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Abstract This paper introduces a new family of local density separations for assess-
ing robustness of finite-dimensional Bayesian posterior inferences with respect to their
priors. Unlike for their global equivalents, under these novel separations posterior
robustness is recovered even when the functioning posterior converges to a defective
distribution, irrespectively of whether the prior densities are grossly misspecified and
of the form and the validity of the assumed data sampling distribution. For exponential
family models, the local density separations are shown to form the basis of a weak
topology closely linked to the Euclidean metric on the natural parameters. In general,
the local separations are shown to measure relative roughness of the prior distribution
with respect to its corresponding posterior and provide explicit bounds for the total
variation distance between an approximating posterior density to a genuine posterior.
We illustrate the application of these bounds for assessing robustness of the posterior
inferences for a dynamic time series model of blood glucose concentration in diabetes
mellitus patients with respect to alternative prior specifications.
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1 Introduction

Assessing robustness of inferential procedures and decision rules with respect to the
specification of likelihoods, prior distributions and loss functions is an essential yet
challenging aspect of any statistical data analysis. Huber (1997) reviews several main
achievements in the definition and computation of robustness criteria up to the mid
1990s. For the same period Gustafson (1996) illustrates the state of the art in evaluat-
ing robustness from a Bayesian perspective, whereas Kadane et al. (1996) and Martin
et al. (1996) address the issue of robustness with respect to the specification of loss
functions for Bayesian decision problems. Fernandez et al. (1996) and recently Copas
et al. (2010) examine notions of robustness with respect to changes in the likelihood
function. Gustafson and Bose (1996) consider the sensitivity of posterior inferences
with respect to perturbations of hierarchically defined prior distributions. Abraham and
Cadre (2004) study the rate of convergence of various measures of posterior global
robustness with respect to sample size, recovering their respective convergence rates.

Let θ ∈ Θ be a finite-dimensional parameter vector indexing the data sampling
probability distribution. In this paper we let f0(θ) denote the functioning prior, that
is the probability density actually used in a Bayesian analysis, and g0(θ) the genuine
prior, that is the density that would be used if there was enough time and skills applied
to elicit it at best (O’Hagan (2006)). Denote the two corresponding posterior densities
after observing a sample xn of n ≥ 1 observations by fn(θ) and gn(θ), respectively.
In this context the problem of posterior robustness is commonly addressed by first
assuming that both sequences of posterior functioning and genuine densities, { fn}n≥1
and {gn}n≥1, are consistent (Schervish 1995). It then follows that when each compo-
nent of a random sample xn is drawn from a distribution with parameter value θ ∈ Θ

and whenever { fn}n≥1 and {gn}n≥1 are both continuous at θ0 ∈ Θ0, where Θ0 is the
interior of Θ , the posterior total variation distance (TVD)

dV ( fn, gn) =
∫

Θ

| fn(θ) − gn(θ)| dθ,

converges to zero almost surely Pθ0 as n → ∞ (Ghosh and Ramamoorthi 2003).
This means that fn provides a good asymptotic approximation for gn for estimation
purposes when the sampling family is precisely and correctly specified. On the other
hand, it is well known that when the functioning posterior convergences to a defective
distribution, dV ( fn, gn) cannot be guaranteed to vanish if the tails of the densities fn

and gn converge at sufficiently different rates (Dawid 1973; O’Hagan 1979; Andrade
and O’Hagan 2006).

More recently Gustafson and Wasserman (1995) proved that, for most parametric
models, when the genuine prior g0 belongs to a tight neighborhood N of the density f0,
the supremum

sup
g0∈N

{
dV ( fn, gn)

dV ( f0, g0)

}
, (1)
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almost always diverges in n with probability 1, usually at rate ndim(Θ)/2. Divergence
of (1) occurs even when the data are drawn from a “true” density indexed by the
parameter θ0 ∈ Θ0 or when N is chosen so that the tail characteristics of f0 and g0
are identical and g0 is constrained to be infinitely differentiable, as in Berger (1992).

In this paper we prove that under a new family of local separations the TVD between
genuine and functioning posteriors vanishes even when the sampling distribution fam-
ily is not accurately specified and the data is not a random sample. In particular, we
show that divergence of (1) arises because the prior variation distance dV ( f0, g0) has
virtually no bearing on the posterior variation distance dV ( fn, gn) even in the neigh-
borhoods N defined in Gustafson and Wasserman (1995). Furthermore, we show that
these local separations can be used to provide the basis of an on-line diagnostic mea-
sure of robustness which is available in closed form for most statistical models and
does not involve any additional hyper-parameters. This makes our results of consid-
erable practical significance to the study of robustness to prior specifications in high
dimensional parametric inference and in particular for hierarchical models.

In Sect. 2 we introduce the new local separations and we contrast them with the
global density ratio separation measures of Wasserman (1992), Gustafson and Wasser-
man (1995) and of O’Hagan and Forster (2004). Examples 1 and 2 illustrate the close
links between the new separations and the Euclidean distance on the natural parameter
space for exponential family densities. In Sect. 3 three properties of these local sep-
arations are examined and Examples 3 and 4 demonstrate their application to derive
closed-form discrepancy measures for selected models. In Sect. 4 it is shown that in
the limit these local separations provide a coarse topology which can be used in prac-
tice to compare the relative roughness of alternative prior densities. Examples 5 and 6
illustrate that comparatively rough commonly used densities are in fact close under
the new local separations. In Sect. 5 it is proved that closeness in TVD between the
functioning and genuine posterior densities is guaranteed when the genuine prior lies
in one such coarse neighborhood of the functioning prior. Closed-form upper bounds
for the TVD between posterior densities are derived using the new local separations
and Examples 7–10 demonstrate the derivation of these bounds for selected models.
In Sect. 6 the TVD upper bounds are applied to calibrate a power steady model (Smith
(1979)) under two alternative prior specifications for a time series of blood glucose
concentration measurements taken from a patient affected by diabetes mellitus. Here
is it shown that, consistently with the theory outlined in the paper, the TVD decays
exponentially with the sample size. This example also illustrates that posterior con-
vergence can be achieved after as few as ten data points. Section 7 concludes the paper
with a critical discussion of its main results.

2 Density ratio balls and isoseparation

Henceforth for simplicity we assume that all candidate genuine priors g0(θ) and the
functioning prior f0(θ) are strictly positive and continuous on the interior of their
shared support Θ so that they are uniquely defined. We also assume that the sequence
of sampling densities {p(xn|θ)}n≥1 of an n-vector of data xn = (x1, x2, . . . , xn) is
measurable with respect to g0(θ). Let Θ(n) = {θ ∈ Θ : p(xn|θ) > 0} and for
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simplicity let p(xn|θ), seen as a function of θ , be continuous on Θ(n). The formal
Bayesian updating formula calculates the posterior density gn(θ) � g(θ |xn) after n
observations using the equation

gn(θ) =
{

g0(θ)p(xn |θ)
pg0 (xn)

if θ ∈ Θ(n),

0 if θ ∈ Θ\Θ(n),
(2)

where the predictive density

pg0(xn) =
∫

θ∈Θ(n)

p(xn|θ)g0(θ) dθ

is calculated, either algebraically or numerically, so as to ensure that gn(θ) integrates
to 1.

Let fn(θ) � f (θ |xn), defined as in (2) but with g0(θ) substituted with f0(θ), be
the functioning posterior density after the first n observations. This paper focuses on
the case when the posterior density which is actually calculated, fn(θ), converges in
distribution as n → ∞ to a point mass in the closure neighborhood of θ0 ∈ Θ(n). We
start by defining the two equivalent local divergence measures d R

A ( f, g) and d L
A( f, g).

Definition 1 Let B[1], B[2] ⊆ A ⊆ Θ be measurable sets with respect to the common
dominating measure of two cumulative distribution functions F and G with respective
densities f and g. Define the DRA separation d R

A ( f, g) by

d R
A ( f, g) � sup

B[1],B[2]⊆A

∣∣∣∣ F(B[1])G(B[2])
F(B[2])G(B[1]) − 1

∣∣∣∣ . (3)

Since in this paper the densities f and g are assumed to be continuous on a shared
support, Eq. (3) simplifies to

d R
A ( f, g) = sup

θ,φ∈A

∣∣∣∣ f (θ)g(φ)

f (φ)g(θ)
− 1

∣∣∣∣ = sup
θ,φ∈A

(
f (θ)g(φ)

f (φ)g(θ)

)
− 1. (4)

Note that the global separation measure defined by DeRobertis (1978) is simply
d R
Θ( f, g). Under (4) an equivalent measure, which we call the A-density ratio separation

d L
A( f, g), is given by

d L
A( f, g) = sup

θ,φ∈A
{(log f (θ) − log g(θ)) − (log f (φ) − log g(φ))}. (5)

When the lower and upper bounds of the difference log f − log g are attained d L
A( f, g)

is easy to interpret, being the difference of the two log densities at their maxi-
mum and minimum values within a set A. Equation (5) defines a separation mea-
sure in the sense that for all continuous densities f, g ∈ F , d L

A( f, g) takes values in
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R ∪ ∞, d L
A( f, f )= 0, d L

A ( f, g) ≥ 0 and d L
A( f, g) = d L

A(g, f ). Also, when f, g ∈ F
have finite separation d L

A( f, g), then the latter is a metric within A.
To prove the convergence results of this paper it is sufficient to consider sets of the

form A = B(θ0, ρ) where B(θ0, ρ) is an open ball with center θ0 and radius ρ. In this
case we write

d R
θ0,ρ( f, g) � d R

B(θ0,ρ)( f, g),

d L
θ0,ρ( f, g) � d L

B(θ0,ρ)( f, g),

d R
Θ0,ρ( f, g) � sup{d R

θ0,ρ
( f, g) : θ0 ∈ Θ0},

d L
Θ0,ρ( f, g) � sup{d L

θ0,ρ
( f, g) : θ0 ∈ Θ0}.

Note that d R
θ0,ρ( f, g) is a function of the parameterization we use so that invariance of

convergence to transformations of the parameter space T : Θ → Θ obtains only if the
map T is a diffeomorphism. This is a natural restriction within a finitely parameter-
ized family, whereas demanding that a neighborhood system be invariant to arbitrary
measurable reparameterizations, as in Wasserman (1992), appears inappropriate in
the context of this paper. The next two examples show that (5) is closely related to
the Euclidean distance on the natural parameter space when the two prior densities
compared belong to univariate or multivariate exponential families.

Example 1 Let f1(θ) = f (θ |α1) and f2(θ) = f (θ |α2) lie in the same regular expo-
nential family

f (θ |α) = c(π(α))h(θ) exp

{
k∑

i=1

πi (α)ti (θ)

}
,

for some integer-valued k and for the measurable functions π(α) = (π1, π2, . . . , πk),

t = (t1, t2, . . . , tk) ∈ T where T does not depend on α since the exponential family is
regular. For 1 ≤ i ≤ k, and j = 1, 2 write

πi (α j ) = πi, j .

When a set A is of the form A = {θ ∈ Θ : t(θ) ∈ A = A1 × A2 × · · · × Ak} and
μ(Ai ) denotes the length of the interval Ai then

d L
A( f1, f2) = sup

θ,φ∈A

{
k∑

i=1

(πi,1 − πi,2)(ti (θ) − ti (φ))

}
,

=
k∑

i=1

|πi,1 − πi,2|μ(Ai ).

It follows that if μ(Ai ) is infinite for some πi,1 	= πi,2 then the usual density ratio
diverges. Therefore, two densities within the regular exponential family with param-
eters arbitrarily close under Euclidean distance are usually infinitely far apart under
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d L
Θ(. , .) but under d L

A( f1, f2) they have proportionally close local separations. For
instance, if t(θ) = θ then

d L
θ0,ρ( f1, f2) ≤ 2ρ

√√√√ k∑
i=1

(πi,1 − πi,2)2.

In the special case when θ0 is not near the boundary of Θ , the components of θ are func-
tionally independent within the ball B(θ0, ρ) and they do not depend on θ0. Under these
conditions, the above inequality becomes an identity so that d L

θ0,ρ( f1, f2) is simply
a weighted Euclidean distance between the components of the natural parameters of
the two prior densities.

The distances between prior densities conjugate to exponential families of Bernardo
(1996) also have an analogous simple closed form. However, this family of distances
has a dependence on θ0 so that in a Euclidean neighborhood at the boundary of the
parameter space they can be unbounded. An example of this and a demonstration of
a corresponding lack of robustness for beta densities whose hyper-parameters values
are close to zero is given in Smith (2007).

Example 2 When the functioning and genuine priors f and g are n-dimensional
Gaussian densities with respective mean vectors μ f , μg and covariance matrices
� f , �g it is easily checked that

d L
θ0,ρ( f, g) ≤ d1

θ0,ρ( f, g) + d2
θ0,ρ( f, g),

where, if e is a vector with all entries 1,

d1
θ0,ρ( f, g) = sup

{(
μ f �

−1
f − μg�

−1
g

)
(θ − φ)eT : θ, φ ∈B(θ0, ρ)

}
,

≤ 2nρ
∣∣∣μ f �

−1
f − μg�

−1
g

∣∣∣ ,
and

d2
θ0,ρ( f, g) = sup

{
trace

(
�−1

f − �−1
g

)
{θθT − φφT}/2 : θ, φ ∈B(θ0, ρ)

}
,

≤ 2nρ(n‖θ0‖ + nρ)

∣∣∣trace(�−1
f − �−1

g )

∣∣∣ .

So provided that the terms |μ f �
−1
f − μg�

−1
g |, |trace(�−1

f − �−1
g )|, ‖θ0‖ are finite,

d L
θ0,ρ( f, g) decreases to zero with the radius ρ and the density ratio separation mirrors

Euclidean distance in the natural parameters of the multivariate Gaussian family.

Example 2 indicates that the usual choice of low precision Gaussian priors ensures
that when the radius ρ is small the local neighborhoods of f are very coarse and
contain most candidate genuine prior densities that might be entertained. In fact we
demonstrate later that mixing on hyper-parameters of a family often ensures that the
neighborhoods of the margins of θ become increasingly coarse even when ‖θ0‖ is
unbounded.
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3 Three properties of d L
A( f, g) and d R

A ( f, g)

In this section, we examine three basic properties of the DRA and of the A-separation
measures. The first and second properties will be used to prove the main theorems of
this paper, whereas the third property provides an interpretation of a popular class of
posterior sampling algorithms.

3.1 Isoseparation

For any measurable subset A ⊆ Θ(n) a striking property, here called the isoseparation
property of d L

A( fn, gn) and of d R
A ( fn, gn), can be calculated directly from the formal

Bayes rule (2). For all f0, g0 ∈ F , for all n ≥ 1 we have

d L
A( fn, gn) = d L

A( f0, g0), (6)

so that we have

sup
g0∈F

{
d L

A( fn, gn)

d L
A( f0, g0)

}
= 1. (7)

Unlike its global version (1), the ratio of local separations (7) does not diverge for
any neighborhood N of f0. Prior densities that are close under these topologies re-
main close a posteriori. On the other hand, prior separations endure regardless of the
observed data. When A = Θ this property has in fact been known for a very long
time (DeRobertis 1978). However this global separation is very fine, for example pro-
viding a discrete topology on the class of all densities within standard exponential
families. From a practical Bayesian perspective the most useful of these separations
corresponds to the small subsets A of the parameter space on to which the posterior
functioning density concentrates its mass as data is gathered.

We next consider the case when {p(xn|θ)}n≥1 are not explicit functions of θ2 where
θ = (θ1, θ2), f0,1 and g0,1 are the functioning and genuine marginal priors and fn,1
and gn,1 are the functioning and the genuine marginal posterior densities of θ1. It is
then easy to check that these marginal densities inherit the isoseparation property.
Thus for any n ≥ 1, for θ ∈ A ⊆ Θ(n)

d L
A( fn,1, gn,1) = d L

A( f0,1, g0,1).

This isoseparation property of marginal posteriors is important in the study of hier-
archical models, where the distribution of the first hidden level of variables together
with the relevant sampling distribution is often sufficient for predicting any observable
quantity, as shown in the next example.

Example 3 Suppose that the observations Xn have a joint sample distribution uniquely
specified by θ1 = (μ,�) where μ is a vector of means of Xn and � is a vector of
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other hyper-parameters, e.g. variances and covariances. To specify the prior on μ it is
common practice to extend this model so that

μ = τ(φ) + ε,

where φ is a low dimensional vector, τ is a known function—often linear—and ε is an
error vector parameterized by a matrix � of, e.g. covariances. When a utility function
only depends on θ through θ1 = μ, the marginal isoseparation property allows us
to substitute θ1 for θ for evaluating the robustness of Bayesian inferences under this
model.

3.2 Separation measures under conditioning and marginalization

Let f A and gA henceforth denote the densities f and g conditioned on the event
{θ ∈ A ⊂ Θ}. A second useful property of DRA is that, when we learn that {θ ∈
A ⊆ B ⊂ Θ} for some measurable set B, then d R

A ( fB, gB) = d R
A ( f, g). In particu-

lar, this second property implies that d R
A ( f A, gA) = d R

A ( f, g) and since the densities
f A, gA have support A, we have d R

A ( f A, gA) = d R
Θ( f A, gA). Combining the latter two

equations gives

d R
A ( f, g) = d R

Θ( f A, gA), (8)

so that, in common with other separation measures such as Hellinger and Kullback-
Leibler, the DRA separation between two marginal densities is no larger than the
corresponding separation between their joint densities. In general, (8) provides a sim-
ple direct relationship between the DRA local separations and the corresponding global
distances between conditional densities. Now let θ = (θ1, θ2) and φ = (φ1, φ2) be
two candidate parameter values in Θ = Θ1 × Θ2 with θ1, φ1 ∈ Θ1 and θ2, φ2 ∈ Θ2.
When the joint densities f (θ) and g(θ) can be factored as

f (θ) = f1(θ1) f2|1(θ2|θ1),

g(θ) = g1(θ1)g2|1(θ2|θ1),

where f1(θ1), g1(θ1) are the marginals on Θ1 of f (θ) and g(θ) and f2|1(θ2|θ1), g2|1
(θ2|θ1) are the respective conditional densities, then it is proved in the appendix that

d L
A( f, g) ≥ d L

A1
( f1, g1), (9)

where A1 = {θ1 : θ = (θ1, θ2) ∈ A for all θ2 ∈ B ⊂ Θ2 for some open set B}.
In this sense marginal densities are never further apart from each other than their
corresponding joint densities. Therefore, when θ = (θ1, θ2, . . . , θk) where the sub-
vectors {θ1, θ2, . . . , θk} are mutually independent, then in common with Chernov and
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Kullback-Leibler separations, we have

d L
A( f, g) =

k∑
i=1

d L
Ai

( fi , gi ), (10)

where fi (gi ) denotes the θi margin of f (g). For instance, if in Example 3 we let μ��

a priori, then by equation (6) the posterior separation over these vectors continues to
be (10), regardless of the observed data.

3.3 Tempering property

A third property of the A-density ratio separation d L
A ( f, g), which we call the tempering

property, allows a simple interpretation of the class of sampling algorithms raising a
density to a non-negative power, which typically depends on a temperature coefficient
(Geyer and Thompson (1995); Poole and Raftery (2000)). In this case a density f is
replaced by f ∗ ∝ f α for some value 0 < α < 1. This typically improves mixing of
posterior simulation in cases of multimodality as the heated posterior density f ∗ has
broader modes and fatter tails than f . A useful interpretation of such a substitution is
that for all f, g for which d L

A( f, g) < ∞, then

d L
A( f ∗, g∗) = αd L

A( f, g). (11)

Therefore, letting α → 0 corresponds to linear contractions on the separation space
defined by d L

A( f, g) and draws all densities closer to one another in this sense. On the
other hand simulated annealing (Kirkpatrick et al. 1983) employs the same transfor-
mation but lets α → ∞, increasingly separating the densities. The following example
illustrates an application of this property in time series analysis.

Example 4 (The Power Steady Model) A class of state space models using tempera-
ture-based transitions was introduced in Smith (1979) and Peterka (1981). The model
for the random variables {yt }t≥1 is specified as

θ0 ∼ f0(θ0),

p(yt |θt , y1:(t−1)) = p(yt | θt ), t ≥ 1 (12)

ft (θt |y1:(t−1)) ∝ f α
t−1(θt−1|y1:(t−1)), t ≥ 2.

conditionally on some 0 < α < 1. High values of α, corresponding to temperatures
closer to one, imply that the effect of the initial conditions θ0 endures whereas low
values of α allow a higher influence of the data on the time dependent posterior infer-
ences and predictions. One example of such processes is the Gaussian steady dynamic
linear model (West and Harrison 1997).
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When a dynamic time series model is specified as in (12), then from the isosepara-
tion property (8) and the tempering property (11) we have that

d L
A( fT (θT |y1:T ), gT (θT |y1:T ))

= d L
A( fT (θT |y1:(T −1)), gT (θT |y1:(T −1)))

= αd L
A( fT −1(θT −1|y1:(T −1)), gT −1(θT −1|y1:(T −1)))

= αT d L
A( f0(θ0), g0(θ0)). (13)

It follows that the quality of the approximation using the functioning prior instead of
the genuine prior improves exponentially in T with respect to the A-density ratio local
separation measure. Furthermore, the isoseparation property ensures that this result
still holds whatever {p(yt |θt )}1≤t<T is and whether or not this sequence were sup-
plemented or corrupted, for example by censoring. It follows that in the long run this
class of models is very robust with respect to prior misspecification. In Sect. 6 we use
a multivariate power-steady model of the form (12) to illustrate the application of the
A-density local separations in a clinical setting. Prior to applying these separations,
in Sects. 5 and 6 we establish their relations to the roughness of prior densities and to
the TVD metric.

4 Roughness and local density ratio separation

Section 2 provides a first intuitive interpretation of d L
A ( f, g) with respect to the maxima

and minima attained by the densities f and g within the reference set A. For sets of
the form A = B(θ0, ρ), here it is shown that prior closeness with respect to d L

θ0,ρ( f, g)

for small radii ρ implies that f and g are “similarly rough” and has virtually no rela-
tionship with prior variation distance between the densities f and g. We also show
that these local separations control the posterior variation distance between the two
densities. We set out to address the issue of comparative roughness by invoking an
idea analogous to path roughness and applying it to the logarithm of the functioning
prior density.

Definition 2 A continuous density f is said to have (Θ0, M(Θ0), p(Θ0)) rough-
ness—written f ∈ F(Θ0, M(Θ0), p(Θ0))—if

sup
θ,φ∈B(θ0;ρ)

|log f (θ) − log f (φ)| ≤ M(Θ0)ρ
0.5p(Θ0),

for all open balls B(θ0, ρ) ⊆ Θ with center θ0 ∈ Θ0 ⊆ Θ and radius ρ > 0, where
0 < p(Θ0) ≤ 2.

In particular, when 0 < ρ < 1, for any set Θ0 such that 0 < p1(Θ0) < p2(Θ0) ≤ 2
we have

F(Θ0, M(Θ0), p2(Θ0)) ⊂ F(Θ0, M(Θ0), p1(Θ0)).
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The larger the parameter p(Θ0) and the smaller M(Θ0), the smoother the densities
are on the set Θ0. Although the parameter p(Θ0) can in principle depend on Θ0, so that
the smoothness of a density f is different in different regions of the parameter space,
this dependence will rarely be needed in practice. On the other hand, if for instance
f is a log-convex density, so that the derivative of the log f is unbounded, then log f
will be bounded by M(Θ0) for some suitably chosen closed and bounded set Θ0 ⊂ Θ .
Note that F(Θ0, M(Θ0), 2) in fact denotes the set of functions whose logarithm is
differentiable and with all derivatives bounded in modulus by M(Θ0) on Θ0. The
next definition and Theorem 1 illustrate the relationship between the above notion of
roughness and the A-separation measure d L

θ0,ρ( f, g).

Definition 3 A probability density g belongs to the set N ( f,Θ0, M(Θ0), p(Θ0)) if
there is a continuous function h(θ) such that f = f ∗h and g = g∗h where f ∗, g∗ ∈
F(Θ0, M(Θ0), p(Θ0)).

Theorem 1 If g ∈ N ( f,Θ0, M(Θ0), p(Θ0)) then we have

d R
Θ0,ρ( f, g) ≤ exp

{
2M(Θ0)ρ

0.5p(Θ0)
}

− 1. (14)

Proof Inequality (14) is verified by noting that

d L
θ0,ρ( f, g) = sup

θ,φ∈B(θ0;ρ)

|(log f ∗(θ) − log f ∗(φ)) − (log g∗(θ) − log g∗(φ))|,

≤ sup
θ,φ∈B(θ0;ρ)

| log f ∗(θ)−log f ∗(φ)|+ sup
θ,φ∈B(θ0;ρ)

| log g∗(θ)−log g∗(φ)|,

≤ 2M(Θ0)ρ
0.5p(Θ0).

The latter inequality together with (3) prove (14). ��
Even without strong contextual knowledge, a Bayesian modeler may plausibly

believe that her genuine and functioning prior densities, g0 and f0, are similarly rough
in the sense that g0 ∈ N ( f0,Θ0, M(Θ0), p(Θ0)) for all compact sets Θ0 of suf-
ficiently small measure and for an appropriate choice of the functions M(Θ0) and
p(Θ0). When this is the case, the prior local separation d L

Θ0,ρ
( f0, g0) can be made

arbitrarily small by choosing a sufficiently small radius ρ > 0. In the next section it is
also shown that, under this weak equicontinuity condition, large sample convergence
of posterior separations results. Furthermore when p = 2 the inequality (14) allows
us to bound the rate at which this convergence occurs.

To address the issue of posterior convergence, note that in the special case g0 ∈
N ( f0,Θ0, M(Θ0), 2) and Θ = R then d L

Θ,ρ( f0, g0) ≤ 2M(Θ0)ρ. In this case if f0
is misspecified only in terms of its location and scale parameters, so that the genuine
prior is g0(θ) = f0(σ

−1(θ −μ)) for some real-valued μ and σ > 0, then d L
Θ,ρ( f0, g0)

must tend to zero at a rate ρ, as illustrated in the following examples.

Example 5 Let f j (θ) = f (θ |α j , μ j , σ j ), j = 1, 2 be two univariate Student t
densities

f (θ |α,μ, σ ) = (0.5[α + 1])√
απ(0.5α)

(1 + α−1σ−2(θ − μ)2)−0.5(α+1).
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In this case we have

d L
A( f1, f2) = 1/2 sup

θ,φ∈A

∣∣∣∣∣∣
2∑

j=1

(α j + 1) log{1 + ξ(θ, φ, α j , μ j , σ
2
j )}

∣∣∣∣∣∣ ,

where ξ(θ, φ, α, μ, σ 2) = (θ − φ)(θ + φ + 2μ)(ασ 2 + (φ − μ)2)−1. Assuming
without loss of generality that θ0 ≥ 0, it follows that

sup
θ,φ∈B(θ0;ρ)

|ξ(θ, φ, α, σ 2)| ≤ 4ρ(θ0 − μ + ρ)

(ασ 2 + (θ0 − μ + ρ)2)
≤ 2ρ

σ
√

α
.

Thus

d L
Θ,ρ( f1, f2) ≤

∑
j=1,2

(α j + 1) log

(
1 + 2ρ

σ j
√

α j

)
≤ ρM,

where

M =
∑
j=1,2

2σ−1
j

(
α

1/2
j + α

−1/2
j

)
,

where the set M here does not depend on Θ0. It follows that the global distance
d L
Θ,ρ( f1, f2) of any genuine Student t prior f2 with arbitrary prior mode μ2 from a

functioning prior f1 of the same form tends to zero at a rate ρ provided the degrees
of freedom of the genuine prior and its spread parameter are bounded, i.e.

0 < aL ≤ α2 ≤ aU < ∞,

0 < sL ≤ σ2 ≤ sU < ∞.

Therefore, by letting |μ2−μ1| → ∞ for a sufficiently small choice of the radius ρ, any
two Student t prior densities will be locally close even when their variation distance
is arbitrarily large.

The next section shows that requiring a small d L
Θ,ρ( f0, g0) when the radius ρ is

small is a mild condition to impose for flat-tailed bounded distributions since whole
families of densities with different locations and scales can lie in the same neighbor-
hood. Only when the masses of the two densities concentrate near a point θ0 where
the derivative of log f0 − log g0 might be unbounded, can f0 and g0 be a long distance
apart for small enough values of ρ. For instance, this happens when θ0 lies in the tail
of a density f0 where either f0 or g0 has an exponential or faster tail. Even in this
case, provided the mass of the functioning posterior concentrates on to a compact sub-
set Θ0 ⊂ Θ with high probability, sufficient smoothness will usually exist to ensure
convergence in TVD.
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Example 6 Consider a Bayesian hierarchical model where joint prior densities over
parameters are specified through vector equations like

θ = ϕ + ε,

where ϕ is some function of hyper-parameters encoding the systematic mean variation
in θ and ε is a vector of error terms with zero mean and independent of ϕ. Commonly
the functioning prior density fε of the error term ε is chosen from some smooth family,
e.g. a Student t arising from a Gaussian whose associated variance hyper-parameter
is given an inverted Gamma distribution and integrated out. Assume this choice is
such that fε ∈ F(Θ0, M(Θ0), p(Θ0)) for some suitable choices of the two parame-
ters (M(Θ0), p(Θ0)). Here ε can be considered as a nuisance parameter vector in the
sense given in Sect. 3 because the likelihood would not be a function of it given θ .
Let fϕ(gϕ) and fθ (gθ ) denote the functioning (genuine) prior densities of ϕ and θ

respectively. If these priors are constructed be marginalising over ϕ, then

fθ (θ) − fθ (θ − δ) =
∫

( fε(ε − ϕ) − fε(ε − ϕ − δ)) fϕ(ϕ) dϕ,

gθ (θ) − gθ (θ − δ) =
∫

( fε(ε − ϕ) − fε(ε − ϕ − δ))gϕ(ϕ) dϕ.

An automatic consequence is therefore that

gθ ∈ N ( fθ ,Θ0, M(Θ0), p(Θ0)),

irrespective of the density of the mean signals fϕ and gϕ , even if this is governed by
a discrete process, e.g. the realization of a Dirichlet process.

This example illustrates that the genuine prior density gθ lies in a neighborhood of
the functioning prior density fθ simply as a consequence of the way hierarchical priors
are conventionally constructed. In the next section we show that this construction in
turn largely determines the robustness of posterior inferences arising from hierarchi-
cal models with respect to the TVD metric. Whether it is justified to construct prior
densities which implicitly impose robustness, is of course entirely dependent on the
modeling context.

5 Variation distance and local separations

Convergence in variation distance of the functioning and genuine posterior densities
is dependent on two conditions, namely differences in roughness between the genuine
and functioning priors in the neighborhood of functioning posterior mass concen-
tration and discrepant prior tail behavior. Here we exploit a surprising connection
between closeness with respect to TVD and to the local DRA separation to derive
upper bounds for the former. Although these bounds are not tight, they nevertheless
have four important advantages. First, they exhibit the same power dependence on
sample size that has been met in other studies, as illustrated in Examples 7–9. Second,
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they can be expressed explicitly in terms of parameters of the prior neighborhoods and
of simple summary statistics of the functioning prior. Third, they apply even when the
family of sample distributions is misspecified. By this we mean that, although in this
case the functioning posterior may locate its mass wrongly, the posterior associated
with the genuine prior using the same misspecified sample distribution will neverthe-
less be located within the bounds of the functioning posterior. This type of robustness,
which is fundamentally a subjective Bayesian one, is not commonly a property of other
robustness bounds. Fourth, our bounds decompose as a sum of two components. The
first measures to what extent the posterior is centered at a point in the parameter space
being unusually rough, often being near the boundary of the parameter space. The
second measures the extent to which the tails of the functioning and genuine priors
differ.

If A is a measurable subset of Θ and n ≥ 0 we write

ξA(θ | fn, gn) �
∣∣∣∣ gn,A(θ)

fn,A(θ)
− 1

∣∣∣∣ , (15)

where fn,A(θ) = fn(θ)
Fn(A)

and gn,A(θ) = gn(θ)
Gn(A)

are respectively the conditional densities
given θ ∈ A. Then

ξA(θ | fn, gn) ≤ sup
θ∈A

ξA(θ | fn, gn) ≤ d R
A ( fn,A, gn,A) = d R

A ( fn, gn). (16)

This enables us to relate DRA to TVD using the following theorem.

Theorem 2 For any sequence {An}n≥1 of measurable subsets of Θ

dV ( fn, gn) ≤ Fn(An)d R
An

( f0, g0) + 2{1 − Fn(An)}d R
Θ( f0, g0), (17)

Proof For any measurable An ⊂ Θ0 ⊆ Θ , the TVD between the functioning and
genuine posterior densities after observing n data points can be written as

dV ( fn, gn) = Tn[1] + Tn[2],

where

Tn[1] =
∫

θ∈An

| fn(θ) − gn(θ)| dθ,

=
∫

θ∈An

|Fn(An) fn,An (θ) − Gn(An)gn,An (θ)| dθ,

≤ |Fn(An) − Gn(An)|
∫

θ∈An

gn,An (θ) dθ + Fn(An)

×
∫

θ∈An

| fn,An (θ) − gn,An (θ)| dθ,
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≤ |Fn(Ac
n) − Gn(Ac

n)| + Fn(An)

∫
θ∈An

ξAn (θ | fn, gn) fn,An (θ) dθ,

≤ Tn[2] + Fn(An) sup
θ∈An

ξAn (θ | fn, gn),

≤ Tn[2] + Fn(An)d R
An

( fn, gn) = Tn[2] + Fn(An)d R
An

( f0, g0), (18)

by the isoseparation property (6). Similarly

Tn[2] =
∫

θ∈Ac
n

| fn(θ) − gn(θ)| dθ,

=
∫

θ∈Ac
n

ξΘ(θ | fn, gn) fn(θ) dθ, by (15) with A = Θ,

≤ sup
θ∈Ac

n

ξΘ(θ | fn, gn){1 − Fn(An)},
≤ sup

θ∈Θ

ξΘ(θ | fn, gn){1 − Fn(An)},

≤ {1 − Fn(An)}d R
Θ( f0, g0), (19)

again by isoseparation. The inequalities (18) and (19) imply (17). ��

It follows from Theorem 2 that by choosing {An}n≥1 as a function of the statistics of
the functioning posterior in such a way that Fn(An) → 1 and when d R

An
( fn, gn) → 0 as

n → ∞, convergence in total variation is ensured. Constructing appropriate sequences
{An}n≥1 for a given statistical model is usually straightforward when d R

Θ( f0, g0) < ∞.
For instance, An = B(θn, ρn) can be set to be a sequence of open balls centered at
the functioning posterior mean θn and whose radius ρn → 0 as n → ∞. In this
case it is usually sufficient to use well known Chebyshev inequalities, ensuring that
equation (14) holds, as shown in the following examples. Here it is assumed that the
prior mutual roughness condition holds for given values of M(Θ0) and p(Θ0) for the
sequence {An = B(θn, ρn) ⊆ Θ0} and that d R

Θ( f0, g0) < ∞.

Example 7 For n ≥ 1 let Fn denote the one dimensional Gaussian distribution with
mean θn and variance σ 2

n and let ρn = σ 1−r
n for some 0 < r < 1. Note that if σ 2

n → 0
then ρn → 0. It follows that

d R
An

( f0, g0) ≤ exp
{

2M(Θ0)σ
p(1−r)/2

n

}
− 1.

Also since (see e.g. Moran 1968, p. 279) the standard Normal cumulative distribution
function � satisfies for all x > 0

�(−x) < (2π)−1/2x−1e−x2/2.
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It follows that

Tn[2] ≤ d R
Θ( f0, g0)Fn(θ /∈ B(θn; ρn)),

≤ 2d R
Θ( f0, g0)�(−σ−r

n ),

<

√
2

π
d R
Θ( f0, g0)σ

r
n exp{−σ−2r

n /2},

so that choosing 0 < r < 1 appropriately gives an upper bound for the variation
distance. Note that under the differentiability condition p = 2 for any 0 < r < 1 we
have

lim
n→∞ sup

g∈N0(r)

{
dV ( fn, gn)

σ
(1−r)
n

}
= 0,

where, for brevity of notation, we write N0(r) = N ( f0,Θ0, M(Θ0), r). For instance,
when σn ≤ σn−1/2 for some σ > 0, we have that

lim
n→∞ sup

g∈N0

(r){nr∗
dV ( fn, gn)} = 0,

for any r∗ = 1/2{1−r} < 1/2. Thus the expected 1/
√

n speed of convergence in TVD
between the two Gaussian posteriors is retrieved. This result contrasts with the

√
n

speed of divergence obtained by Gustafson and Wasserman (1995) using the ratio of
global variation distances (1). Note that in fact it is the difference in mutual roughness
between the prior densities f0 and g0 that governs the latter rate of divergence. The
next example generalizes our posterior convergence result to univariate location-scale
densities.

Example 8 Suppose Fn is any one dimensional functioning posterior distribution func-
tion with mean θn and variance σ 2

n < ∞. Then by Chebyshev’s inequality

Tn[2] ≤ d R
Θ( f0, g0)Fn(θ /∈ B(θn; ρn)) ≤ d R

Θ( f0, g0)
σ 2

n

ρ2
n
.

Using (17), with ρn = σ
2/3
n when p = 2 and since Fn(An) ≤ 1, we have that

dV ( fn, gn) ≤ exp
{

2M(Θ0)σ
2/3
n

}
− 1 + 2d R

Θ( f0, g0)
σ 2

n

ρ2
n
,

= exp
{

2M(Θ0)σ
2/3
n

}
− 1 + 2d R

Θ( f0, g0)σ
2/3
n . (20)

It follows that for any one-dimensional functioning posterior density with a finite mean
and variance the variation distance between posteriors ( fn, gn) is typically bounded
by a rate 3

√
n. For instance, it is common for the marginal posterior density fn(θ) of
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a mean parameter θ to be Student t so that

fn(θ) ∝
[

1 + (x − θn)2

(αn − 2)σ 2
n

]− αn+1
2

,

where αn = α0 + n/2, n > 4, E(θ |xn) = θn and V ar(θ |xn) = σ 2
n . For a given

choice of M(Θ0) and when the prior separation d R
Θ( f0, g0) is finite, plugging the

latter variance in (20) gives the required robustness bounds.

The next example shows that bounds can still be calculated even when the moments
of fn do not exist, although their rate of convergence is sometimes slower.

Example 9 Suppose fn(x) = f (σ−1
n (θ − θn)) where f is a Cauchy density and

note that for x > 0 the Cauchy distribution function F(x) has the property that
F(−x) < 1

2π
x−1. It follows that

Tn[2] ≤ d R
Θ( f0, g0)

π
σ r

n .

To obtain the best asymptotic bound for dV ( fn, gn) using (17), set ρn = σ
1/2
n so that

r = 0.5 and

lim
n→∞ sup

g∈N0(0.5)

{
dV ( fn, gn)√

σn

}
≤ M(Θ0) + 2d R

Θ( f0, g0).

The next example demonstrates that analogous Chebyshev bounds to the univariate
case can also be calculated for multivariate problems.

Example 10 Let θ = (θ1, θ2, . . . , θk) be a k-dimensional parameter vector indexing
the distribution of a random variable of interest Y and let μ j,n, σ 2

j,n denote, respec-
tively, the posterior mean and variance of the margin θ j , 1 ≤ j ≤ k under the func-
tioning prior f0 upon observing (y1, . . . , yn). Then Tong (1980, p.153) proves that

1 − Fn(θ ∈ B(θn; ρn)) ≤ 1 − Fn

⎛
⎝ k⋂

j=1

{|θ j − μ j,n| ≤ √
kρn}

⎞
⎠ ≤ kρ−2

n

k∑
j=1

σ 2
j,n,

which implies

Tn[2] ≤ d R
Θ( f0, g0)

σ 2
n

ρ2
n
, (21)

where σ 2
n = k max1≤ j≤k σ 2

j,n .

Note that the latter bound increases linearly with the dimension k of the parameter
space. These Chebyshev bounds are in fact coarse and they can be somewhat improved
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using rather more complicated expressions (see Monhor 2007). Also, if example (10)

is enriched by a utility function indexed only by the margin θ1 of the parameter θ , then
by (9) the posterior bounds (21) can be calculated directly from prior bounds and the
means and variances of the margin of interest.

When f0 and g0 have sufficiently different tail characteristics, d R
Θ( f0, g0) is

unbounded so that the result of Theorem 2 is no longer useful. However, by intro-
ducing the following two definitions we can derive and alternative bound for the term
Tn[2].

Definition 4 Call g0 k-rejectable if
p f0 (x)

pg0 (x)
≥ k.

By Definition 3, if the genuine prior is believed to explain the data better than f0
then this ratio would be predicted a priori to be small and g0 would certainly not be
k-rejectable for moderately large values of k.

Definition 5 The density f is said to �− tail dominate a density g if

sup
θ∈Θ

g(θ)

f (θ)
= � < ∞. (22)

When g(θ) is bounded, (22) requires that the tails of g decay no faster than those of f .

Corollary 1 If g0 is not k-rejectable and (22) holds, then (19) becomes

Tn[2] ≤ Fn(Ac
n) + Gn(Ac

n),

= Fn(Ac
n) +

∫
θ∈Ac

n

gn(θ)

fn(θ)
fn(θ) dθ,

= Fn(Ac
n) +

∫
θ∈Ac

n

p f (x)

pg(x)

g0(θ)

f0(θ)
fn(θ) dθ,

≤ Fn(Ac
n) + k�

∫
θ∈Ac

n

fn(θ) dθ,

≤ Fn(Ac
n)(1 + k�). (23)

Here the prior tail dominance condition simply encourages the use of a flat tailed
functioning prior so that if data is observed in its tail the likelihood will tend to domi-
nate the posterior. This formal result technically confirms practical Bayesian modeling
principles suggesting the use of flat tailed functioning priors (O’Hagan and Forster
(2004)). Under these conditions, analogues of Examples 7–10 above can be calculated
simply by substituting d R

Θ( f0, g0) = 1 + k� throughout. Further related bounds are
derived in Daneseshkhah (2004).
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6 Application to the analysis of glucose concentration data

In this section we demonstrate the use of the TVD upper bounds (17) for assessing
robustness of posterior inferences under a power steady model analogous to Example 5.
In this case, having chosen the form of a time series likelihood function, the posterior
inferences are dependent on the prior hyper-parameters and in particular on the value
of the power-steady coefficient α. Describing posterior dependence with respect to
the latter is critical because α is not identifiable from the data so that its value must be
fixed in advance (Smith 1979; West and Harrison 1997; O’Hagan 2006). In particular,
for practical experimental design it may be important to set the parameter α so as to
allow for posterior convergence under alternative priors using realistic data sample
sizes.

At any time t ≥ 1 we assume that a real-valued random variable Yt has a Gaussian
distribution with mean μt and variance σ 2

t . At time t = 1 these moments are given
the standard conjugate priors

μ1 | m, σ 2
1 ∼ N (m, σ 2

1 ),

σ 2
1 | a, b ∼ I G(a, b).

Upon observing the realization Y1 = y1, the conditional posterior densities are

μ1 | m, y1, σ
2
1 ∼ N

(
m + y1

2
,
σ 2

1

2

)
,

σ 2
1 | a, b, m, μ1, y1 ∼ I G

(
a + 1, b + (μ1 − m)2 + (y1 − μ2

1)

2

)
.

As in Example 5, the conditional prior for the mean at time t = 2 is then derived as

f (μ2 | m, y1, σ
2
1 ) ∝ f α(μ1 | m, y1, σ

2
1 ),

where α ∈ (0, 1) is fixed, yielding the prior

μ2 | m, y1, σ
2
1 ∼ N

(
m + y1

2
,
σ 2

1

2α

)
.

The conditional prior for the variance at time t = 2 is derived by using the transfor-

mation σ 2
2 = σ 2

1
2α

, giving

σ 2
2 | a, b, m, μ1, y1 ∼ I G

(
a + 1,

1

2α

(
b + (μ1 − m)2 + (y1 − μ1)

2

2

))
.
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Fig. 1 Natural logarithm of the blood glucose concentration measurements for a hyperglycemic patient.
Measures were taken automatically during the day on a minute-by-minute basis. Normal concentrations lie
roughly in the interval (1, 2), corresponding to (3, 7) mmol/L, whereas this data presents the large values
typical of this disease

By iterating this construction, the conditional posterior densities at time t are

μt | m, y1:t , σ 2
t ∼ N

(
mt ,

σ 2
t

2

)
,

σ 2
t | a, b, m, μ1:t , y1:t ∼ I G

⎛
⎝a + t,

b

(2α)t−1 +
t∑

j=1

(μ j − m j )
2 + (y j − μ j )

2

2(2α)t− j

⎞
⎠ ,

where mt = m
2t + ∑t

j=1
y j

2t− j+1 .
Under this model, robustness of the posterior inferences can be effectively measured

calculating the upper bounds for the variation distance (17) for alternative specifications
of the prior hyper-parameters (m, a, b) and for different values of the coefficient α.
Note that these bounds do in fact apply irrespective of whether the observations actu-
ally arise from the postulated likelihood function and of the form of the genuine and
functioning priors, so that they could be applied to assess robustness in a much broader
context.

Here we illustrate posterior robustness for a sample of minute-by-minute glucose
concentration measurements (in mmol/L) taken from the blood of a patient affected
by diabetes mellitus. On the natural logarithmic scale, glucose concentrations for a
healthy subject lie roughly within the interval (1, 2), whereas this data presents the
large values typical of a hyperglycemic patient, as shown in Fig. 1.
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The top-left panel in Fig. 2 shows the estimated time-varying mean along with
the end-points of its 95% equal-tailed posterior probability intervals with α = 0.5,
inducing mild memory of the prior conditions over time, and using the functioning
prior (m = 1.6, a = 1, b = 0.001). The latter hyper-parameter values are calibrated
to the glucose concentrations which can be reasonably expected for a healthy subject
and correspond to a 99% joint prior probability set A0 = {(0.48, 3.32), (0.01, 0.98)}
respectively for the mean and variance of the log-glucose concentration. These prior
settings correspond to what might be reasonably assumed by a modeler who does not
expect the data to arise from a hyperglycemic patient. The top-right panel in the same
figure shows the posterior estimates for the time-varying variance under the same prior.
The posterior functionals represented in these two panels were approximated using
the standard Gibbs sampler (Gelfand and Smith 1990). Note that under this model the
posterior inferences for the time-varying means and variances become progressively
more precise as data is accrued. In this application interest lies in assessing poster-
ior robustness with respect to the alternative prior (ma = 2, aa = 1, ba = 0.01),
inducing a 99% joint prior probability set {(−0.16, 4.30), (0.02, 9.89)}. These set-
tings are motivated by observing that higher mean glucose concentrations and higher
variability are expected for data arising from a diabetic patient, so that we take these
hyper-parameter values as identifying the genuine prior.

For the power steady model examined in this section, the TVD upper bound (17)
simplifies to

dV ( ft , gt ) ≤ Ft (A0)d
R
A0

( f0, g0)
αt + (1 − Ft (A0))d

R
Θ( f0, g0), (24)

where we have used Eq. (13). Unlike for the inequality (17), in (24) we evaluate
both terms of the TVD upper bound with respect to 99% functioning prior probability
set A0. Since our functioning prior is relatively diffuse, figure 2 shows that Ft (A0) = 1
for all t > 0 and for α = 0.5. Should this not be the case for different values of α,
the multiplier of d R

Θ( f0, g0) in (24) can be made to converge to zero by defining an
appropriate sequence of intervals {At }.

Under (24), the total variation upper bound is finite for any value of the param-
eter α when d R

A0
( f0, g0) and d R

Θ( f0, g0) are finite. By evaluating the DRA0 and the
DRΘ divergences over finite grids of values respectively within A0 and over the larg-
est possible numerical approximation of Θ , we find that d R

A0
( f0, g0) ≈ 1,459 and

d R
Θ( f0, g0) ≈ 9,400, so that the right-hand side of (24) has a finite value depend-

ing on the power-steady coefficient α. The bottom plot in Fig. 2 shows the number
of observations required for the TVD upper bound (24) to become numerically zero
for α = 0.01, 0.02, . . . , 0.99. As expected, lower values of α correspond to a lower
weight of the initial conditions (m, a, b), so that the posterior distributions are prac-
tically indistinguishable after roughly 10 updates only. As α is increased, the initial
conditions are given progressively more weight and the increase in the number of
samples required to vanish the TVD upper bound is faster than linear. Values of α

below 0.7 ensure that the functioning and genuine posterior densities converge using
roughly two hours of measurements. As α approaches the value 0.95, equivalence in
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Fig. 2 Posterior estimates of the time-varying means (top left) and variances (top right) for the glucose
concentrations using the functioning prior hyper-parameters (m = 5, a = 1, b = 1.125) and α = 0.50.
Whole curves represent the estimated posterior means of μt and σ 2

t whereas dashed curves delimit their
approximate 95% marginal posterior intervals. The bottom plot represents the number of observations
required to ensure that the posterior distributions of the means and variances are numerically indistin-
guishable in variation distance. Increasing the coefficient α gives progressively more weight to the initial
conditions. Values of α below 0.7 ensure that the functioning and genuine posterior densities converge
using roughly two hours of measurements whereas for α > 0.95 their TVD at time t = 855 does not vanish

total variation cannot be ensured for any of the posterior distributions of the means
and variances at the 855 time points.

7 Discussion

The local separations introduced in this paper respond to a basic intuition: when a
finite-dimensional posterior distribution converges on to a small set in the interior
of the domain of its parameters, posterior robustness critically depends on the prior
smoothness on this particular set. In this case, varying the location of the prior mass
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has little impact on the posterior estimates. Provided that the priors f0 and g0 are
close with respect to these new local separations, the functioning posterior distribu-
tion provides a good approximation to the genuine posterior even when the family of
sampling models is inconsistent with the data. All similar priors will give similar, if
possibly erroneous, posterior densities. In particular, using a proper prior whose mass
is poorly positioned will give approximately the same posterior density as getting
the prior right provided the sample size is large enough, as shown in Sect. 6, under
three conditions. The first is that the same likelihood is shared by the two priors. This
commonly assumed but very strong condition is absolutely critical in that if this is
not the case posterior inferences will typically diverge with increasing sample size
(Smith 2007). From this perspective, it is important to note that the local separations
introduced in this paper measure posterior robustness with respect to the likelihood
of the observed data and not by averaging with respect to the sample space (Berger
and Wolpert 1984). This makes the TVD upper bounds (17) a general yet comput-
able criterion for measuring posterior robustness in practical applications. The second
condition is that the functioning posterior needs to converge to a set of small mea-
sure. If the convergence is to a defective distribution then the local DRA distances in
the tails of the genuine and functioning priors need to be comparable. Thirdly both
priors need to be comparably rough, as emphasized in Sect. 4. This key property is
often implicitly but not always thoughtfully induced by the way hierarchical priors
are currently specified.

Under these three conditions, Theorem 2 gives a TVD upper bound in terms of
differences in prior roughness within neighborhoods of high functioning posterior
probability and in terms of the prior tail behavior. We note that the counterexamples
constructed in Gustafson and Wasserman (1995), which demonstrate that conventional
smoothness bounds and convergence in prior variations are not sufficient to ensure
posterior convergence in most common models, all exhibit divergent local De Robertis
separations because they are too rough in the sense of Definition 2. Theorem 2 also
shows that the second necessary condition for posterior convergence in total variation
is that the tails of the functioning prior are not too tight, so that the information in the
likelihood is not dominated by the chosen prior. Otherwise, the mass of the functioning
posterior may well remain far away from high likelihood values where posteriors from
a genuine prior—close in variation distance but with a thicker tail—might concentrate
its mass, as noticed by Dawid (1973).

Useful variation bounds can sometimes be obtained even when the functioning
posterior does not converge in distribution (Smith 2007). On the other hand, whilst
the continuity of f0 and g0 can be relaxed, their mutual roughness conditions given
above are in practice necessary for posterior robustness. If f0 and g0 do not lie within
a local separation neighborhood about a particular location θ0 then no matter how
small is the radius of that neighborhood it is possible to construct a sequence of like-
lihoods that converge to a true value θ0. In particular, uniformly consistent estimates
of θ can be obtained but nevertheless the genuine and functioning posterior densities
remain at least a bounded variation distance apart whatever the value of sample size n.
A formal statement and proof of this property is given in Smith (2007) based on a
counterexample used in Gustafson and Wasserman (1995).
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8 Appendix

To prove (9) assume that f (θ) and g(θ) are continuous at θ̃ and φ̃ where θ̃ = (θ̃1, θ̃2)

and φ̃ = (θ̃1, φ̃2) where

θ̃1 = arg sup
A

(log f1(θ) − log g1(θ)),

φ̃1 = arg inf
A

(log f1(θ) − log g1(θ)),

the value θ̃2 is any point satisfying f2|1(θ̃2|θ̃1) ≥ g2|1(θ̃2|θ̃1) and φ̃2 is any point sat-
isfying f2|1(φ̃2|φ̃1) ≤ g2|1(φ̃2|φ̃1). Note that such points (θ̃2, φ̃2) must exist because
f2|1(θ̃2|θ̃1) and g2|1(θ̃2|θ̃1) are probability densities. Then for all continuous joint
densities f, g and sets A ⊆ Θ

d R
A ( f, g) = sup

θ,φ∈A

(
f1(θ1) f2|1(θ2|θ1)g1(φ1)g2|1(φ2|φ1)

f1(φ1) f2|1(φ2|φ1)g1(θ1)g2|1(θ2|θ1)

)
− 1,

≥ f1(θ̃1) f2|1(θ̃2|θ̃1)g1(φ̃1)g2|1(φ̃2|φ̃1)

f1(φ̃1) f2|1(φ̃2|φ̃1)g1(θ̃1)g2|1(θ̃2|θ̃1)
− 1,

= sup
θ1,φ1∈A1

(
f1(θ1)g1(φ1)

f1(φ1)g1(θ1)

)
− 1 = d R

A1
( f1, g1),

and therefore

d L
A( f, g) ≥ d L

A1
( f1, g1). (25)

where A1 = {θ1 : θ = (θ1, θ2) ∈ A for all θ2 ∈ B ⊂ Θ2 for some open set B}, that is
the property we require.
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