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Abstract The EM algorithm is a widely used methodology for penalized likelihood
estimation. Provable monotonicity and convergence are the hallmarks of the EM algo-
rithm and these properties are well established for smooth likelihood and smooth
penalty functions. However, many relaxed versions of variable selection penalties are
not smooth. In this paper, we introduce a new class of space alternating penalized
Kullback proximal extensions of the EM algorithm for nonsmooth likelihood infer-
ence. We show that the cluster points of the new method are stationary points even
when they lie on the boundary of the parameter set. We illustrate the new class of
algorithms for the problems of model selection for finite mixtures of regression and
of sparse image reconstruction.
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1 Introduction

The EM algorithm of Dempster et al. (1977) is a widely applicable methodology for
computing likelihood maximizers or at least stationary points. It has been extensively
studied over the years and many useful generalizations have been proposed, includ-
ing, for instance, the stochastic EM algorithm of Delyon et al. (1999) and Kuhn and
Lavielle (2004); the PX–EM accelerations of Liu et al. (1998); the MM generalization
of Hunter and Lange (2004) and approaches using extrapolation such as proposed in
Varadhan and Roland (2007).

In recent years, much attention has been given to the problem of variable selection
for multiparameter estimation, for which the desired solution is sparse, i.e. many of
the parameters are zero. Several approaches have been proposed for recovering sparse
models. A large number of contributions are based on the use of non-differentiable
penalties like the LASSO (Tibshirani 1996; Candès and Plan 2009), ISLE (Friedmand
and Popescu 2003) and “hidden variable”-type approach developed by Figueiredo and
Nowak (2003). Other contributions are for instance sparse Bayes learning (Tipping
2001), information theoretic based prior methods of Barron (1999), empirical Bayes
(Johnstone and Silverman 2004). Among recent alternatives is the new Dantzig selec-
tor of Candès and Tao (2007). On the other hand, only a few attempts have been made to
use of non-differentiable penalization for more complex models than the linear model;
for some recent progress, see Koh et al. (2007) for the case of logistic regression; and
Khalili and Chen (2007) for mixture models.

In the present paper, we develop new extensions of the EM algorithm that incorpo-
rate a non-differentiable penalty at each step. Following previous work of the first two
authors, we use a Kullback proximal interpretation for the EM-iterations and prove
stationarity of the cluster points of the methods using nonsmooth analysis tools. Our
analysis covers coordinate by coordinate methods such as space alternating exten-
sions of EM and Kullback proximal point (KPP) methods and such component-wise
versions of EM-type algorithms can benefit from acceleration of convergence speed
(Fessler and Hero 1994). The KPP method was applied to Gaussian mixture models
in Celeux et al. (2001). The main result of this paper is that any cluster point of the
space alternating KPP method satisfies a nonsmooth Karush–Kuhn–Tucker condition.

The paper is organized as follows: in Sect. 2, we review penalized KPP methods
and introduce componentwise PKPP algorithms with new differentiable penalties.
In Sect. 3, our main asymptotic results are presented. In Sect. 4, we present a space
alternating implementation of the penalized EM algorithm for a problem of model
selection in a finite mixture of linear regressions using the SCAD penalty introduced
in Fan and Li (2001) and further studied in Khalili and Chen (2007).

2 The EM algorithm and its Kullback proximal generalizations

The problem of maximum likelihood (ML) estimation consists of solving the
maximization

θML = argmaxθ∈� ly(θ), (1)
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Kullback proximal point algorithms with nonsmooth penalty 793

where y is an observed sample of a random variable Y defined on a sample space Y
and ly(θ) is the log-likelihood function defined by

ly(θ) = log g(y; θ),

on the parameter space� ⊂ R
p, and g(y; θ) denotes the density of Y at y parametrized

by the vector parameter θ .
The standard EM approach to likelihood maximization introduces a complete data

vector X with density f . Consider the conditional density function k(x |y; θ̄ ) of X
given y

k(x |y; θ̄ ) = f (x; θ̄ )
g(y; θ̄ ) . (2)

As is well known, the EM algorithm then consists of alternating between two steps.
The first step, called the E(xpectation) step, consists of computing the conditional
expectation of the complete log-likelihood given Y . Notice that the conditional den-
sity k is parametrized by the current iterate of the unknown parameter value, denoted
here by θ̄ for simplicity. Moreover, the expected complete log-likelihood is a function
of the variable θ . Thus, the second step, called the M(aximization) step, consists of
maximizing the obtained expected complete log-likelihood with respect to the vari-
able parameter θ . The maximizer is then accepted as the new current iterate of the EM
algorithm and the two steps are repeated until convergence is achieved.

Consider now the general problem of maximizing a concave function �(θ). The
original proximal point algorithm introduced by Martinet (1970) is an iterative proce-
dure which can be written

θk+1 = argmaxθ∈D�

{
�(θ)− βk

2
‖θ − θk‖2

}
. (3)

The influence of the quadratic penalty 1
2‖θ − θk‖2 is controlled by the sequence of

positive parameters {βk}. Rockafellar (1976) showed that superlinear convergence of
this method occurs when the sequence {βk} converges to zero. A relationship between
proximal point algorithms and EM algorithms was discovered in Chrétien and Hero
(2000) (see also Chrétien and Hero 2008 for details). We review the EM analogy to
KPP methods to motivate the space alternating generalization. Assume that the fam-
ily of conditional densities {k(x |y; θ)}θ∈Rp is regular in the sense of Ibragimov and
Has’minskii (1981), in particular k(x |y; θ)μ(x) and k(x |y; θ̄ )μ(x) are mutually abso-

lutely continuous for any θ and θ̄ in R
p. Then, the Radon–Nikodym derivative k(x |y,θ̄ )

k(x |y;θ)
exists for all θ, θ̄ and we can define the following Kullback Leibler divergence:

Iy(θ, θ̄ ) = E
[

log
k(x |y, θ̄ )
k(x |y; θ) |y; θ̄

]
. (4)

Let us define Dl as the domain of ly, DI,θ the domain of Iy(·, θ) and DI the domain
of Iy(·, ·). Using the distance-like function Iy , the KPP algorithm is defined by
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794 S. Chrétien et al.

θk+1 = argmaxθ∈D�

{
�(θ)− βk Iy(θ, θ̄ )

}
. (5)

The following was proved in Chrétien and Hero (2000).

Proposition 1 (Chrétien and Hero 2000, Proposition 1). In the case where � is the
log-likelihood, the EM algorithm is a special instance of the Kullback-proximal algo-
rithm with � equal to the penalized log-likelihood and βk = 1, for all k ∈ N.

2.1 The space alternating penalized Kullback-proximal method

In what follows, and in anticipation of component-wise implementations of penal-
ized KPP, we will use the notation �r (θ) for the local decomposition at θ defined by
�r (θ) = � ∩ (θ + Sr ) , r = 1, . . . , R where S1, . . . ,SR are subspaces of R

p and
R

p = ⊕R
r=1Sr .

Then, the space alternating penalized proximal point algorithm is defined as follows.

Definition 1 Let ψ : R
p �→ S1 × · · · × SR be a continuously differentiable map-

ping and let ψr denote its r th coordinate. Let (βk)k∈N be a sequence of positive real
numbers and λ be a positive real vector in R

R . Let pn be a nonnegative possibly
nonsmooth locally Lipschitz penalty function with bounded Clarke-subdifferential
(see the Appendix for details) on compact sets. Then, the space alternating penalized
Kullback proximal algorithm is defined by

θk+1 = argmaxθ∈�k−1(mod R)+1(θ
k )∩Dl∩DI,θk

×
{

ly(θ)−
R∑

r=1

λr pn(ψr (θ))− βk Iy(θ, θ
k)

}
, (6)

where Dl is the domain of ly and DI,θ is the domain of Iy(·, θ).
The standard KPP algorithms as defined in Chrétien and Hero (2008) is obtained

as special case by selecting R = 1,�1 = �,λ = 0.
The mappingsψr will simply be the projection onto the subspace�r , r = 1, . . . , R

in the sequel, but the proofs below allow for more general mappings too.

2.2 Notations and assumptions

The notation ‖ · ‖ will be used to denote the norm on any previously defined space.
The space on which the norm operates should be obvious from the context. For any
bivariate function�,∇1�will denote the gradient with respect to the first variable. For
the convergence analysis, we will make the following assumptions. For a locally Lips-
chitz function f, ∂ f (x) denotes the Clarke subdifferential of f at x (see Appendix).
Regular locally Lipschitz functions are defined in the Appendix.

Assumption 1 (i) ly is differentiable and ly(θ) − ∑R
r=1 λr pn(ψr (θ)) converges

to −∞ whenever ‖θ‖ tends to +∞. The function pn is locally Lipschitz and
regular.
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Kullback proximal point algorithms with nonsmooth penalty 795

(ii) The domain DI,θ of I (·, θ) is a subset of the domain Dl of l.
(iii) (βk)k∈N is a convergent nonnegative sequence of real numbers whose limit is

denoted by β∗.
(iv) The mappings ψr are such that

ψr (θ + εd) = ψr (θ)

for all θ in�, all d ∈ S⊥
r and ε > 0 sufficiently small so that θ+εd ∈ �, r = 1, . . . , R.

This condition is satisfied for linear projection operators.

We will also impose one of the two following sets of assumptions on the distance-like
function Iy in (4).

Assumption 2 (i) There exists a finite-dimensional Euclidean space S, a differen-
tiable mapping t : Dl �→ S and a functional ψ : Dψ ⊂ S × S �→ R such that
KL divergence (4) satisfies

Iy(θ, θ̄ ) = Ψ (t (θ), t (θ̄)),

where Dψ denotes the domain of Ψ .
(ii) For any {(tk, t)k∈N} ⊂ DΨ there existsρt > 0 such that lim‖tk−t‖→∞ Iy(tk, t) ≥

ρt . Moreover, we assume that inf t∈M ρt > 0 for any bounded set M ⊂ S. For
all (t ′, t) in DΨ , we will also require that

(iii) (Positivity) Ψ (t ′, t) ≥ 0,
(iv) (Identifiability) Ψ (t ′, t) = 0 ⇔ t = t ′,
(v) (Continuity) Ψ is continuous at (t ′, t) and for all t belonging to the projection

of DΨ onto its second coordinate,
(vi) (Differentiability) the function Ψ (·, t) is differentiable at t .

In the case where the Kullback divergence Iy is not defined everywhere (for instance
if its domain of definition is the positive orthant), we need stronger assumptions to
prove the desired convergence properties.

Assumption 3 (i) There exists a differentiable mapping t : Dl �→ R
n×m such

that the Kullback distance-like function Iy is of the form

Iy(θ, θ̄ ) =
∑

1≤i≤n,1≤ j≤m

αi j (y j )ti j (θ)φ

(
ti j (θ̄)

ti j (θ)

)
,

where for all i and j, ti j is continuously differentiable on its domain of defini-
tion, αi j is a function from Y to R+, the set of positive real numbers,

(ii) The function φ is a non negative differentiable convex function defined R
+∗ and

such that φ(τ) = 0 if and only if τ = 1.
(iii) There exists ρ > 0 such that

lim
R+�τ→∞

φ(τ) ≥ ρ.

(iv) The mapping t is injective on each �r .
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796 S. Chrétien et al.

In the context of Assumptions 3, DI is simply the set

DI = {θ ∈ R
p | ti j (θ) > 0 ∀i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}}2.

Notice that if ti j (θ) = θi and αi j = 1 for all i and all j , the functions Iy turn out
to reduce to the well known φ divergence defined in Csiszár (1967). Assumptions 3
are satisfied by most standard examples (for instance Gaussian mixtures and Poisson
inverse problems) with the choice φ(τ) = τ log(τ )− 1.

Assumptions 1(i) and (ii) on ly are standard and are easily checked in practical
examples, e.g. they are satisfied for the Poisson and additive mixture models.

Finally, we make the following general assumption.

Assumption 4 The Kullback proximal iteration (6) is well defined, i.e. there exists at
least one maximizer of (6) at each iteration k.

In the EM case, i.e. β = 1, this last assumption is equivalent to the computability of
M-steps. In practice, it suffices to show the inclusion 0 ∈ ∇ly(θ) − λ∂pn(ψ(θ)) −
βk∇ Iy(θ, θ

k) for θ = θk+1 to prove that the solution is unique. Then, Assumption 1(i)
is sufficient for a maximizer to exist.

These technical assumptions play an important role in the theory developed below.
Assumption 1(i) on differentiability of the log-likelihood is important for establish-
ing the Karush–Kuhn–Tucker optimality conditions for cluster points. The fact that
the objective should decrease to negative infinity as the norm of the parameter goes
to infinity is often satisfied, or can be easily imposed, and is used later to guarantee
boundedness of the sequence of iterates. The fact that pn is regular is standard since the
usual choices are the �1-norm, the �p-quasi-norms for 0 < p < 1, the SCAD penalty,
etc … . Assumption 1(ii) is only needed to simplify the analysis since, otherwise, each
iterate would lie in the intersection of Dl and DI and this would lead to asymptotic
complications; this assumption is always satisfied in the models we have encountered
in practice. Assumption 1(iii) is standard. Assumption 1(iv) is satisfied when ψr is a
projection onto Sr and simplifies the proofs. Assumption 2 imposes natural conditions
on the “distance” Iy . Assumption 2(ii) ensures that the “distance” Iy is large between
points whose Euclidean distance goes to +∞, thus weakening the assumption that Iy

should grow to +∞ in such a case. Assumptions 3 are used to obtain the Karush–
Kuhn–Tucker conditions in Theorem 2. For this theorem, we require Iy to behave like
a standard Kullback–Leibler “distance” and therefore that Iy has a more constrained
shape. Assumption 3(iii) is a simplification of Assumption 2(ii). Assumption 3(iv) is
a natural injectivity requirement.

3 Asymptotic properties of the Kullback-proximal iterations

3.1 Basic properties of the penalized Kullback proximal algorithm

Under Assumptions 1, we state basic properties of the penalized KPP algorithm. The
most basic property is the monotonicity of the penalized likelihood function and the
boundedness of the penalized proximal sequence (θk)k∈N. The proofs of the following
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Kullback proximal point algorithms with nonsmooth penalty 797

lemmas are given, for instance, in Chrétien and Hero (2000) for the unpenalized case
(λ = 0) and their generalizations to the present context is straightforward.

We start with the following monotonicity result.

Lemma 1 For any iteration k ∈ N, the sequence (θk)k∈N satisfies

ly(θ
k+1) −

R∑
r=1

λr pn(ψr (θ
k+1))− (ly(θ

k)−
R∑

r=1

λr pn(ψr (θ
k)))

≥ βk Iy(θ
k, θk+1) ≥ 0. (7)

Lemma 2 The sequence (θk)k∈N is bounded.

The next lemma will also be useful and its proof in the unpenalized case where
λ = 0 is given in Chrétien and Hero (2008) Lemma 2.4.3. The generalization to λ > 0
is also straightforward.

Lemma 3 Assume that in the space alternating KPP sequence (θk)k∈N, there exists
a subsequence (θσ(k))k∈N belonging to a compact set C included in Dl . Then,

lim
k→∞βk Iy(θ

k+1, θk) = 0.

One important property, which is satisfied in practice, is that the distance between two
successive iterates decreases to zero. This property is critical to the definition of a
stopping rule for the algorithm. This property was established in Chrétien and Hero
(2008) in the case λ = 0.

Proposition 2 (Chrétien and Hero 2008, Proposition 4.1.2) The following statements
hold.

(i) For any sequence (θk)k∈N in R
p
+ and any bounded sequence (ηk)k∈N in R

p
+, if

limk→+∞ Iy(η
k, θk) = 0 then limk→+∞ |ti j (η

k)− ti j (θ
k)| = 0 for all i, j such

that αi j �= 0.
(ii) If limk→+∞ Iy(η

k, θk) = 0 and one coordinate of one of the two sequences
(θk)k∈N and (ηk)k∈N tends to infinity, so does the other’s same coordinate.

3.2 Properties of cluster points

The results of this subsection state that any cluster point θ∗ such that (θ∗, θ∗) lies on
the closure of DI satisfies a modified Karush–Kuhn–Tucker type condition. We first
establish this result in the case where Assumptions 2 hold in addition to Assumptions 1
and 2 for the Kullback distance-like function Iy .

For notational convenience, we define

Fβ(θ, θ̄ ) = ly(θ)−
R∑

r=1

λr pn(ψr (θ))− β Iy(θ, θ̄ ). (8)
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798 S. Chrétien et al.

Theorem 1 Assume that Assumptions 1, 2 and 4 hold and if R > 1, then, for each r =
1, . . . , R, t is injective on�r . Assume that the limit of (βk)k∈N, β

∗, is positive. Let θ∗
be a cluster point of the space alternating penalized Kullback-proximal sequence (6).
Assume the mapping t is differentiable at θ∗. If θ∗ lies in the interior of Dl , then θ∗ is
a stationary point of the penalized log-likelihod function ly(θ), i.e.

0 ∈ ∇ly(θ
∗)−

R∑
r=1

λr∂pn(ψr (θ
∗)).

Proof We consider two cases, namely the case where R = 1 and the case where
R > 1.

A. If R = 1 the proof is analogous to the proof of Theorem 3.2.1 in Chrétien and
Hero (2008). In particular, we have

Fβ∗(θ∗, θ∗) ≥ Fβ∗(θ, θ∗)

for all θ such that (θ, θ∗) ∈ DI . Since Iy(θ, θ
∗) is differentiable at θ∗, the result

follows by writing the first order optimality condition at θ∗ in (9).
B. Assume that R > 1 and let (xσ(k))k∈N be a subsequence of iterates of (6) con-

verging to θ∗. Moreover let r = 1, . . . , R and θ ∈ �r ∩ Dl . For each k, let
σr (k) the smallest index greater than σ(k), of the form σ(k′) − 1, with k′ ∈ N

and (σ (k′) − 1) (mod R) + 1 = r . Using the fact that t is injective on every
�r , r = 1, . . . , R, Lemma 3 and the fact that (βk)k∈N converges to β∗ > 0, we
easily conclude that (θσr (k))k∈N and (θσr (k)+1)k∈N also converge to θ∗.

For k sufficiently large, we may assume that the terms (θσr (k)+1, θσr (k)) and
(θ, θσr (k)) belong to a compact neighborhood C∗ of (θ∗, θ∗) included in DI . By
Definition 1 of the space alternating penalized Kullback proximal iterations,

Fβσr (k)

(
θσr (k)+1, θσr (k)

)
≥ Fβσr (k)

(
θ, θσr (k)

)
.

Therefore,

Fβ∗
(
θσr (k)+1, θσr (k)

)
− (
βσr (k) − β∗) Iy

(
θσr (k)+1, θσr (k)

)

≥ Fβ∗
(
θ, θσr (k)

)
− (
βσr (k) − β∗) Iy

(
θ, θσ(k)

)
. (9)

Continuity of Fβ follows directly from the proof of Theorem 3.2.1 in Chrétien and
Hero (2008), where in that proof σ(k) has to be replaced by σr (k). This implies that

Fβ∗
(
θ∗, θ∗) ≥ Fβ∗

(
θ, θ∗) (10)

for all θ ∈ �r such that (θ, θ∗) ∈ C∗ ∩ DI . Finally, recall that no assumption was
made on θ , and that C∗ is a compact neighborhood of θ∗. Thus, using the Assump-
tion 1(i), which asserts that ly(θ) tends to −∞ as ‖θ‖ tends to +∞, we may deduce
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Kullback proximal point algorithms with nonsmooth penalty 799

that (10) holds for any θ ∈ �r such that (θ, θ∗) ∈ DI and, letting ε tend to zero, we see
that θ∗ maximizes Fβ∗(θ, θ∗) for all θ ∈ �r such that (θ, θ∗) belongs to DI as claimed.

To conclude the proof of Theorem 1, take d in R
p and decompose d as d =

d1 + · · · + dR with dr ∈ Sr . Then, Eq. (10) implies that the directional derivatives
satisfy

F ′
β∗

(
θ∗, θ∗; dr

) ≤ 0 (11)

for all r = 1, . . . , R. Due to Assumption 1(iv), the directional derivative of∑R
r=1 λr pn(ψr (·)) in the direction d is equal to the sum of the partial derivatives

in the directions d1, . . . , dR and, since all other terms in the definition of Fβ are
differentiable, we obtain using (11), that

F ′
β∗

(
θ∗, θ∗; d

) =
R∑

r=1

F ′
β∗

(
θ∗, θ∗; dr

) ≤ 0.

Therefore, using the assumption that pn is regular (see Assumption 1(i)) which says
that p◦

n = p′
n , together with characterization (22) of the subdifferential in the Appendix

and Proposition 2.1.5(a) in Clarke (1990), the desired result follows. ��

Next, we consider the case where Assumptions 3 hold.

Theorem 2 Assume that in addition to Assumptions 1 and 4, Assumptions 3 hold. Let
θ∗ be a cluster point of the space alternating penalized Kullback proximal sequence.
Assume that all the functions ti j are continuously differentiable at θ∗. Let I∗ denote
the index of the active constraints at θ∗, i.e. I∗ = {(i, j) s.t. ti j (θ

∗) = 0}. If θ∗ lies
in the interior of Dl , then θ∗ satisfies the following property: there exists a family of
subsets I∗∗

r ⊂ I∗ and a set of real numbers λ∗
i j , (i, j) ∈ I∗∗

r , r = 1, . . . , R such that

0 ∈ ∇ly(θ
∗)−

R∑
r=1

λr∂pn(ψr (θ
∗))+

R∑
r=1

∑
(i, j)∈I∗∗

r

λ∗
i j PSr (∇ti j (θ

∗)), (12)

where PSr is the projection onto Sr .

Remark 1 The condition (12) resembles the traditional Karush–Kuhn–Tucker condi-
tions of optimality but is in fact weaker since the vector

R∑
r=1

∑
(i, j)∈I∗∗

r

λ∗
i j PSr (∇ti j (θ

∗))

in Eq. (12) does not necessarily belong to the normal cone at θ∗ to the set {θ | ti j ≥
0, i = 1, . . . , n, j = 1, . . . ,m}.
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Proof of Theorem 2 Let �i j (θ, θ̄ ) denote the bivariate function defined by

�i j (θ, θ̄ ) = φ

(
ti j (θ̄)

ti j (θ)

)
.

As in the proof of Theorem 1, let (xσ(k))k∈N be a subsequence of iterates of (6)
converging to θ∗. Moreover let r = 1, . . . , R and θ ∈ �r ∩ Dl . For each k, let σr (k)
be the next index greater than σ(k) such that (σr (k) − 1) (mod R) + 1 = r . Using
the fact that t is injective on every �r , r = 1, . . . , R, Lemma 3 and the fact that
(βk)k∈N converges to β∗ > 0, we easily conclude that (θσr (k))k∈N and (θσr (k)+1)k∈N

also converge to θ∗.
Due to Assumption 3(iv), the first order optimality condition at iteration σr (k) can

be written

0 = PSr

(
∇ly

(
θσ(k)+1

))
− λr gσr (k)+1

r + βσr (k)

⎛
⎝∑

i j

αi j (y j )PSr

(
∇ti j

(
θσr (k)+1

))

×�i j

(
θσr (k)+1, θσr (k)

)
+

∑
i j

αi j (y j )ti j

(
θσr (k)+1

)
PSr

(
∇1�i j

(
θσr (k)+1, θσr (k)

))⎞⎠
(13)

with gσr (k)+1
r ∈ ∂pn(ψr (θ

σr (k)+1)).
Moreover, Claim A in the proof of Theorem 4.2.1 in Chrétien and Hero (2008),

gives that for all (i, j) such that αi j (y j ) �= 0

lim
k→+∞ ti j

(
θσr (k)+1

)
∇1�i j

(
θσr (k)+1, θσr (k)

)
= 0. (14)

Let I∗
r be a subset of indices such that the family {PSr (∇ti j (θ

∗))}(i, j)∈I∗
r

is linearly
independent and spans the linear space generated by the family of all projected gra-
dients {PSr (∇ti j (θ

∗))}i=1,...,n, j=1,...,m . Since this linear independence are preserved
under small perturbations (continuity of the gradients), we may assume, without loss
of generality, that the family

{
PSr (∇ti j (θ

σr (k)+1))
}
(i, j)∈I∗

r

is linearly independent for k sufficiently large. For such k, we may thus rewrite
equation (13) as
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Kullback proximal point algorithms with nonsmooth penalty 801

0 = PSr (∇ly(θ
σr (k)+1))− λr gσr (k)+1

r + βσr (k)

⎛
⎝ ∑
(i, j)∈I∗

r

π
σr (k)+1
i j (y j )

× PSr (∇ti j (θ
σr (k)+1))+

∑
i j

αi j (y j )ti j (θ
σr (k)+1)PSr (∇1�(θ

σr (k)+1, θσr (k)))

⎞
⎠ ,

(15)

where

π
σr (k)+1
i j (y j ) = αi j (y j )�i j

(
θσr (k)+1, θσr (k)

)
. (16)

Claim The sequence {πσr (k)+1
i j (y j )}k∈N has a convergent subsequence for all (i, j)

in I ∗
r .

Proof of the claim Since the sequence (θk)k∈N is bounded, ψ is continuously differ-
entiable and the penalty pn has bounded subdifferential on compact sets, there exists

a convergent subsequence
(

gσr (γ (k))+1
r

)
k∈N

with limit g∗
r . Now, using Eq. (14), this

last equation implies that
{
π
σr (γ (k))+1
(i, j)∈I∗

r
(y j )

}
(i, j)∈I∗

r

converges to the coordinates of a

vector in the linearly independent family
{
PSr (∇ti j (θ

∗))
}
(i, j)∈I∗

r
. This concludes the

proof. ��
The above claim allows us to finish the proof of Theorem 2. Since a subsequence

(π
σr (γ (k))+1
i j (y j ))(i, j)∈I∗

r
is convergent, we may consider its limit (π∗

i j )(i, j)∈I∗
r
. Passing

to the limit, we obtain from Eq. (13) that

0 = PSr (∇ly(θ
∗))− λr g∗

r + β∗
⎛
⎝ ∑
(i, j)∈I∗

r

π∗
i j PSr (∇ti j (θ

∗))

⎞
⎠ . (17)

Using the outer semi-continuity property of the subdifferential of locally Lipschitz
functions (see Appendix) we thus obtain that g∗

r ∈ ∂pn(ψr (θ
∗)). Now, summing over

r in (17), we obtain

0 =
R∑

r=1

PSr (∇ly(θ
∗))−

R∑
r=1

λr g∗
r + β∗

R∑
r=1

⎛
⎝ ∑
(i, j)∈I∗

r

π∗
i j PSr (∇ti j (θ

∗))

⎞
⎠ .

Moreover, since�i j (θ
σr (k)+1, θσr (k)) tends to zero if (i, j) �∈ I∗, i.e. if the constraint

on component (i, j) is not active, Eq. (16) implies that

0 =
R∑

r=1

PSr (∇ly(θ
∗))−

R∑
r=1

λr g∗
r + β∗

R∑
r=1

⎛
⎝ ∑
(i, j)∈I∗∗

r

π∗
i j PSr (∇ti j (θ

∗))

⎞
⎠
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where I∗∗
r is the subset of active indices of I∗

r , i.e. I∗∗
r = I∗

r ∩I∗. Since
∑R

r=1 λr g∗
r ∈∑R

r=1 λr∂pn(ψr (θ
∗)), this implies that

0 ∈ ∇ly(θ
∗)−

R∑
r=1

λr∂pn(ψr (θ
∗))+ β∗

R∑
r=1

∑
(i, j)∈I∗∗

r

π∗
i j PSr (∇ti j (θ

∗)), (18)

which establishes Theorem 2 once we define λ∗
i j = λ∗π∗

i j . ��

The result (18) can be refined to the classical Karush–Kuhn–Tucker type condition
under additional conditions such as stated below.

Corollary 1 If in addition to the assumptions of Theorem 2 we assume that either
PSr (∇ti j (θ

∗)) = ∇ti j (θ
∗) or PSr (∇ti j (θ

∗)) = 0 for all (i, j) ∈ I∗, i.e. such that
ti j (θ

∗) = 0, then there exists a set of subsets I∗∗
r ⊂ I∗ and a family of real num-

bers λ∗
i j , (i, j) ∈ I∗∗

r , r = 1, . . . , R such that the following Karush–Kuhn–Tucker
condition for optimality holds at cluster point θ∗:

0 ∈ ∇ly(θ
∗)−

R∑
r=1

λr∂pn(ψr (θ
∗))+

R∑
r=1

∑
(i, j)∈I∗∗

r

λ∗
i j∇ti j (θ

∗).

4 Application: variable selection in finite mixtures of regression models

Variable subset selection in regression models is frequently performed using penal-
ization of the likelihood function, e.g. using AIC, Akaike (1973) and BIC, Schwarz
(1978) penalties. The main drawback of these approaches is lack of scalability due
to a combinatorial explosion of the set of possible models as the number of vari-
ables increases. Newer methods use l1-type penalties of likelihood functions, as in
the LASSO, Tibshirani (1996) and the Dantzig selector of Candès and Tao (2007), to
select subsets of variables without enumeration.

Computation of maximizers of the penalized likelihood function can be performed
using standard algorithms for nondifferentiable optimization such as bundle meth-
ods, as introduced in Hiriart-Urruty and Lemaréchal (1993). However general pur-
pose optimization methods might be difficult to implement in the situation where, for
instance, log objective functions induce line-search problems. In certain cases, the EM
algorithm, or a combination of EM type methods with general purpose optimization
routines might be simpler to implement. Variable selection in finite mixture models,
as described in Khalili and Chen (2007), represents such a case due to the presence of
very natural hidden variables.

In the finite mixture estimation problem considered here, y1, . . . , yn are realiza-
tions of the response variable Y and x1, . . . , xn are the associated realizations of the
P-dimensional vector of covariates X . We focus on the case of a mixture of linear
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regression models sharing the same variance, as in the baseball data example of section
7.2 in Khalili and Chen (2007), i.e.

Y ∼
K∑

k=1

πkN (Xtβk, σ
2), (19)

with π1, . . . , πk ≥ 0 and
∑K

k=1 πk = 1. The main problem discussed in Khalili and
Chen (2007) is model selection for which a generalization of the smoothly clipped
absolute deviation (SCAD) method of Fan and Li (2001, 2002) is proposed using an
MM–EM algorithm in the spirit of Hunter and Lange (2004). No convergence property
of the MM algorithm was established. The purpose of this section is to show that the
space alternating KPP EM generalization is easily implemented and that stationarity
of the cluster points is guaranteed by the theoretical analysis of Sect. 3.

The SCAD penalty, studied in Khalili and Chen (2007) is a modification of the
Ll1 penalty which is given by

pn(β1, . . . , βK ) =
K∑

k=1

πk

P∑
j=1

pγnk (βk, j )

where pnk is specified by

p′
γnk
(β) = γnk

√
n1√

n|β|≤γnk
+

√
n(aγnk − √

n|β|)+
a − 1

1√
n|β|>γnk

for β in R.
Define the missing data as the class labels z1, . . . , zn of the mixture component

from which the observed data point yn was drawn. The complete log-likelihood is
then

lc(β1, . . . , βK , σ
2) =

n∑
i=1

log(πzi )− 1

2
log(2πσ 2)− (yi − xt

i βzi )
2

2σ 2 .

Setting θ = (π1, . . . , πK , β1, . . . , βK , σ
2), the penalized Q-function is given by

Q(θ, θ̄ ) =
n∑

i=1

K∑
k=1

tik(θ̄)

[
log(πk)− 1

2
log(2πσ 2)− (yi − xt

i βk)
2

2σ 2

]

−pn(β1, . . . , βK )

where

tik(θ) =
πk

1√
2πσ 2

exp
(
− (yi −Xβk )

2

2σ 2

)
∑K

l=1 πl
1√

2πσ 2
exp

(
− (yi −Xβl )

2

2σ 2

) .
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The computation of this Q-function accomplishes the E-step. Moreover, a penalty
of the form −∑K

k=1
∑P

j=1 | max{106, |βk, j |} − 106| can be added to the log-
likelihood function in order to ensure that Assumptions 1(i) (convergence of the penal-
ized log-likelihood to −∞ for parameter values with norm growing to +∞) is satisfied
for the case where X is not invertible. Owing to the fact that the penalty pn is a function
of the mixture probabilities πk , the M-step estimate of the π vector is not given by the
usual formula

πk = 1

n

n∑
i=1

tik(θ̄) k = 1, . . . , K . (20)

This, however, is the choice made in Khalili and Chen (2007) in their implementation.
Moreover, optimizing jointly over the variables βk and πk is clearly a more compli-
cated task than independently optimizing with respect to each variable. We implement
a componentwise version of EM consisting of successively optimizing with respect
to the πk’s and alternatively with respect to the vectors βk . Optimization with respect
to the πk’s can be easily performed using standard differentiable optimization rou-
tines and optimization with respect to the βk’s can be performed by a standard non-
differentiable optimization routine, e.g. as provided by the function optim of Scilab
using the ’nd’ (standing for ’non-differentiable’) option.

We now turn to the description of the Kullback proximal penalty Iy defined by (4).
The conditional density function k(y1, . . . , yn, z1, . . . , zn | y1, . . . , yn; θ) is

k(y1, . . . , yn, z1, . . . , zn | y1, . . . , yn; θ) =
n∏

i=1

ti zi (θ).

and therefore, the Kullback distance-like function Iy(θ, θ̄ ) is

Iy(θ, θ̄ ) =
n∑

i=1

K∑
k=1

tik(θ̄) log

(
tik(θ̄)

tik(θ)

)
. (21)

We have R = K +1 subsets of variables with respect to which optimization will be
performed successively. All components of Assumptions 1 and 3 are trivially satisfied
for this model. Validation of Assumption 3(iv) is provided by Lemma 1 of Celeux
et al. (2001). On the other hand, since tik(θ) = 0 implies that πk = 0 and πk = 0
implies

∂tik
∂β jl

(θ) = 0

for all j = 1, . . . , p and l = 1, . . . , K and

∂tik
∂σ 2 (θ) = 0,
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Fig. 1 Baseball data of Khalili and Chen (2007). This experiment is performed with the plain EM. The
parameters are γnk = 0.1 and a = 10. The first plot is the vector β obtained for the single component model.
The second (resp. third) plot is the vector of the optimal β1 (resp. β2). The fourth plot is the Euclidean
distance to the optimal θ∗ versus iteration index. The starting value of π1 was 0.3

it follows that PSr (∇tik(θ∗)) = ∇tik(θ∗) if Sr is the vector space generated by
the probability vectors π and PSr (∇tik(θ∗)) = 0 otherwise. Therefore, Corollary 1
applies.

We illustrate this algorithm on real data (available at http://www.amstat.org/
publications/jse/v6n2/datasets.watnik.html).

Khalili and Chen (2007) report that a model with only two components was selected
by the BIC criterion in comparison to a three components model. Here, two alternative
algorithms are compared: the approximate EM using (20) and the plain EM using the
optim subroutines. The results for γnk = 1 and a = 10 are given in Fig. 1.

The results shown in Fig. 1 establish that the approximate EM algorithm has similar
properties to the plain EM algorithm for small values of the threshold parameters γnk .
Moreover, the larger the values of γnk , the closer the probability of the first component
is to 1. One important fact to notice is that with the plain EM algorithm, the opti-
mal probability vector becomes singular, in the sense that the second component has
zero probability, as shown in Fig. 2. Figure 3 demonstrates that the approximate EM
algorithm of Khalili and Chen (2007) does not produce optimal solutions.
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Fig. 2 This experiment is performed with the plain EM for the baseball data of Khalili and Chen (2007).
The parameters are γnk = 5 and a = 10. The plot shows the probability π1 of the first component versus
iteration index. The starting value of π1 was 0.3
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Fig. 3 Baseball data of Khalili and Chen (2007). This experiment is performed with the approximate EM.
The parameters are γnk = 5 and a = 10. The plot shows the probability π1 of the first component versus
iteration index. The starting value of π1 was 0.3

5 Conclusion

In this paper, we analyzed the expectation maximization (EM) algorithm with
non-differentiable penalty. By casting the EM algorithm as a KPP iteration, we
proved the stationarity of the cluster points and showed that any cluster point of the
space alternating KPP method satisfies a nonsmooth Karush–Kuhn–Tucker condition.
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The theory was applied to a space alternating implementation of the penalized EM
algorithm for a problem of model selection in a finite mixture of linear regressions.

Acknowledgments The authors would like to thank the editor and one reviewer for their careful reading
of the manuscript. Alfred Hero was partially supported by the National Science Foundation Grant Number
CCF 0830490.

6 Appendix: the Clarke subdifferential of a locally Lipschitz function

Since we are dealing with non differentiable functions, the notion of generalized dif-
ferentiability is required. The main references for this appendix are Clarke (1990) and
Rockafellar and Wets (2004). A locally Lipschitz function f : R

p �→ R always has
a generalized directional derivative f ◦(θ, ω): R

p × R
p �→ R in the sense given by

Clarke, i.e.

f ◦(θ, ω) = lim supη∈Rp→θ, t↓0
f (η + tω)− f (η)

t
.

A locally Lipschitz function is called regular if it admits a directional derivative at every
point and if moreover this directional derivative coincides with Clarke’s generalized
directional derivative.

The Clarke subdifferential of f at θ is the convex set defined by

∂ f (θ) = {η | f ◦(θ, ω) ≥ ηtω, ∀ω}. (22)

Proposition 3 The function f is differentiable if and only if ∂ f (θ) is a singleton.

We now introduce another very important property of the Clarke subdifferential related
to generalization of semicontinuity for set-valued maps.

Definition 2 A set-valued map � is said to be outer-semicontinuous if its graph

graph� = {(θ, g) | g ∈ �(θ)}

is closed, i.e. if for any sequence (graph� �) (θn, gn) → (θ∗, g∗) as n → +∞, then
(θ∗, g∗) ∈ graph�.

One crucial property of the Clarke subdifferential is that it is outer-semicontinuous.
A point θ is said to be a stationary point of f if

0 ∈ ∂ f (θ).

Consider now the problem

sup
θ∈Rp

f (θ)
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subject to

g(θ) = [g1(θ), . . . , gm(θ)]t ≥ 0

where all the functions are locally Lipschitz from R
p to R. Then, a necessary condi-

tion for optimality of θ is the Karush–Kuhn–Tucker condition, i.e. there exists a vector
u ∈ R

m+ such that

0 ∈ ∂ f (θ)+
m∑

j=1

u j∂g j (θ).

Convex functions are in particular locally Lipschitz. The main references for these
facts are Rockafellar (1970) and Hiriart-Urruty and Lemaréchal (1993).
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