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Abstract In this paper, we employ the method of empirical likelihood to construct
confidence intervals for a conditional quantile in the presence and absence of aux-
iliary information, respectively, for the left-truncation model. It is proved that the
empirical likelihood ratio admits a limiting chi-square distribution with one degree of
freedom when the lifetime observations with multivariate covariates form a stationary
α-mixing sequence. For the problem of testing a hypothesis on the conditional quan-
tile, it is shown that the asymptotic power of the test statistic based on the empirical
likelihood ratio with the auxiliary information is larger than that of the one based on
the standard empirical likelihood ratio. The finite sample performance of the empirical
likelihood confidence intervals in the presence and absence of auxiliary information
is investigated through simulations.

Keywords Empirical likelihood · Conditional quantile · Truncated data · α-mixing ·
Auxiliary information

1 Introduction

Let Y be a response variable with continuous distribution function (df) F̃(·) and let X
be a random vector of covariates taking its values in R

d(d ≥ 1) with joint density l(·).

H.-Y. Liang (B)
Department of Mathematics, Tongji University,
Shanghai 200092, People’s Republic of China
e-mail: hyliang83@yahoo.com

H.-Y. Liang · J. de Uña-Álvarez
Department of Statistics and OR, Facultad de Ciencias Económicas y Empresariales,
Universidad de Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain
e-mail: jacobo@uvigo.es

123



766 H.-Y. Liang, J. de Uña-Álvarez

Throughout the paper, x = (x1, . . . , xd) ∈ R
d . For any x, the conditional df of Y

given X = x, is F(y|x) = E[I (Y ≤ y)|X = x], which can be written as

F(y|x) =
∫ y

−∞
f (x, t) dt/ l(x) :def= F1(x, y)

l(x)
, (1)

where f (·, ·) is the probability density function of (X, Y ) (assumed to exist), and
l(·) is assumed to be positive at x. In the context of regression, it is of interest to
estimate F(y|x) and/or the pertaining quantile function θq = inf{y : F(y|x) ≥
q} for q ∈ (0, 1). Indeed, it is well known that the conditional quantile functions
(especially the conditional median function) can give a good description of the data
(cf. Chaudhuri et al. 1997), because of their robustness to heavy-tailed error distribu-
tions and outliers. Many authors have considered this problem under random sampling;
for example Mehra et al. (1991), Fan et al. (1994), and Xiang (1996).

In practice, the response variable Y may be subject to random censoring and/or trun-
cation. This is the case, for example, in regression models with a lifetime as response
variable. Under right-censoring, Dabrowska (1992) established a Bahadur-type rep-
resentation of the kernel quantile estimator; see also Van Keilegom and Veraverbeke
(1998) for the fixed design regression framework or Iglesias-Pérez (2003) for the inclu-
sion of left-truncation. Furthermore, for the censored setup, Xiang (1995) obtained
the deficiency of the sample quantile estimator with respect to a kernel estimator by
using the coverage probability. Ould-Saïd (2006) constructed a kernel estimator of the
conditional quantile under censoring, and established its strong uniform convergence
rate; Liang and de Uña-Álvarez (2011) proved the strong uniform convergence and
asymptotic normality of this estimator under dependence assumptions.

In this paper we are interested in the random left truncation model. Left-truncated
data occur in astronomy, economics, epidemiology and biometry; see Woodroofe
(1985), Feigelson and Babu (1992) and He and Yang (1994). Recently, Ould-Saïd and
Tatachak (2007) constructed a new kernel estimator of the conditional density for the
left-truncation model in the independent data setting. But dependent data may arise
in applications; for example, when sampling clustered lifetimes (family members,
or repeated measurements), see Cai et al. (2000).

There is some literature devoted to conditional df and conditional quantile esti-
mation under dependence. To mention some examples, Cai (2002) investigated the
asymptotic normality and the weak convergence of a weighted Nadaraya–Watson
conditional df and quantile estimator for α-mixing time series. Honda (2000) dealt
with α-mixing processes and proved the uniform convergence and asymptotic nor-
mality of an estimate of θq using the local polynomial fitting method. Ferraty et al.
(2005) considered quantile regression under dependence when the conditioning var-
iable is infinite dimensional. Non-parametric conditional median predictors for time
series based on the double kernel method and the constant kernel method were pro-
posed by Gannoun et al. (2003). A nice extension of the conditional quantile process
theory to set-indexed processes under strong mixing was established in Polonik and
Yao (2002). In addition, Zhou and Liang (2000) reported asymptotic analysis of a ker-
nel conditional median estimator for dependent data. Lecoutre and Ould-Saïd (1995)
provided the uniform strong consistency of a kernel-type estimator of the conditional df
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Empirical likelihood for conditional quantile with left-truncated and dependent data 767

under censoring and strong mixing conditions. However, to the best of our knowledge,
empirical likelihood confidence intervals for the conditional quantile with truncated
and dependent data have not been investigated so far.

In some instances, some auxiliary information about the conditional distribution
function is available in the sense that there exist κ(κ ≥ 1) functions g1(y), . . . , gκ(y)

such that

�(x) = E(g(Y )|X = x) = 0, (2)

where g(y) = (g1(y), . . . , gκ(y))τ is an κ-dimensional vector. This model is of inter-
est in many circumstances where some partial information about the conditional dis-
tribution of the sample is known. For example, for given x, if the conditional mean
m(x) = E(Y |X = x) is known, we have (2) by taking g(y) = y − m(x); if the
conditional distribution is symmetric about a known constant y0 for a given x, then
(2) holds for g(y) = I (y ≥ y0) − 1

2 ; finally, if one knows that a proportion p0 of the
responses falls in a given interval (a, b), i.e., P(a < Y < b|X = x) = p0, then one
can take g(y) = I (a < y < b) − p0.

The empirical likelihood (EL) was introduced by Owen (1988, 1990) for a mean
vector for i.i.d. observations, and has many advantages over normal approximation-
based methods and the bootstrap for constructing confidence intervals (see Hall 1992;
Hall and La Scala 1990). For example, the EL confidence intervals do not have a pre-
determined shape, whereas confidence intervals based on the asymptotic normality of
an estimator have a symmetry implied by asymptotic normality; on the basis of the
coverage probability, the EL method is a competitive and favorable method which
outperforms the Wald-type method and can overcome the under-coverage probability
problem for small sample size (see Zhou and Li 2008); one of the nice features of
the EL method particularly appreciated in censored data analysis is that one can con-
struct confidence intervals without estimating the variance of the statistic; moreover, it
has better performance than the traditional normal approximation (Wald) method (see
Zhao 2011). Furthermore, the EL confidence intervals respect the range of the param-
eter: if the parameter is positive, then the confidence interval contains no negative
values. Another preferred characteristic is that the EL confidence interval is trans-
formation respecting. For complete data setting, the EL methods have been studied
extensively by many authors. We refer the reader to Chen and Hall (1993) for con-
fidence intervals of a quantile; further investigations have been carried out by Zhou
and Jing (2003). Quantile estimation in the context of survey sampling is considered
in Chen and Wu (2002), while confidence intervals of quantiles for weakly dependent
data were constructed by Chen and Wong (2009). Again, an attractive feature of the
EL is that it can be used to make sharper inferences when some auxiliary information
is available (see Chen and Qin 1993; Zhang 1997; Qin and Wu 2001).

In this paper, we propose using the EL for the construction of confidence inter-
vals for θq in the presence and absence of auxiliary information (2), respectively, for
the left-truncation model. It is proved that the EL ratio admits a limiting chi-square
distribution with one degree of freedom when the lifetime observations with multi-
variate covariates form a stationary α-mixing sequence. Hypothesis test for θq shows
that the asymptotic power of the test statistic based on the EL ratio with the auxiliary
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768 H.-Y. Liang, J. de Uña-Álvarez

information (2) is larger than that based on the standard empirical likelihood ratio.
In addition, we investigate through simulations the finite sample performance of the
empirical likelihood confidence intervals in the presence and absence of auxiliary
information.

Recall that a sequence {ξi , i ≥ 1} is said to be α-mixing if the α-mixing coefficient

α(m) := sup
k≥1

sup{|P(AB) − P(A)P(B)| : A ∈ F∞
m+k, B ∈ Fk

1 }

converges to zero as m → ∞, where Fm
l denotes the σ -algebra generated by

ξl , ξl+1, . . . , ξm with l ≤ m. Among various mixing conditions used in the litera-
ture, α-mixing is reasonably weak and is known to be fulfilled for many stochastic
processes including many time series models. Withers (1981) derived the conditions
under which a linear process is α-mixing. In fact, under very mild assumptions, linear
autoregressive and more generally bilinear time series models are strongly mixing with
mixing coefficients decaying exponentially, i.e., α(k) = O(ρk) for some 0 < ρ < 1.
See Doukhan (1994), p. 99, for more details. We only say that the α-mixing has been
used in applications with clustered survival data; for instance, Cai and Kim (2003).

The rest of the paper is organized as follows. Section 2 introduces the empirical
likelihood ratio for the conditional quantile in the presence and absence of auxiliary
information, respectively. Main results are formulated in Sect. 3. A simulation study
is presented in Sect. 4. Section 5 lists some preliminary lemmas, which are used in
the proof of the main results. The proofs of the main results are given in Sect. 6. In
Sect. 7, we collect some known results, which are used in the proof of the preliminary
lemmas. The proofs of the preliminary lemmas are deferred to Sect. 8.

2 Estimator

In order to formalize things, let {(Xk, Yk, Tk), 1 ≤ k ≤ N } be a sequence of random
vectors distributed as (X, Y, T ), where T is the truncation variable. For the compo-
nents of (X, Y, T ), in addition to the assumptions and notation for X and Y made at
the beginning of the Sect. 1, we assume throughout that T and (X, Y ) are indepen-
dent, and that T has continuous df G. Let F(·, ·) be the joint df of the random vector
(X, Y ) ∈ R

d+1. Without loss of generality, we assume that Y and T are both non-
negative random variables, as usual in survival analysis. In the random left-truncation
model, the lifetime Yi is interfered by the truncation random variable Ti in such a way
that both Yi and Ti are observable only when Yi ≥ Ti , whereas neither is observed
if Yi < Ti for i = 1, . . . , N , where the N is the potential sample size. Due to the
occurrence of truncation, the N is unknown, and n (the size of the actually observed
sample) is random with n ≤ N . Let μ = P(Y ≥ T ) be the probability that the
random variable Y is observable. Since μ = 0 implies that no data can be observed,
we suppose throughout the paper that μ > 0. Note that the N is unknown and the
n is known (although random); hence, our results will not be stated with respect to
the probability measure P (related to the N -sample) but will involve the conditional
probability P with respect to the actually observed n-sample instead. Furthermore,
E and E will denote the expectation operators under P and P , respectively. In the
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sequel, the observed sample {(Xi , Yi , Ti ), 1 ≤ i ≤ n} is assumed to be a stationary
α-mixing sequence.

Note that C(y) = P(T ≤ y ≤ Y |Y ≥ T ) = μ−1G(y)[1 − F̃(y)]. Then the empir-
ical estimator of C(y) is defined by Cn(y) = n−1∑n

i=1 I (Ti ≤ y ≤ Yi ). Following
the idea of Lynden-Bell (1971), the non-parametric maximum likelihood estimators
of the dfs F̃ and G are given by

1 − F̃n(y) =
∏

i :Yi ≤y

(
1 − 1

nCn(Yi )

)
and Gn(y) =

∏
i :Ti >y

(
1 − 1

nCn(Ti )

)
.

The estimator of μ is defined (cf. He and Yang 1998) by μn = Gn(y)

[1 − F̃n(y−)]C−1
n (y), where F̃n(y−) denotes the left-limit of F̃n at y.

For any df W , let aW = inf{y : W (y) > 0} and bW = sup{y : W (y) < 1} be its
two endpoints. Since T is independent of (X, Y ), the conditional joint distribution of
(X, Y, T ) is given by

H∗(x, y, t) = P(X ≤ x, Y ≤ y, T ≤ t) = P(X ≤ x, Y ≤ y, T ≤ t |Y ≥ T )

= μ−1
∫

s≤x

∫
aG≤v≤y

G(v ∧ t)F(ds, dv).

Taking t = +∞, the observed pair (X, Y ) then has the following df F∗(·, ·):
F∗(x, y) = H∗(x, y,∞) = μ−1

∫
s≤x

∫
aG≤v≤y G(v)F(ds, dv), which yields that

F(dx, dy) = [μ−1G(y)]−1 F∗(dx, dy) for y > aG . (3)

2.1 Standard empirical likelihood ratio

Note that, by using (A2)(i) and (A7) in Sect. 3, from (3) we have

μ

hd
n

E

{
K

(
x − Xi

hn

)
G−1(Yi )

(
I (Yi ≤ θq) − q

)}

=
∫

Rd
K (s)l(x − hns)

[
E
(
I (Y ≤ θq) |X = x − hns) − q

]
ds → 0,

where K is some kernel function on R
d , (hn)n≥1 ↘ 0 as n ↗ ∞.

This motivates the introduction of the empirical likelihood function H̄ = ∏n
i=1 pi ,

where p1, . . . , pn are subject to the restrictions:

pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi K

(
x − Xi

hn

)
G−1

n (Yi )
(
I (Yi ≤ θq) − q

) = 0. (4)
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The maximum of H̄ can be found via Lagrange multipliers. It may be shown that
H̄max =∏n

i=1 p̄i , where

p̄i = 1

n

1

1 + λ(θq)K
(

x−Xi
hn

)
G−1

n (Yi )(I (Yi ≤ θq) − q)
, i = 1, . . . , n,

and λ(θq) is the solution of the following equation:

n∑
i=1

K
(

x−Xi
hn

)
G−1

n (Yi )(I (Yi ≤ θq) − q)

1 + λ(θq)K
(

x−Xi
hn

)
G−1

n (Yi )(I (Yi ≤ θq) − q)
= 0.

We propose the following empirical log-likelihood ratio function at θq :

l̄n(θq) = 2
n∑

i=1

log

[
1 + λ(θq)K

(
x − Xi

hn

)
G−1

n (Yi )(I (Yi ≤ θq) − q)

]
.

2.2 Empirical likelihood ratio with auxiliary information

By using (3), (2) is equivalent to

E(g(Y )G−1(Y )|X = x) = 0. (5)

To make use of (2), i.e. (5), we introduce the empirical likelihood function H̃ =∏n
i=1 pi , where p1, . . . , pn are subject to the restrictions:

pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi K

(
x − Xi

hn

)
G−1

n (Yi )g(Yi ) = 0. (6)

It may be shown that H̃max =∏n
i=1 p̃i , where

p̃i = 1

n

1

1 + ητ
1 K
(

x−Xi
hn

)
G−1

n (Yi )g(Yi )
, i = 1, . . . , n,

and η1 is the solution of equation
∑n

i=1

K
(

x−Xi
hn

)
G−1

n (Yi )g(Yi )

1+ητ
1 K
(

x−Xi
hn

)
G−1

n (Yi )g(Yi )
= 0. Meanwhile,

we consider the empirical likelihood function Ĥ = ∏n
i=1 pi , where p1, . . . , pn are

subject to the restrictions (4) and (6). It may be shown that Ĥmax =∏n
i=1 p̂i , where

p̂i = 1

n

1

1 + ητ
2(θq)K

(
x−Xi

hn

)
G−1

n (Yi )(gτ (Yi ), I (Yi ≤ θq) − q)τ
, i = 1, . . . , n,
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and η2(θq) is the solution of the following equation:

n∑
i=1

K
(

x−Xi
hn

)
G−1

n (Yi )(gτ (Yi ), I (Yi ≤ θq) − q)τ

1 + ητ
2(θq)K

(
x−Xi

hn

)
G−1

n (Yi )(gτ (Yi ), I (Yi ≤ θq) − q)τ
= 0. (7)

The empirical log-likelihood ratio function at θq with the auxiliary information (2) is
defined by

l̂n(θq) = −2 log
n∏

i=1

p̂i

p̃i

= 2
n∑

i=1

log

[
1 + ητ

2(θq)K

(
x − Xi

hn

)
G−1

n (Yi )
(
gτ (Yi ), I (Yi ≤ θq) − q

)τ]

−2
n∑

i=1

log

[
1 + ητ

1 K

(
x − Xi

hn

)
G−1

n (Yi )g(Yi )

]
.

3 Main results

In the sequel, let C and c denote generic finite positive constants, whose values are
unimportant and may change from line to line. Let C(l) represent the set of continuity
points of function l. The norm of a n1 × n2 matrix A = (ai j )n1×n2 is defined by
‖A‖ = (

∑n1
i=1

∑n2
j=1 a2

i j )
1/2 for n1, n2 ≥ 1. All limits are taken as the sample size

n tends to ∞, unless specified otherwise. Let U (x) represent a neighborhood of x.
Put u(x) = E{G−1(Y )|X = x}, v(x) = E{I (Y ≤ θq)G−1(Y )|X = x}, V (x) =
E{g(Y )gτ (Y )G−1(Y )|X = x} and W (x) = E{g(Y )G−1(Y )[I (Y ≤ θq)− q]|X = x}.

In order to formulate the main results, we need the following assumptions.

(A0) aG < aF̃ and bG < bF̃ .
(A1) For all integers j ≥ 1, the joint density l∗j (·, ·) of X1 and X j+1 w.r.t. P exists

on R
d × R

d and satisfies l∗j (s, t) ≤ C for (s, t) ∈ U (x) × U (x).

(A2) (i) The kernel K (·) is a bounded function with compact support on R
d ;

(ii)
∫
Rd K (x)dx = 1; (iii)

∫
Rd xi1

1 . . . xid
d K (x)dx = 0 for non-negative

integers i1, . . . , id with i1 + · · · + id = 1.
(A3) The sequence α(n) satisfies that

(i) there exist positive integers η := ηn such that η = o((nhd
n)1/2) and

limn→∞(nh−d
n )1/2α(η) = 0;

(ii) there exist r > 2 and δ > 1 − 2/r such that
∑∞

l=1 lδ[α(l)]1−2/r < ∞.

(A4) nr−2hrd
n ≥ c0 > 0, n−1h−d(1+4/r)

n = O(1) and nhd+4
n → 0, where r is the

same as in (A3).
(A5) For 1 ≤ k, l ≤ κ, j ≥ 1 and (s, t) ∈ U (x) × U (x),

(i) E(|gk(Y1)gl(Y1)gk(Y1+ j )gl(Y1+ j )||X1 = s, X1+ j = t) < ∞, E(|gk(Y1)

gk(Y1+ j )||X1 = s, X1+ j = t) < ∞;
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(ii) E(|gk(Y1)gl(Y1+ j )||X1 = s, X1+ j = t) < ∞, E(|gk(Y1)||X1 = s,
X1+ j = t) < ∞ and E(|gk(Y1+ j )||X1 = s, X1+ j = t) < ∞.

(A6) For 1 ≤ k, l ≤ κ, E(|gk(Y )gl(Y )|r |X = s) < ∞ and E(|gk(Y )|r |X = s) < ∞
for s ∈ U (x), where r is the same as in (A3).

(A7) (i) The second partial derivative of �(s) and l(s) is bounded in U (x);
(ii) The second partial derivative with respect to s of F(θq |s)) and l(s) is

bounded in U (x).
(A8) (i) u(s) and v(s) are continuous at x;

(ii) V (s) is continuous at x and V (x) is positive definite;
(iii) W (s) is continuous at x.

(A9) The matrix 
3 in Sect. 5 is positive definite.
(B1) For all integers j ≥ 1, the joint density l∗j (·, ·, ·, ·) of (X1, X j+1, Y1, Y j+1)

w.r.t. P exists on R
d × R

d × R × R and satisfies l∗j (s, t, y1, y2) ≤ C for
(s, t, y1, y2) ∈ U (x) × U (x) × U (θq) × U (θq).

(B2) f (s, y) is continuous at (x, θq) and f (x, θq) > 0.

Remark 1 (a) Condition aG < aF̃ in (A0) implies G(Y ) ≥ G(aF̃ ) > 0, which
ensures Gn(Yi ) �= 0 eventually, so the given empirical log-likelihood ratio func-
tions are well defined for large n. Assumptions (A1), (A5) and (B1) are mainly
technical, which are employed to simplify the calculations of covariances in the
proof of Theorems 1 and 2 below, these assumptions are redundant for the inde-
pendent setting.

(b) Assumptions (A3) and (A4) imply restrictions when choosing the bandwidth.
In order to illustrate the practical implications of these assumptions, choose
hn = cn−1/(d+4)(logn)−1 so nhd+4

n → 0 is satisfied. Then, it is easily seen
that this bandwidth satisfies the two former conditions in (A4), provided that
r > max(4, 2 + d/2). Furthermore, assume α(n) = O(n−λ) for some λ ;
then, (A3) automatically holds if λ is large enough, specifically λ > max(2d +
1, r(d + 1)/(r − 2)) (note that λ can be arbitrarily large if α(k) = O(ρk)

for some 0 < ρ < 1). We see that, in essence, (A3) imposes a relationship
between the degree of dependence in the data and the dimension of the covar-
iates, so high dimensional data could not be handled under strong dependence
(i.e. small λ).

Theorem 1 Suppose that (A0)–(A4), (A7)(ii) and (A8)(i) are satisfied. Let α(n) =
O(n−γ ) for some γ ≥ [r(r + 2)]/[2(r − 2)]. Then l̄n(θq)

D→ χ2
1 , further

l̄n(θn)
D→ χ2

1 (�2) for constant � if (B1) and (B2) are satisfied, where θn =
θq + (nhd

n)−1/2 {[(1−2q)v(x)+q2u(x)]μl(x)
∫
Rd K 2(s)ds}1/2

f (x,θq )
�.

Remark 2 Together with the empirical likelihood ratio test, a Wald-type test statistic
for the conditional quantile may be introduced by using the preliminary Lemmas in
Sects. 5 and 6 below (specifically, Lemmas 5.3(d) and 7.4). However, as discussed
in the Sect. 1, the EL approach avoids the problem of variance estimation while it
performs better when the sample size is small. For these reasons we do not further
develop the Wald approach here.
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Theorem 2 Suppose that (A0)–(A9) are satisfied and that α(n) = O(n−γ ) for some

γ ≥ [r(r + 2)]/[2(r − 2)]. Then l̂n(θq)
D→ χ2

1 , further l̂n(θn)
D→ χ2

1 (ρ2) for con-
stant ρ if (B1) and (B2) are satisfied, where θn is the same as in Theorem 1, and

ρ2 = (1−2q)v(x)+q2u(x)

(1−2q)v(x)+q2u(x)−W τ (x)V −1(x)W (x)
�2.

Remark 3 (a) Choosing 0 < δ < 1, let cδ satisfy P(χ2
1 > cδ) = δ. Then, both of

Īδ = {θ |l̄n(θ) ≤ cδ} and Îδ = {θ |l̂n(θ) ≤ cδ} are level 1 − δ asymptotic confi-
dence intervals of θq . In view of Theorems 1–2, both of Īδ and Îδ have the correct
asymptotic coverage probability 1 − δ, and Îδ reduces to Īδ in the absence of the
auxiliary information (2).

(b) Consider the hypothesis test: H0 : θq = θ0 versus HA : θq = θn , where θn is
defined as in Theorem 1 with θ0 in the place of θq . In view of Theorems 1–2,
{(Xi , Yi , Ti ), 1 ≤ i ≤ n|l̄n(θ0) > cδ} and {(Xi , Yi , Ti ), 1 ≤ i ≤ n|l̂n(θ0) > cδ}
are level δ asymptotic rejective intervals of H0. Furthermore, from Theorems 1–2,
the power of the test is asymptotically, respectively

lim
n→∞ Pθn (l̄n(θ0) > cδ) = lim

n→∞ Pθn (l̄n(θn − �n�) > cδ) = P(χ2
1 (�2) > cδ),

lim
n→∞ Pθn (l̂n(θ0) > cδ) = lim

n→∞ Pθn (l̂n(θn − �n�) > cδ) = P(χ2
1 (ρ2) > cδ),

where �n = (nhd
n)−1/2 {[(1−2q)v(x)+q2u(x)]μl(x)

∫
Rd K 2(s)ds}1/2

f (x,θq )
. Using the fact that

the non-central chi-squared distribution is stochastically increasing in its non-cen-
trality parameter for any given degrees of freedom, we have P(χ2

1 (ρ2) > cδ) ≥
P(χ2

1 (�2) > cδ) since ρ2 ≥ �2. In particular, if W (x) �= 0, then ρ2 > �2,
and hence P(χ2

1 (ρ2) > cδ) > P(χ2
1 (�2) > cδ). These facts indicate that the

empirical likelihood ratio test with auxiliary information (2) has powers at least
as large as the standard empirical likelihood ratio test which does not utilize aux-
iliary information (2), i.e., the asymptotic power of the test statistic based on the
empirical likelihood ratio with the auxiliary information (2) is larger than the one
based on the standard empirical likelihood ratio.

4 Simulation study

In this section, we carry out a simulation study to investigate the finite sample per-
formance of the empirical likelihood confidence intervals for the quantile θq in the
presence and absence of auxiliary information. We consider the cases d = 1 and d = 2,
these are, a real valued covariate and a two-dimensional covariate, respectively.

(a) First, we consider the simulation in the one-dimensional case (d = 1). In order
to obtain a sequence {Xi , Yi , Ti } fulfilling the α-mixing property after truncation, we
generate the observed data as follows.

(1) Drawing of (X1, Y1, T1):
Step 1 Draw e1 ∼ N (0, 1), and take X1 = e1;
Step 2 Compute Y1 from the model Y1 = 1.5X2

1 + sin(π X1) + 0.6ε1, where
ε1 ∼ N (0, 1);
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Step 3 Draw T1 ∼ N (β, 1), where β is adapted in order to get different values
of μ. If Y1 < T1, we reject the datum and go back to Step 2, do this
until Y1 ≥ T1.

(2) Drawing of (X2, Y2, T2):
Step 4 Draw X2 from the AR(1) models X2 = ρX1 +e2, where e2 ∼ N (0, 1)

and |ρ| < 1 is some constant;
Step 5 Compute Y2 from the model Y2 = 1.5X2

2 + sin(π X2) + 0.6ε2, where
ε2 ∼ N (0, 1);

Step 6 Draw T2 ∼ N (β, 1). If Y2 < T2, we reject the datum and go back to
Step 5, do this until Y2 ≥ T2.

By repeating step (2) above, we generate the observed data (Xi , Yi , Ti ), i =
1, . . . , n, where Xi = ρXi−1 + ei , ei ∼ N (0, 1), Yi = 1.5X2

i + sin(π Xi ) + 0.6εi

where εi are i.i.d. random variables with distribution N (0, 1) and Ti ∼ N (β, 1), and
everything is distributed conditionally on Yi ≥ Ti . Besides, the α-mixing property of
the observable Xi is immediately transferred to the (Xi , Yi , Ti ). Obviously, the regres-
sion function is m(x) = E(Y |X = x) = 1.5x2 + sin(πx). Assume that m(1) = 1.5
is known. For illustration of the proposed empirical likelihood method, we use this
as auxiliary information, by considering function g(y) = y − 1.5. The target is θq

with q = 0.5 (i.e. the conditional median). Note that the true value of θq at x = 1
is 1.5. The sample size is n = 300. The Gaussian kernel for K (·), and the bandwidth
hn = 0.3, are used in the computations.

In Table 1 we report the coverage probabilities and average lengths of 95% confi-
dence intervals for θq = 1.5 at point x = 1, constructed from the empirical likelihood
method with ( Îδ) and without ( Īδ) the auxiliary information, along M = 1,000 Monte
Carlo replications. We take ρ = 0.3 and three different values of the truncation
parameter: μ ≈ 0.7, 0.8 and 0.9 (which results in approximately 30, 20 and 10% of
truncation, respectively). At the same time, we also report the achieved coverage prob-
abilities of Īδ and Îδ for θq = 1.4, 1.3, 1.2. These coverage probabilities are identical
to one minus the power of the corresponding empirical likelihood ratio two-sided tests
for the null hypothesis H0 : θq = θ0 at level δ = 0.05.

From Table 1, it can be seen that (i) the average interval lengths of Îδ are smaller than
those of Īδ , i.e., the empirical likelihood confidence interval with the auxiliary infor-
mation improves the standard empirical likelihood confidence interval in the sense of
achieving a certain amount of reduction in interval width; (ii) for values of θq other
than θq = 1.5, the achieved coverage probabilities of Îδ are always lower than those
of Īδ , reflecting that the empirical likelihood ratio test with the auxiliary information is
more powerful than the standard empirical likelihood ratio test; and (iii) both empirical
likelihood methods behave a bit better under lighter truncation proportions.

To study the influence of the dependence of the observations, we consider different
degrees of dependence; specifically, we take ρ = 0.2, 0.4, 0.6 and 0.8 in model (a)
above. We report in Table 2 the coverage probabilities and average lengths of 95%
confidence intervals for the conditional median θq = 1.5 at x = 1 in the presence and
absence of auxiliary information along M = 1,000 Monte Carlo replications, with
μ ≈ 0.9. Table 2 shows that (i) as the dependence of the observations increases (i.e.,
as the value of ρ increases), the attained coverages apart more from the nominal 95%,
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Table 1 Average lengths (AL) and coverage probabilities of 95% confidence intervals (CI) for θq =
1.5 (true) and other θq values (wrong) along 1,000 trials for simulated model (a) and several truncation

proportions (1 − μ): empirical likelihood with ( Îδ) and without ( Īδ) auxiliary information

μ CI AL θq = 1.5 θq = 1.4 θq = 1.3 θq = 1.2

0.7 Īδ 0.3569 0.8890 0.6840 0.3890 0.0810

Îδ 0.2142 0.9030 0.6390 0.2100 0.0030

0.8 Īδ 0.3492 0.9120 0.6890 0.3030 0.0390

Îδ 0.2118 0.9190 0.5880 0.0830 0.0020

0.9 Īδ 0.3163 0.9250 0.6860 0.2430 0.0340

Îδ 0.1941 0.9290 0.6510 0.1450 0.0010

Table 2 Average lengths (AL) and coverage probabilities (CP) of 95% confidence intervals (CI) for θq =
1.5 along 1,000 trials for simulated model (a) and several dependence degrees ρ: empirical likelihood with
( Îδ) and without ( Īδ) auxiliary information

CI ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

AL CP AL CP AL CP AL CP

Īδ 0.3319 0.9130 0.3309 0.9080 0.3601 0.8940 0.3944 0.8590

Îδ 0.2004 0.9250 0.2074 0.9220 0.2156 0.9180 0.2340 0.8720

while the intervals get wider; and (ii) for each fixed ρ, the average interval lengths of
Îδ are smaller than those of Īδ , and the coverage probabilities of Îδ are closer to the
nominal than those of Īδ . This is in accordance with the results displayed in Table 1.

(b) Now, we consider the simulation in the case d = 2. Using the same method
as in (a) above [step (1) and repetition of step (2)], we generate the observed data
(Xi , Yi , Ti ), i = 1, . . . , n, where Xi = (X1,i , X2,i ), from the following model:

Yi = 1.5X2
1,i + sin(π X2,i ) + 0.72εi , X1,i = 0.1X1,i−1 + 0.73e1,i ,

X2,i = 0.4X2,i−1 + 0.8e2,i ,

where e1,i , e2,i and εi are i.i.d. random variables with distribution N (0, 1) and Ti ∼
N (β, 1), and everything is distributed conditionally on Yi ≥ Ti . From Lemma 2
of Cai (2001), it follows that {Xi } is a sequence of α-mixing random variables. As
before, the α-mixing property of the Xi is immediately transferred to the (Xi , Yi , Ti ).
The true regression function is given by m(x) = E(Y |X = x) = 1.5x2

1 + sin(πx2) at
x = (x1, x2), and the conditional median coincides with m(x). Assume that m(1, 1) =
1.5 is known. Hence, for the proposed empirical likelihood method, we introduce
the auxiliary information through the functiong(y) = y − 1.5. The product kernel
K (x1)K (x2) with a Gaussian K (·) is used. We consider n = 300 as sample size and
the bandwidth hn = 0.33. Similarly as in Table 1 for the one-dimensional case, in
Table 3 the coverage proportions and average lengths of the empirical likelihood 95%
confidence intervals (with and without the auxiliary information) for q = 0.5 and
θq = 1.5 [which is true value of θq at x = (1, 1)], as well as for θq = 1.8, 2.1, 2.4,
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Table 3 Average lengths (AL) and coverage probabilities of 95% confidence intervals (CI) for θq = 1.5
(true) and other θq values (wrong) along 1,000 trials for simulated model (b) and several truncation pro-

portions (1 − μ): empirical likelihood with ( Îδ) and without ( Īδ) auxiliary information

μ CI AL θq = 1.5 θq = 1.8 θq = 2.1 θq = 2.4

0.7 Īδ 1.1645 0.8460 0.5770 0.2710 0.0730

Îδ 0.6712 0.8960 0.5550 0.1120 0.0060

0.8 Īδ 1.1872 0.8860 0.6460 0.3380 0.1020

Îδ 0.6639 0.9100 0.5420 0.1150 0.0050

0.9 Īδ 1.1848 0.9020 0.6750 0.3510 0.1180

Îδ 0.6656 0.9150 0.5630 0.0980 0.0040

are reported. As above, we take three different values for the truncation parameter
(μ ≈ 0.7, 0.8 and 0.9) and 1,000 Monte Carlo replications.

From Table 3, it can be seen that the relative performance of the two empirical
likelihood confidence intervals Îδ and Īδ for d = 2 is similar to that corresponding
to the case d = 1. We can also get similar conclusions about the influence of the
truncation proportion and of the chosen value for θq . Indeed, the numerical results in
Table 3 suggest that the introduction of the auxiliary information in the construction
of the confidence interval has more relevance in the two-dimensional case, both in
terms of interval length reduction and statistical power.

5 Preliminary lemmas

Let w1in(θ) = K
(

x−Xi
hn

)
G−1

n (Yi )(I (Yi ≤ θ) − q), w1i (θ) = K
(

x−Xi
hn

)
G−1(Yi )

(I (Yi ≤ θ) − q),

w2in = K

(
x − Xi

hn

)
G−1

n (Yi )g(Yi ), w2i = K

(
x − Xi

hn

)
G−1(Yi )g(Yi ),

w3in(θ) = K
(

x−Xi
hn

)
G−1

n (Yi )(gτ (Yi ), I (Yi ≤ θ) − q)τ , and w3i (θ) = K
(

x−Xi
hn

)

G−1(Yi )(gτ (Yi ), I (Yi ≤ θ) − q)τ . Then wlin(θ) = wli (θ)
[
1 + G(Yi )−Gn(Yi )

Gn(Yi )

]
(l = 1, 2, 3). Set


1 = [(1 − 2q)v(x) + q2u(x)]μl(x)

∫
Rd

K 2(s)ds, 
2 = μl(x)V (x)

∫
Rd

K 2(s)ds

and 
3 =
(

V (x) W (x)

W τ (x) (1 − 2q)v(x) + q2u(x)

)
μl(x)

∫
Rd K 2(s)ds.

Lemma 1 Suppose that (A0)–(A9) are satisfied. Let α(n) = O(n−γ ) for some γ ≥
[r(r + 2)]/[2(r − 2)]. Set �n = μ

nhd
n

∑n
i=1 w3i (θq)wτ

3i (θq). Then

(a) �n = 
3/μ + op(1); (b) η2(θq) = Op((nhd
n)−1/2);
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(c) η2(θq)=�−1
n · μ

nhd
n

∑n
i=1 w3i (θq)+op((nhd

n)−1/2); (d) μ√
nhd

n

∑n
i=1 w3i (θq)

D→
N (0, 
3).

Further, let θn = θq + (nhd
n)−1/2c1 for some c1 > 0. Assume that (B1) and (B2) are

satisfied, then (a)–(c) still hold for θq = θn, and μ√
nhd

n

∑n
i=1 w3i (θn)

D→ N (φ,
3)

with φ = (0τ , c1 f (x, θq))τ .

Lemma 2 Suppose that (A0)–(A6), (A7)(i) and (A8)(ii) are satisfied. Let α(n) =
O(n−γ ) for some γ ≥ [r(r + 2)]/[2(r − 2)], then

(a) μ

nhd
n

∑n
i=1 w2iw

τ
2i = 
2/μ + op(1); (b) η1 = Op((nhd

n)−1/2);

(c) η1 =
(

μ

nhd
n

∑n
i=1 w2iw

τ
2i

)−1 · μ

nhd
n

∑n
i=1 w2i +op((nhd

n)−1/2);

(d) μ√
nhd

n

∑n
i=1 w2i

D→ N (0, 
2).

Lemma 3 Suppose that (A0)–(A4), (A7)(ii) and (A8)(i) are satisfied. Letα(n) =
O(n−γ ) for some γ ≥ r2/(r − 2), then

(a) μ

nhd
n

∑n
i=1 w2

1i (θq) = 
1/μ + op(1); (b) λ(θq) = Op((nhd
n)−1/2);

(c) λ(θq) =
(

μ

nhd
n

∑n
i=1 w2

1i (θq)
)−1 · μ

nhd
n

∑n
i=1 w1i (θq) + Op((nhd

n)−1);

(d) μ√
nhd

n

∑n
i=1 w1i (θq)

D→ N (0, 
1).

Further, let θn = θq + (nhd
n)−1/2c1 for some c1 > 0. Assume that (B1) and

(B2) are satisfied, then (a)-(c) still hold for θq = θn, and μ√
nhd

n

∑n
i=1 w1i (θn)

D→
N (c1 f (x, θq),
1).

Lemma 4 (Srivastava and Khatri 1979, p. 64, Corollary 2.11.2) Let Ap×p be a sym-
metric matrix with Rank(A) = k, X ∼ N (μ0, 
p×p), where 
 is a positive definite
matrix and matrix 
 A is idempotent. Then X τ AX ∼ χ2

k (μτ
0 Aμ0).

6 Proof of main results

Proof of Theorem 1 First we prove l̄n(θq)
D→ χ2

1 . By Taylor’s expansion we have

l̄n(θq) = 2λ(θq)

n∑
i=1

w1i (θq) − λ2(θq)

n∑
i=1

w2
1i (θq)

+2λ(θq)

n∑
i=1

w1i (θq)
G(Yi ) − Gn(Yi )

Gn(Yi )

−λ2(θq)

n∑
i=1

w2
1i (θq)

[
2

G(Yi ) − Gn(Yi )

Gn(Yi )
+
(

G(Yi ) − Gn(Yi )

Gn(Yi )

)2
]

+O

(
|λ(θq)|3 max

1≤i≤n
|w1in(θq)|

n∑
i=1

w2
1i (θq)

(
1+ G(Yi )−Gn(Yi )

Gn(Yi )

)2
)

. (8)
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Since E |w1i (θq)|r < ∞ from (A2)(i), max1≤i≤n |w1i (θq)| = o(n1/r ) a.s. from the
proof of Lemma 3 in Owen (1990). In view of (3), from (A2)(i) and (A7)(ii) we have

1
nhd

n

∑n
i=1 E |w1i (θq)| = O(1), which implies 1

nhd
n

∑n
i=1 |w1i (θq)| = Op(1). Hence,

in view of Lemmas 3 and 8 we obtain that
∣∣∣∣∣λ(θq)

n∑
i=1

w1i (θq)
G(Yi ) − Gn(Yi )

Gn(Yi )

∣∣∣∣∣

≤
|λ(θq)| supy≥aF̃

|Gn(y) − G(y)|
G(aF̃ ) − supy≥aF̃

|Gn(y) − G(y)|
n∑

i=1

|w1i (θq)| = op(1), (9)

∣∣∣∣∣λ2(θq)

n∑
i=1

w2
1i (θq)

[
2

G(Yi ) − Gn(Yi )

Gn(Yi )
+
(

G(Yi ) − Gn(Yi )

Gn(Yi )

)2
]∣∣∣∣∣ = op(1), (10)

|λ(θq)|3 max
1≤i≤n

|w1in(θq)|
n∑

i=1

w2
1i (θq)

(
1 + G(Yi ) − Gn(Yi )

Gn(Yi )

)2

= op((n
r−2hrd

n )−1/2r ) = op(1). (11)

Therefore, using (a) and (d) in Lemmas 3, (8)–(11) yield that

l̄n(θq) =
(

μ2

nhd
n

n∑
i=1

w2
1i (θq)

)−1 (
μ√
nhd

n

n∑
i=1

w1i (θq)

)2

+ op(1)
D→ χ2

1 .

Next we prove l̄n(θn)
D→ χ2

1 (�2). Lemma 3 shows that μ√
nhd

n

∑n
i=1 w1i (θn)

D→
N (c1 f (x, θq),
1), where c1 = {[(1−2q)v(x)+q2u(x)]μl(x)

∫
Rd K 2(s)ds}1/2

f (x,θq )
�. Note that

(c1 f (x, θq))2
−1
1 = �2. So, by using Lemma 4, similarly to the arguments as in

(8)–(11) one can get

l̄n(θn) =
(

μ2

nhd
n

n∑
i=1

w2
1i (θn)

)−1 (
μ√
nhd

n

n∑
i=1

w1i (θn)

)2

+ op(1)
D→ χ2

1 (�2).

��
Proof of Theorem 2 First we prove l̂n(θq)

D→ χ2
1 . By Taylor’s expansion we have

l̂n(θq) = 2
n∑

i=1

log[1 + ητ
2(θq)w3in(θq)] − 2

n∑
i=1

log[1 + ητ
1w2in]

=
{

2ητ
2(θq)

n∑
i=1

w3i (θq) − ητ
2(θq)

(
n∑

i=1

w3i (θq)wτ
3i (θq)

)
η2(θq)

}
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−
{

2ητ
1

n∑
i=1

w2i − ητ
1

(
n∑

i=1

w2iw
τ
2i

)
η1

}

+2ητ
2(θq)

n∑
i=1

w3i (θq)
G(Yi ) − Gn(Yi )

Gn(Yi )
+ O

(
n∑

i=1

|ητ
2(θq)w3in(θq)|3

)

−ητ
2(θq)

[
n∑

i=1

w3i (θq)wτ
3i (θq)

(
2

G(Yi ) − Gn(Yi )

Gn(Yi )

+
(

G(Yi ) − Gn(Yi )

Gn(Yi )

)2
)]

η2(θq) − 2ητ
1

n∑
i=1

w2i
G(Yi ) − Gn(Yi )

Gn(Yi )

+O

(
n∑

i=1

|ητ
1w2in|3

)
+ ητ

1

[
n∑

i=1

w2iw
τ
2i

(
2

G(Yi ) − Gn(Yi )

Gn(Yi )

+
(

G(Yi ) − Gn(Yi )

Gn(Yi )

)2
)]

η1. (12)

From (3), (A2)(i) and (A6) we have μ

nhd
n

∑n
i=1 E‖w3i (θq)‖ = O(1), then

μ

nhd
n

∑n
i=1 ‖w3i (θq)‖ = Op(1). Similarly, μ

nhd
n

∑n
i=1 ‖w3i (θq)‖2 = Op(1),

μ

nhd
n

∑n
i=1

‖w2i‖ = Op(1) and μ

nhd
n

∑n
i=1 ‖w2i‖2 = Op(1). Note that w3in(θq) = w3i (θq)[1 +

(G(Yi ) − Gn(Yi ))/Gn(Yi )], so from Lemmas 1–2 and 8 it follows that

∣∣∣∣∣ητ
2(θq)

n∑
i=1

w3i (θq)
G(Yi ) − Gn(Yi )

Gn(Yi )

∣∣∣∣∣

≤
‖η2(θq)‖ supy≥aF̃

|Gn(y) − G(y)|
G(aF̃ ) − supy≥aF̃

|Gn(y) − G(y)|
n∑

i=1

‖w3i (θq)‖ = op(1), (13)

and by using (23) in Sect. 8

n∑
i=1

|ητ
2(θq)w3in(θq)|3 = op(1),

∣∣∣∣∣ητ
1

n∑
i=1

w2i
G(Yi ) − Gn(Yi )

Gn(Yi )

∣∣∣∣∣ = op(1),

n∑
i=1

|ητ
1w2in|3 = op(1), (14)

∣∣∣∣∣ητ
2(θq)

[
n∑

i=1

w3i (θq)wτ
3i (θq)

(
2

G(Yi )−Gn(Yi )

Gn(Yi )
+
(

G(Yi )−Gn(Yi )

Gn(Yi )

)2
)]

η2(θq)

∣∣∣∣∣
= op(1), (15)
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∣∣∣∣∣ητ
1

[
n∑

i=1

w2iw
τ
2i

(
2

G(Yi ) − Gn(Yi )

Gn(Yi )
+
(

G(Yi ) − Gn(Yi )

Gn(Yi )

)2
)]

η1

∣∣∣∣∣ = op(1).

(16)

Therefore, on applying Lemmas 1, 2, from (12)–(16) we have

l̂n(θq) =
(

μ√
nhd

n

n∑
i=1

w3i (θq)

)τ(
μ2

nhd
n

n∑
i=1

w3i (θq)wτ
3i (θq)

)−1(
μ√
nhd

n

n∑
i=1

w3i (θq)

)

−
(

μ√
nhd

n

n∑
i=1

w2i

)τ (
μ2

nhd
n

n∑
i=1

w2iw
τ
2i

)−1 (
μ√
nhd

n

n∑
i=1

w2i

)
+ op(1)

=
(

μ√
nhd

n

n∑
i=1

w3i (θq)

)τ

�

(
μ√
nhd

n

n∑
i=1

w3i (θq)

)
+ op(1),

where � =
(


−1
3 −

(

−1

2 0
0 0

))
. Note that �
3 is an idempotent matrix, and

Rank(�) = Rank(�
3) = 1. Therefore l̂n(θq)
D→ χ2

1 by Lemmas 1 and 4.

Next we verify l̂n(θn)
D→ χ2

1 (ρ2). Since μ√
nhd

n

∑n
i=1 w3i (θn)

D→ N (φ,
3) with

φ = (0τ , c1 f (x, θq))τ and φτ�φ = (1−2q)v(x)+q2u(x)

(1−2q)v(x)+q2u(x)−W τ (x)V −1(x)W (x)
�2 = ρ2,

on applying Lemmas 1 and 4, from l̂n(θn) = (
μ√
nhd

n

∑n
i=1 w3i (θq))τ�(

μ√
nhd

n

∑n
i=1

w3i (θq)) + op(1), we obtain that l̂n(θn)
D→ χ2

1 (ρ2). ��
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7 Appendix A

Lemma 5 (Volkonskii and Rozanov 1959) Let V1, . . . , Vm be α-mixing random vari-
ables measurable with respect to the σ -algebra F j1

i1
, . . . ,F jm

im
, respectively, with

1 ≤ i1 < j1 < · · · < jm ≤ n, il+1 − jl ≥ w ≥ 1 and |Vj | ≤ 1 for l, j = 1, 2, . . . , m.
Then |E(

∏m
j=1 Vj ) −∏m

j=1 EVj | ≤ 16(m − 1)α(w), where Fb
a = σ {Vi , a ≤ i ≤ b}

and α(w) is the mixing coefficient.

Lemma 6 (Hall and Heyde 1980, Corollary A.2, p. 278) Suppose that X and Y are
random variables such that E |X |p < ∞, E |Y |q < ∞, where p, q >1, p−1+q−1 <1.
Then

|E XY − E X EY | ≤ 8‖X‖p‖Y‖q

{
sup

A∈σ(X),B∈σ(Y )

|P(A ∩ B) − P(A)P(B)|
}1−p−1−q−1

.
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Lemma 7 (Shao and Yu 1996, Theorem 4.1) Let 2 < p < q ≤ ∞, 2 < λ ≤ q
and {Xn, n ≥ 1} be an α-mixing sequence of random variables with E Xn = 0 and
the mixing coefficients {α̂( j)}. Assume that α̂(n) ≤ Cn−γ for some C > 0 and
γ > 0. Then there exists Q = Q(p, q, λ, γ, C) < ∞ such that E |∑n

i=1 Xi |p ≤
Qn p/2 max1≤i≤n ‖Xi‖p

q if γ ≥ pq/[2(q − p)].

Lemma 8 (Liang et al. 2011) Suppose that α(n) = O(n−γ ) for some γ > 3. Then,
under (A0) we have supy≥aF̃

|Gn(y) − G(y)| = Op(n−1/2).

8 Appendix B

Proof of Lemma 1 (a) It is easy to see that

�n = μ

nhd
n

n∑
i=1

K 2
(

x − Xi

hn

)
G−2(Yi )

(
g(Yi )g

τ (Yi ) g(Yi )(I (Yi ≤ θq ) − q)

gτ (Yi )(I (Yi ≤ θq ) − q) (I (Yi ≤ θq ) − q)2

)
.

It is easy to verify that E�n = μ

nhd
n

∑n
i=1 E(w3i (θq)wτ

3i (θq)) = 
3/μ + o(1). Then,

according to Xn = E Xn + Op(
√

VarXn), to prove (a) we need only to prove that
Var(�n) → 0, further it suffices to show that for 1 ≤ k, l ≤ κ

Pn :=Var

(
μ

nhd
n

n∑
i=1

K 2
(

x − Xi

hn

)
G−2(Yi )gk(Yi )gl(Yi )

)
= O((nhd

n)−1)→0;

(17)

Var

(
μ

nhd
n

n∑
i=1

K 2
(

x−Xi

hn

)
G−2(Yi )gk(Yi )(I (Yi ≤ θq)−q)

)
= O((nhd

n)−1)→0;

(18)

Var

(
μ

nhd
n

n∑
i=1

K 2
(

x − Xi

hn

)
G−2(Yi )(I (Yi ≤ θq) − q)2

)
= O((nhd

n)−1)→0.

(19)

We prove only (17), the proofs of (18) and (19) are similar. Write

Pn =
(

μ

nhd
n

)2
{

n∑
i=1

Var

(
K 2
(

x − Xi

hn

)
gk(Yi )gl(Yi )

G2(Yi )

)

+
∑
i �= j

Cov

(
K 2
(

x − Xi

hn

)
gk(Yi )gl(Yi )

G2(Yi )
, K 2

(
x − X j

hn

)
gk(Y j )gl(Y j )

G2(Yi )

)⎫⎬
⎭

:= P1n + P2n .
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From (3), (A2)(i) and (A6) it is easy to verify that P1n = O((nhd
n)−1). Let ξi =

μ

hd
n

K 2
(

x−Xi
hn

)
gk (Yi )gl (Yi )

G2(Yi )
. For i < j , applying (A1), (A2)(i) and (A5)–(A6) we have

|Cov(ξi , ξ j )| =
∣∣∣∣ μ

2

h2d
n

∫
Rd

∫
Rd

K 2
(

x − s
hn

)
K 2
(

x − t
hn

)

×E

(
gk(Yi )gl(Yi )gk(Y j )gl(Y j )

G2(Yi )G2(Y j )

∣∣∣∣Xi = s, X j = t

)
l∗j−i (s, t)dsdt

− μ2

h2d
n

(∫
Rd

K 2
(

x − s
hn

)
E

(
gk(Y )gl(Y )

G(Y )
|X = s) l(s)ds

)2
∣∣∣∣∣ = O(1).

(20)

On the other hand, from Lemma 6 it follows that |Cov(ξi , ξ j )| ≤ C[α( j −
i)]1−2/r (E |ξi |r )2/r and E |ξi |r = O(h−d(r−1)

n ). Then from (A3)(ii) we have

P2n = 1

n2

⎧⎨
⎩

∑
|i− j |≤[h−d

n ]
+

∑
|i− j |>[h−d

n ]

⎫⎬
⎭Cov(ξi , ξ j ) = O((nhd

n)−1).

(b) Write η2(θq) = λβ2(θq), where λ ≥ 0 and ‖β2(θq)‖ = 1. From (7) we find

0 ≥ λβτ
2 (θq)�nβ(θq)

1 + λ max1≤i≤n |βτ
2 (θq)w3in(θq)| −

∣∣∣∣∣βτ
2 (θq) · μ

nhd
n

n∑
i=1

w3i (θq)

∣∣∣∣∣

−
supy≥aF̃

|Gn(y) − G(y)|
G(aF̃ ) − supy≥aF̃

|Gn(y) − G(y)|

(
μ

nhd
n

n∑
i=1

|βτ
2 (θq)w3i (θq)|

+ 2λβτ
2 (θq)�nβ(θq)

1+λ max1≤i≤n |βτ
2 (θq)w3in(θq)|

)
−
(

supy≥aF̃
|Gn(y)−G(y)|

G(aF̃ )−supy≥aF̃
|Gn(y) − G(y)|

)2

λβτ
2 (θq)�nβ(θq)

1 + λ max1≤i≤n |βτ
2 (θq)w3in(θq)| . (21)

Note that 
3 is positive definite by (A9). (a) implies βτ
2 (θq)�nβ2(θq) ≥ t0 + op(1)

where t0 is the smallest eigenvalue of 
3/μ, (d) follows μ

nhd
n

∑n
i=1 w3i (θq) =

Op((nhd
n)−1/2), and it is easy to verify that μ

nhd
n

∑n
i=1 |βτ

2 (θq)w3i (θq)| = Op(1).

Therefore, from (21) and Lemma 8 we obtain that

λ

1 + λ max1≤i≤n |βτ
2 (θq)w3in(θq)| = Op((nhd

n)−1/2). (22)
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Since E |βτ
2 (θq)w3i (θq)|r < ∞ from (A2)(i) and (A6), max1≤i≤n |βτ

2 (θq)w3i (θq)| =
o(n1/r ) a.s. from the proof of Lemma 3 in Owen (1990). Hence, from Lemma 8
we have

max
1≤i≤n

|βτ
2 (θq)w3in(θq)| ≤ max

1≤i≤n
|βτ

2 (θq)w3i (θq)|

×
(

1 +
supy≥aF̃

|Gn(y) − G(y)|
G(aF̃ ) − supy≥aF̃

|Gn(y) − G(y)|

)
= op(n

1/r ).

Therefore, nr−2hrd
n ≥ c0 > 0 and (22) yield that λ = Op((nhd

n)−1/2), η2(θq) =
Op((nhd

n)−1/2), and

max
1≤i≤n

|ητ
2(θq)w3in(θq)| = Op((nhd

n)−1/2)op(n
1/r ) = op(1). (23)

(c) From (7) we write

0 = μ

nhd
n

n∑
i=1

w3i (θq) + μ

nhd
n

n∑
i=1

w3i (θq)
G(Yi ) − Gn(Yi )

Gn(Yi )
− �nη2(θq)

− μ

nhd
n

n∑
i=1

w3i (θq)w3i (θq)τ η2(θq)

[
2

G(Yi )−Gn(Yi )

Gn(Yi )
+
(

G(Yi )−Gn(Yi )

Gn(Yi )

)2
]

+ μ

nhd
n

n∑
i=1

w3in(θq)(ητ
2(θq)w3in(θq))2

1 + ητ
2(θq)w3in(θq)

. (24)

Using (A6) and (A2)(i) it follows that μ

nhd
n

∑n
i=1 ‖w3i (θq)‖2 = Op(1) and

μ

nhd
n

∑n
i=1 ‖w3i (θq)‖ = Op(1). Hence, in view of max1≤i≤n ‖w3i (θq)‖=o(n1/r ) a.s.,

(b) and (23) we have

μ

nhd
n

n∑
i=1

‖w3i (θq)w3i (θq)τ η2(θq)‖ ≤ μ

nhd
n

n∑
i=1

‖w3i (θq)‖2‖ητ
2(θq)‖

= Op((nhd
n)1/2)

∥∥∥∥∥
μ

nhd
n

n∑
i=1

w3in(θq)(ητ
2(θq)w3in(θq))2

1 + ητ
2(θq)w3in(θq)

∥∥∥∥∥ = op((nhd
n)−1/2).

Therefore, on applying Lemma 8, from (24) it follows that η2(θq) = �−1
n ·

μ

nhd
n

∑n
i=1 w3i (θq) + op((nhd

n)−1/2).

(d) It suffices to show that μ√
nhd

n

∑n
i=1[w3i (θq) − Ew3i (θq)] D→ N (0, 
3),

μ√
nhd

n∑n
i=1 Ew3i (θq) → 0. In order to prove μ√

nhd
n

∑n
i=1 Ew3i (θq) → 0, we need only to

verify that
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I1n(x) := μ√
nhd

n

n∑
i=1

E

(
K

(
x − Xi

hn

)
G−1(Yi )(I (Yi ≤ θ) − q)

)
→ 0

and I2n(x) := μ√
nhd

n

∑n
i=1 E(K (

x−Xi
hn

)G−1(Yi )g(Yi )) → 0. By using (3) and (2),

from (A2)(iii) and (A7) we have I1n(x) = (nhd
n)1/2

∫
Rd K (s)l(x − hns)[E(I (Y ≤

θq)|X = x − hns) − q]ds = O(nhd+4
n )1/2 → 0. Similarly, I2n(x) → 0.

Next we prove μ√
nhd

n

∑n
i=1[w3i (θq) − Ew3i (θq)] D→ N (0, 
3), it is sufficient to

prove that for a = (a1, . . . , aκ , aκ+1)
τ := (ãτ , aκ+1)

τ �= 0,
μaτ√

nhd
n

∑n
i=1[w3i (θq) −

Ew3i (θq)] D→ N (0, aτ
3a).
Note that (A3)(i) implies that there exists a sequence of positive integers δn → ∞

such that δnη = o((nhd
n)1/2), δn(nh−d

n )1/2α(η) → 0. Let π := πn = [ n
β+η

], β :=
βn = [(nhd

n)1/2/δn]. Then

η/β → 0, πα(η) → 0, πη/n → 0, β/n → 0, β/(nhd
n)1/2 → 0. (25)

Next partition the set {1, 2, . . . , n} into 2πn + 1 subsets with large blocks of size
β := βn and small blocks of size η := ηn . Let ymn, y′

mn and y′′
wn be defined as

follows:

ymn =
km+β−1∑

i=km

μaτ√
hd

n

(w3i (θq) − Ew3i (θq)),

y′
mn =

lm+η−1∑
j=lm

μaτ√
hd

n

(w3i (θq) − Ew3i (θq)),

where y′′
πn =∑n

k=π(β+η)+1
μaτ√

hd
n
(w3i (θq)−Ew3i (θq)), km = (m−1)(β+η)+1, lm =

(m − 1)(β + η) + β + 1, m = 1, . . . , π . Then

μaτ√
nhd

n

n∑
i=1

[w3i (θq) − Ew3i (θq)] = n−1/2

{
π∑

m=1

ymn +
π∑

m=1

y′
mn + y′′

πn

}

:= n−1/2 {S′
n + S′′

n + S′′′
n

}
.

Hence, it suffices to show that

n−1 E(S′′
n )2 → 0, n−1 E(S′′′

n )2 → 0, Var(n−1/2S′
n) → aτ
3a, (26)∣∣∣∣∣E exp

(
i t

π∑
m=1

n−1/2 ymn

)
−

π∏
m=1

E exp(i tn−1/2 ymn)

∣∣∣∣∣→ 0, (27)

gn(ε) = 1

n

π∑
m=1

Ey2
mn I (|ymn| > ε

√
n) → 0 ∀ε > 0. (28)
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We first establish (26). Note that

1

n
E(S′′

n )2 = 1

n

π∑
m=1

lm+η−1∑
i=lm

Var
(
μh−d/2

n aτw3i (θq)
)

+ 2

n

∑
1≤i< j≤π

Cov(y′
in, y′

jn)

+2

n

π∑
m=1

∑
lm≤i< j≤lm+η−1

Cov
(
μh−d/2

n aτw3i (θq), μh−d/2
n aτw3 j (θq)

)

:= J1n(x) + J2n(x) + J3n(x).

It is not difficult to verify that

Var
(
μh−d/2

n aτw3i (θq)
)

= aτ
3a + o(1), (29)

which yields that J1n(x) = O(πq/n) = o(1) from (25). Since both of J2n(x) and
J3n(x) are bounded by 2

n

∑
1≤i< j≤n |Cov(μh−d/2

n aτw3i (θq), μh−d/2
n aτw3 j (θq))|,

to prove |J2n(x)| = o(1) and |J3n(x)| = o(1), it suffices to show that

1

nhd
n

∑
1≤i< j≤n

|Cov(aτw3i (θq), aτw3 j (θq))| → 0. (30)

Next, let cn (specified below) be a sequence of integers such that cn → ∞ and
cnhd

n → 0. Write

1

nhd
n

∑
1≤i< j≤n

|Cov(aτw3i (θq), aτw3 j (θq))|

= 1

nhd
n

∑
0< j−i≤cn

|Cov(aτw3i (θq), aτw3 j (θq))|

+ 1

nhd
n

∑
j−i>cn

|Cov(aτw3i (θq), aτw3 j (θq))|. (31)

Note that Cov(aτw3i (θq), aτw3 j (θq)) = aτ
(

E(w3i (θq)wτ
3 j (θq))

)
a −

(
E(aτw3i

(θq))
)2

and

w3i (θq)wτ
3 j (θq) =

K
(

x−Xi
hn

)
K
(

x−X j
hn

)

G(Yi )G(Y j )

×
(

g(Yi )gτ (Y j ) g(Yi )(I (Y j ≤ θq) − q)

gτ (Y j )(I (Yi ≤ θq) − q) (I (Yi ≤ θq) − q)(I (Y j ≤ θq) − q)

)
.
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Similarly to the arguments as in (20), for 1 ≤ k, l ≤ κ we have

E

∣∣∣∣∣∣
K
(

x−Xi
hn

)
K
(

x−X j
hn

)

G(Yi )G(Y j )
gk(Yi )gl(Y j )

∣∣∣∣∣∣ = O(h2d
n ),

E

∣∣∣∣∣∣
K
(

x−Xi
hn

)
K
(

x−X j
hn

)

G(Yi )G(Y j )
gk(Yi )(I (Y j ≤ θq) − q)

∣∣∣∣∣∣ = O(h2d
n ),

E

∣∣∣∣∣∣
K
(

x−Xi
hn

)
K
(

x−X j
hn

)

G(Yi )G(Y j )
(I (Yi ≤ θq) − q)(I (Y j ≤ θq) − q)

∣∣∣∣∣∣ = O(h2d
n ).

Then from [E(aτw3i (θq))]2 = O(h2d
n ) we have |Cov(aτw3i (θq), aτw3 j (θq))| =

O(h2d
n ), further

1

nhd
n

∑
0< j−i≤cn

|Cov(aτw3i (θq), aτw3 j (θq))| = O(cnhd
n) → 0. (32)

On the other hand, from Lemma 6 we have |Cov(aτw3i (θq), aτw3 j (θq))| ≤ C[α( j −
i)]1−2/r (E |aτw3i (θq)|r )2/r and E |aτw3i (θq)|r = O(hd

n). Therefore, choose cn =
h−d(1−2/r)/δ

n and in view of (A3)(ii) we obtain that 1
nhd

n

∑
j−i>cn

|Cov(aτw3i (θq),

aτw3 j (θq))| ≤ Cc−δ
n h−d(1−2/r)

n
∑∞

l=cn
lδ[α(l)]1−2/r → 0, which, together with (31)

and (32), yields (30).
Similarly, from (29), (30) and πβ/n → 1 it is easy to show that n−1 E(S′′′

n )2 → 0
and Var(n−1/2S′

n) → aτ
3a. As to (27), according to Lemma 5 we have

∣∣∣∣∣E exp

(
i t

π∑
m=1

n−1/2 ymn

)
−

π∏
m=1

E exp
(

i tn−1/2 ymn

)∣∣∣∣∣ ≤ 16πα(η + 1),

which tends to zero by (25).
Finally, we establish (28). In Lemma 7, taking p = 1 + r/2, λ = q = r , then

γ ≥ pq/[2(q − p)] = [r(r + 2)]/[2(r − 2)], and from E |aτw3i (θq)|r = O(hd
n)

we have

Ey2
mn I (|ymn| > ε

√
n)

≤ ε1−r/2n−(r−2)/4 E |ymn|1+r/2 ≤ Cn−(r−2)/4β(2+r)/4hd(4−r2)/4r
n .

Therefore, (A4) and δn → ∞ yield that gn(ε) ≤ Cδ
−(r−2)/4
n (n−1h−d(1+4/r)

n )(r−2)/8

→ 0.
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(e) We first prove that

μ√
nhd

n

n∑
i=1

K

(
x − Xi

hn

)
G−1(Yi )I (θq < Yi ≤ θn) = c1 f (x, θq) + op(1). (33)

Put ξi = K
(

x−Xi
hn

)
G−1(Yi )I (θq < Yi ≤ θn). The proof follows the line as in (a). In

view of x ∈ C(l), (A2)(ii) and (B2), from (3) we have

μ√
nhd

n

n∑
i=1

Eξi = c1 f (x, θq) + o(1). (34)

Note that μ2

nhd
n

∑n
i=1 Var(ξi ) = O((nhd

n)−1/2) and |Cov(ξi , ξ j )| ≤ C min{hd
n/n,

hd
n/n)1/r [α( j − i)]1−2/r }. Then, from (A3) (ii) it follows that

Var

(
μ√
nhd

n

n∑
i=1

ξi

)

= μ2

nhd
n

⎧⎨
⎩

n∑
i=1

Var(ξi ) +
⎛
⎝ ∑

0< j−i≤[(n/hd
n )1/2]

+
∑

j−i>[(n/hd
n )1/2]

⎞
⎠Cov(ξi , ξ j )

⎫⎬
⎭

= O((nhd
n)−1/2). (35)

Therefore, (34) and (35) yield (33). Note that

n∑
i=1

w3i (θn) =
n∑

i=1

w3i (θq) +
(

0τ ,

n∑
i=1

K

(
x − Xi

hn

)
G−1(Yi )I (θq < Yi ≤ θn)

)τ

.

Therefore, from (d) and (33) it follows that μ√
nhd

n

∑n
i=1 w3i (θn)

D→ N (φ,
3) and

μ

nhd
n

n∑
i=1

w3i (θn) = μ

nhd
n

n∑
i=1

w3i (θq) + Op((nhd
n)−1/2). (36)

Next we verify (a) when θq = θn . Obviously

w3i (θn)wτ
3i (θn) = w3i (θq)wτ

3i (θq) + K 2
(

x − Xi

hn

)
G−2(Yi )

(
0 g(Yi )I (θq < Yi ≤ θn)

gτ (Yi )I (θq < Yi ≤ θn) I (θq < Yi ≤ θn)[1 + 2(I (Yi ≤ θq) − q)]
)

. (37)
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Note that for 1 ≤ k ≤ κ , by using (A2)(i) and (A6) it follows that

μ

nhd
n

n∑
i=1

E

∣∣∣∣K 2
(

x − Xi

hn

)
G−2(Yi )gk(Yi )I (θq < Yi ≤ θn)

∣∣∣∣→ 0; (38)

μ

nhd
n

n∑
i=1

E

∣∣∣∣K 2
(

x − Xi

hn

)
G−2(Yi )I (θq < Yi ≤θn)[1 + 2(I (Yi ≤ θq)−q)]

∣∣∣∣→0.

(39)

Therefore, in view of (a), from (37) to (39) it yields that

μ

nhd
n

n∑
i=1

w3i (θn)wτ
3i (θn) = μ

nhd
n

n∑
i=1

w3i (θq)wτ
3i (θq) + op(1) = 
3/μ + op(1).

(40)

By applying (36) and (40), similarly to the evaluate in (b) and (c) above, the conclusion
in (b) and (c) remains true for θq = θn . ��
Proof of Lemma 2 Following the line as in the proof of Lemma 1, Lemma 2 can be
proved. ��
Proof of Lemma 3 Results (a)–(d) in Lemma 3 are obtained from Lemma 2 for the
particular choice g(y) = I (y ≤ θq) − q. Then, we prove only the last statement of

the Lemma, that is, μ√
nhd

n

∑n
i=1 w1i (θn)

D→ N (c1 f (x, θq),
1). From (33) we have

μ√
nhd

n

n∑
i=1

w1i (θn) = μ√
nhd

n

n∑
i=1

w1i (θq) + c1 f (x, θq) + op(1),

and then the result follows by (d) in Lemma 3. ��
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