting ui (θ) = y1i − fi (z1i , y2i , θ) for ui (θ) =
y1i − γ ′

1z1i − β ′
2y2i (i = 1, . . . , n) and minimizing the variance ratio in (11), where

fi ( · ) is a known function and θ is the vector of unknown (structural) parameters.
Then our method would be extended to non-linear structural equations with some
notational complications. When the number of restrictions or the dimension becomes
large with the sample size, however, semi-parametric methods such as the GMM and
the maximum empirical likelihood (MEL) estimation may have some difficulty in
theory as well as in practical computation.

Although we have incidental parameters when the number of instruments grows
with the sample size and we cannot apply the standard arguments on the semi-para-
metric asymptotic optimality, we have shown that the AOM-LIML estimator has the
asymptotic optimality in a class of estimators. There is an interesting topic on the
higher-order efficiency of estimation, which is under current investigation.

Finally, a more practical question is the relevance of persistent heteroscedasticity
in real applications. A more systematic investigation of the finite sample properties of
alternative semi-parametric estimation methods would be needed.

5 Proof of theorems

In this section, we give the proofs of Theorems. The methods of proofs are basically
some modifications of Section 6 of Anderson et al. (2010), which are often straight-
forward.

Proof of Lemma 1 Let Z = (z(n)′
i ) and An(i) = ∑n

j=1, j �=i z(n)
j z(n)′

j , where z(n)′
i are

Kn × 1 vectors. The assumption implies that An(i) is non-singular. Then

p(n)
i i = z(n)′

i [z(n)
i z(n)′

i + An(i)]−1z(n)
i = z(n)′

i A−1
n(i)z

(n)
i

1 + z(n)′
i A−1

n(i)z
(n)
i
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and 0 ≤ p(n)
i i < 1. For QZ we apply the same argument to In − QZ and we find that

0 < q(n)
i i ≤ 1. �

Proof of Theorem 1 The proof consists of two steps.
Step I This step develops a convenient representation of the normalized estimator,
which is asymptotically equivalent to the one of the AOM-LIML estimator. (The
basic arguments are quite similar to the ones in Anderson et al. (2010).)

From (1) and (2) we write Y = �
(z)
n + V, �

(z)
n = (�

(z)
1n ,�

(z)
2n ) and �

(z)
1n =

�
(z)
2n β2 + Z1γ 1. By substituting this relation into GM yields

GM =
[(

Z′
1

�
(z)′
n

)
+

(
O
V′

)]
PM [(Z1,�

(z)
n ) + (O, V)]

=
(

Z′
1

�
(z)′
n

)
PM (Z1,�

(z)
n ) +

(
O
V′

)
PM (O, V)

+
(

Z′
1

�
(z)′
n

)
PM (O, V) +

(
O
V′

)
PM (Z1,�

(z)
n ),

where PM is given in Sect. 3 and we define an n ×(K1 +1+G2) matrix V∗ = (O, V).
Then

GM −
[(

Z′
1

�
(z)′
n

)
PM (Z1,�

(z)
n )′ + Kn

(
O

IG2+1

)
�̄(O, IG2+1)

]

=
(

Z′
1

�
(z)′
n

)
PM (O, V) +

(
O
V′

)
PM (Z1,�

(z)
n )

+
[(

O
V′

)
PM (O, V) − Kn

(
O

IG2+1

)
�̄(O, IG2+1)

]
,

where �̄ = (1/n)
∑n

i=1 �i . By using (17) and the fact that �∗
1 is positive definite and

then as n −→ ∞
1

n
�(z)′

n PM V
p−→ O,

and

1

n

[(
O
V′

)
PM (O, V) − Kn

(
O

IG2+1

)
�̄(O, IG2+1)

]
p−→ O.

Then as n −→ ∞,

1

n
GM

p−→ G0 = B′�∗
1B + c �∗,
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where a (K1 + G2) × [K1 + (1 + G2)] matrix

B = (B1, B2) =
[(

IK1

O

)
,

(
γ 1
β2

)
,

(
O

IG2

)]

and a (K1 + 1 + G2) × (K1 + 1 + G2) matrix

�∗ =
[

O O
O �

]
.

By using (5) and (17),

1

qn
HM = 1

qn

[(
Z1

�
(z)
n

)
+

(
O
V′

)]
QM [(Z1,�

(z)
n ) + (O, V)] p−→ H0

and

H0 = B′�∗
2B + �∗.

Then (17) implies

|B′[�∗
1 − (plim λn)�∗

2]B − [(plim λn) − c]�∗| = 0

and we find that plimλn = c is a solution. Because λn is the minimum of

ln = θ ′ 1
n GMθ

θ ′ 1
n HMθ

p→ θ ′G0θ

θ ′H0θ

and the minimum of the right-hand side is c under the condition (17), hence we have

that plimλn = c is the unique solution and θ̂MLI
p−→ θ as n → ∞ because of (14)

and (15).
Define G1, H1, λ1n, and b1 by

G1 = 1√
n

[(
Z′

1

�
(z)′
n

)
PM (O, V) +

(
O
V′

)
PM (Z1,�

(z)∗n )

+
(

O
V′

)
PM (O, V) − Kn

(
O

IG2+1

)
�̄(O, IG2+1)

]
,

H1 = √
qn( 1

qn
H − H0), λ1n = √

n(λn − c) and b1 = √
n(θ̂MLI − θ). From (14) and

(15), we have

[G0 − c∗ H0]θ + 1√
n
[G1 − λ1nH0]θ + 1√

n
[G0 − c∗ H0]b1 + 1√

qn
[−cH1]θ

= op(
1√
n
).
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Since (G0 − c∗ H0)θ = 0, the above equation gives

B′�∗√n

[(
γ̂ 1.MLI

β̂2.MLI

)
−

(
γ 1
β2

)]
= (

G1 − λ1nH0 − √
cc∗H1

)
θ + op(1). (27)

Multiplication of (27) from the left by θ ′ = (−γ ′
1, 1,−β ′

2) yields

λ1n = θ ′(G1 − √
cc∗H1)θ

β ′�β
+ op(1).

Also the multiplication of (27) on the left by a (K1 + G2) × (K1 + 1 + G2) choice
matrix

J′ =
[

IK1 0 O
O 0 IG2

]

and the substitution for λ1n in (27) yields

√
n

[(
γ̂ 1.MLI

β̂2.MLI

)
−

(
γ 1
β2

)]

= �∗−1J′(G1 − λ1nH0 − √
cc∗H1)θ + op(1)

= �∗−1J′
[

IK1+G2+1 − H0θθ ′

β ′�β

]
(G1 − √

cc∗H1)θ + op(1). (28)

By using the relation Vβ = u and H0θ = �∗θ , the vector of �∗ times the last term
of (28) can be written as

J′
[

IK1+G2+1 − H0θθ ′

β ′�β

]
(G1 − √

cc∗H1)θ

= 1√
n
�(z)′∗n (PM − c∗QM )u + √

c
1√
Kn

J′
[(

O
V′

)
PM u − Kn

(
O

IG2

)
�̄β

]

−√
cc∗

1√
qn

J′
[(

O
V′

)
QM u − qn

(
O

IG2

)
�̄β

]
,

where Kn + qn = n. We define a (K1 + G2) × n matrix

W′ = (w∗1, . . . , w∗n) = J′
[

IK1+G2+1 − �∗θθ ′

β ′�β

](
O
V′

)

and

w∗i = [0, IG2 ]
[

IK1+G2 −
(

O
IG2

)
(0, IG2)

�ββ ′

β ′�β

]
vi .
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Then (28) is further rewritten as

√
n

[(
γ̂ 1.MLI

β̂2.MLI

)
−

(
γ 1
β2

)]
= �∗−1 1√

n
�(z)′∗n (PM − c∗QM )u

+�∗−1 1√
n
[W′(PM − c∗QM )u] + op(1). (29)

(The last representation has a convenient form in the sense that the first term is a
linear combination of ui (i = 1, . . . , n) and the second term is a cross quadratic form
of ui and wi (i = 1, . . . , n). If vi (i = 1, . . . , n) are homoscedastic and normally
distributed, ui and wi are the sequence of independent random variables.)

Step II The rest of the proof (i.e. for the asymptotic normality of the AOM-LIML
estimator) is essentially the same as the proof of Theorem 1 and Lemmas in Anderson
et al. (2010). The most important step is to apply an appropriate martingale central
limit theorem (MCLT) to each terms of (29) in Step I.

By following Lemma 3 of Anderson et al. (2010), for any (conformable) vector a we

set t (n)
1i = (a′�(z)′∗n (PM −c∗QM ))i (i th element) and t (n)

2i = a′w∗i (i = 1, . . . , n). Also

for the n × n matrix B = PM − c∗QM (= (bi j )) we set s(n)
1i = (1/

√
n)t (n)

1i ui , s(n)
2i =

(1/
√

n)t (n)
2i ui bii , s(n)

3i = (1/
√

n)ui
∑i−1

j=1 t (n)
2 j b ji , s(n)

4i = (1/
√

n)t (n)
2i

∑i−1
j=1 u j bi j

and bi j = p(m)
i j − c∗(δ j

i − q(m)
i j ) (i, j = 1, . . . , n). Let Fn,i be the σ -field gener-

ated by the random variables u j , v j (1 ≤ j ≤ i, 1 ≤ i ≤ n) and Fn,0 be the initial

σ -field. Because a sequence of z(n)
i are the instrumental variables and we consider the

case of (yi , z(n)
i ) being independent with respect to i, we only need to investigate the

situation when z(n)
i ∈ Fn,0. By construction we have Fn,i−1 ⊆ Fn,i for i = 1, . . . , n.

Then Tn = ∑n
i=1 Xni can be decomposed Xni = s(n)

1i + s(n)
2i + s(n)

3i + s(n)
4i and

E[Xni |Fn,i−1] = 0 (i = 1, . . . , n). Since each term Xni (i = 1, . . . , n) are martin-
gale difference sequences, by direct calculations we find

E[X2
ni |Fn,i−1] = 1

n
[t (n)

1i ]2σ 2
i + 1

n
b2

i iEi−1[t (n)
2i ui ]2

+1

n
σ 2

i

⎡
⎣ i−1∑

j=1

bi j t2 j

⎤
⎦

2

+1

n
Ei−1(t

2
2i )

⎡
⎣ i−1∑

j=1

bi j u j

⎤
⎦

2

+ 2

n
t (n)
1i biiEi−1[t (n)

2i u2
i ]

+2

n
σ 2t (n)

1i

i−1∑
j=1

bi j t2 j + 2

n
Ei−1(u

2
i t2i )bii

i−1∑
j=1

bi j t2 j
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902 N. Kunitomo

+2

n
Ei−1(ui t

2
2i )bii

i−1∑
j=1

bi j u j + 2

n
Ei−1(ui t2i )

⎛
⎝ i−1∑

j=1

bi j u j

⎞
⎠

×
⎛
⎝ i−1∑

j ′=1

bi j ′ t2, j ′

⎞
⎠ ,

which can be further simplified by using the relations bii = op(1) (i = 1, . . . , n) in
the present case, where we use the notation Ei−1[t2

2i ] = E[t2
2i |Fn,i−1], for instance.

Because of the conditional heteroscedasticities and Ei−1[ui t2i ] are not necessarily
zeros, we need to evaluate the last term. As a result, we can derive the second term
of 
∗

2, which was absent in the homoscedasticity case in Theorem 1 of Anderson
et al. (2010). (It is zero in the homoscedastic case because ui and wi are independent
random variables.)

We evaluate each of the terms of Xni and Ei−1(Xni ), and then apply an MCLT to
Tn = ∑n

i=1 Xni . As an illustration, an important step is to show

1

n

n∑
i=2

⎡
⎢⎣

⎛
⎝ i−1∑

j=1

bi j t2 j

⎞
⎠

2

− E
⎛
⎝ i−1∑

j=1

bi j t2 j

⎞
⎠

2
⎤
⎥⎦ p→ 0,

1

n

n∑
i=2

⎡
⎢⎣Ei−1(t

2
2i )

⎛
⎝ i−1∑

j=1

bi j u j

⎞
⎠

2

− Ei−1(t
2
2i )E

⎛
⎝ i−1∑

j=1

bi j u j

⎞
⎠

2
⎤
⎥⎦ p→ 0,

1

n

n∑
i=2

⎡
⎣Ei−1(ui t2i )

⎛
⎝ i−1∑

j=1

bi j u j

⎞
⎠

⎛
⎝ i−1∑

j ′=1

bi j ′ t2, j ′

⎞
⎠ ,−Ei−1(ui t2i )

i−1∑
j=1

b2
i jE j−1(u j t2, j )

⎤
⎦

p→ 0.

Under the assumptions in Theorem 1, it is straightforward but quite tedious (due to
many terms involved) to show the required conditions for the MCLT. This is possi-
ble mainly due to the fact that we have assumed enough moment conditions, and the
original PZ and QZ are projection matrices such that the components of bi j have some
properties as discussed in Lemmas 1 and 2 of Anderson et al. (2010).

We set Vn = ∑n
i=1 E[X2

ni |Fn,i−1]. Also, we note that by utilizing that for any
ξ > 0 and some ν > 0,

∑n
i=1 E[(Xni )

2 I (|Xni | ≥ ξ)] ≤ (1/ξ)ν
∑n

i=1 E[X2+ν
ni ], and

then we apply Theorem 3.5 of Hall and Heyde (1980) as the relevant MCLT. The

only remaining task is to show their conditions (i) max1≤i≤n E[X2
ni |Fn,i−1] p→ 0 and

(ii) for any ξ > 0
∑n

i=1 E[X2
ni I (|Xni | ≥ ξ)] → 0 (as n → ∞) under the assump-

tions of Theorem 1. We note that in the original version of Theorem 3.5, the martingale
Tn = ∑n

i=1 Xni have been normalized by the unconditional variance E[T 2
n ], but it does

not change the required conditions because the conditional variance Vn converges to a
(non-degenerate) positive constant in probability by using (17) in the present situation.
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An optimal modification of the LIML estimation 903

We have omitted the details of the derivations here because we need to use quite
similar arguments repeatedly as in Anderson et al. (2010), but we take care of the
conditional heteroscedasticities of the associated disturbances. Since we can utilize
the boundedness of the conditional covariance and enough moment conditions on the
disturbances, they are straightforward, but can be quite lengthy. We have some sim-
plifications because we can use PM and QM , instead of PZ and QZ , with (14) and
(15) to derive the asymptotic properties of the AOM-LIML estimator. By utilizing the
construction of the diagonal parts of PM and QM , we have the results. �
The next proof of Theorem 2 is the modification of the proof of Theorem 4 of Anderson
et al. (2010) and we shall use their notations and arguments. For the sake of complete-
ness we give its proof.

Proof of Theorem 2 We first derive the necessary conditions for the consistency of
the class of estimators. Then we shall develop its linearized representation with the
restrictions of consistency. Finally, we shall derive the conditions to minimize the
asymptotic covariance matrix of the class of linearized estimators.

We set p = K1 + 1 + G2 and the vector of true parameters θ ′ = (−γ ′
1, 1,−β ′

2) =
(−θ1, . . . ,−θK1 , 1,−θK1+1, . . . ,−θK1+G2) and θ ′

2 = (θ1, . . . , θK1+G2). The estima-
tor of the vector of coefficients θ can be written as

θ̂k = φk

(
1

n
GM ,

1

qn
HM

)
(k = 1, . . . , p − 1). (30)

with p − 1 = K1 + G2.
We use a (p − 1) × p matrix B and a p × p matrix �∗ = (ω∗

i j ) in the proof of
Theorem 1. For the estimator to be consistent, we need the condition

θk = φk[B′�∗
1B + c �∗, B′�∗

2B + �∗] (31)

for k = 1, . . . , p − 1 as the identities with respect to each of the components of
γ 1, β2, �∗

g = (ϕ
(g)
i j ) (g = 1, 2) and �∗. We set a p × p matrix

T(k) =
(

∂φk

∂gi j

)
= (τ

(k)
i j ) (k = 1, . . . , p − 1; i, j = 1, . . . , p)

evaluated at the probability limits. (They are bounded by assumptions.) We define
p × p matrices �g (= (θ

(g)
i j )) by �g = B′�∗

gB (g = 1, 2).
Next, we consider the role of the second matrix in (30). By differentiating (31) with

respect to ω∗
i j (i, j = 1, . . . , p), we have the condition

c
∂φk

∂gi j
= − ∂φk

∂hi j
(k = 1, . . . , p − 1; i, j = 1, . . . , p) (32)

evaluated at the probability limit. (We use the notation that the partial derivatives
are taken with respect to each of the elements of two matrices in (30) and (31).) By
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904 N. Kunitomo

differentiating each of the components of φk (k = 1, . . . , p − 1) with respect to
θi (i = 1, . . . , p − 1), we have

∂φk

∂θi
=

p∑
g,h=1

[
∂φk

∂ggh

∂ggh

∂θi
+ ∂φk

∂hgh

∂hgh

∂θi

]

=
p∑

g,h=1

∂φk

∂ggh

[
∂ggh

∂θi
− c

∂hgh

∂θi

]
.

For the notational convenience, we set τ
(k)∗∗ = τ

(k)
K1+1,K1+1 (k = 1, . . . , p − 1). Then

by differentiating each of the terms of (31) with respect to θi (i = 1, . . . , p − 1) [as
(6.47) and (6.48) in Anderson et al. 2010] and rearranging the resulting terms, we can
express

tr

[
T(k)

(
∂�1

∂θi
− c

∂�2

∂θi

)]

= 2τ (k)∗∗
p−1∑
j=1

(ϕ
(1)
i j − cϕ(2)

i j )θ j + 2
p−1∑
j=1

(ϕ
(1)
i j − cϕ(2)

i j )τ
(k)
i j

= δk
i , (33)

where we define δk
k = 1, δk

i = 0 (k �= i) and hence we have ∂φk
∂θi

= δk
i in (31).

Define a p × p (p = K1 + 1 + G2) partitioned matrix

T(k) =
⎡
⎢⎣

T(k)
11 τ

(k)
1 T(k)

12

τ
(k)′
1 τ

(k)∗∗ τ
(k)′
2

T(k)′
12 τ

(k)
2 T(k)

22

⎤
⎥⎦ .

(T(k)
11 , T(k)

12 , T(k)
22 are K1 × K1, K1 × G2, G2 × G2 matrices, respectively, τ 1 and τ 2

are K1 × 1 and G2 × 1 vectors, respectively, and s∗∗ is a scalar random variable.)
By differentiating each of the elements of �g with respect to ϕ

(g)
i j , we find the

relation for g = 1, 2 that

tr

⎛
⎝T(k) ∂�g

∂ϕ
(g)
i j

⎞
⎠ = tr

⎡
⎢⎣

T(k)
11 τ

(k)
1 T(k)

12

τ
(k)′
1 τ

(k)∗∗ τ
(k)′
2

T(k)′
12 τ 2 T(k)

22

⎤
⎥⎦

⎡
⎣ IK1 O

γ ′
1 β ′

2
O IG2

⎤
⎦ [

ei e′
j

] [
IK1 γ 1 O
O β2 IG2

]

= τ (k)∗∗
[
γ ′

1,β
′
2

] [
ei e′

j

] [
γ 1
β2

]

+2
[
γ ′

1,β
′
2

] [
ei e′

j

] [
τ

(k)
1

τ
(k)
2

]
+ tr

[
ei e′

j

] [
T(k)

11 T(k)
12

T(k)′
12 T(k)

22

]
,

where e′
i = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i th place and zeros in other elements.
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An optimal modification of the LIML estimation 905

Furthermore, (33) can be represented as

2τ (k)∗∗ (�∗
1 − c�∗

2)θ2 + 2(�∗
1 − c�∗

2)

[
τ

(k)
1

τ
(k)
2

]
= ek, (34)

where we have set θ ′
2 = (γ ′

1,β
′
2). Since we have assumed that �∗ (= �∗

1 − c�∗
2) is

positive definite, we solve (34) as

[
τ

(k)
1

τ
(k)
2

]
= 1

2
�∗−1ek − τ (k)∗∗ θ2.

Also as the conditions with respect to ϕ
(k)
i j [by using the similar arguments as (6.54)

and (6.55) of Anderson et al. (2010)], we have the representation

τ (k)∗∗ θ2θ
′
2 +

[
τ

(k)
1

τ
(k)
2

]
θ ′

2 + θ2(τ
(k)′
1 , τ

(k)′
2 ) +

[
T(k)

11 T(k)
12

T(k)′
12 T(k)

22

]
= O .

Then we have the representation

[
T(k)

11 T(k)
12

T(k)′
12 T(k)

22

]
= −τ (k)∗∗ θ2θ

′
2 −

[
τ

(k)
1

τ
(k)
2

]
θ ′

2 − θ2(τ
(k)′
1 , τ

(k)′
2 )

= τ (k)∗∗ θ2θ
′
2 − 1

2

[
�∗−1ekθ

′
2 + θ2e′

k�
∗−1

]
. (35)

Let a p × p (p = K1 + 1 + G2) matrix S (= (si j )) be partitioned as

S = G1 − √
cc∗H1 =

⎡
⎣ S11 s1 S12

s′
1 s∗∗ s′

2
S′

12 s2 S22

⎤
⎦ ,

where G1 and H1 are defined as in the proof of Theorem 1 and S is partitioned into
(K1+1+G2)×(K1+1+G2) elements. (S11, S12, S22 are K1×K1, K1×G2, G2×G2
matrices, respectively, and s1 and s2 are K1 × 1 and G2 × 1 vectors, respectively.) We
set the scalar random variable sK1+1,K1+1 = s∗∗ for the notational convenience.

Since we have assumed that φk(·) is differentiable and its first derivatives are
bounded at the true parameters, we shall consider the asymptotic distribution of the
normalized estimator

√
n[θ̂k − θk] (k = 1, . . . , p − 1) with (30) and (31). Then by

using the restrictions of (34) and (35), the linearized estimator of θk for the class of
the modified LIML estimators, which are consistent, can be represented as
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p∑
g,h=1

τ
(k)
gh sgh = τ (k)∗∗ s∗∗ + 2(τ

(k)′
1 , τ

(k)′
2 )

[
s1
s2

]
+ tr

[
T(k)

11 T(k)
12

T(k)′
12 T(k)

22

] [
S11 S12
S′

12 S22

]

= τ (k)∗∗ θ ′Sθ + e′
k�

∗−1
[

S11 s1 S12
S′

12 s2 S22

]
θ .

[We have used the fact that c
√

n/(n − qn) ∼ √
cc∗ and (32) for each of the elements

of the second matrix in (30) and (31).] Let

τ ∗∗ =
⎡
⎢⎣

τ
(1)∗∗
...

τ
(p−1)∗∗

⎤
⎥⎦

and we consider the asymptotic behavior of the normalized estimator
√

n(θ̂2 − θ2) as

ê =
[
τ ∗∗θ ′ + �∗−1J′] Sθ ,

where we use J′ in the proof of Theorem 1.
The asymptotic normality of the class of the modified LIML estimators can be estab-

lished by using the similar arguments as the proof of Theorem 1. Since the asymptotic
variance–covariance matrix of Sθ has been obtained by the proof of Theorem 1, we
have

E [
ê ê′] =

[
(τ ∗∗ + �∗−1J′�∗θ)θ ′ + �∗−1J′

(
Ip − �∗θθ ′

θ ′�∗θ

)]

×E[Sθθ ′S] ×
[
(τ ∗∗ + �∗−1J′�∗θ)θ ′ + �∗−1J′

(
Ip − �∗θθ ′

θ ′�∗θ

)]′

= 
∗ + E[(θ ′Sθ)2]
[
τ ∗∗ + �∗−1J′�∗θ

] [
τ ′∗∗ + θ ′�∗J�∗−1

]
+ o(1) ,

where 
∗ has been given in Theorem 1. This covariance matrix is the sum of a positive
semi-definite matrix of rank 1 and a positive definite matrix. It has a minimum if

�∗τ ∗∗ + J′�∗θ = 0 .

�

A Brief Derivation of Theorem 3 The full proof of Theorem 3 can be given by using
similar arguments as the one in Theorem 1. Since many parts are quite similar and
lengthy, we give the most important steps.

We take p(m)
i i = 1 − q(m)

i i = cn, p(m)
i j = p(n)

i j (i �= j; i, j = 1, . . . , n) and
QM = In − PM in the AOM-LIML estimation. We use the fact that PM = PZ − Dn +
cnIn, PH = PZ − Dn and Dn = diag(Pn). Then

PM − c∗QM = [PZ − Dn + cnIn] − c∗[In − (PZ − Dn + cnIn)]
= (1 + c∗)(PZ − Dn) + [cn − c∗(1 − cn)]In .
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An optimal modification of the LIML estimation 907

The assumptions in Theorem 1 implies

1

n
�(z)′∗n [PM − c∗QM ]�(z)∗n − (1 + c∗)

1

n
�(z)′∗n [PZ − Dn] �(z)∗n

p−→ O. (36)

Under the assumption of (23) that

1

n
�(z)′∗n (PZ − Dn)�(z)∗n

p−→ �∗
D = (1 + c∗)−1�∗ (37)

is a positive definite matrix as n → ∞.
Let λnH be the smallest root of (14) and (15) in the HLIM estimation by using

PH and QH instead of PM and QM . Then we have plim λnH = 0 because

p∗
i i = 0 (i = 1, . . . , n) and (1/n)V′PH V

p→ O. By using the same arguments for

∗

i (i = 1, 2) in (18), we have the corresponding representation of (29) for the HLIM
estimator as

�∗
D

√
n

[(
γ̂ 1.HLI

β̂2.HLI

)
−

(
γ 1

β2

)]

= 1√
n
�(z)′∗n (PZ − Dn) u + 1√

n
[W′(PZ − Dn)u] + op(1). (38)

Then, after some calculations, we can find that the corresponding terms of 
∗
i (i =

1, 2) (i.e. (18) for the AOM-LIML estimator) become


∗∗
1 = (1 + c∗)2plim

1

n

n∑
i, j,k=1

π∗i (z
(n)
i )[p(n)

i j (1 − δ
j
i )]σ 2

j [p(n)
jk (1 − δk

j )]π∗k(z
(n)
k )′,


∗∗
2 = (1 + c∗)2plim

1

n

n∑
i, j=1

[σ 2
i E(w∗ j w′∗ j |z(n)

j ) + E(w∗i ui |z(n)
i )E(w′∗ j u j |z(n)

j )]

×[p(n)
i j (1 − δ

j
i )]2,

where δ
j
i = 0 (i = j), δ j

i = 0 (i �= j). Hence the factors (1 + c∗)2 in �∗∗ and 
∗
are cancelled out. By using (36) and (37), the covariance matrix of the asymptotic
distribution has the same form in Theorem 1.

The asymptotic normality can be shown by using similar arguments to Step II for
the proof of Theorem 1, which have been omitted because these are straightforward
but quite lengthy. �
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Appendix

In Figs. 1, 2 and 3 the distribution functions of the LIML, HLIM and AOM-LIML
estimators are shown with the large-K2 normalization. (In brief, we use MLIML for
the AOM-LIML estimator in figures.) The limiting distributions for the efficient esti-
mators in the large-K2 asymptotics are N (0, 1) as n → ∞ and K2n → ∞ which are
denoted as “o”. The parameterα stands for the normalized coefficient of an endogenous
variable and δ2 is the non-centrality parameter. The details of numerical computation
method of this paper are given in Anderson et al. (2005, 2008) and Kunitomo and
Matsushita (2009).
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Fig. 1 CDF of standardized estimators: n − K = 20, K2 = 30, α = 0.5, δ2 = 30, ui = N (0, 1)
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Fig. 2 CDF of standardized estimators: n − K = 20, K2 = 30, α = 1, δ2 = 30, ui = N (0, 1)
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Fig. 3 CDF of standardized estimators: Heteroscedastic disturbances in Hausman et al. (2007), n =
100, K = 10, δ2 = 30
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