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Abstract This paper proposes a new method for constructing a sequence of infinitely
exchangeable uniform random variables on the unit interval. For constructing the
sequence, we utilize a Pólya urn partially. The resulting exchangeable sequence
depends on the initial numbers of balls of the Pólya urn. We also derive the de Finetti
measure for the exchangeable sequence. For an arbitrarily given one-dimensional
distribution function, we generate sequences of exchangeable random variables with
the one-dimensional marginal distribution by transforming the exchangeable uniform
sequences with the inverse function of the distribution function. Among them we
mainly investigate sequences of exchangeable discrete random variables. They differ
from the well-known exchangeable sequence generated only by the Pólya urn scheme.
Some examples are also given as applications of the results to exact distributions of
some statistics based on sequences of exchangeable trials. Further, from the above
exchangeable uniform sequence we construct partial or Markov exchangeable
sequences. We also provide numerical examples of statistical inference based on the
exchangeable and Markov exchangeable sequences.
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634 S. Aki

1 Introduction

Recently, some new approaches to discrete distribution theory have been successfully
developed. Among them, the Markov chain embedding technique and the method of
conditional probability generating functions enabled us to derive many new results on
complicated enumeration problems based on various dependent trials. The Markov
chain embedding technique was proposed by Fu and Koutras (1994) and developed
by many researchers (see, e.g., Balakrishnan and Koutras (2002); Fu and Lou (2003)).
The method of conditional probability generating functions is a natural technique
of conditioning. In the literature of distribution theory, Ebneshahrashoob and Sobel
(1990) used it sophisticatedly for deriving the exact distribution of the later waiting
time between success and failure runs of specified length. The technique has been used
by many researchers for solving complicated problems (see, e.g., Aki (2008); Aki and
Hirano (2008)). Among various dependence models, exchangeable dependence is use-
ful in some cases. For example, we can mention the reliability study of binary systems
with n components if each component reliability p changes according to a random
environment. Considering that the component reliability p is a random variable which
values in the unit interval [0, 1] and assuming that the n components are conditionally
independent and identically distributed given p, we obtain an exchangeable sequence
(see Lau (1992)). Conversely, by de Finetti’s theorem, if {0, 1}-valued random vari-
ables are infinitely exchangeable, there exists a random variable p which values in the
unit interval such that the random variables are conditionally i.i.d. given p (see, e.g.,
de Finetti (1975); Durrett (2005); Billingsley (1995)). Therefore, the above reliability
modeling is very general. We can find out other examples of exchangeable dependence
modeling in George and Bowman (1995); Kolev et al. (2006); Kolev and Paiva (2008)
and Eryilmaz and Demir (2007).

An infinite sequence of random variables {Xn} is (infinitely) exchangeable if for
all n the joint distribution of (X1, X2, . . . , Xn) is invariant under permutations. By
de Finetti’s theorem, if {Xn} is (infinitely) exchangeable, it is a mixture of i.i.d.
sequences with a directing random measure, which is sometimes called the de Fi-
netti measure (see, e.g., Aldous (1985)).

In the manuscript we study statistical inference of the directing random measure.
Here, we suppose that our observations are sequences of random length from an
exchangeable population. To understand the statistical problem, let us consider a sim-
ple example of Pólya’s urn which contains a white and (10 − a) red balls initially.
Balls are randomly drawn one at a time and each ball is returned to the urn along
with one additional ball of the same color. Based on the observations of waiting time
(number of trials) until two consecutive white balls are drawn, we can estimate the
value of the initial number of white balls a. For example, the waiting time is 7 if
we observe the color of the balls drawn as (white, red, red, white, red, white, white).
Here, when two consecutive white balls are drawn, the experiment is assumed to be
repeated again from the initial situation of a white and (10 − a) red balls. It is known
that Pólya sequence is infinitely exchangeable and the directing random measure is
described by the beta distribution Beta(a, 10 − a). In this simple case, the direct-
ing random measure is parameterized by a. By estimating a, we can investigate the
random measure which is directing the exchangeable distribution on {white, red}∞.
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Discrete patterns in exchangeable sequences 635

Fig. 1 The graph of the
log-likelihood function based on
the data set of the waiting time
of the first occurrence of
consecutive white balls

The next data set of waiting time for two consecutive white balls is simulated assuming
that a = 7,

4, 2, 2, 8, 4, 2, 4, 2, 4, 2, 4, 9, 7, 2, 5, 4, 4, 2, 2, 4.

The maximum likelihood estimate of a based on the data can be calculated as â =
6.898 and Fig. 1 shows the log-likelihood function of a.

The purpose of the manuscript is to propose some tractable parametric models for
sequences of exchangeable trials like the above Pólya sequence. Generally, the char-
acteristics (such as moments, probability generating function, etc.) of sample distribu-
tions of statistics based on the exchangeable binary random variables can be obtained
by integrating the characteristics of the corresponding distributions of the statistics
based on i.i.d. sequence using the de Finetti measure. It seems easy to assume a distri-
bution with some parameters as the de Finetti measure. However, the above integration
must be performed not numerically but analytically since we need the likelihood of the
parameters for statistical inference. This has been an inevitable restriction for statisti-
cal inference and the distributions except for the beta distribution have been scarcely
used for the purpose as far as the author knows. It is also well-known that we can
construct sequentially an exchangeable binary sequence by using Pólya’s urn, and the
corresponding de Finetti measure is the beta distribution (see, e.g., Irwin (1954); Kemp
and Kemp (1956); Freedman (1965)). Moreover, it should be noticed that the sample
distributions can also be derived recursively without integration using the method of
conditional probability generating functions by virtue of the sequential mechanism of
Pólya’s urn (see Inoue and Aki (2005)).

In Sect. 2 we propose a new method for constructing a sequence of infinitely
exchangeable random variables whose one-dimensional marginal distribution is the
uniform distribution on the unit interval [0, 1]. In Sect. 3 we treat the sequences of
exchangeable random variables based on the method proposed in Sect. 2. It is shown
that the de Finetti measures of our exchangeable discrete random variables often
become appropriately scaled beta distribution. Even when the de Finetti measure
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636 S. Aki

becomes complicated in appearance, integration with the measure can be performed
easily in many cases. In Sect. 4 we show that Markov exchangeable sequences can
be constructed sequentially using our exchangeable uniform sequence proposed in
Sect. 2. In Sect. 5 we provide illustrative examples for statistical inference in order
to show the feasibility of our results. In the examples, we estimate simultaneously
two parameters, one of which determines the de Finetti measure of the underlying
exchangeable sequence.

2 Constructing exchangeable random variables using an urn

Let us consider an urn containing a white and b red balls. Assume that balls are ran-
domly drawn one at a time and each ball is returned to the urn along with one additional
ball of the same color before the next ball is drawn. Then, the sequence of random
variables {Xn} is defined as

Xn =
{

0 if the n-th ball is white
1 if the n-th ball is red.

Let {Un} be a sequence of independent uniformly distributed random variables on
the unit interval [0, 1]. We also assume that {Xn} and {Un} are independent. For
i = 1, 2, . . ., we set

Yi = (1 − Xi )
a

a + b
Ui + Xi

(
a

a + b
+ b

a + b
Ui

)
.

Then, {Yn} is exchangeable since {Xn} is exchangeable.

Proposition 1 Each Yn follows the uniform distribution on the unit interval [0, 1].

Proof Since {Yn} is exchangeable, it suffices to show that Y1 follows the uniform
distribution. We see that for 0 ≤ y ≤ a

a+b ,

P(Y1 ≤ y) = P(X1 = 0)P

(
a

a + b
U1 ≤ y

)

+ P(X1 = 1)P

(
a

a + b
+ b

a + b
U1 ≤ y

)

= a

a + b
· a + b

a
y + b

a + b
· 0 = y

and for a
a+b < y ≤ 1,
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Discrete patterns in exchangeable sequences 637

P(Y1 ≤ y) = P(X1 = 0)P

(
a

a + b
U1 ≤ y

)

+ P(X1 = 1)P

(
a

a + b
+ b

a + b
U1 ≤ y

)

= a

a + b
· 1 + b

a + b
· a + b

b

(
y − a

a + b

)
= y.

This completes the proof. ��

For 0 < z < 1, we define

h(z; x) = a + b

a
xz I[

0, a
a+b

](x)+ I( a
a+b ,1](x)

{
z + a + b

b

(
x − a

a + b

)
(1 − z)

}
.

Let A, B and C be the points with the coordinates (0, 0), ( a
a+b , z), and (1, 1), respec-

tively. Then h(z; x) is the distribution function whose graph is piecewise linear with
the segments AB and BC. We have the next theorem.

Theorem 1 There exists a random variable Z = Z(ω) such that Z follows the beta
distribution Beta(a, b) and the empirical distribution function Fn(t) of Y1, . . . ,Yn

converges to the random distribution function h(Z(ω); t) uniformly in t with proba-
bility one as n tends to infinity. Further, given h(Z(ω); t), Y1,Y2, . . . are conditionally
independent random variables whose distribution functions are h(Z(ω); t).

Proof From de Finetti’s theorem (see, e.g., Johnson and Kotz (1977); Kingman (1978);
Bertoin (2006); Pitman (2006)), we see that Fn(t) converges to a random distribution
function ϕ(t) with probability one uniformly in t as n → ∞. Further, given ϕ(t),
Y1,Y2, . . . are conditionally independent random variables whose distribution func-
tions are ϕ(t). But, from the definition of Yi , we can write

Fn

(
a

a + b

)
= #{i : Xi = 0, i = 1, 2, . . . , n}

n
.

If we set Z = ϕ( a
a+b ), Z follows the beta distribution Beta(a, b) (see, e.g., (Durrett,

2005, p. 238)). Noting that {Xn} and {Un} are independent, we observe that given
Z = ϕ( a

a+b ), conditional distributions of ϕ(t) on the intervals [0, a
a+b ] and [ a

a+b , 1]
are uniform. Therefore, ϕ(t) is piecewise linear and hence ϕ(t) = h(Z; t) holds. ��

Let us obtain the joint distribution of (Y1,Y2, . . . ,Ym). To calculate P(Y1 ≤ y1,

Y2 ≤ y2, . . . ,Ym ≤ ym), without loss of generality, we assume y1, . . . , yk ∈ [0, a
a+b ]

and yk+1, . . . , ym ∈ ( a
a+b , 1], since (Y1,Y2, . . . ,Ym) are exchangeable.
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Fig. 2 Sample paths of
empirical distribution functions
of {Yn} of size 2,000 with a = 5
and b = 10

Proposition 2 For y1, . . . , yk ∈
[
0, a

a+b

]
and yk+1, . . . , ym ∈ ( a

a+b , 1],

P(Y1 ≤ y1, . . . ,Ym ≤ ym)

=
⎛
⎝ k∏

j=1

a + b

a
y j

⎞
⎠ m−k∑

�=0

∑
L ⊂ {k + 1, . . . ,m}

|L| = �

∏
j∈L

(
a + b

b

(
y j − a

a + b

))

× (a)↑(m−�)(b)↑�
(a + b)↑m

holds, where (c)↑d = c(c + 1) . . . (c + d − 1).

We illustrate in Fig. 2 ten sample paths of empirical distribution functions of Y ′s
of size 2,000 starting from the urn with a = 5 and b = 10.

Proof From Theorem 1, we can calculate the joint distribution as follows.

P(Y1 ≤ y1, . . . ,Ym ≤ ym)

=
∫ 1

0

⎛
⎝ k∏

j=1

a + b

a
y j z

⎞
⎠ m∏

j=k+1

(
z + a + b

b

(
y j − a

a + b

)
(1 − z)

)

× 1

B(a, b)
za−1(1 − z)b−1dz

=
⎛
⎝ k∏

j=1

a + b

a
y j

⎞
⎠∫ 1

0

m∏
j=k+1

(
z + a + b

b

(
y j − a

a + b

)
(1 − z)

)

× 1

B(a, b)
za+k−1(1 − z)b−1dz
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Discrete patterns in exchangeable sequences 639

=
⎛
⎝ k∏

j=1

a + b

a
y j

⎞
⎠ m−k∑

�=0

∑
L ⊂ {k + 1, . . . ,m}

|L| = �

∏
j∈L

(
a + b

b

(
y j − a

a + b

))

×
∫ 1

0

1

B(a, b)
za+k+m−k−�−1(1 − z)b+�−1dz

=
⎛
⎝ k∏

j=1

a + b

a
y j

⎞
⎠ m−k∑

�=0

∑
L ⊂ {k + 1, . . . ,m}

|L| = �

×
∏
j∈L

(
a + b

b

(
y j − a

a + b

))
(a)↑(m−�)(b)↑�
(a + b)↑m

.

This completes the proof. ��
For a one-dimensional distribution function G(x), we define

G−1(t) = inf{x : G(x) ≥ t} for 0 < t < 1

and we set Wn = G−1(Yn). Since {Wn ≤ x} = {Yn ≤ G(x)} holds for all x , we obtain
the next two results from Theorem 1 and Proposition 2.

Theorem 2 {Wn} is a sequence of exchangeable random variables and the distri-
bution function of Wn is G(x) for each n. Further, there exists a random variable
Z = Z(ω) with the beta distribution Beta(a, b) such that the empirical distribution
function Gn(x) of W1, . . . ,Wn converges uniformly in x to the random distribution
function h(Z(ω); G(x)) with probability one as n → ∞, and given h(Z(ω); G(x)),
{Wn} is a sequence of conditionally independent random variables with distribution
function h(Z(ω); G(x)).

Proposition 3 For G(w1), . . . ,G(wk) ∈ [0, a
a+b ], and G(wk+1), . . . , G(wm) ∈

( a
a+b , 1], the joint distribution of W1, . . . ,Wm can be written as

P(W1 ≤ w1, . . . ,Wm ≤ wm)

=
⎛
⎝ k∏

j=1

a + b

a
G(w j )

⎞
⎠ m−k∑

�=0

∑
L ⊂ {k + 1, . . . ,m}

|L| = �

×
∏
j∈L

(
a + b

b

(
G(w j )− a

a + b

))
(a)↑(m−�)(b)↑�
(a + b)↑m

.

We can calculate the moments of {Wn}. Let us obtain the second moment.

Proposition 4 Since Yn follows the uniform distribution on the unit interval, the dis-
tribution function of Wn(= G−1(Yn)) is G. Then, the moments of Wn(= G−1(Yn))
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640 S. Aki

is the moments of G if they exist. Setting G(a, b) = G−1
(

a
a+b

)
, E(W1W2) can be

written as follows.

E(W1W2)

= a(a + 1)

(a + b)(a + b + 1)

(
a + b

a

∫ G(a,b)

−∞
xdG(x)

)2

+ 2ab

(a + b)(a + b + 1)

(
a + b

a

∫ G(a,b)

−∞
xdG(x)

)(
a + b

b

∫ ∞

G(a,b)
xdG(x)

)

+ b(b + 1)

(a + b)(a + b + 1)

(
a + b

b

∫ ∞

G(a,b)
xdG(x)

)2

.

In particular, by setting G(t) = t (0 < t < 1), we obtain the second moment of {Yn}
as

E(Y1Y2) = (a + b)3 + a2 + 3ab + b2

4(a + b)2(a + b + 1)
.

Further, as Yn follows the uniform distribution on the unit interval, E(Yn) = 1
2 and

V ar(Yn) = 1
12 hold. Thus, we have

Cov(Y1,Y2) = ab

4(a + b)2(a + b + 1)
,

and

Cor(Y1,Y2) = 3ab

(a + b)2(a + b + 1)
.

Proof Since {Xn} and {Un} are independent, it holds that

E(W1W2)

= P(X1 = 0, X2 = 0)E

[
G−1

(
a

a + b
U1

)
G−1

(
a

a + b
U2

)]

+ P(X1 = 0, X2 = 1)E

[
G−1

(
a

a + b
U1

)
G−1

(
a

a + b
+ b

a + b
U2

)]

+ P(X1 = 1, X2 = 0)E

[
G−1

(
a

a + b
+ b

a + b
U1

)
G−1

(
a

a + b
U2

)]

+ P(X1 = 1, X2 = 1)

× E

[
G−1

(
a

a + b
+ b

a + b
U1

)
G−1

(
a

a + b
+ b

a + b
U2

)]
.

Noting that U1 and U2 are independent, we have the desired results. ��
Let us derive the distribution of the order statistics W(1) ≤ W(2) ≤ · · · ≤ W(m) of

W1,W2, . . . ,Wm .
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Proposition 5 For 1 ≤ j ≤ m, if G(w) ≤ a
a+b , then

P(W( j) ≤ w)

=
m∑

r= j

m−r∑
k=0

(−1)k
(

m

r

)(
m − r

k

)(
a + b

a
G(w)

)r+k B(a + r + k, b)

B(a, b)
,

and if G(w) > a
a+b , then

P(W( j) ≤ w)

=
m∑

r= j

r∑
k=0

(
m

r

)(
r

k

)
(1 − A(w))k+m−r A(w)r−k B(a + k, b + m − r)

B(a, b)
,

where A(w) = a+b
b

(
G(w)− a

a+b

)
.

Proof Since W1, . . . ,Wm are exchangeable,

P(W( j) ≤ w)

=
m∑

r= j

(
m

r

)
P(W1 ≤ w, . . . ,Wr ≤ w,Wr+1 > w, . . . ,Wm > w).

If G(w) ≤ a
a+b , we observe

P(W1 ≤ w, . . . ,Wr ≤ w,Wr+1 > w, . . . ,Wm > w)

= P(Y1 ≤ G(w), . . . ,Yr ≤ G(w),Yr+1 > G(w), . . . ,Ym > G(w))

=
∫ 1

0

⎛
⎝ r∏

j=1

a + b

a
G(w)z

⎞
⎠
⎛
⎝ m∏

j=r+1

(1 − a + b

a
G(w)z)

⎞
⎠

× 1

B(a, b)
za−1(1 − z)b−1dz

=
m−r∑
k=0

(−1)k
(

m − r

k

)(
a + b

a
G(w)

)r+k B(a + r + k, b)

B(a, b)
.
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642 S. Aki

If G(w) > a
a+b , we have

P(W1 ≤ w, . . . ,Wr ≤ w,Wr+1 > w, . . . ,Wm > w)

= P(Y1 ≤ G(w), . . . ,Yr ≤ G(w),Yr+1 > G(w), . . . ,Ym > G(w))

=
∫ 1

0
(A(w)+ (1 − A(w))z)r (1 − A(w)− (1 − A(w))z)m−r

× 1

B(a, b)
za−1(1 − z)b−1dz

=
r∑

k=0

(
r

k

)
(1 − A(w))k+m−r A(w)r−k B(a + k, b + m − r)

B(a, b)
.

This completes the proof. ��
Corollary 1 Let M = max1≤ j≤m W j . Then, the distribution function of the maximum
M can be written by using a random variable ξ , which follows the beta distribution
Beta(a, b), as

P(M ≤ w) =

⎧⎪⎨
⎪⎩

E
[( a+b

a G(w)ξ
)m]

if G(w) ≤ a
a+b

E
[{
ξ + a+b

b

(
G(w)− a

a+b

)
(1 − ξ)

}m]
if G(w) > a

a+b

.

Proof From Proposition 5, we see that

P(M ≤ w)

=
⎧⎨
⎩
( a+b

a G(w)
)m (a)↑m

(a+b)↑m
if G(w) ≤ a

a+b∑m
�=0

(a)↑(m−�)(b)↑�
(a+b)↑m

{
a+b

b

(
G(w)− a

a+b

)}�
if G(w) > a

a+b

.

Then, noting that

E[ξ�(1 − ξ)m] = (a)↑�(b)↑m

(a + b)↑(m+�)

for every positive integers � and m, we have the desired result. ��
Figure 3 shows the distribution function of the maximum of five exchangeable vari-

ables whose one-dimensional marginal distributions are exponential of mean 1 with
a = 1 and b = 1. We observe that the shape of the c.d.f. changes at w = − log( b

a+b )

though it is continuous for all w.

Remark 1 Let {ξn} be a sequence of {0, 1, 2}-valued random variables which are gen-
erated by the Pólya sampling from an urn with a, b, and c balls respectively with color
code 0, 1, and 2, initially. Let {Un} be a sequence of independent uniformly distributed

123



Discrete patterns in exchangeable sequences 643

Fig. 3 The distribution function
of the maximum of five
exchangeable random variables
whose one-dimensional
marginal distributions are the
exponential of mean 1 with
a = 1 and b = 1

random variables on the unit interval. Further, {ξn} and {Un} are assumed to be inde-
pendent. Then, similarly as Proposition 1, we can define a sequence of exchangeable
uniform random variables {ηn} by

ηn =

⎧⎪⎪⎨
⎪⎪⎩

aUn
a+b+c if ξ0 = 0

a
a+b+c + bUn

a+b+c if ξn = 1
a+b

a+b+c + cUn
a+b+c if ξn = 2

It is not difficult to see asymptotic behavior of the empirical distribution function of
η1, . . . , ηn by extending Theorem 1.

3 Discrete models for exchangeable trials

It is well-known that a two-color Pólya urn generates a sequence of exchangeable
binary trials sequentially and the corresponding de Finetti measure is a beta distribu-
tion. It is also known that (k+1)-color Pólya urn generates a sequence of exchangeable
{0, 1, 2, . . . , k}-valued random variables sequentially and the corresponding de Finetti
measure is a Dirichlet distribution (e.g. Hill et al. (1987); Mauldin et al. (1992)). In
this section we construct a sequence of exchangeable {0, 1}-valued random variables
sequentially using {Yn} defined in the previous section. The de Finetti measure for the
new sequence of exchangeable binary variables is not a beta distribution but a properly
scaled beta distribution.

First, we transform {Yn} to {Zn} = {G−1
p (Yn)}, where G p(x) is the cumulative

distribution function on {0, 1},

G p(t) =
⎧⎨
⎩

0 if t < 0
p if 0 ≤ t < 1
1 if 1 ≤ t.
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The de Finetti measure of the sequence {Zn} is the distribution of a random variable
�, which values on the unit interval [0, 1], and Sn

n converges to � with probability
one, where Sn = Z1 + Z2 + · · · + Zn . Further, given the random variable �, the
sequence {Zn} is conditionally i.i.d. and each Zn follows the distribution of �.

Theorem 3 The density of the de Finetti measure of {Zn} is given as follows.

(1) When 0 < p ≤ a
a+b , the de Finetti measure of {Zn} has a support on the interval(

1 − a+b
a p, 1

)
and the density w.r.t. Lebesgue measure is

f1(x) = 1

αB(a, b)

(
1

α
(1 − x)

)a−1 (
1 − 1

α
(1 − x)

)b−1

(1 − α < x < 1),

where, α = a+b
a p.

(2) When a
a+b < p < 1, if we set β = 1 − a+b

b (p − a
a+b ), the de Finetti mea-

sure of {Zn} has a support on the interval (0, β) and the density w.r.t. Lebesgue
measure is

f2(x) = 1

βB(b, a)

(
1

β
x

)b−1 (
1 − 1

β
x

)a−1

(0 < x < β).

Proof Denoting the de Finetti measure byμwe can write P(Z1 = 0 , . . . , Zm = 0) =∫ 1
0 (1− θ)mdμ(θ), since P(Z1 = 1, . . . , Zm = 1) = ∫ 1

0 θ
mdμ(θ). Then, letting� be

a random variable with the distribution μ, we can write P(Z1 = 0, . . . , Zm = 0) =
E[(1−�)m]. Further, by using Proposition 2, we can also write P(Z1 = 0, . . . , Zm =
0) as

P(Z1 = 0, . . . , Zm = 0)

= P(Y1 ≤ p, . . . ,Ym ≤ p)

=
⎧⎨
⎩

(a)↑m
(a+b)↑m

· ( a+b
a p

)m
if 0 ≤ p ≤ a

a+b∑m
�=0

(m
�

) (a)↑(m−�)(b)↑�
(a+b)↑m

{
a+b

b

(
p − a

a+b

)}�
if a

a+b < p ≤ 1
.

Here, we note that denoting by ξ a random variable with the beta distribution
Beta(a, b),

E[ξ�(1 − ξ)m] = (a)↑�(b)↑m

(a + b)↑(m+�)

holds for every pair of positive integers � and m. Then the r.h.s. of the above formula can
be written as E[( a+b

a pξ)m] when 0 ≤ p ≤ a
a+b , and as E[{ξ+ a+b

b (p− a
a+b )(1−ξ)}m]

when a
a+b < p ≤ 1. Since the result holds for every integer m, by the moment prob-

lem, the distribution is determined uniquely. Consequently, we see that the distribution
of 1−� is the same as that of a+b

a pξ when 0 ≤ p ≤ a
a+b , and ξ+ a+b

b (p− a
a+b )(1−ξ)

when a
a+b < p ≤ 1. This completes the proof. ��
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Remark 2 In Theorem 3, if p = a
a+b holds, the de Finetti measure becomes a beta

distribution, since

G−1
p (t) =

{
0 if 0 < t ≤ p
1 if p < t < 1

holds and hence we see that Zn = G−1
p (Yn) = Xn . Thus, in the case, to observe

the sequence {Zn} is equivalent to observe the Pólya urn. Consequently, the sequence
{Zn} is a proper extension of the Pólya urn scheme.

One of the merits of the new model {Zn} is that the sequence can be generated
sequentially like the Pólya urn scheme. In the following examples, we show that the
method of conditional probability generating functions can be applied to derive sam-
ple distributions based on the sequence {Zn} by virtue of the sequential construction
of {Zn}.
Example 1 We show two methods for deriving the exact sample distribution of Sn =∑n

i=1 Zi when 0 < p ≤ a
a+b . First, starting from an urn with w white balls and r red

balls, we repeat the trials m times in the Pólya urn scheme. After the m-th trial, we
denote by ϕ1(m, w, r) the conditional probability generating function of the number
of 1’s. Then, the next recurrence relations hold by virtue of the sequential construction
of Zn .

⎧⎨
⎩
ϕ1(0, w, r) = 1
ϕ1(m, w, r) = w

w+r ((1 − α)t + α)ϕ1(m − 1, w + 1, r)
+ r
w+r tϕ1(m − 1, w, r + 1)

,

where α = a+b
a p. To be precise, we observe from the definition of ϕ1(m, w, r),

ϕ1(m, w, r)

= P(X1 = 0)(P(Z1 = 1|X1 = 0)t + P(Z1 = 0|X1 = 0))

×ϕ1(m − 1, w + 1, r)

+ P(X1 = 1)(P(Z1 = 1|X1 = 1)t + P(Z1 = 0|X1 = 1))

×ϕ1(m − 1, w, r + 1).

Noting that

P(Z1 = 1|X1 = 0) = P

(
a

a + b
U1 > p

)
= 1 − α,

P(Z1 = 0|X1 = 0) = P

(
a

a + b
U1 ≤ p

)
= α,

P(Z1 = 1|X1 = 1) = P

(
a

a + b
+ b

a + b
U1 > p

)
= 1 and

P(Z1 = 0|X1 = 1) = P

(
a

a + b
+ b

a + b
U1 ≤ p

)
= 0,
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we have the above recurrence relations. By solving them recursively, we can obtain
the probability generating function ϕ1(n, a, b) for arbitrarily given n.

Next, by using de Finetti’s theorem, we obtain ϕ1(n, a, b) as

ϕ1(n, a, b) =
∫ 1

1−α
(xt + (1 − x))n f1(x)dx,

where f1(x) is the density given in (1) of Theorem 3. In the integral, changing variables
(1−x)
α

= u, the integral can be written as

∫ 1

0
((1 − αu)t + αu)n

1

B(a, b)
ua−1(1 − u)b−1du.

If we expand ((1−αu)t +αu)n in the above integral, the integration can be performed
and we see that the result is the same as the result obtained by solving the recurrence
relations above.

Further, using the next formula for the hypergeometric function

F(κ, λ, μ; z) = Γ (μ)

Γ (λ)Γ (μ− λ)

∫ 1

0
tλ−1(1 − t)μ−λ−1(1 − t z)−κdt (1)

(�(μ) > �(λ) > 0),where �(z) denotes the real part of z,

we can also write ϕ1(n, a, b) as

ϕ1(n, a, b) = tn F

(
−n, a, a + b;α

(
1 − 1

t

))
.

Example 2 Like the previous example, when a
a+b < p < 1, we derive the exact distri-

bution of Sn = ∑n
i=1 Zi by the two methods. First, we shall explain how to obtain the

exact distribution by using recurrence relations of conditional probability generating
functions. Starting from an urn with w white balls and r red balls, we repeat the trials
m times in the Pólya urn scheme. After the m-th trial, we denote by ϕ2(m, w, r) the
conditional probability generating function of the number of 1’s. Then, similarly as
Example 1, we can see that ϕ2(m, w, r) satisfies the next recurrence relations:

⎧⎨
⎩
ϕ2(0, w, r) = 1
ϕ2(m, w, r) = w

w+r ϕ2(n − 1, w + 1, r)
+ r
w+r ((βt + (1 − β))ϕ2(m − 1, w, r + 1),

where β = 1 − a+b
b

(
p − a

a+b

)
. By solving them recursively, we can obtain the

probability generating function ϕ2(n, a, b).
Next, by using de Finetti’s theorem, we can write ϕ2(n, a, b) directly as

ϕ2(n, a, b) =
∫ β

0
(xt + (1 − x))n f2(x)dx,
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where f2(x) is the density given in (2) of Theorem 3. Changing variables x
β

= u, we
obtain

∫ 1

0
(βut + (1 − βu))n

1

B(b, a)
ub−1(1 − u)a−1du.

By expanding (βut + (1−βu))n , we can perform the above integration for arbitrarily
given n, and we can write ϕ2(n, a, b) as a polynomial in t . Furthermore, by using the
formula of the hypergeometric function (1), we can also represent ϕ2(n, a, b) as

ϕ2(n, a, b) = F(−n, b, a + b;β(1 − t)).

Although the next example is essentially equivalent to the previous examples, we
state the next example in order to compare our results with those previously investi-
gated in the literature of discrete distribution theory.

Example 3 By using the sequence of exchangeable uniform random variables {Yn},
we define the exchangeable {0, 1}-valued random variables {Vn} as

Vn =
{

1 if Yn ≤ p
0 if Yn > p

For simplicity, we assume that 0 < p ≤ a
a+b . Though {Vn} is essentially equivalent to

{Zn}, we give the de Finetti measure, since it slightly differs from that of {Zn}. First,
we note that

P(V1 = 1, V2 = 1, . . . , Vm = 1)

= P(X1 = 0, X2 = 0, . . . , Xm = 0)P

(
aU1

a + b
≤ p, . . . ,

aUm

a + b
≤ p

)

= (a)↑m

(a + b)↑m

(
a + b

a
p

)m

.

Denoting by μ the de Finetti measure of {Vn}, let � be a random variable which
follows μ and let ξ be a random variable with beta distribution Beta(a, b). For every
m = 1, 2 . . ., we have

P(V1 = 1, V2 = 1, . . . , Vm = 1) =
∫ 1

0
P(V1 = 1, . . . , Vm = 1|θ)dμ(θ)

=
∫ 1

0
θmdμ(θ)

= (a)↑m

(a + b)↑m

(
a + b

a
p

)m

= E

[(
a + b

a
pξ

)m]
.
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Therefore, the distributions of� and a+b
a pξ are the same and hence the density func-

tion of the de Finetti measure μ can be written as

f3(u) = 1

α

1

B(a, b)

(u

α

)a−1 (
1 − u

α

)b−1
(0 < u < α ≤ 1), (2)

where α = a+b
a p.

Proposition 6 Let τ be the number of trials until the first occurrence of “1”-run of
length k in the sequence {Vn} in Example 3. Then the probability generating function
of τ can be written as

E[tτ ] =
∞∑

x=k

∑
x1+2x2+···+kxk=x−k

(
x1 + . . . xk

x1, . . . , xk

)
αx−(x1+···+xk )

×Γ (a + b)

Γ (a)

Γ (x − (x1 + · · · + xk)+ a)

Γ (x − (x1 + · · · + xk)+ a + b)
×F(−(x1 + · · · + xk), x − (x1 + · · · + xk)+ a,

x − (x1 + · · · + xk)+ a + b;α),

where α = a+b
a p.

Proof It is well known that the probability generating function of the waiting time for
the first 1-run of length k. By using de Finetti’s theorem and the de Finetti measure
(2), we obtain

E[tτ ] =
∞∑

x=k

∑
x1+2x2+···+kxk=x−k

(
x1 + · · · xk

x1, . . . , xk

)

×
∫ α

0
ux
(

1 − u

u

)x1+···+xk

t x 1

α

1

B(a, b)

(u

α

)a−1 (
1 − u

α

)b−1
du.

Changing variables u = αv, we can write

∫ α

0
ux
(

1 − u

u

)x1+···+xk

t x 1

α

1

B(a, b)

(u

α

)a−1 (
1 − u

α

)b−1
du

= t x
∫ 1

0
(αv)x−(x1+···+xk )(1 − αv)x1+···+xk

1

B(a, b)
va−1(1 − v)b−1dv.

Then, the desired result can easily be shown by the formula of the hypergeometric
function (1). ��

Corollary 2 (Panaretos and Xekalaki (1986)) When we repeat sampling from Pólya’s
urn with a white and b red balls, the probability generating function of the waiting
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time for the first occurrence of a run of white balls of length k can be written as

E[tτ ] =
∞∑

x=k

∑
x1+2x2+···+kxk=x−k

(
x1 + · · · xk

x1, . . . , xk

)
αx−(x1+···+xk )

× B(a + x − x1 − · · · − xk, b + x1 + · · · + xk)

B(a, b)
t x .

Proof It suffices to set α = 1 in Proposition 6.
When α = 1, p = a

a+b holds. Then, from the definition of {Vn}, it is reduced to
the case that we observe the first occurrence of 1-run of length k in the sequence of
Pólya sampling. ��

Example 4 (Continuation of Example 3) We shall derive the probability generating
function of τ in Example 3 by solving recurrence relations. Let ψ(w, r, N ; t) be the
conditional probability generating function of number of trials until the first occur-
rence of 1-run (white balls) which will be possibly observed in N trials starting from
the urn with w white and r red balls. Of course, ψ(w, r, N ; t) may be a probability
generating function of a defective distribution, since the first 1-run may not occur until
the N -th trial. By definition, it is clear that ψ(w, r, 0; t) = 0 and for N > 0, we see
that the next recurrence relation holds:

ψ(w, r, N ; t)

= P(V1 = 0, X1 = 0)tψ(w + 1, r, N − 1; t)

+ P(V1 = 0, X1 = 1)tψ(w, r + 1, N − 1; t)

+
k−1∑
�=1

∑
x∈{0,1}�+1

P(V1 = 1, . . . , V� = 1, V�+1 = 0, (X1, . . . , X�+1) = x)

× t�+1ψ(w + s, r + �+ 1 − s, N − �− 1; t)

+
∑

x∈{0,1}k

P(V1 = 1, . . . , Vk = 1, (X1, . . . , Xk) = x)tk, (3)

where s = ∑�+1
i=1 xi . This can be seen by noting that in case of occurrence of the first

‘0’ before occurrence of the first 1-run of length k we have to start counting from
scratch, where balls in the urn will have been changed from the initial state. Here, we
can see that

P(V1 = 1, . . . , V� = 1, V�+1 = 0, (X1, . . . , X�+1) = x)

= P((X1, . . . , X�+1) = x)

×P(V1 = 1, . . . , V� = 1, V�+1 = 0|(X1, . . . , X�+1) = x)

= (w)↑s(r)↑(�+1−s)

(w + r)↑(�+1)
P(V1 = 1, . . . , V� = 1, V�+1 = 0|(X1, . . . , X�+1) = x).
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When Xi = 0, it holds that

Vi = 0 ⇐⇒ a

a + b
Ui > p

and

Vi = 1 ⇐⇒ a

a + b
Ui ≤ p.

When Xi = 1, we see that

Vi = 0 ⇐⇒ a

a + b
+ b

a + b
Ui > p (necessarily holds)

and

Vi = 1 ⇐⇒ a

a + b
+ b

a + b
Ui ≤ p (never holds).

Thus, if at least one of {x1, x2, . . . , x�} is 1, then the corresponding conditional prob-
ability vanishes. Therefore, (3) can be written as

ψ(w, r, N ; t)

= w

w + r
(1 − α)tψ(w + 1, r, N − 1; t)

+
k−1∑
�=1

{
(w)↑(�+1)

(w + r)↑(�+1)
α�(1 − α)t�+1ψ(w + �+ 1, r, N − �− 1; t)

+ (w)↑�r
(w + r)↑(�+1)

α�t�+1ψ(w + �, r + 1, N − �− 1; t)

}

+ (w)↑k

(w + r)↑k
αk tk . (4)

By using the above relation (4), we can derive recursively E[tτ I (τ ≤ N )] =
ψ(a, b, N ; t).

By setting α = 1 (⇔ p = a
a+b ) in the recurrence relation (4), we obtain

ψ(w, r, N ; t) = r

w + r
tψ(w, r + 1, N − 1; t)

+
k−1∑
�=1

(w)↑� r

(w + r)↑(�+1)
t�+1ψ(w + �, r + 1, N − �− 1; t)

+ (w)↑k

(w + r)↑k
tk .

Further, if we set b = 0 in the definition of Yn , then Xn = 0 and Yn = Un hold
with probability one. In the case, the sequence {Vn} becomes independent identically
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distributed sequence with P(Vn = 1) = p and α = p. Then, (4) can be written as

ψ(a, 0, N ; t) = (1 − p)tψ(a + 1, 0, N − 1; t)

+
k−1∑
�=1

p�(1 − p)t�+1ψ(a + �+ 1, 0, N − �− 1; t)+ pktk .

Since lim
N→∞ψ(a, 0, N ; t) does not depend on a, denoting the limit by φ(t), we obtain

φ(t) =
k−1∑
�=0

p�(1 − p)t�+1φ(t)+ pktk .

This can be solved easily and we have the probability generating function of the geo-
metric distribution of order k (see, e.g., Balakrishnan and Koutras (2002); Johnson
et al. (2005)).

4 Sequential construction of Markov exchangeable sequences

de Finetti’s theorem has been developed to mixtures of Markov chains and some
kinds of conditions of partial exchangeability have been investigated (see Diaconis
and Freedman (1980); Zabell (1995); Fortini et al. (2002); Quintana and Newton
(1998)). Here, as a simple parametric model for Markov exchangeable sequence we
sequentially construct mixtures of Markov chains using {Yn} defined in Sect. 2.

Let 0 < p0, p1 < 1 be real numbers. We define

W0 = 0 a.s.

and for n = 1, 2, . . .,

Wn =
{

I (Yn ≤ p0) if Wn−1 = 0
I (Yn ≤ p1) if Wn−1 = 1.

Then, we see that P(W1 = 1|ϕ) = P(Y1 ≤ p0|ϕ) = ϕ(p0), and

P(W1 = 1,W2 = 1|ϕ) = P(Y1 ≤ p0,Y2 ≤ p1|ϕ)
= P(Y1 ≤ p0|ϕ)P(Y2 ≤ p1|ϕ) = ϕ(p0)ϕ(p1).

For a {0,1}-sequence {i j }, we set

Q(i j−1, i j ) =
{
ϕ(pi j−1) if i j = 1
1 − ϕ(pi j−1) if i j = 0.
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Then, similarly we obtain that

P(Wn = in|W1 = i1,W2 = i2, . . . ,Wn−1 = in−1, ϕ)

= P(W1 = i1, . . . ,Wn−1 = in−1,Wn = in|ϕ)
P(W1 = i1, . . . ,Wn−1 = in−1|ϕ)

= Q(i0, i1) · · · Q(in−2, in−1)Q(in−1, in)

Q(i0, i1) · · · Q(in−2, in−1)

= Q(in − 1, in) = P(Wn = in|Wn−1 = in−1, ϕ).

Therefore, given ϕ, {Wn} are conditionally Markov chain with P(Wn = 1|Wn−1 =
1, ϕ) = ϕ(p1) and P(Wn = 1|Wn−1 = 0, ϕ) = ϕ(p0). In particular, when p0, p1 ≤

a

a + b
, we can write with a random variable ξ , which follows the beta distribution

Beta(a, b), ϕ(p1) = a+b
a p1ξ and ϕ(p0) = a+b

a p0ξ .

Example 5 Let τ be the waiting time for the first 1-run of length k in the Markov
exchangeable sequence W1,W2, . . . . Let ν be the waiting time for the first 0 in
W1,W2, . . . . Noting that the sequence is homogeneous, we obtain

E[tτ |ϕ] = E

⎡
⎣tτ I (ν = 1)+

k∑
j=2

tτ I (s = j)+ tτ I (ν > k)

∣∣∣∣ ϕ
⎤
⎦

= P(ν = 1)E[tτ |ϕ,W1 = 0]

+
k∑

j=2

P(ν = j)E[tτ |ϕ,W1 = 1, . . . ,W j−1 = 1,W j = 0]

+ tk P(W1, . . . ,Wk = 1|ϕ)
= (1 − ϕ(p0))t E[tτ |ϕ]

+
k∑

j=2

ϕ(p0)ϕ(p1)
j−2(1 − ϕ(p1))t

j E[tτ |ϕ] + ϕ(p0)ϕ(p1)
k−1tk .

Therefore, we have

E[tτ |ϕ] = ϕ(p0)ϕ(p1)
k−1tk

1 − (1 − ϕ(p0))t −∑k
j=2 ϕ(p0)ϕ(p1) j−2(1 − ϕ(p1))t j

. (5)

5 Statistical inference

In this section we shall show the feasibility of parametric estimation of our exchange-
able models.

Example 6 In the exchangeable sequence proposed in Example 3 of Sect. 3, we
observe waiting time for the first 1-run of length 2. Based on the data of the waiting
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time, we estimate the parameters a and p, where we posed the additional restriction
that a + b = 10 in order to reduce the number of parameters. The next data set is a
simulated sample assuming that a = 8, b = 2 and p = 0.7,

2, 2, 2, 2, 2, 3, 4, 2, 9, 6, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 2,
8, 2, 2, 2, 2, 12, 2, 3, 2, 2, 5, 2, 2, 2, 6, 8, 2, 12, 7, 5, 3, 4, 3, 2, 4, 2, 2, 4, 2, 6, 3,
2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 3, 2, 4, 2, 5, 4, 5, 4, 3, 3, 6, 4, 6, 2, 2, 2, 7, 4, 2,
12, 2, 2, 2, 3, 5, 4, 6, 7, 3, 3, 2, 3, 12, 6, 3, 4, 5, 2, 12, 2, 4, 2, 3, 6, 12, 2, 2, 2, 2,
2, 3, 4, 2, 5, 2, 2, 2, 2, 6, 2, 2, 2, 2, 9, 3, 2, 6, 2, 3, 2, 4, 5, 2, 3, 4, 2, 4, 2, 2, 4, 3,
2, 4, 2, 2, 11, 3, 2, 2, 2, 2, 2, 4, 11, 4, 2, 4, 3, 2, 4, 2, 4, 4, 5, 2, 2, 2, 2, 12, 7, 7,
6, 9, 2, 3, 6, 3, 2, 8, 2, 3, 2, 5, 2.

In generating the data, we censored the waiting time at 11 for simplicity. In the above
data set, 12 means that the waiting time is over 11. As we explained in Example 4, the
exact probability of the censored waiting time can be obtained as the function of
the parameters. Therefore, we could calculate the exact log-likelihood function from
the data set. By maximizing the function with respect to a and p, we obtained the
maximum likelihood estimate â = 7.502, p̂ = 0.706. The graph of the log-likelihood
function is in Fig. 4.

Example 7 In the Markov exchangeable sequence introduced in Sect. 4, we observe
the waiting time for the first 1-run of length 2. In the model, there are four parame-
ters a, b, p0, p1. In order to reduce the number of parameters, we pose the additional

restriction a +b = 10, p0 <
a

a+b and p1 = p0 + a
a+b

2
. Further, we censor the waiting

time at 11 for simplicity. Then, the parameters to be estimated are a and p0. We can
calculate the likelihood function as follows. From (5), given the random distribution
function ϕ, the conditional probability generating function of the waiting time for the
first 1-run of length 2 is written as

φ(t) = ϕ(p0)ϕ(p1)t2

1 − (1 − ϕ(p0))t − ϕ(p0)(1 − ϕ(p1))t2 .

Fig. 4 The graph of the
log-likelihood function based on
the data set of the waiting time
of the first 1-run of length 2
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Fig. 5 The graph of the
log-likelihood function of a and
p0 based on the data set of the
waiting time of the first 1-run of
length 2

Expanding it up to the 11th term w.r.t. t , we substitute ϕ(p1) = a+b
a p1ξ , ϕ(p0) =

a+b
a p0ξ . Further, multiplying it by 1

B(a,b) ξ
a−1(1 − ξ)b−1, and integrating the formula

w.r.t. ξ from 0 to 1, we obtain the probability generating function of the consored
waiting time. The integration need not be performed, since it is equivalent to replace
all the ξn’s by

a(a + 1) · · · (a + n − 1)

(a + b)(a + b + 1) · · · (a + b + n − 1)
.

By taking out the coefficient of tk from the probability generating function, we get the
probability that the waiting time becomes k. The next data set is simulated assuming
that a = 8, b = 2, p0 = 0.6 and p1 = 0.7,

2, 2, 2, 2, 2, 3, 4, 2, 9, 6, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 5, 3, 2, 2, 2, 4, 3, 2, 6, 2, 2, 2,
8, 2, 10, 2, 2, 12, 2, 3, 2, 2, 5, 2, 3, 2, 6, 8, 3, 12, 7, 5, 3, 5, 3, 2, 4, 2, 2, 4, 2, 6,
3, 2, 2, 2, 2, 4, 3, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 5, 4, 5, 4, 3, 3, 7, 4, 6, 2, 3, 6, 7, 4,
3, 12, 2, 2, 2, 3, 5, 10, 6, 7, 3, 3, 2, 3, 12, 6, 3, 4, 5, 3, 12, 2, 4, 3, 3, 6, 12, 2, 2,
2, 2, 3, 3, 8, 2, 5, 2, 2, 2, 2, 6, 2, 2, 2, 2, 9, 3, 2, 6, 2, 3, 2, 4, 5, 2, 3, 4, 2, 4, 2, 3,
4, 3, 2, 4, 2, 2, 11, 3, 2, 2, 2, 2, 2, 5, 11, 4, 2, 4, 3, 2, 4, 2, 5, 4, 5, 2, 2, 2, 2, 12,
7, 7, 6, 9, 2, 3, 7, 3, 2, 8, 2, 4, 2, 5, 3.

By maximizing the log-likelihood function with respect to a and p0, we obtained the
maximum likelihood estimate â = 8.075, p̂ = 0.611. The graph of the log-likelihood
function is in Fig. 5.
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