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Abstract Ranked-set sampling (RSS) and judgment post-stratification (JPS) are
related schemes in which more efficient statistical inference is obtained by creat-
ing a stratification based on ranking information. The rankings may be completely
subjective, or they may be based on values of a covariate. Recent work has shown that
regardless of how the rankings are done, the in-stratum cumulative distribution func-
tions (CDFs) must satisfy certain constraints, and we show here that if the rankings
are done according to a covariate, then tighter constraints must hold. We also show
that under a mild stochastic ordering assumption, still tighter constraints must hold.
Taking advantage of these new constraints leads to improved small-sample estimates
of the in-stratum CDFs in all RSS and JPS settings. For JPS, the new constraints also
lead to improved estimates of the overall CDF and the population mean.

Keywords Concomitant · Convexity · Judgment post-stratification · Maximum
likelihood estimation · Stratified sampling · Woodruff confidence intervals

1 Introduction

Ranked-set sampling (RSS), proposed by McIntyre (1952, 2005), is a sampling scheme
appropriate for use when it is inexpensive to rank or approximately rank small sets of
units without actually measuring them. The rankings may be completely subjective, or
they may be based on values of an easily available covariate (Stokes 1977), and they
need not be completely accurate. The ranking information is used to guide the selection

J. Frey (B)
Department of Mathematical Sciences, Villanova University,
Villanova, PA 19085, USA
e-mail: jesse.frey@villanova.edu

123



440 J. Frey

of the units to be measured, and the resulting sample tends to be more informative
than a simple random sample of the same size.

To implement balanced RSS, one first specifies a set size m and a number of
cycles n. One then selects N ≡ nm independent simple random samples (sets)
of size m. The units in each of these N sets are ranked from smallest to larg-
est without making any actual measurements. From each of the first n sets, the
unit with rank 1 is selected for measurement. From each of the next n sets, the
unit with rank 2 is selected for measurement, and so on. The ranked-set sam-
ple then consists of N independent values, with n values from each of the m
possible in-set ranks. If the rankings are perfect, then these N values are indepen-
dent order statistics. More generally, they are independent judgment order statis-
tics. For some statistical problems, it is helpful to allow the number of measured
values to vary from one rank to another. In this case, one may use unbalanced
RSS. One simply specifies a set size m and a vector n ≡ (n1, . . . , nm) such that
ni gives the number of units with rank i to be selected for measurement. The
ranked-set sample then consists of N ≡ ∑m

i=1 ni independent judgment order
statistics.

Takahasi and Wakimoto (1968) showed that for a fixed number of measured
values N , balanced RSS is at least as efficient as simple random sampling (SRS)
for estimating the population mean. Similar gains in efficiency are available for
other statistical problems, including parametric point estimation (Stokes 1995), non-
parametric estimation of the cumulative distribution function (CDF) (Stokes and
Sager 1988), testing for a difference in location between two distributions (Fligner
and MacEachern 2006), and nonparametric estimation of the population variance
(MacEachern et al. 2002). However, in order to realize these gains, one must
use the RSS sampling approach. Judgment post-stratification (JPS), proposed by
MacEachern et al. (2004), is an alternate method that exploits the same rank-
ing information used in RSS, but that starts with a simple random sample. As a
result, researchers who use JPS retain the option of using SRS-based methods if
needed.

To implement JPS, one first specifies a total sample size N and a set size m. One then
draws a simple random sample of size N . The N units are each measured, and some
ranking information is also collected. For each of the N units in the simple random
sample, one obtains an additional m − 1 independent units, yielding a set of m units.
The units in this set are ranked from smallest to largest, and the rank of the unit that
was measured is recorded. The full data set then consists of the N measured values
and the rank associated with each measured value. As in unbalanced RSS, the number
of measured units with each particular rank may vary from one rank to another, and
some ranks may not appear at all. In what follows, we let n ≡ (n1, . . . , nm) be a vector
giving the number of measured units with each rank. In RSS, n is specified ahead of
time, but in JPS it is random. In fact, n follows a multinomial distribution with mass
parameter N and probability vector (1/m, . . . , 1/m). JPS tends to be somewhat less
efficient than balanced RSS. However, when the ranking information is good or the
sample is large, it outperforms SRS for estimating population means and CDFs. JPS
also offers more flexibility than RSS in that rankers may be permitted to declare ties
(MacEachern et al. 2004).
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When implementing RSS and JPS, appropriate precautions must be taken to avoid
bias. For example, when implementing RSS using subjective rankings, the ranker must
not know which ranked unit is to be selected from a particular set. Similarly, when
implementing JPS using subjective rankings, the ranker must not know which unit in
a particular set is the one on which a measurement has been made.

The standard nonparametric RSS and JPS mean estimators are obtained using
exactly the procedure used in stratified random sampling or in standard post-
stratification (see Lohr 1999), with the rank (1 to m) associated with each measured
value being used as the stratification variable. However, recent work has shown that
better estimators can be obtained by taking into account additional structure that need
not exist for ordinary stratified sampling and post-stratification. One way to obtain
better estimators is to take advantage of the fact that, whether the rankings are per-
fect or not, it is reasonable to assume that the in-stratum distributions are stochas-
tically ordered in some way. Ozturk (2007) assumed that the in-stratum CDFs are
stochastically ordered, and Wang et al. (2008) assumed that the in-stratum means are
a nondecreasing function of the rank (1 to m). There are obstacles to formally testing
such assumptions in a nonparametric context (Davidson and Duclos 2006), but the
assumptions may be informally assessed via graphical techniques. For example, one
might make side-by-side boxplots of the stratum-by-stratum samples.

Another way to obtain improved estimators involves looking at constraints that
must be satisfied by the in-stratum CDFs at each particular point. Frey and Ozturk
(2010) showed that the in-stratum CDFs for strata that arise from ranking information
can be no more extreme, in a certain sense, than the CDFs for true order statistics from
the overall distribution. In this paper, we show that if the rankings are done accord-
ing to a covariate, then constraints tighter than those obtained by Frey and Ozturk
(2010) must hold. We also show that under a mild stochastic ordering assumption,
still tighter constraints must hold. By taking advantage of these new constraints, we
obtain improved small-sample estimates of the in-stratum CDFs in all RSS and JPS
settings, and we also obtain improved estimates of the overall CDF and the population
mean in the JPS setting.

The paper is structured as follows. We derive the constraints in Sect. 2, and we use
them to estimate the CDF in Sect. 3. We use the constraints to estimate the population
mean in Sect. 4, and we use them to create Woodruff-type confidence intervals for
population quantiles in Sect. 5. We give our conclusions in Sect. 6.

2 The constraints

Suppose that Y is the variable of interest and that X is the covariate used for ranking
purposes. In this section, we derive constraints that must hold for the in-stratum CDFs
of Y when the strata arise from ranking units according to X . In deriving the first
set of constraints, we assume only that the distribution of X is continuous. Later, we
obtain stronger constraints by assuming that the distribution of Y given X = x is
stochastically increasing in x . We obtain certain convexity results that hold for any
set size m, and we then use these results to obtain specific computational results that

123



442 J. Frey

apply in the m = 3 case. We focus on small set sizes since these tend to be the most
important cases in practice (Takahasi and Wakimoto 1968).

We first note that as long as X is a continuous random variable, we may assume
that X is standard uniform. To see this, note that if X has continuous CDF FX , then
U ≡ FX (X) is standard uniform. Moreover, since FX is continuous and nondecreas-
ing, ranking units according to U is equivalent to ranking units according to X . Thus,
in what follows, we assume without loss of generality that the covariate has a standard
uniform distribution, and we emphasize this point by writing U for the covariate.

Let Su(y) be the conditional CDF for Y given that U = u. The unconditional CDF
for Y is then given by F(y) = P(Y ≤ y) = ∫ 1

u=0 Su(y) du. Let Y[1], . . . , Y[m] be
the measured Y values associated with the order statistics U(1), . . . , U(m) in a par-
ticular set. By well-known properties of uniform order statistics, U(i) is distributed
Beta(i, m + 1 − i). Thus, the CDF for Y[i] is given by

F[i](y) = P(Y[i] ≤ y) =
∫ 1

u=0
Su(y) · m!

(i − 1)!(m − i)!ui−1(1 − u)m−i du.

Fix the value y, and define pi ≡ F[i](y) for i = 1, . . . , m. Define K c ⊂ [0, 1]m to
be the space of all possible values for the vector (p1, . . . , pm). Our first result is that
K c is convex.

Theorem 1 The space K c of all possible values for (p1, . . . , pm) is convex.

Proof Let p1 ≡ (p11, . . . , pm1) and p2 ≡ (p12, . . . , pm2)be arbitrary points from K c,
and let λ ∈ [0, 1] be an arbitrary constant. We need to show that λp1+(1−λ)p2 ∈ K c.
Let S(1)

u (y) and S(2)
u (y) be conditional CDFs for Y given U = u that lead to the vectors

p1 and p2, respectively. The function Tu(y) ≡ λS(1)
u (y) + (1 − λ)S(2)

u (y) is then also
a possible conditional CDF for Y given U = u, and the corresponding vector of CDF
values is precisely λp1 + (1 − λ)p2. For example, if Tu(y) is the conditional CDF for
Y given U = u, then P(Y[1] ≤ y) satisfies

P
(
Y[1] ≤ y

) =
∫ 1

u=0
Tu(y) · m(1 − u)m−1 du

=
∫ 1

u=0

(
λS(1)

u (y) + (1 − λ)S(2)
u (y)

)
· m(1 − u)m−1 du

= λ

∫ 1

u=0
S(1)

u (y) · m(1 − u)m−1 du

+(1 − λ)

∫ 1

u=0
S(2)

u (y) · m(1 − u)m−1 du

= λp11 + (1 − λ)p12.

Thus, λp1 + (1 − λ)p2 ∈ K c, and the theorem is proved. ��
Now suppose that m = 3, and consider the convex set K c

r of possible values for
the vector (p1, p2) when the overall CDF value p̄ ≡ 1

3 (p1 + p2 + p3) is fixed at r .
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The following result shows that the boundary points of K c
r arise when the conditional

CDF Su(y) has a very specific form.

Theorem 2 The boundary points of the set K c
r are the points (p1, p2) achieved when

Su(y) is an indicator function I (u ∈ J ), where J is either an interval [a, a + r ] for
a ∈ [0, 1 − r ] or a union [a, 1]⋃[0, a + r − 1] for a ∈ (1 − r, 1).

Proof The set K c
r is a two-dimensional convex set. Thus, it is the intersection of all

half-planes that contain it, and a particular point in K c
r is a boundary point for K c

r if
and only if it maximizes a function a1 p1+a2 p2 over the set K c

r for some real constants
a1 and a2 that are not both zero. Writing a1 p1 + a2 p2 in terms of Su(y), we have that

a1 p1 + a2 p2 = a1

∫ 1

u=0
Su(y) · 3(1 − u)2 du + a2

∫ 1

u=0
Su(y) · 6u(1 − u) du

=
∫ 1

u=0
Su(y)

(
a1 · 3(1 − u)2 + a2 · 6u(1 − u)

)
du. (1)

Expanding the expression in parentheses inside (1), we obtain the function Q(u) ≡
u2(3a1 − 6a2) + u(−6a1 + 6a2) + 3a1, which is either quadratic in u or, if a1 = 2a2,
linear in u. By choosing a1 and a2 appropriately, we can force Q(·) to be quadratic, to
open in the direction of our choice (up or down), and to be symmetric about any real
number that we choose.

For fixed a1 and a2, consider choosing Su(y) so that a1 p1 + a2 p2 is maximized. In
order for Su(y) to yield an overall CDF value of r , we must have

∫ 1
u=0 Su(y) du = r .

By (1), a1 p1 + a2 p2 = ∫ 1
u=0 Su(y)Q(u) du. Thus, to maximize a1 p1 + a2 p2, we

need Su(y) to be big when Q(·) is big and small when Q(·) is small. Since Su(y) is a
probability, Su(y) can be no larger than 1 and no smaller than 0. Thus, we maximize
a1 p1 + a2 p2 by having Su(y) be 1 on some subset of [0, 1] and 0 otherwise. Since
Q(·) is either quadratic or linear, there will exist a set J so that (i) J is either an interval
[a, a + r ] for a ∈ [0, 1 − r ] or a union [a, 1]⋃[0, a + r − 1] for a ∈ (1 − r, 1), (ii)
the total length of J is r , and (iii) the infimum of Q(·) on J is equal to the supremum
of Q(·) on [0, 1]⋂ J c. It then follows that if Su(y) = I (u ∈ J ), then a1 p1 + a2 p2
is maximized. Since we can force Q(·) to be quadratic and to be centered at any real
number, it is also clear that for any set J of the form described in the theorem, there
exist a1 and a2 such that a1 p1 + a2 p2 is maximized when Su(y) = I (u ∈ J ). This
proves the theorem. ��

To plot the boundary for the set K c
r when r is fixed, one simply lets the value a

from Theorem 2 take on values in the interval [0, 1] and plots the resulting points
(p1, p2). The value a = 0 corresponds to perfect rankings, the value a = 1 − r
corresponds to perfectly wrong (backwards) rankings, and the limit as a approaches 1
from below is perfect rankings again. Thus, as a goes from 0 to 1, the corresponding
points (p1, p2) trace out a path from perfect rankings to perfectly wrong rankings and
back again.

The constraints determined by Theorems 1 and 2 are tighter than other constraints
in the literature. Consider the constraints on p2 when the overall CDF value is
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r = 0.5 and m = 3. Frey and Ozturk (2010) showed that for any fixed value of
r , B(r; 1, 3) ≤ p2 ≤ B(r; 3, 1), where B(·;α, β) is the CDF for a Beta(α, β) distri-
bution. With r = 0.5, this leads to constraints 1/8 ≤ p2 ≤ 7/8. Suppose now that the
rankings are done using a covariate. The choice for Su(y) that maximizes p2 when
r = 0.5 is Su(y) = I (u ∈ [0.25, 0.75]), and the choice for Su(y) that minimizes
p2 is Su(y) = I (u ∈ [0, 0.25]⋃[0.75, 1]). Computing the corresponding values for
p2, we obtain constraints 5/16 ≤ p2 ≤ 11/16, which are tighter than the earlier
bounds.

Suppose that we now add a stochastic ordering assumption. Ozturk (2007) assumed
that the in-stratum CDFs are stochastically ordered so that F[1](y) ≥ F[2](y) ≥ · · · ≥
F[m](y) at every point y, and Wang et al. (2008) assumed that the in-stratum means
are a nondecreasing function of the rank. Fligner and MacEachern (2006) suggested
that having the conditional distribution of the covariate U given Y = y be stochasti-
cally increasing in y is an essential property for any reasonable model for rankings.
Here, we also use conditional distributions, but it is more convenient to work with the
conditional distribution of Y given U = u. Thus, we make the following stochastic
ordering assumption.

Assumption 1 The distributions Su(y) are stochastically nondecreasing in u. That is,
if u1 < u2, then Su1(y) ≥ Su2(y) for all y.

Fix the value y, and let p1, . . . , pm be defined as before. Define K s ⊂ [0, 1]m to
be the space of all possible values for the vector (p1, . . . , pm) under Assumption 1
about Su(y). The following theorem shows that, like the larger set K c, K s is convex.

Theorem 3 The space K s is convex.

Proof We rely on the fact that a convex combination of nonincreasing functions is
also nonincreasing. Let p1 ≡ (p11, . . . , pm1) and p2 ≡ (p12, . . . , pm2) be arbitrary
points from K s , and let λ ∈ [0, 1] be an arbitrary constant. We need to show that
λp1 + (1 − λ)p2 ∈ K s . Let S(1)

u (y) and S(2)
u (y) be conditional CDFs for Y given

U = u that are nonincreasing functions of u and that lead to the vectors p1 and p2,
respectively. It then follows that the function Tu(y) ≡ λS(1)

u (y) + (1 − λ)S(2)
u (y) is

also nonincreasing and a possible conditional CDF for Y given U = u. Thus, by
calculations similar to those used in proving Theorem 1, λp1 + (1 − λ)p2 ∈ K s , and
the theorem is proved. ��

Now suppose that m = 3, and consider the convex set K s
r of possible values for

(p1, p2) when Assumption 1 holds and the overall CDF value p̄ ≡ 1
3 (p1 + p2 + p3)

is fixed at r . The following result shows that the boundary points for K s
r can only

come when Su(y) has a very specific form.

Theorem 4 The boundary points of the set K s
r are the points (p1, p2) achieved when

Su(y) is either (i) constant on the interval [0, 1] or (ii) a nonincreasing step function
that takes on only two values, one of which is 0 or 1.

Proof As in the proof of Theorem 2, a point can be a boundary point for K s
r only if

it maximizes a function a1 p1 + a2 p2 over the set K s
r for some real constants a1 and
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a2 that are not both zero. Thus, the problem of determining the possible boundary
points reduces to that of finding all functions Su(y) that are nonincreasing, satisfy
0 ≤ Su(y) ≤ 1 and

∫ 1
u=0 Su(y) du = r , and maximize

∫ 1
u=0 Su(y)Q(u) du for some

linear or quadratic function Q(·).
We first make two observations about the shape of such functions Su(y) on intervals

where Q(·) is either increasing or decreasing. Suppose that Q(·) is increasing over
the interval (a, b). In this case, we make the function a1 p1 + a2 p2 large by choosing
Su(y) on the interval (a, b) to be large for large u and small for small u. Since Su(y)

must be nonincreasing, the best we can do is to have Su(y) be constant on (a, b).
Suppose that Q(·) is decreasing over the interval (a, b). In this case, we make the
function a1 p1 + a2 p2 large by choosing Su(y) on the interval (a, b) to be large for
small u and small for large u. Thus, the best form for Su(y) on the interval (a, b) is
a step function that takes on only two values. For all values of u up to a certain point
c ∈ (a, b), Su(y) should take on the maximum value Sa(y). For u > c, Su(y) should
take on the value Sb(y).

Since Q(·) is linear or quadratic, it must be either (i) increasing over the entire
interval [0, 1], (ii) decreasing over the entire interval [0, 1], (iii) increasing and then
decreasing on the interval [0, 1], or (iv) decreasing and then increasing on the interval
[0, 1]. If Q(·) is increasing over the entire interval [0, 1], then we maximize a1 p1+a2 p2
by choosing Su(y) to be constant on [0, 1], and if Q(·) is decreasing over the entire
interval [0, 1], then any maximizing choice of Su(y) must be a step function that
is 1 up to a certain point, and then 0 beyond that point. These two results follow
from our observations in the previous paragraph. Now consider the other two cases.
Suppose that Q(·) is increasing and then decreasing on the interval [0, 1]. Any maxi-
mizing Su(y) must be constant over the interval where Q(·) is increasing. Suppose that
Su(y) = v on this interval. It then follows that on the interval where Q(·) is decreas-
ing, Su(y) must be equal to v up to a certain point and then 0 beyond that point.
Thus, Su(y) must be a step function of the form described in the theorem. Suppose
that Q(·) is decreasing and then increasing on [0, 1]. Any maximizing Su(y) must be
constant over the interval where Q(·) is increasing. Suppose that Su(y) = v on this
interval. It then follows that on the interval where Q(·) is decreasing, Su(y) must be
equal to 1 up to a certain point and then v beyond that point. Thus, the theorem is
proved.

��
The constraints determined by Theorems 3 and 4 are more stringent than those

determined by Theorems 1 and 2. To illustrate this, we created Fig. 1. Figure 1 shows
the spaces K c

r and K s
r for r = 0.2, 0.4, 0.6, and 0.8 and m = 3. It also, for comparison

purposes, shows the space Kr of possible values for (p1, p2) under the p̄ = r assump-
tion and the constraints obtained by Frey and Ozturk (2010). Recall that pi ≡ F[i](y)

so that r = p̄ = F(y) is the overall CDF value. In each plot of Fig. 1, the outer-most
set of bounds shows the Frey and Ozturk (2010) constraints, and the inner-most set of
bounds is for rankings done according to a covariate that satisfies Assumption 1. We
see from the figure that all of the sets are convex and that the new sets of bounds are
substantially tighter than the bounds obtained by Frey and Ozturk (2010). The dashed
reference line in each plot is the line p1 = p2.
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Fig. 1 Slices from the space of possible vectors (p1, p2, p3) when the set size is m = 3. Each plot shows
the potential values for p1 ≡ F[1](y) and p2 ≡ F[2](y) when the overall CDF value p̄ = F(y) is fixed at

some particular value r . The value p3 ≡ F[3](y) is determined by the constraint that r = 1
3 (p1 + p2 + p3).

In each plot, the regions are, from largest to smallest, the Frey and Ozturk (2010) region Kr , the new region
K c

r , and the new region K s
r . The dashed reference line is the line p1 = p2

3 Constrained estimation of the CDF

The standard nonparametric estimate of the population CDF F under either RSS or
JPS is

F̂(y) = 1

m

m∑

i=1

F̂[i](y),

where F̂[i](y) is the empirical distribution function (EDF) for the measured values
that were given rank i . If any of the strata are not represented, as may occur with JPS,
then F̂(y) is the average of F̂[i](y) over all the strata with nonzero sample sizes. The
estimator F̂ is unbiased for F , but the vector (F̂[1](y), . . . , F̂[m](y)) need not be a
possible value for (F[1](y), . . . , F[m](y)), the true vector of in-stratum CDF values
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at the point y. Thus, it makes sense to replace (F̂[1](y), . . . , F̂[m](y)) with a vector
of estimates that is a possible value for (F[1](y), . . . , F[m](y)). In this section, we
describe a general strategy for doing this in the case where m = 3. This strategy
works with either of the two sets of constraints developed in Sect. 2.

To obtain estimates, we follow the approach used by Frey and Ozturk (2010). Sup-
pose that we want to estimate the vector (F[1](y), . . . , F[m](y)) for some fixed real
number y. Let n ≡ (n1, . . . , nm) be the vector of in-stratum sample sizes, and let
x ≡ (x1, . . . , xm) be the vector of counts of the number of values in each stratum that
are less than or equal to y. If p ≡ (p1, . . . , pm) is a candidate vector of in-stratum
CDF values, then the likelihood function is given by

L(p|n, x) =
m∏

i=1

(
ni

xi

)

pxi
i (1 − pi )

ni −xi for 0 ≤ pi ≤ 1, i = 1, . . . , m.

Thus, the log likelihood function can be written as

l(p|n, x) = c +
m∑

i=1

{xi log(pi ) + (ni − xi ) log(1 − pi )}

for 0 < pi < 1, i = 1, . . . , m,

where c does not depend on p. If we maximize L over the entire space [0, 1]m , then we
obtain the standard EDF-based vector of in-stratum estimates (F̂[1](y), . . . , F̂[m](y)).
However, if we maximize L only over the set K c or the set K s , then we obtain esti-
mates that satisfy the corresponding constraints. Thus, the covariate-based estimate is
defined by

(
F̂c[1](y), . . . , F̂c[m](y)

)
≡ arg maxp∈K c l(p|n, x),

and the corresponding estimate for the overall CDF is

F̂c(y) ≡ 1

m

m∑

i=1

F̂c
[i](y).

Similarly, the stochastic ordering covariate-based estimate is defined by

(
F̂ s[1](y), . . . , F̂ s[m](y)

)
≡ arg maxp∈K s l(p|n, x),

with the corresponding estimate for the overall CDF being

F̂ s(y) ≡ 1

m

m∑

i=1

F̂ s
[i](y).
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Since the sets K c and K s are each convex and the log likelihood l(p|n, x)

is concave, finding either the estimates (F̂c[1](y), . . . , F̂c[m](y)) or the estimates

(F̂ s[1](y), . . . , F̂ s[m](y)) requires maximizing a concave function over a convex set.
This maximization is complicated, however, by the fact that we aren’t able to write
down nice general expressions for the boundaries of K c and K s . However, using The-
orems 2 and 4, we are able to find these estimates when m = 3. The procedure we use
involves two types of maximization, as described below.

First, given a particular value r for the overall CDF p̄ ≡ 1
3 (p1 + p2 + p3), we max-

imize l(p|n, x) over either K c
r or K s

r by (i) finding the maximum of l(p|n, x) under
the constraint p̄ = r and (ii) noting whether that maximum is in the set (K c

r or K s
r ).

If this maximum is in the set, then it is also the restricted maximum. Otherwise, the
restricted maximum must occur on the boundary of the set. Using either Theorem 2
(for K c

r ) or Theorem 4 (for K s
r ), we obtain a 120-point list of boundary points for the

set. We then evaluate l(p|n, x) at each boundary point and approximate the restricted
maximum using the point among the 120 that maximizes l(p|n, x). Second, we search
for the overall CDF value r for which the maximum of the likelihood over K c

r or K s
r

is largest. Procedure 2 in the appendix of Frey and Ozturk (2010) is one method for
doing this. The key to this procedure is that the functions r → arg maxp∈K c

r
l(p|n, x)

and r → arg maxp∈K s
r

l(p|n, x) are concave functions defined on the interval [0, 1].
Example 1 To illustrate the estimation ideas just described, we consider the case where
n = (10, 10, 10) and x = (8, 7, 1). Suppose that we wish to estimate (p1, p2, p3)

while assuming that p̄ = 0.5. Figure 2 shows the bounds on (p1, p2) in this setting.
The three sets shown are the set Kr determined by the Frey and Ozturk (2010) bounds,
the set K c

r , and the set K s
r . The solid dots in the plot are the unrestricted estimate, the

estimate under the Frey and Ozturk (2010) constraints, the estimate under the ranking-
by-covariate constraints, and the estimate under the stochastic ordering constraints.
The unrestricted estimate lies outside of all the sets, and this forces the other three esti-
mates to lie on the boundaries of the respective sets. The dashed curves in the figure
show some contours of the likelihood function. Computing the estimates shown in
Fig.2 is just one part of the overall estimation process. We would also need to
determine the value of the overall CDF for which the likelihood is maximized.
Completing this second level of maximization leads to the estimates (0.8, 0.7, 0.1)

(unrestricted EDF-based estimate), (0.773, 0.668, 0.149) (Frey and Ozturk 2010),
(0.809, 0.602, 0.187) (covariate-based), and (0.828, 0.575, 0.193) (stochastic order-
ing). The corresponding estimates of the overall CDF are 0.533, 0.530, 0.533, and
0.532, respectively.

To compare the performance of the new CDF estimators to that of other estimators
in the literature, we computed pointwise mean squared errors (MSEs) for each estima-
tor under different types of rankings, different average in-stratum sample sizes, and
different values for the overall CDF. We compared the performance of the estimators
both under JPS and under RSS. Several models for imperfect rankings are available
in the literature. Dell and Clutter (1972) developed a model in which units in the same
set are ranked according to a perceived size, where the perceived size is the sum of the
true size and an independent error term. Bohn and Wolfe (1994) developed a model in
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Fig. 2 Maximum likelihood estimates of the vector (F[1](y), F[2](y)) when the overall CDF is fixed at
r = 0.5, the sample size vector is n = (10, 10, 10), and the vector of counts is x = (8, 7, 1). The solid lines
show the boundaries of the various sets, and the dashed curves show contours of the likelihood function.
The solid dots show the maximum likelihood estimates under the different sets of constraints. The dashed
reference line is the line p1 = p2

which the in-stratum CDFs are written as convex combinations of the distributions for
true order statistics from the overall distribution. In our comparisons, we used a related
model in which the in-stratum CDFs are convex combinations of the distributions for
true order statistics and the overall CDF. Specifically, we assumed that the CDF F[i]
for the i th stratum satisfies

F[i](y) = λF(i)(y) + (1 − λ)F(y), (2)

where F(i)(y) is the CDF for a true i th order statistic from the parent distribution F(y)

and λ ∈ [0, 1] is a parameter. Here, λ = 1 gives perfect rankings, λ = 0 gives random
rankings, and λ values between 0 and 1 give rankings that lie between perfect and
random rankings, but satisfy Assumption 1 from Sect. 2.

Some detailed results for one special case are given in Fig. 3, which shows MSEs for
JPS under perfect rankings with set size m = 3 and total sample size N = 9. The four
plots show MSEs as a function of the overall CDF value when estimating the overall
CDF and the three in-stratum CDFs. The curves in each plot correspond to the stan-
dard EDF-based estimator (solid), the Frey and Ozturk (2010) estimator (dashed), the
covariate-based estimator (dot-dash), the stochastic ordering estimator (dotted), and
the isotonic estimator developed by Ozturk (2007) (long dash). The Ozturk (2007) esti-
mator is obtained by isotonizing the EDF-based estimates for the in-stratum CDFs.
We see from the figure that the EDF-based estimator is typically the worst of the
estimators, while the stochastic ordering estimator is usually the best. Neither the
Frey and Ozturk (2010) estimator nor the covariate-based estimator makes a stochastic
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Fig. 3 Mean squared errors as a function of the overall CDF value for JPS under perfect rankings with
N = 9. The methods are the EDF-based method (solid), the Frey and Ozturk (2010) method (dashed), the
covariate-based method (dot-dash), the covariate-based method with stochastic ordering (dotted), and the
Ozturk (2007) method (long dash)

ordering assumption, and the covariate-based estimator is consistently the better of
the two.

If we compute the area under curves like those shown in Fig. 3, we obtain integrated
MSEs (IMSEs). These IMSEs provide a measure of overall efficiency for an estima-
tor, and we can compare estimators by computing ratios of IMSEs. For example, the
efficiency of F̂c relative to F̂ can be computed as

Relative efficiency = IMSE(F̂)

IMSE(F̂c)
.

Table 1 shows calculated efficiencies relative to the EDF-based estimator for sev-
eral different estimators under JPS and balanced RSS. We considered different types
of rankings (λ = 0, 1/3, 2/3, 1) and different total sample sizes (N = 3, 9, 15). The
table shows relative efficiencies both for estimation of the overall CDF (F) and for

123



Estimation using ranked-set sampling with a covariate 451

Table 1 Calculated efficiencies for the new CDF estimators and the Frey–Ozturk (2010) CDF estimator
relative to the standard EDF-based estimator for m = 3, JPS and balanced RSS, and different types of
rankings

Type Parameter λ N = 3 N = 9 N = 15

F-O Cov Sto F-O Cov Sto F-O Cov Sto

JPS F 0 1.03 1.03 1.05 1.06 1.12 1.19 1.03 1.08 1.15

1/3 1.03 1.03 1.05 1.07 1.13 1.19 1.03 1.09 1.14

2/3 1.02 1.02 1.06 1.07 1.12 1.18 1.04 1.09 1.13

1 1.01 1.01 1.06 1.07 1.10 1.15 1.05 1.09 1.11

F[1] 0 1.49 1.49 1.64 1.34 1.61 2.14 1.16 1.40 1.94

1/3 1.44 1.44 1.71 1.37 1.63 2.31 1.20 1.44 2.02

2/3 1.31 1.32 1.57 1.38 1.61 2.14 1.28 1.50 1.90

1 1.14 1.15 1.33 1.27 1.44 1.70 1.25 1.45 1.62

F[2] 0 1.49 1.60 1.80 1.34 2.10 3.05 1.16 1.78 3.01

1/3 1.47 1.58 1.74 1.35 2.12 2.82 1.18 1.82 2.70

2/3 1.45 1.55 1.68 1.43 2.25 2.70 1.27 2.00 2.54

1 1.42 1.52 1.62 1.61 2.47 2.77 1.52 2.35 2.66

RSS F 0 1.00 1.00 1.00 0.98 0.98 0.99 0.99 0.99 1.00

1/3 1.00 1.00 0.99 0.98 0.99 0.99 0.99 0.99 0.99

2/3 1.00 1.00 0.99 0.98 0.98 0.98 0.98 0.99 0.99

1 1.00 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98

F[1] 0 1.85 1.83 2.22 1.26 1.43 1.84 1.12 1.27 1.72

1/3 1.82 1.82 2.30 1.29 1.46 1.94 1.15 1.31 1.76

2/3 1.71 1.73 2.10 1.32 1.48 1.83 1.24 1.38 1.67

1 1.46 1.52 1.67 1.24 1.39 1.53 1.22 1.35 1.47

F[2] 0 1.85 2.57 2.85 1.26 1.85 2.64 1.11 1.58 2.61

1/3 1.84 2.52 2.68 1.27 1.87 2.40 1.13 1.62 2.34

2/3 1.84 2.52 2.62 1.32 1.97 2.30 1.20 1.76 2.20

1 1.84 2.58 2.71 1.45 2.15 2.39 1.39 2.03 2.30

Here, N is the total sample size

estimation of the in-stratum CDFs. By symmetry, the relative efficiencies for estimat-
ing F[3] are the same as the relative efficiencies for estimating F[1].

We see from Table 1 that under JPS, there is a clear ordering of the three estimators.
The stochastic ordering estimator F̂ s and its associated in-stratum CDF estimators
outperform F̂c, which, in turn, outperforms the Frey and Ozturk (2010) estimator.
The efficiency of F̂ s relative to F̂ is as high as 1.19, and the corresponding rela-
tive efficiency when estimating in-stratum CDFs is as high as 3.05. Under balanced
RSS, none of the new estimators outperform the standard estimator when estimating
the overall CDF. However, when estimating the in-stratum CDFs, the new estimators
offer substantial gains in efficiency. The relative efficiency of the stochastic ordering
estimator is not less than 1.47 in any of the scenarios shown, and it goes as high as
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2.85. Comparing the top half of the table to the bottom half shows that the advantage
of using the new estimators tends to be higher with JPS than with balanced RSS.

4 Constrained estimation of the population mean

The usual unbiased nonparametric estimate of the population mean under RSS or JPS
is given by

μ̂ =
∫

y
y dF̂(y).

If we replace F̂ with F̂c or F̂ s , then we obtain alternate estimators, which we denote
μ̂c and μ̂s . These alternate estimators are no longer unbiased, and they are not more
efficient than the standard estimator under balanced RSS. However, under unbalanced
RSS or JPS, the new estimators tend to be more efficient than the standard estima-
tor. We demonstrate this increased efficiency by presenting results from a simulation
study. In addition to the new estimators, we consider the mean estimator proposed by
Frey and Ozturk (2010) and the isotonic JPS mean estimator developed by Wang et al.
(2008).

In the simulation study, we considered different types of rankings, different parent
distributions, and different total sample sizes. Using the same model (2) for imperfect
rankings that we used in Sect. 3, we considered parameter values λ = 0, 1/3, 2/3, and
1. We considered normal, exponential, Gamma(5, 1), uniform, and Beta(1/2, 1/2)

parent distributions, and we used total sample sizes 3, 6, 9, 12, and 15. Thus, the aver-
age in-stratum sample size ranged from 1 to 5. The set size was fixed at m = 3, and
20,000 samples were simulated for each combination of parent distribution, type of
rankings, and average sample size. For each combination of factor levels, we estimated
the efficiency of each estimator relative to the standard nonparametric mean estimator
μ̂ by computing ratios of estimated MSEs. For example, the estimated efficiency of
the stochastic ordering mean estimator relative to the standard JPS mean estimator
was computed as

Relative efficiency = ̂MSE(μ̂)

̂MSE(μ̂s)
.

Some results of the simulation study for JPS are presented in Table 2. In implement-
ing the Wang et al. (2008) estimator in cases where there were empty cells, we used
the following procedure. We first isotonized the means for the nonempty cells. We
then replaced the mean for any empty cell with either the isotonized cell mean for
the nearest nonempty cell or, if both adjacent cells were nonempty, the average of the
isotonized cell means for those two cells. We then averaged the three cell means.

Table 2 shows that μ̂s is consistently better than μ̂c, which, in turn, is consistently
better than the Frey and Ozturk (2010) estimator. The Wang et al. (2008) estimator is
the best estimator under perfect rankings (λ = 1) when N = 3, but it is outperformed
by the stochastic ordering estimator when the rankings are closer to random or when
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Table 2 Simulated efficiencies for the Frey and Ozturk (2010) mean estimator, the new mean estimators,
and the Wang et al. (2008) mean estimator relative to the standard EDF-based JPS mean estimator for m = 3
under different types of rankings and different total sample sizes

Est. Dist. λ for N = 3 λ for N = 9 λ for N = 15

0 1/3 2/3 1 0 1/3 2/3 1 0 1/3 2/3 1

F-O Norm. 1.05 1.06 1.04 1.02 1.10 1.10 1.10 1.08 1.05 1.05 1.07 1.06

Exp. 1.07 1.07 1.07 1.05 1.12 1.13 1.13 1.13 1.08 1.07 1.09 1.11

Gamma 1.06 1.06 1.05 1.02 1.10 1.11 1.10 1.09 1.06 1.06 1.07 1.08

Unif. 1.03 1.03 1.02 0.99 1.07 1.07 1.06 1.04 1.03 1.03 1.04 1.02

Beta 1.02 1.02 1.01 0.98 1.05 1.05 1.05 1.02 1.02 1.02 1.02 1.01

Cov Norm. 1.05 1.06 1.04 1.02 1.15 1.16 1.16 1.14 1.10 1.11 1.13 1.12

Exp. 1.07 1.07 1.07 1.05 1.16 1.18 1.19 1.21 1.12 1.12 1.16 1.17

Gamma 1.06 1.06 1.05 1.03 1.15 1.16 1.17 1.15 1.11 1.11 1.13 1.13

Unif. 1.03 1.03 1.02 0.99 1.12 1.13 1.12 1.08 1.09 1.09 1.10 1.07

Beta 1.02 1.02 1.01 0.98 1.11 1.11 1.10 1.05 1.08 1.08 1.08 1.05

Sto Norm. 1.06 1.10 1.12 1.14 1.18 1.22 1.23 1.23 1.14 1.15 1.16 1.15

Exp. 1.06 1.11 1.15 1.17 1.18 1.23 1.24 1.28 1.15 1.16 1.18 1.19

Gamma 1.05 1.10 1.13 1.15 1.17 1.22 1.23 1.25 1.14 1.15 1.17 1.16

Unif. 1.04 1.07 1.08 1.09 1.17 1.20 1.19 1.17 1.13 1.14 1.14 1.10

Beta 1.04 1.06 1.06 1.06 1.17 1.19 1.18 1.14 1.13 1.14 1.13 1.08

WLS Norm. 1.01 1.06 1.11 1.18 1.13 1.14 1.13 1.11 1.11 1.09 1.07 1.03

Exp. 1.01 1.06 1.12 1.18 1.12 1.13 1.11 1.08 1.12 1.09 1.07 1.02

Gamma 1.01 1.06 1.11 1.18 1.12 1.14 1.12 1.10 1.12 1.10 1.07 1.03

Unif. 1.01 1.05 1.08 1.13 1.13 1.14 1.13 1.12 1.11 1.10 1.08 1.04

Beta 1.01 1.04 1.07 1.10 1.13 1.14 1.13 1.12 1.11 1.10 1.08 1.04

For each combination of distribution, overall sample size, and type of rankings, 20,000 runs were done

the sample size is larger. Overall, there seems to be a clear advantage for the stochastic
ordering estimator μ̂s .

5 An application

To illustrate the value of the in-stratum CDF estimators that we developed in Sect. 3, we
apply them to obtain confidence intervals for population quantiles. Woodruff (1952)
developed a method for obtaining confidence intervals for population quantiles under
stratified random sampling and more complex survey sampling schemes. His basic
strategy, which is also described in Lohr (1999), begins with finding, for every pos-
sible y, an approximate confidence interval for F(y). The confidence interval for the
population quantile qp = inf{y : F(y) ≥ p} then consists of all values y such that
the confidence interval for F(y) contains p. If each of the pointwise confidence inter-
vals for F(y) is a nominal 100(1 − α)% confidence interval, then the corresponding
confidence interval for qp is also a nominal 100(1 − α)% confidence interval.
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To apply this idea under balanced RSS, we use a normal approximation. If the vec-
tor of in-stratum CDF values at y is (F[1](y), . . . , F[m](y)) and the overall CDF value
is F(y), then the variance of F̂(y) is V (F̂(y)) = 1

m2

∑m
i=1

(
F[i](y)(1 − F[i](y))

)
/n.

To obtain an EDF-based estimate of V (F̂(y)), we could replace each F[i](y) with
F̂[i](y). This, combined with the asymptotic normality of F̂(y) as n increases, leads
to a nominal 100(1 − α)% confidence interval for F(y) of the form

F̂(y) ± zα/2

m

√
√
√
√

m∑

i=1

(
F̂[i](y)(1 − F̂[i](y))

)
/n,

where zα/2 is the upper α/2 quantile for the standard normal distribution. However,
since the constraints derived in Sect. 2 lead to improved estimates of the in-stratum
CDFs, it makes sense to replace each F[i](y) with F̂ s

[i](y), provided that Assumption 1
is believed to hold. This leads to a nominal 100(1 −α)% confidence interval for F(y)

of the form

F̂(y) ± zα/2

m

√
√
√
√

m∑

i=1

(
F̂ s

[i](y)(1 − F̂ s
[i](y))

)
/n. (3)

We then proceed as Woodruff (1952) proceeded to obtain the confidence interval for
qp. Specifically, if (L(y), U (y)) is the confidence interval for F(y) given in Eq. (3),
then our confidence interval for qp is the interval (inf {y : L(y) < p < U (y)}, sup

{
y :

L(y) < p < U (y)
}
). Note that this procedure does not involve finding a point esti-

mate for qp. Note also that whichever variance estimate we use, we continue to use
F̂(y) as the center of the confidence interval for F(y).

To compare the small-sample performance of these two confidence intervals, we
computed the true coverage probabilities of nominal 95% confidence intervals for
various population quantiles. We used set size m = 3, and we considered numbers of
cycles n ranging from 4 to 8. To examine the impact of imperfect rankings, we used
the same model (2) that we used in Sects. 3 and 4. What we found is that the con-
fidence intervals based on the stochastic ordering estimator perform better. Figure 4
shows some results for the n = 4 case. The figure shows true coverage probabilities
for nominal 95% confidence intervals as a function of the parameter λ in the imperfect
rankings model. The four plots in the figure correspond to target quantiles q0.2, q0.3,
q0.4, and q0.5, and the two curves in each plot show the coverage probability for the
EDF-based interval (solid) and the stochastic ordering interval (dashed). We see that
while both intervals tend to have true coverage probabilities that fall short of the nom-
inal level, the stochastic ordering interval comes closer to the nominal level. When
the rankings are perfect (λ = 1) or nearly perfect, the true level is quite close to the
nominal level 95%.

Both Chen (2001) and Zhu and Wang (2005) also used RSS to make inference on
population quantiles. However, they considered point estimation rather than interval
estimation. Our work here also differs from that of Zhu and Wang (2005) in that we
do not assume perfect rankings.
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Fig. 4 Exact coverage probabilities as a function of λ for Woodruff-type 95% confidence intervals for dif-
ferent population quantiles. Here, n = (4, 4, 4). The solid curves give coverage probabilities for intervals
based on the EDF-based estimator, and the dashed curves give coverage probabilities for intervals based
on the stochastic ordering estimator

6 Conclusions

Frey and Ozturk (2010) showed that strata arising from ranking information must
satisfy additional constraints that need not hold for strata that arise in other ways. We
have shown here that when the rankings are done according to a covariate, tighter con-
straints must hold. We have also shown that if the relationship between the covariate
and the variable of interest satisfies a mild stochastic ordering assumption, then even
tighter constraints must hold. These constraints can be used to obtain better estimates
of in-stratum CDFs under both RSS and JPS, and they lead to better estimates of the
overall CDF and the population mean under JPS. Better estimates of the overall CDF
and the overall mean are of obvious importance, and better estimates of the in-stratum
CDFs are valuable in that they allow one to create statistical procedures that are cal-
ibrated to adjust for the effect of imperfect rankings. Ozturk (2007) used in-stratum
CDF estimates to create calibrated RSS-based procedures for the two-sample location
problem, and Ozturk (2008) used in-stratum CDF estimates to create calibrated RSS-
based procedures for creating confidence intervals for population quantiles. In Sect. 5,
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we used in-stratum CDF estimates to create Woodruff-type confidence intervals for
population quantiles when the sample size is very small.

Since RSS and JPS are often implemented using rankings that are based on a covar-
iate, the main results in this paper are widely applicable. In fact, they may be applied
even in cases where no covariate is used explicitly. A sufficient condition for applying
the constraints from Sect. 2 is that the rankings are based on a perceived size that
behaves like an unrecorded covariate.
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