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Abstract In this paper, we develop some coefficients which can be used to detect
dependence in multivariate distributions not detected by several known measures of
multivariate association. Several examples illustrate our results.

Keywords Copula · Directional dependence · Measure of association

1 Introduction

In his article in the Encyclopedia of Statistical Science on copulas, Fisher (1997)
writes: “Copulas [are] of interest to statisticians for two main reasons: First, as a way
of studying scale-free measures of dependence; and secondly, as a starting point for
constructing families of bivariate distributions. . .”

In Jogdeo’s (1982) entry on concepts of dependence, we read: “Dependence rela-
tions between random variables is one of the most studied subjects in probability and
statistics. The nature of the dependence can take a variety of forms, and unless some
specific assumptions are made about the dependence, no meaningful statistical model
can be contemplated.”
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678 R. B. Nelsen, M. Úbeda-Flores

In this paper we use copulas to study a concept we call directional dependence
in multivariate distributions, and introduce some coefficients to measure that depen-
dence.

2 Preliminaries

2.1 Copulas and Sklar’s theorem

Let n ≥ 2 be a natural number. An n-dimensional copula (briefly, n-copula) is
the restriction to IIn (II = [0, 1]) of a continuous n-dimensional distribution function
whose univariate margins are uniform on II. Equivalently, an n-copula is a function C
from IIn to II satisfying the following properties:

(i) For every u = (u1, u2, . . . , un) in IIn , C(u) = 0 if at least one coordinate of u is 0,
and C(u) = uk whenever all coordinates of u are 1 except maybe uk ; and

(ii) for every a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in IIn such that ak ≤ bk

for all k = 1, 2, . . . , n, VC ([a, b]) = ∑
sgn(c) · C(c) ≥ 0, where [a, b] denotes

the n-box ×n
i=1[ai , bi ], the sum is taken over all the vertices c = (c1, c2, . . . , cn)

of [a, b], i.e., each ck is equal to either ak or bk , and sgn(c) = 1 if ck = ak for an
even number of k’s, and sgn(c) = −1 otherwise.

The importance of copulas in statistics is described in the following result due to
Sklar (1959): Let X = (X1, X2, . . . , Xn) be a random n-vector with joint distribution
function H and one-dimensional marginal distributions F1, F2, . . . , Fn , respectively.
Then there exists an n-copula C (which is uniquely determined on ×n

i=1RangeFi )
such that H(x) = C(F1(x1), F2(x2), . . . , Fn(xn)) for all x ∈ [−∞,∞]n . Thus, cop-
ulas link joint distribution functions to their one-dimensional margins. For example,
�n is the n-copula for independent random variables, i.e., �n(u) = ∏n

i=1 ui ; and
Mn—the best-possible point-wise upper bound for the set of n-copulas—is an n-cop-
ula given by Mn(u) = min(u1, u2, . . . , un) for every u in IIn . However, W n(u) =
max

(∑n
i=1 ui − n + 1, 0

)
—the best-possible point-wise lower bound for the set of

n-copulas—is an n-copula if and only if n = 2. For a complete survey on copulas, see
Nelsen (2006).

If U is a vector of uniform II random variables whose distribution function
is the n-copula C , then C denotes the survival function associated with C , i.e.,
C(u) = Pr[U > u], where U > u denotes point-wise inequality; and Ĉ denotes
the survival copula associated with C , i.e., Ĉ(u) = C(1 − u). Moreover, Ci j ,
with 1 ≤ i < j ≤ n, will denote the (i, j)-margin of C , i.e., Ci j (ui , u j ) =
C(1, . . . , 1, ui , 1, . . . , 1, u j , 1, . . . , 1), which is a 2-copula.

2.2 Measures of association in the bivariate case

The population version of three of the most common nonparametric measures of
association between the components of a continuous random pair (X, Y ) are Kendall’s
tau (written τXY ), Spearman’s rho (written ρXY ), and the medial correlation coeffi-
cient—or Blomqvist’s beta (written βXY ). Such measures depend only on the copula C
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Directional dependence 679

associated with the pair (X, Y )—so they can also be written as τ(C), ρ(C) and β(C)—
and are given by τ(C) = 4

∫

II2 C(u, v) dC(u, v)−1 = 1−4
∫

II2
∂C(u,v)

∂u
∂C(u,v)

∂v
dudv,

ρ(C) = 12
∫

II2 C(u, v) dudv − 3 = 12
∫

II2 uv dC(u, v) − 3, and β(C) = 4

C( 1
2 , 1

2 ) − 1, respectively. As a consequence, we can also assume that the random
variables X and Y are uniform on II when studying properties of these measures. For
a study of some of their properties, see Nelsen (2006) and the references therein.

In the bivariate case, a measure of association provides information about the magni-
tude and direction of the association between two random variables. When the measure
is near to +1, large (small) values of the random variables tend to occur together; and
when the measure is near −1, large values of one random variable tend to occur with
small values of the other.

2.3 Association in the multivariate case

In the multivariate case, the situation is more complicated, and consequently we
consider just the trivariate case. A typical trivariate measure of association is the aver-
age of the three pairwise measures, but such measure often fails to detect association
among the three random variables. For instance, numerous examples exist of triples
(X, Y, Z) which are pairwise independent but not mutually independent.

Example 1 Let (X, Y, Z) be a vector of continuous random variables uniform
on II whose distribution function is the 3-copula C given by C(u, v, w) =
uvw [1 + θ(1 − u)(1 − v)(1 − w)], with 0 < |θ | ≤ 1. C is a member of the
Farlie-Gumbel-Morgenstern family of 3-copulas (Johnson and Kotz 1972). Then
τXY +τY Z +τZ X

3 = ρXY +ρY Z +ρZ X
3 = βXY +βY Z +βZ X

3 = 0. However, (X, Y, Z) are not
mutually independent, i.e., C �= �3.

We will denote the measures in Example 1 by ρ∗
3 = ρXY +ρY Z +ρZ X

3 , and similarly for
τ ∗

3 and β∗
3 .

2.4 Generalizations of Spearman’s rho

Let the copula C be the distribution function of the random vector (X, Y, Z).
Two common trivariate generalizations of Spearman’s rho are given by Joe (1990)
and Nelsen (1996) ρ+

3 (C) = 8
∫

II3 C(u, v, w) dudvdw − 1 = 8 E[XY Z ] − 1, and

ρ−
3 (C) = 8

∫

II3 C(u, v, w) dudvdw − 1 = 8 E[(1 − X)(1 − Y )(1 − Z)] − 1, which
are distinct from the average of the three pairwise version of Spearman’s rho ρ∗

3 (C) =
ρXY +ρY Z +ρZ X

3 . We also note that ρ∗
3 = ρ+

3 +ρ−
3

2 (we will suppress the argument in the
coefficients when the copula in question is understood).

Example 1 (continued) If C is the 3-copula given in Example 1, then ρ∗
3 (C) = 0, but

ρ+
3 (C) = −θ/27 and ρ−

3 (C) = θ/27. Notice that P[(X, Y, Z) > 1/2] = 1/8 − θ/64
and P[(X, Y, Z) ≤ 1/2] = 1/8 + θ/64, whereas for independent X, Y, Z we have
P[(X, Y, Z) > 1/2] = P[(X, Y, Z) ≤ 1/2] = 1/8.
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680 R. B. Nelsen, M. Úbeda-Flores

When one of the measures ρ∗
3 , ρ+

3 , or ρ−
3 is near +1, then large (or small) values

of the random variables tend to occur together, but as the following example shows,
when ρ+

3 or ρ−
3 or ρ∗

3 is near 0, there may be dependence among the random variables
undetected by the measures.

Example 2 Let (X, Y, Z) be a vector of continuous random variables uniform
on II whose distribution function is the 3-copula C given by C(u, v, w) =
C1(M2(u, v), w), where C1 is the 2-copula given by C1 = (�2 + W 2)/2. Then
it follows that a) ρ∗

3 = ρ+
3 = ρ−

3 = 0, and b) P[X = Y = 1 − Z ] = 1/2, i.e., half the
probability mass of C is (uniformly distributed) on the line joining the points (0, 0, 1)

and (1, 1, 0); and this dependence is not detected by ρ∗
3 , ρ+

3 or ρ−
3 .

Here, we now develop some “coefficients of dependence” which reflect depen-
dence in trivariate distributions not detected by known measures of association. These
coefficients are based on “directional dependence.”

Remark 1 We note that nothing is gained when n = 2 using the above procedure to
create directional ρ-coefficients. If C is a 2-copula with ρ(C) = ρ (see Sect. 2.2),
then ρ

(1,1)
2 = ρ

(−1,−1)
2 = ρ and ρ

(1,−1)
2 = ρ

(−1,1)
2 = −ρ.

3 Directional ρ-coefficients

The measures ρ+
3 and ρ−

3 introduced earlier were obtained in Nelsen (1996) as fol-
lows: Let (X, Y, Z)be a vector of continuous random variables uniform on II whose dis-
tribution function is the 3-copula C (as we shall assume from now on). Then ρ+

3 (C) =
8
∫

II3 [P(X > u, Y > v, Z > w) − P(X > u)P(Y > v)P(Z > w)] dudvdw

and ρ−
3 (C) = 8

∫

II3 [P(X ≤ u, Y ≤ v, Z ≤ w) − P(X ≤ u)P(Y ≤ v)P(Z ≤
w)] dudvdw.

Now, consider the function Qα1α2α3(u, v, w) given by P[α1 X > α1u, α2Y >

α2v, α3 Z > α3w] − P[α1 X > α1u]P[α2Y > α2v]P[α3 Z > α3w] for u, v, w in II
with αi ∈ {−1, 1} for i = 1, 2, 3. Dependence properties derived from the fact that
this difference can be greater or lesser than 0 can be found in Quesada-Molina et al
(2011).

Each of the eight vectors α = (α1, α2, α3) determines the sense of each equality
above, and so defines the “direction” in II3 in which we will measure dependence.

We now define a directional ρ-coefficient for each α in the following manner:
ρ

(α1,α2,α3)
3 (C) = 8

∫

II3 Qα1α2α3(u, v, w) dudvdw. The constant 8 insures that the max-
imum value (over all possible 3-copulas C) of each coefficient ρα

3 is 1. Observe that

ρ
(1,1,1)
3 = ρ+

3 and ρ
(−1,−1,−1)
3 = ρ−

3 .
We now consider the other directions, for example, α = (−1,−1, 1) (the proce-

dure for other directions α is similar). Since Q(−1,−1,1)(u, v, w) = P[X < u, Y < v,

Z > w] − uv(1 − w) = C12(u, v) − C(u, v, w) − uv + uvw, we have ρ
(−1,−1,1)
3 =

8
∫

II3 [C12(u, v)− C(u, v, w)− uv + uvw] dudvdw = 8
[

ρXY +3
12 − ρ−

3 +1
8 − 1

4 + 1
8

]
=

2
3ρXY − ρ−

3 . Thus, this coefficient (and each of the others) is simply a linear combi-
nation of measures of association encountered earlier.
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Directional dependence 681

To find a general pattern, we write ρ+
3 = ρ∗

3 + ε3 and ρ−
3 = ρ∗

3 − ε3, recall that

ρ+
3 +ρ−

3 = 2ρ∗
3 , with ε3 = (ρ+

3 −ρ−
3 )/2. Then we have ρ

(−1,−1,1)
3 = 2

3ρXY −ρ−
3 =

2
3ρXY − ρXY +ρY Z +ρZ X

3 + ε3 = ρXY −ρY Z −ρZ X
3 + ρ+

3 −ρ−
3

2 . Similar results hold for the
other coefficients, yielding

Theorem 1 Let (X, Y, Z) be a random vector with associated 3-copula C. Then, for
each direction (α1, α2, α3), we have

ρ
(α1,α2,α3)
3 = α1α2ρXY + α2α3ρY Z + α3α1ρZ X )

3
+ α1α2α3

ρ+
3 − ρ−

3

2
. (1)

Thus, each coefficient of directional dependence in (1) is a simple linear com-
bination of the pairwise measures and the two measures ρ+

3 and ρ−
3 of 3-variable

association.

Example 2 (continued) Recall C(u, v, w)= C1(M2(u, v), w) with C1 = (�2 +
W 2)/2, where we had ρ∗

3 = ρ+
3 = ρ−

3 = 0. Since ρXY = 1 and ρY Z = ρZ X = − 1/2,

it follows that ρ
(−1,−1,1)
3 = ρ

(1,1,−1)
3 = 2/3 and ρ

(−1,1,−1)
3 = ρ

(1,−1,1)
3 = ρ

(1,−1,−1)
3 =

ρ
(−1,1,1)
3 = − 1/3.

Remark 2 An intuitive interpretation of these coefficients goes as follows: If, say,
ρ

(−1,−1,1)
3 or ρ

(1,1,−1)
3 is positive, then there is “positive dependence” in the direction

determined by (−1,−1, 1) or (1, 1,−1). In this case, large (small) values of X and Y
occur with small (large) values of Z ; i.e., ρXY > 0 while ρY Z < 0 and ρZ X < 0, so
that ρXY −ρY Z −ρZ X > 0. The presence of ±(ρ+

3 −ρ−
3 )/2 accounts for simultaneous

3-variable dependence not measured by the pairwise coefficients.

Remark 3 In general, ρα
3 is not a multivariate measure of association.

Example 3 Trivariate Cuadras–Augé (1981) copulas are weighted geometric means
of the 3-copulas �3 and M3, i.e., Cθ (u, v, w) = (uvw)1−θ [min(u, v, w)]θ for
(u, v, w) ∈ II3 with θ ∈ [0, 1]. Straightforward calculations yield ρXY =
ρY Z = ρZ X = ρ∗

3 = 3θ
4−θ

, ρ+
3 = θ(11−5θ)

(3−θ)(4−θ)
, and ρ−

3 = θ(7−θ)
(3−θ)(4−θ)

,

so that ρ
(−1,−1,1)
3 = ρ

(−1,1,−1)
3 = ρ

(1,−1,−1)
3 = −θ(1+θ)

(3−θ)(4−θ)
and ρ

(1,1,−1)
3 =

ρ
(1,−1,1)
3 = ρ

(−1,1,1)
3 = −θ(5−3θ)

(3−θ)(4−θ)
. Observe that for all θ > 0 the coeffi-

cient ρα
3 for α �= (1, 1, 1) or (−1,−1,−1) is negative. This is a consequence

of the fact when θ > 0, Cθ has a singular component on the main diagonal
of II3.

Some salient properties of directional ρ-coefficients are summarized in the follow-
ing result, whose proof is simple and we omit it. These results express the redundancy
in the eight directional coefficients (since each is a function of only five other coeffi-
cients) and the symmetry present in the formula for ρ

(α1,α2,α3)
3 in Theorem 1.

Corollary 1 Let (X, Y, Z) be a vector of continuous random variables uniform on
II whose distribution function is the 3-copula C, and α = (α1, α2, α3), where αi ∈
{−1, 1} for i = 1, 2, 3. Then we have:
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682 R. B. Nelsen, M. Úbeda-Flores

1. ρα
3 (�3) = 0 and

∑
α ρα

3 (C) = 0.

2. ρα
3 (C) = ρ−α

3 (Ĉ).
3.

∑
α1α2α3=1 ρα

3 (C) = 2(ρ+
3 − ρ−

3 ) and
∑

α1α2α3=−1 ρα
3 (C) = 2(ρ−

3 − ρ+
3 ).

4.
∑

αi =1 ρα
3 (C) = 0 = ∑

αi =−1 ρα
3 (C).

5. If ρ+
3 (C) = ρ−

3 (C), then
(a) ρ+

3 (C) = ρ−
3 (C) = ρ∗

3 (C);
(b) ρα

3 (C) = ρ−α
3 (C) = (α1α2ρXY + α2α3ρY Z + α3α1ρZ X )/3; and

(c)
∑

α1α2α3=1 ρα
3 (C) = 0 = ∑

α1α2α3=−1 ρα
3 (C).

6. If ρ∗
3 (C) = 0, then

∑
α1α2α3=1 ρα

3 (C) = 4ρ+
3 ,

∑
α1α2α3=−1 ρα

3 (C) = 4ρ−
3 .

Although the directional ρ-coefficients may detect dependence undetected by ρ∗
3 ,

ρ+
3 , and ρ−

3 , that is not always the case, as the following example illustrate.

Example 4 Let (X, Y, Z) be a random vector whose distribution function is the

3-copula C(u, v, w) = M3(u,v,w)+W 2(M2(u,v),w)+W 2(M2(u,w),v)+W 2(M2(v,w),u)
4 for all

(u, v, w) in II3. This copula assigns probability mass uniformly on each of the four
diagonals of II3. Each bivariate margin is the 2-copula (M2 +W 2)/2. It is easy to show
that we have ρXY = ρY Z = ρZ X = 0 so that the variables are pairwise uncorrelated
but not independent; and ρα

3 = 0 for every direction α yet P(X = Y = Z) = P(X =
Y = 1 − Z) = P(X = 1 − Y = Z) = P(1 − X = Y = Z) = 1/4.

4 Other directional coefficients

The population versions of the measures of association known as Kendall’s tau
and Blomqvist’s beta are based on the notion of concordance: Two random n-vectors
X and Y are concordant if X < Y or Y < X (component-wise). The idea of com-
paring the concordances of different n-uples of random variables is considered in, for
example, Joe (1990, 1997) and Kimeldorf and Sampson (1987, 1989). We note that
ρ∗

3 is a measure of concordance—since it satisfies a set of axioms—but neither ρ+
3

nor ρ−
3 is (Taylor (2007)).

If X and Y are two independent random vectors with a common n-copula C , an
n-variate version of Kendall’s tau is given by τn(C) = 1

2n−1−1

[
2n−1 P(X < Y or Y <

X) − 1
] = 1

2n−1−1
(2n

∫
IIn C(u) dC(u) − 1) (Joe 1990; Nelsen 1996), and an n-variate

version of Blomqvist’s beta is given by βn(C) = 1
2n−1−1

[
2n−1 P(X < 1/2 or X >

1/2)−1
] = 2n−1[C(1/2)+C(1/2)]−1

2n−1−1
(Úbeda-Flores 2005)—see Dolati and Úbeda-Flores

(2006) and Taylor (2007, 2008) for some properties of these measures. However, when
n = 3 we have τ3(C) = τ ∗

3 (C) and β3(C) = β∗
3 (C).

Observe that τn(C) ≥ −1
2n−1−1

and βn(C) ≥ −1
2n−1−1

, so that both τ3(C) and β3(C)

are at least −1/3.
Analogous to our work with directional ρ-coefficients, we can define direc-

tional τ -coefficients τα
3 and directional β-coefficients βα

3 . Let X = (X1, X2, X3),
Y = (Y1, Y2, Y3), and α = (α1, α2, α3) denote “direction” with αi ∈ {−1, 1} for
i = 1, 2, 3; and let juxtaposition of vectors denote component-wise multiplication,
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i.e., αX = (α1 X1, α2 X2, α3 X3). Thus τα
3 (C)= 1

3

[
8 P(αX > αY)−1

]
, and βα

3 (C) =
1
3

{
4
[
P(αX > (1/2)α) + P(αX ≤ (1/2)α)

] − 1
}
.

Theorem 2 Let (X, Y, Z) be a random vector with 3-copula C. Then for each direc-
tion (α1, α2, α3) we have

τ
(α1,α2,α3)
3 (C) = α1α2τXY + α2α3τY Z + α3α1τZ X

3
, (2)

β
(α1,α2,α3)
3 (C) = α1α2βXY + α2α3βY Z + α3α1βZ X

3
. (3)

Observe that τ3(C) does not appear in the expression for τα
3 in (2) since it is itself

a function of the three pairwise coefficients (and similarly for βα
3 in 3).

In spite of the similarity in the expressions for ρα
3 , τα

3 , and βα
3 , their values are often

different, as they measure different aspects of the dependence among X , Y , and Z .

Example 5 Let C be a member of the four-parameter Farlie-Gumbel-Morgenstern
family of 3-copulas given by Johnson and Kotz (1972) C(u, v, w) = uvw[1+κ(1−u)

(1−v)+λ(1−u)(1−w)+μ(1−v)(1−w)+θ(1−u)(1−v)(1−w)] for u, v, w in
II where κ, λ, μ, θ ∈ [−1, 1] satisfying the inequalities 1 + ω1κ + ω2λ + ω3μ ≥ |θ |
for ωi ∈ {−1, 1}, ω1ω2ω3 = 1 [the 3-copula in Example 1 had κ = λ = μ = 0].
Then ρ∗

3 = κ+λ+μ
9 , ρ+

3 = 3(κ+λ+μ)−θ
27 , ρ−

3 = 3(κ+λ+μ)+θ
27 , τ3 = 2(κ+λ+μ)

27 , and β3 =
κ+λ+μ

12 , so that for directions α = (−1,−1, 1) and (1, 1,−1) we have ρ
(−1,−1,1)
3 =

3(κ−λ−μ)−θ
27 and ρ

(1,1,−1)
3 = 3(κ−λ−μ)+θ

27 , but τ
(−1,−1,1)
3 = τ

(1,1,−1)
3 = 2(κ−λ−μ)

27 and

β
(−1,−1,1)
3 = β

(1,1,−1)
3 = κ−λ−μ

12 . Results are similar for the other directions.

5 Bounds on directional ρ-, τ -, and β-coefficients

What are the maximum and minimum values for ρα
3 (C), τα

3 (C), and βα
3 (C) as C

ranges over the set of all 3-copulas? The maximum value for each is 1, as we chose
the coefficients in the expression for each coefficient to make the maximum 1. We
need only find the minima for one direction (say α = (1, 1, 1)) since it is straight-
forward to rotate or reflect the mass distribution of a copula using symmetries of the
cube [that is, given any copula C and direction α, one can find a copula Cα such that
ρα

3 (C) = ρ+
3 (Cα)].

As we noted earlier, τ3(C) = τ ∗
3 (C) ≥ −1/3 and β3(C) = β∗

3 (C) ≥ −1/3, with
equality when one of the 2-margins of C is W 2 (Úbeda-Flores 2005). But we can also
have equality for copulas none of whose 2-margins is W 2.

Example 6 (a) The copula C ′(u, v, w) = [
max(u1/2 + v1/2 + w1/2 − 2, 0)

]2
is a

member of the Clayton family of Archimedean 3-copulas, with τXY = τY Z = τZ X =
τ ∗

3 = −1
3 . McNeil and Nešlehová (2009) have shown that for any Archimedean

3-copula C, C ≥ C ′.
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684 R. B. Nelsen, M. Úbeda-Flores

(b) Let D be the 2-copula D(u, v) = max (0, u + v − 1, min(u, v − 1/2)),
(u, v) ∈ II2. D is a Shuffle of Min (Mikusiński et al. 1992), and its mass is spread uni-
formly in II2 on two line segments joining the points (0, 1/2) to (1/2, 1), and (1/2, 1/2)

to (1, 0). Now define the 3-copula C(u, v, w) = wD(u, v) for every (u, v, w) ∈ II3.
It is clear that the three bivariate margins are D, �2 and �2; so that βXY = −1,
βX Z = βY Z = 0, and consequently β3(C) = −1/3.

We have the following related results about ρ∗
3 (C):

Theorem 3 Let (X, Y, Z) be a random vector whose distribution function is the
3-copula C. If one of the 2-margins of C is W 2, then ρ∗

3 (C) = −1/3.

Proof Assume, without loss of generality, that C(u, v, 1)= W 2(u, v). Then ρXY = −
1. We will show that ρY Z + ρX Z = 0, which proves the theorem. Since VC ([0, 1 −
v] × [0, v] × [0, w])= VC ([1 − v, 1] × [v, 1] × [0, w])= 0, we have the follow-
ing chain of equalities: C23(v,w)= VC ([0, 1] × [0, v] × [0, w])= VC ([1 − v, 1] ×
[0, v] × [0, w])= VC ([1 − v, 1] × [0, 1] × [0, w])= VC13([1 − v, 1] × [0, w])= w −
C13(1 − v,w). So

∫

II2 C23(v,w) dvdw = 1
2 − ∫

II2 C13(1 − v,w) dvdw = 1
2 − ∫

II2 C13

(u, w) dudw, and hence ρY Z = 12
∫

I 2 C23(v,w) dvdw − 3 = 6 − 12
∫

I 2 C13(u, w)

dudw − 3 = − ρX Z , as desired. �

But unlike τ ∗
3 (C) and β∗

3 (C), −1/3 is not the minimum value of ρ∗
3 (C), as the

following result shows.

Theorem 4 Let (X, Y, Z) be a random vector whose distribution function is the
3-copula C. Then ρ∗

3 (C) ≥ −1/2; and ρ∗
3 (C) = −1/2 if, and only if, Pr[X +Y + Z =

3/2] = 1.

Proof Observe that E[(X + Y + Z − 3/2)2] = E[X2 + Y 2 + Z2 − 3(X + Y + Z) +
2(XY +Y Z + X Z)+9/4] = 3(1/3)−3(3/2)+2(

ρXY +3
12 + ρY Z +3

12 + ρX Z +3
12 )+9/4 =

ρ∗
3 (C)

2 + 1/4, whence the result follows. �

Only ρ+
3 remains to be studied. The following example shows that the minimum is

−1/2 or less.

Example 7 Let (X, Y, Z) be a random vector whose distribution function is the
3-copula C whose probability mass is distributed uniformly on the edges of the equi-
lateral triangle in II3 with vertices (0, 1/2, 1), (1/2, 1, 0), and (1, 0, 1/2) [note that
the triangle lies in the plane x + y + z = 3/2 and none of the 2-margins are W 2].
Simply computations show that ρXY = ρY Z = ρZ X = ρ+

3 = ρ−
3 = −1/2.

In general, we only know that for any 3-copula C , ρ+
3 (C) > −2/3 (Nelsen 1996).

6 Discussion

Given a random sample, estimators of pairwise measures such as ρXY are well
known, from which one can estimate ρ∗

3 . Estimators of ρ+
3 and ρ−

3 (using ranks of the
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observations in the sample) can be found in Schmid and Schmidt (2007). Consequently,
estimators of ρα

3 for all α are also easily constructed.
In higher dimensions, say n = 4, we conjecture that each of the 16 coefficients

ρ
(α1,α2,α3,α4)
4 will be a linear combination of ρ+

4 , ρ−
4 , the 6 pairwise measures (ρXY ,

etc.) and the 8 three-wise measures (ρ+
XY Z , ρ−

XY Z , etc.); with similar results for

τ
(α1,α2,α3,α4)
4 and β

(α1,α2,α3,α4)
4 .
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