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Abstract This article uses projection depth (PD) for robust classification of multi-
variate data. Here we consider two types of classifiers, namely, the maximum depth
classifier and the modified depth-based classifier. The latter involves kernel density
estimation, where one needs to choose the associated scale of smoothing. We consider
both the single scale and the multi-scale versions of kernel density estimation, and
investigate the large sample properties of the resulting classifiers under appropriate
regularity conditions. Some simulated and real data sets are analyzed to evaluate the
finite sample performance of these classification tools.

Keywords Bayes risk · Bandwidth · Cross-validation · Data depth ·
Elliptic symmetry · Kernel density estimation · Misclassification rate ·
Multi-scale smoothing

1 Introduction

Over the last three decades, data depth has emerged as a powerful tool for statistical
analysis of multivariate data. Robust estimation of multivariate location and scatter
(see, e.g., Liu et al. 1999), test of statistical hypothesis (see, e.g., Chaudhuri and
Sengupta 1993; Liu and Singh 1993), detection of outliers (see, e.g., Chen et al. 2009),
supervised and unsupervised classification (see, e.g., Hoberg 2000; Jornsten 2004;
Ghosh and Chaudhuri 2005a,b) are some examples of its wide spread applications.
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Ghosh and Chaudhuri (2005b) introduced the maximum depth classifier and also
proposed a modified version of it based on half-space depth (HD) (see, e.g., Tukey
1975). But, as pointed out in Li et al. (2011), estimation of too many parameters makes
this modification quite complicated and not of much practical use. Zuo (2003, 2004)
also pointed out some drawbacks of HD, especially in the context of breakdown points.
These necessitate the development of better depth-based classification tools, which
have good theoretical properties and are computationally tractable and hence useful
in practice. Here, we use projection depth (see, e.g., Zuo and Serfling 2000a) for this
purpose. PD satisfies all four desirable properties of depth (i.e., affine invariance, max-
imality at center, monotonicity w.r.t. the deepest point and vanishing at infinity), and it
has several advantages over many existing depth functions (see Sect. 2). PD of an obser-
vation x w.r.t. a multivariate distribution F is defined as PD(x, F) = {1+O(x, F)}−1,
where O(x, F) = supα:‖α‖=1{|α′x − m F (α

′X)|/σF (α
′X)}, for m F andσF being some

univariate measures of location and scatter, respectively. Zuo and Serfling (2000a) used
median and median absolute deviation (MAD) about median as these measures, but
one can use other measures as well. The empirical version of PD is obtained by replac-
ing F by its empirical analog Fn, which puts a mass of 1/n on each of the n data
points. Under some regularity conditions, the contours of this empirical depth function
converge to their population analogs (see, e.g., He and Wang 1997; Zuo and Serfling
2000b). In the next section, we will use this empirical version for maximum depth clas-
sification, and the resulting classifier will be referred to as the maximum PD classifier.

2 Maximum projection depth classifier

If an observation is a proper representative of a class, it is expected to have higher
depth with respect to that class. Based on this simple idea, a maximum depth classifier
classifies an observation to the class for which it has the maximum depth. In prin-
ciple, any depth function can be used for maximum depth classification, but in high
dimensions, due to computational difficulty, it is not feasible to use some of them.
Mahalanobis depth (MD) (see Liu et al. 1999) is the easiest one to compute, but this
computational simplicity arises because of the use of moment based estimates of the
mean vectors and the dispersion matrices, which are not robust. To make it robust,
one can plug in robust estimates for the location and the scatter (see, e.g., Tyler 1987;
Rousseeuw and Van Driessen 1999; Croux and Dehon 2001), but the computational
simplicity gets lost. L1 depth (L1 D) (see, e.g., Vardi and Zhang 2000) is also easy
to compute, but its usual version is not affine invariant. An affine invariant version

is given by L1 D(x, F) = 1 − ‖EF

{
Σ

−1/2
F (x − X)/‖Σ−1/2

F (x − X)‖
}
‖, and here

also, one needs to plug in a robust estimate for the scatter matrix Σ F to get its robust
empirical analog. Though HD satisfies all four desirable properties of a depth func-
tion and can be computed in high dimensions (see, e.g., Rousseeuw and Struyf 1998;
Ghosh and Chaudhuri 2005a), a major limitation of HD is the stepwise nature of its
empirical version. As a result, an observation can have maximum HD with respect to
multiple classes. This problem is more serious when a test observation lies outside
the convex hull formed by the training data from different classes. In that case, it has
zero depth with respect to all competing classes, and the maximum HD classifier often
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misclassifies it. We also have similar problems for other depth functions like simplicial
depth (SD), majority depth and convex hull peeling depth (see, e.g., Liu et al. 1999),
which are based on counting. Unlike these depth functions, both the empirical and
the population versions of PD are continuous in x (see, e.g., Zuo (2003) for uniform
continuity of PD under mild conditions) and are always positive. Hence, one does
not have to deal with ties and observations with zero depth. Moreover, better break-
down properties of PD (see, e.g., Zuo 2003, 2004) are expected to make the resulting
classifier robust against outliers.

If we have n1, n2, . . . , n J observations from J competing classes, the maximum
PD classifier is given by

d1(x) = arg max
j∈{1,...,J } PD(x, Fjn j ) = arg min

j∈{1,...,J } O(x, Fjn j ),

where Fjn j is the empirical distribution function of the j th class ( j = 1, . . . , J ). If the
population density function f j is unimodal and elliptically symmetric (see, e.g., Fang
et al. 1989), PD(x, Fj ) turns out to be a monotonically increasing function of f j (x).
So, when the f j s differ only in their location, and the priors of the competing classes
are equal (i.e., π1 = · · · = πJ = 1/J ), the population version of d1(·) coincides with
the Bayes classifier dB(x) = arg max1≤ j≤J π j f j (x). In such cases, the error rate of
the classifier d1(·) also converges to the Bayes risk�B [the error rate of dB(·)] as the
training sample size increases.

Theorem 1 If f1, f2, . . . , f J are elliptically symmetric, unimodal and they satisfy a
location shift model (i.e., f j (x) = f (x − μ j ) for some common density function f
and location parameters μ1,μ2, . . . ,μJ ), the misclassification rate of the maximum
PD classifier d1(·) converges to the Bayes risk as min{n1, n2, . . . , n J } → ∞.

2.1 Performance on simulated data sets

We analyze some simulated data sets to compare the performance of the maximum
PD classifier with some other maximum depth classifiers. Here, we restrict ourselves
to two class problems in two dimensions so that classifiers based on computationally
expensive depth functions like SD can also be used for comparison. To compute the
empirical PD of an observation in R

2, we search for α = (sin θ, cos θ) over a fine grid
(one can also use the R package ExPD2D for computing PD for observations in R

2).
As we have mentioned earlier, any measures of univariate location and scale can be
used to define PD. Here, we used median as the measure of location, and both MAD
and quartile deviation (QD) as the measure of scale. Since there was no visible differ-
ence in the performance of the resulting classifiers, here we have reported the results
based on QD only. Note that if we use MD for maximum depth classification, it leads
to linear discriminant analysis (LDA). Here we have reported the error rates of LDA
and its robust versions, where MCD estimates (see, e.g., Rousseeuw and Van Driessen
1999) of the location and the scatter are plugged in. Here, we have used two MCD
estimates, one based on 50% observations (which has the highest breakdown) and the
other based on 75% observations [suggested in Hubert and Van Driessen (2004) for
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good finite sample efficiency]. The resulting robust classifiers will be referred to as the
MD1/2 classifier and the MD3/4 classifier, respectively. For the affine invariant, robust
version of L1 D, we used the MCD estimate with the highest breakdown. Throughout
this section, we consider the prior probabilities of the competing classes to be equal.

We begin with an example involving two normal distributions having the same
dispersion matrix I2, the 2 × 2 identity matrix, but different location parameters (0, 0)
and (μ,μ). We carried out our experiments with two different choices of μ (1 and 2).
Each time, we generated a training set of size 200 and a test set of size 500 taking
equal number of observations from two competing classes. This procedure is repeated
500 times, and the average test set error rates of different maximum depth classifiers
and their corresponding standard errors (SE) are reported in Table 1. Bayes risks are
also reported to facilitate comparison. Note that for HD and SD, the observations hav-
ing zero depth with respect to all competing classes were classified using the nearest
neighbor (see, e.g., Cover and Hart 1967) algorithm. Otherwise, the error rates of
these two methods would have been much higher. As expected, LDA yielded the best
performance in these examples, and its error rates were close to the corresponding
Bayes risks. The performance of its robust versions (MD1/2 and MD3/4), the L1 D
classifier and the PD classifier was also competitive. However, when we repeated the
same experiment using Cauchy distributions (which is heavy-tailed), in the presence
of outlying observations, LDA failed to perform well (see Table 1). In these cases, the
performance of all other depth-based classifiers was significantly better than LDA,
which shows the robustness of these depth-based methods.

In the above examples, the overall performance of the robust MD classifiers was
better than the PD classifier. This is probably due to the fact that in MD and robust MD,
we used the information about the homoscedastic structure of two competing popula-
tions, but for PD, we could not use this fact. As a result, like the Bayes classifier, MD
and robust MD classifiers were always linear, but the PD classifier led to a nonlinear
estimate of the class boundary in some cases. However, this nature can be helpful
in some situations. To demonstrate this, we consider an example with two normal
distributions having location parameters (0, 0) and (2, 2), and the common dispersion
matrix I2. Here we replace 10% of the class-1 observations by observations from a
normal distribution with the mean (20, 20) and the scatter matrix I2. A scatter plot
of this data set is given in Fig. 1, where the ‘dots’ (·) and the ‘crosses’ (×) represent
the observations from the two classes. In the presence of these contaminating obser-
vations, LDA was most affected, and it misclassified almost half of the observations

Table 1 Misclassification rates (in %) of different maximum depth classifiers and their standard errors

μ Bayes LDA HD SD L1 D MD1/2 MD3/4 PD
risk

Normal 1 23.98 24.07(0.08) 24.96(0.09) 25.07(0.09) 24.40(0.09) 24.30(0.09) 24.17(0.08) 24.83(0.09)

2 7.87 7.99(0.05) 8.38(0.06) 8.44(0.06) 8.14(0.06) 8.12(0.06) 8.06(0.05) 8.33(0.06)

Cauchy 1 30.40 43.57(0.41) 34.03(0.15) 34.01(0.14) 33.17(0.13) 30.85(0.09) 30.90(0.13) 32.31(0.10)

2 19.58 33.85(0.60) 22.86(0.13) 23.10(0.12) 22.04(0.11) 19.93(0.08) 19.96(0.08) 20.82(0.09)
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(c) Robust MD classifier

Fig. 1 Class boundaries estimated by different maximum depth classifiers

(see Fig. 1 for class boundaries estimated by different methods, where the light and the
dark regions indicate decisions in favor of the first and the second class, respectively).
We repeated this experiment 500 times, but in most of the cases, LDA showed the
same behavior. However, the robust MD classifiers and the PD classifier were less
affected (see Fig. 1c and d). Over these 500 trials, MD1/2 and MD3/4 classifiers had
average error rates of 12.71 and 12.65%, respectively, with the same SE of 0.05%.
Note that since these classifiers are linear, they were unable to correctly classify the
10% observations of class-1 located around (20, 20). But, alike the Bayes classifier
(see Fig. 1a), the PD classifier correctly classified these observations (see Fig. 1d).
As a result, it had a significantly lower error rate of 10.78% with an SE of 0.09%.
For L1 D, HD and SD, these error rates were 12.68, 22.40 and 24.56%, respectively,
with the corresponding SE of 0.06, 0.14 and 0.16%. When 10% outlying observations
were not considered for computing misclassification rates, average test set error rates
of LDA turned out to be 42.63% with an SE of 0.22%. Maximum depth classifiers
based on HD (error rate 22.51%, SE 0.14%) and SD (error rate 24.65%, SE 0.16%)
also had higher misclassification rates compared to MD1/2, MD3/4, L1 D and PD clas-
sifiers. For these four methods, average error rates were 8.48, 8.41, 9.03 and 8.98%,
respectively, with a common SE of 0.06%. This shows better robustness properties of
these four classifiers.

3 Modified projection depth classifier

The maximum PD classifier and other maximum depth classifiers described in Sect. 2
perform well when the priors are equal, and the population distributions differ only in
their location. However, in practice, different populations may have different priors,
and the population distributions may also differ in their scatters and shapes. In such
situations, the maximum depth classifiers may not perform well, and they need to be
modified. Xia et al. (2008) proposed a modification of the PD classifier that can be
used when the populations have different scatters. Li et al. (2011) also proposed some
modifications assuming a monotonic relationship between the depth and the density
functions. In this section, we propose a modification which works under a more gen-
eral set-up. This modification is also motivated by elliptic symmetry of the underlying
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distributions. Note that if the population distributions are elliptic, the Bayes classifier
is given by dB(x) = arg max1≤ j≤J π jψ j {D(x, Fj )}, where D(x, Fj ) is the depth of x
w.r.t Fj and ψ j is an appropriate transformation function (see Ghosh and Chaudhuri
2005b). If the population distributions differ only in their location, theψ j s are same for
all populations. Further, if the f j s are unimodal, then ψ j s are monotonically decreas-
ing. In such cases, if theπ j s are equal, the Bayes classifier turns out to be the maximum
depth classifier. But, when even one of these assumptions fails to hold, one needs to
know functional forms of the ψ j s. For PD, ψ j can be easily obtained (see Lemma 1
in Appendix), and using that one arrives at the following proposition.

Proposition 1 If f1, f2, . . . , f J are elliptically symmetric, the Bayes classifier is
given by

dB(x) = arg max
j∈{1,...,J } λ jρ j {PD(x, Fj )}{PD(x, Fj )}d−3/{1 − PD(x, Fj )}d−1,

where ρ j (·) is the density function of PD(x, Fj ), and λ j is an appropriate constant.

Proposition 1 holds for any definition of PD, while the λ j s change depending on
the choice of univariate measures of location and scale (see the proof of Lemma 1
for a clear idea). To construct the modified PD classifier, we estimate PD(x, Fj ) by
its sample analog PD(x, Fjn j ), and ρ j is estimated using the kernel density estima-
tion technique (see, e.g., Silverman 1986). Note that irrespective of the dimension of
the measurement space, here we need only one-dimensional density estimation. This
helps us to get rid of the curse of dimensionality that one usually faces in high-dimen-
sional nonparametric density estimation. For estimation of the ρ j (1 ≤ j ≤ J ), one
has to choose the bandwidth h j as well. For a given value of h j , this density esti-

mate is given by ρ̂ jh j (δ) = (n j h j )
−1 ∑n j

i=1 K
{
h−1

j (δ − δ̂
( j)
n j (x j i ))

}
, where δ̂( j)

n j (x) =
PD(x, Fjn j ), and K is the kernel function. Throughout this article, we will assume that
K has bounded first derivative, and for all numerical studies, we will use the Gaussian
kernel, which satisfies this property. In a two-class problem, the resulting classifier
can be expressed as

d2(x) =
{

1 if log[r (1)n1,h1
(x)] − log[r (2)n2,h2

(x)] > k,
2 otherwise,

where r ( j)
n j ,h j

(x) = ρ̂ jh j (δ̂
( j)
n j (x))(δ̂

( j)
n j (x))

d−3/(1 − δ̂
( j)
n j (x))

d−1 for j = 1, 2, and
k = log(λ2/λ1). Clearly, the performance of the classifier d2(·) depends on the choice
of h1, h2 and k. If h1 and h2 satisfy the assumption (A3), and k is chosen by mini-
mizing the cross-validation estimate of the error rate, under the assumptions (A1) and
(A2) [(A1)–(A3) are mentioned in the statement of Theorem 2], the error rate of the
modified PD classifier d2(·) converges to the Bayes risk as the training sample size
increases.

Theorem 2 Suppose that f1 and f2 are elliptically symmetric. Also consider the
following assumptions
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(A1) f j (x) > 0 for all x ∈ R
d and j = 1, 2.

(A2) For j = 1, 2, Fγ, j (z) = P(γ (X) ≤ z | X ∈ j th class) is uniformly continuous
in z, where γ (x) = r (2)(x)/r (1)(x), r ( j)(x) = ρ j (δ

( j)(x))(δ( j)(x))d−3/(1 −
δ( j)(x))d−1 and δ( j)(x) = PD(x, Fj ).

(A3) For j = 1, 2, h j → 0 and n j h4
j → ∞ as n j → ∞.

If (A1)–(A3) hold, and k is chosen by minimizing the cross-validation estimate
of the error rate, the misclassification rate of the modified PD classifier d2(·)
converges to the Bayes risk as min{n1, n2} → ∞.

A similar classifier based on HD was proposed in Ghosh and Chaudhuri (2005b),
which is quite complicated and has problems with ties and zero depths (as mentioned
earlier). The empirical version of HD takes only discrete values, and this leads to a loss
of information for continuous distributions. As a result, we often have poor density
estimates with peaks near those discrete values. Moreover, because of the presence of
many observations with zero depth, the resulting density estimate f̂ j has bumps in the
tail, which is not desirable. On the contrary, the empirical version of PD is continuous
in x, and it does not have such problems. As a result, the modified PD classifier often
outperforms the modified HD classifier.

Theorem 2 gives an idea about the optimal asymptotic order of the h j s. But, in
practice, we need to estimate them from the data. Here, we used the leave-one-out
cross-validation method to choose h1 and h2 along with k. Since the bandwidths are
supposed to be proportional to the population dispersions, to reduce the computing
cost, we chose h1 = (s1/s2)h2, where s j ( j = 1, 2) is a dispersion measure (for
robustness, here we used sample quartile deviation) of the estimated depth functions{
δ̂
( j)
n j (x j1), δ̂

( j)
n j (x j2), . . . , δ̂

( j)
n j (x jn j )

}
. For a given h2 (and h1 = (s1/s2)h2), we com-

puted r (i)ni ,hi
(x jl) = ρ̂∗

ihi
(δ̂
(i)
ni (x jl))(δ̂

(i)
ni (x jl))

d−3/(1 − δ̂
(i)
ni (x jl))

d−1 for i, j = 1, 2
and l = 1, . . . , n j , where ρ̂∗ stands for the leave-one-out (usual) kernel density esti-
mate for j = i ( j 	= i). The constant k was searched over the order statistics of
log[r (1)n1,h1

(x jl)]− log[r (2)n2,h2
(x jl)] ( j = 1, 2, l = 1, 2, . . . , n j ) to minimize the cross-

validation error rate. Clearly, this choice of k depends on h2. We used different choices
of h2 over a suitable range, and chose the one that led to the lowest cross-validation
error rate. Due to stepwise nature of the cross-validation error rate, often we have
multiple minimizers. In such cases, following Ghosh and Chaudhuri (2004) we chose
the maximum of the optimizers.

A similar generalization is also possible for depth-based classification using MD
and robust MD. Under appropriate conditions, the MCD estimate of the scatter matrix
Σ F converges to cFΣ F , where cF is a scalar that depends on the underlying dis-
tribution F (see, e.g., Cator and Lopuhaä 2011). However, it is clear that whatever
be that scalar, the form of the Bayes classifier remains the same as in Proposition 1.
So, the classification method discussed above can be adopted to develop a modified
robust MD classifier, and its asymptotic optimality can be proved following the proof
of Theorem 2.

For classification among J (> 2) classes, h1, h2, . . . , h J and λ1, λ2, . . . , λJ can
be chosen in a similar way, but it is computationally difficult to minimize the cross-
validation error rate w.r.t. several parameters. Therefore, we consider a pair of classes
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at a time and perform
(J

2

)
binary classifications as discussed above. The results of all

pairwise classifications are combined using the method of majority voting, where ties
are resolved arbitrarily. Following the arguments of the proof of Theorem 2, under
similar regularity conditions, one can prove the Bayes risk consistency of the modified
PD classifier for these multi-class problems.

3.1 Performance on simulated data sets

To show the utility of the proposed modification, we begin with the same examples
with the normal and the Cauchy distributions considered in Sect. 2, but here we con-
sider three different choices for π1 (0.5, 0.6 and 0.7). Note that for π1 = 0.5, results of
different maximum depth classifiers were reported in Table 1. As compared to them,
the modified depth-based classifiers had marginally higher error rates in some cases
(see Table 2). It is expected here since we do not use any information about the loca-
tion shift model, and in addition to depths, we need to estimate the density functions.
But, irrespective of prior probabilities, when the maximum depth classifiers led to
the same error rate, the modified depth-based classifiers could reduce it significantly
when π1 	= π2. For π1 = 0.7 and even for π1 = 0.6, the modified PD classifier
yielded error rates much lower than that of the maximum PD classifier. We observed
the same phenomenon for the modified MD and the modified HD classifiers as well.
One should notice that in almost all these examples, especially in the case of Cauchy
distributions, modified versions of the PD and the robust MD classifiers significantly
outperformed the modified HD classifier proposed in Ghosh and Chaudhuri (2005b).

Table 2 Misclassification rates (in %) of modified depth-based classifiers and their standard errors

μ = 1 μ = 2

π1 = 0.5 π1 = 0.6 π1 = 0.7 π1 = 0.5 π1 = 0.6 π1 = 0.7

Bayes risk 23.98 23.10 20.41 7.86 7.66 7.00

LDA 24.07 (0.08) 23.21 (0.08) 20.55 (0.08) 7.99 (0.05) 7.73 (0.05) 7.07 (0.05)

HD 25.69 (0.10) 24.98 (0.10) 22.61 (0.10) 8.52 (0.06) 8.37 (0.06) 7.90 (0.06)

Normal MD 24.99 (0.09) 24.23 (0.09) 21.80 (0.09) 8.40 (0.06) 8.17 (0.06) 7.57 (0.06)

distribution MD1/2 25.32 (0.10) 24.52 (0.09) 22.17 (0.09) 8.58 (0.06) 8.31 (0.06) 7.66 (0.06)

MD3/4 25.09 (0.10) 24.39 (0.09) 22.00 (0.09) 8.51 (0.06) 8.26 (0.06) 7.61 (0.06)

PD 25.40 (0.10) 24.59 (0.10) 21.87 (0.09) 8.59 (0.06) 8.39 (0.06) 7.76 (0.06)

Bayes risk 30.40 28.88 25.01 19.60 18.77 16.68

LDA 43.57 (0.41) 40.25 (0.03) 30.32 (0.02) 33.85 (0.60) 39.89 (0.07) 30.39 (0.03)

HD 34.49 (0.14) 33.28 (0.14) 29.32 (0.13) 23.12 (0.12) 22.54 (0.12) 20.55 (0.11)

Cauchy MD 38.88 (0.25) 36.72 (0.19) 30.70 (0.10) 26.75 (0.27) 26.09 (0.26) 23.92 (0.21)

distribution MD1/2 32.28 (0.10) 31.17 (0.11) 27.71 (0.13) 20.95 (0.09) 20.50 (0.09) 18.70 (0.09)

MD3/4 32.43 (0.11) 31.21 (0.11) 27.77 (0.13) 21.00 (0.09) 20.54 (0.09) 18.58 (0.09)

PD 32.26 (0.10) 31.25 (0.10) 27.66 (0.11) 20.94 (0.09) 20.45 (0.09) 18.86 (0.10)
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Now consider some examples, where π1 = π2, and the two competing classes have
the same location parameter (0, 0), but different scatter matrices I2 and σ 2I2, respec-
tively, for the first and the second classes. Here also, we considered examples with
the normal and the Cauchy distributions, and computed the error rates of the modified
depth-based classifiers for two different values of σ 2 (4 and 9). Since the optimal
class boundary is quadratic in these problems, to facilitate comparison, the error rates
of quadratic discriminant analysis (QDA) and the Bayes risks are also reported in
Table 3. Throughout this section, we used training and test samples of size 200 and
500, respectively, and the results are reported based on 500 trials. In all these examples,
maximum depth classifiers led to almost 50% error rates, but their modified versions
worked significantly better. In the case of normal distributions, as expected, QDA led
to the best performance, but the overall performance of the modified PD classifier was
significantly better than other depth-based classifiers considered here. In the case of
Cauchy distributions, PD significantly outperformed QDA, the modified MD and the
modified HD classifiers. We also analyzed two other data sets, one with normal and
the other with Cauchy distributions, where the population distributions differ both in
location [(0, 0) and (2, 2)] and scatter (I2 and 9I2). Superiority of the modified PD
classifier was evident even in these two cases.

Next, we consider some cases, where the location and the scatter parameters of
the two populations are same, but they differ in their shapes. Again, the maximum
depth classifiers yielded error rates close to 50%, but their modified versions showed
considerable improvement. Along with the error rates of these modified versions, the
error rates of QDA and the Bayes risks are reported in Table 4. We start with a clas-
sification problem between a standard bivariate normal distribution and a standard
bivariate Cauchy distribution. QDA had the lowest error rate in this example, but
those of the modified depth-based classifiers were competitive. Modified versions of
the MD and the PD classifiers performed better than the modified HD classifier. Next,
we consider a classification problem with two standard bivariate normal distributions,
where one of them is truncated to have x with ‖x‖ ≥ 4. In this case, QDA and the
modified depth-based classifiers, except MD1/2, performed quite well, with MD and
HD having an edge. But, when we carried out the same experiment with Cauchy
distributions, QDA (which is based on non-robust estimates) had error rates close to

Table 3 Misclassification rates (in %) of modified depth-based classifiers and their standard errors

Normal Cauchy

μ = 0, σ 2 = 4 μ = 0, σ 2 = 9 μ = 1, σ 2 = 9 μ = 0, σ 2 = 4 μ = 0, σ 2 = 9 μ = 1, σ 2 = 9

Bayes risk 26.37 16.22 14.98 37.00 30.15 27.61

QDA 26.84 (0.08) 16.51 (0.07) 15.27 (0.07) 48.25 (0.13) 46.97 (0.27) 45.80 (0.19)

HD 31.88 (0.19) 24.94 (0.25) 23.14 (0.23) 41.28 (0.14) 34.37 (0.15) 32.12 (0.15)

MD 29.22 (0.11) 18.21 (0.09) 17.51 (0.10) 42.32 (0.14) 35.57 (0.17) 33.62 (0.15)

MD1/2 30.16 (0.12) 19.04 (0.09) 17.90 (0.10) 41.32 (0.14) 33.78 (0.11) 30.89 (0.11)

MD3/4 29.43 (0.12) 18.45 (0.09) 17.68 (0.10) 41.37 (0.13) 33.77 (0.12) 30.77 (0.12)

PD 28.86 (0.11) 17.89 (0.09) 16.64 (0.10) 40.44 (0.13) 32.63 (0.12) 30.05 (0.12)
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Table 4 Misclassification rates (in %) of modified depth-based classifiers and their standard errors

Bayes risk QDA HD MD MD1/2 MD3/4 PD

Normal versus 33.57 35.12 (0.09) 38.88 (0.18) 35.80 (0.11) 36.63 (0.13) 36.17 (0.12) 36.54 (0.12)

Cauchy

Normal versus 6.77 13.16 (0.13) 11.27 (0.07) 10.72 (0.09) 20.73 (0.18) 11.40 (0.11) 13.29 (0.14)

Trun. normal

Cauchy versus 22.36 47.50 (0.15) 30.09 (0.18) 34.51 (0.20) 28.36 (0.12) 28.34 (0.12) 26.43 (0.11)

Trun. Cauchy

Normal versus 21.75 45.81 (0.10) 35.28 (0.18) 32.51 (0.23) 30.65 (0.16) 34.31 (0.19) 24.74 (0.11)

Mix. normal

Cauchy versus 38.28 50.00 (0.19) 43.95 (0.15) 45.19 (0.14) 45.48 (0.15) 45.69 (0.15) 41.99 (0.13)

Mix. Cauchy

50%, while the modified depth-based classifiers had significantly lower error rates.
We also consider an example, where one class is bivariate normal with the mean (0, 0)
and the dispersion matrix 25I2, and the other one is an equal mixture of two bivariate
normal distributions having the same mean (0, 0) but different dispersion matrices I2
and 100I2. In this example, while all other classifiers had average error rates higher
than 30%, the modified PD classifier yielded an average error rate (24.74 %) close to
the Bayes risk. We observed the same phenomenon when the experiment was carried
out with Cauchy distributions.

To study the robustness of these modified depth-based classifiers, we again con-
sider the classification problem between N2(0, I2) and N2(0, 9I2) distributions.
Figure 2 shows the optimum class boundary for this problem. We generated observa-
tions from two competing classes as before, but 10% of the training set observations
of class-1 were replaced by outliers generated from a normal distribution with the
location parameter (10, 10) and the scatter matrix I2 (see the scatter plot of the data
set in Fig. 2a). In the presence of these outlying observations, QDA and modified MD
classifier could not properly estimate the class boundary, but those for the modified
robust MD classifier and the modified PD classifier were close to the optimum one (see
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Fig. 2 Scatter plot of the data set and class boundaries estimated by different modified depth-based
classifiers
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Fig. 2). To compare the error rates of different classifier, we generated 500 training and
test sets of size 200 and 500, but unlike the training sample, no outlier is added to the
test set. In this problem, QDA and the modified MD classifier had average error rates
of 30.45% (SE 0.11%) and 29.25% (SE 0.11%), respectively, but MD1/2 (error rate
19.09%, SE 0.11%) and MD3/4 (error rate 18.67%, SE 0.10%) classifiers performed
much better. The modified PD classifier yielded the best performance in this example.
It had an average error rate of 18.32% with an SE of 0.10%. We also considered a
variant of this example, where 10% outliers were generated from an equal mixture of
four normal distributions with location parameters (10, 10), (−10, 10), (10,−10) and
(−10,−10) and the common scatter matrix I2. Even in this example, the robust MD
classifiers and the PD classifier showed better robustness properties. While QDA led
to an error of nearly 50%, those for MD1/2 and MD3/4 and PD classifiers were 19.07,
18.67 and 17.99% with the corresponding SE of 0.11, 0.11 and 0.09%, respectively.
The modified MD classifier had an error rate of 20.82% with an SE of 0.13%. Next
we consider a case, where two normal distributions differ both in the location ((0, 0)
and (2, 2)) and scatter (I2 and 9I2). Here also 10% of the class-1 observations in the
training set were replaced by observations from a normal distribution with the location
parameter (10, 10) and the scatter matrix I2. Similarly, 10% of the class-2 observa-
tions were also replaced by observations from a normal distribution with the location
parameter (−10,−10) and the scatter matrix I2. In the presence of these two sets of
outliers in the training sample, QDA again misclassified almost half of the test set
observations. The modified MD classifier also had a higher error rate of 30.25% with
an SE of 0.12%. But modified robust MD classifiers, MD1/2 and MD3/4, could reduce
this error rate to 18.10% (SE 0.10%) and 17.87% (SE 0.10%), respectively. The mod-
ified PD classifier performed even better. It yielded an average error rate of 16.94%
with an SE of 0.10%. These examples with clusters of outliers clearly demonstrate the
robustness of the modified PD classifier.

4 Multi-scale classification

For modified depth-based classification, one needs to estimate the smoothing param-
eter (bandwidth) involved in kernel density estimation. In Sect. 3, we used the cross-
validation method for this purpose. But, using only one bandwidth pair (h1, h2) for
classification brings in the model uncertainty. Moreover, in addition to depending on
the training sample, a good choice of the smoothing parameter depends on the spe-
cific observation to be classified. A fixed level of smoothing may not work well in all
parts of the measurement space. Therefore, instead of working with a fixed (h1, h2), it
would be more useful to study the classification results for multiple scales of smooth-
ing in an appropriate range and aggregate them to arrive at a new classifier, which
we call the multi-scale classifier. The usefulness of multi-scale classification has been
discussed in the literature both for kernel discriminant analysis and nearest neighbor
classification (see, e.g., Holmes and Adams 2002, 2003; Ghosh et al. 2005, 2006).
One popular way to aggregate these results (indexed by bandwidths) is to take the
weighted average of the estimated posterior probabilities. Popular ensemble meth-
ods like bagging (see, e.g., Breiman 1996) and boosting (see, e.g., Schapire et al.
1998) also adopt similar ideas. Note that for fixed (h1, h2), we classify an observa-
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tion x to Class-1 if ξn,h1,h2(x) = log[r (1)n1,h1
(x)] − log[r (2)n2,h2

(x)] − k > 0, where k

is chosen by minimizing the cross-validation error. So, eξn,h1,h2 (x) gives an estimate
of π1 f1(x)/π2 f2(x). From this, one can obtain the estimated posterior for Class-1 as
p̂n,h1,h2(1 | x) = eξn,h1,h2 (x)/(1 + eξn,h1,h2 (x)). Aggregating these posterior estimates
obtained at different values of (h1, h2), we arrive at the final classifier

d3(x) = arg max
j=1,2

p∗
n( j |x), where p∗

n( j |x) =
∑

h1,h2∈H

wh1,h2 p̂n,h1,h2( j |x),

where wh1,h2 is the weight assigned to the classifier that uses h1 and h2 as the band-
widths of the two classes. Clearly, this aggregation depends on the bandwidth range
H = [hl

1, hu
1]×[hl

2, hu
2] and the weight functionw. However, if the upper and the lower

bounds (hu
j and hl

j ) of h j (for j = 1, 2) satisfy (A3), then regardless of the choice of
the weight function, the error rate of d3(·) asymptotically converges to the Bayes risk.

Theorem 3 Assume that hu
j and hl

j satisfy assumption (A3) for j = 1, 2. Further-
more, assume that f1 and f2 are elliptically symmetric, and they satisfy (A1) and (A2).
Then, the misclassification rate of the multi-scale PD classifier d3(·) converges to the
Bayes risk as min{n1, n2} → ∞.

This result shows that the large sample performance of d3(·) is not very sensitive
to the choice of the weight function w. However, in practice, when we deal with a
finite sample, one has to choose H and w appropriately. Naturally, one would use
higher weights for classifiers having lower error rates, and the weight should grad-
ually decrease as the error rate increases. Following Ghosh et al. (2006), we esti-
mated the error rate �h1,h2 by the leave-one-out cross-validation method, and used

the weight function wh1,h2 = exp

[
− 1

2
(�̂h1,h2 −�̂0)

2

�̂0(1−�̂0)/(n1+n2)

]
I [�̂h1,h2 ≤ min{π1, π2}],

where �̂0 = min
h1,h2

�̂h1,h2 . Note that �̂0 and �̂0(1 − �̂0)/(n1 + n2) can be viewed as

estimates for the mean and the variance of the empirical error rate of the best single
scale modified PD classifier, when it is used to classify (n1 +n2) independent observa-
tions. Also notice that min{π1, π2} is the error rate of the trivial classifier that classifies
all observations to the class having larger prior. If the classifier with bandwidth pair
(h1, h2) is worse than that, the weighing scheme ignores it by putting zero weight. For
the choice of H , we followed the method based on quantiles of the pairwise distances
as described in Ghosh et al. (2006) and considered 100 equidistant values of (h1, h2) in
that interval satisfying h1 = (s1/s2)h2, where s1 and s2 are same as in Sect. 3. Though
this choice of the weight function and the bandwidth range is somewhat subjective, it
yielded good results in our experiments.

4.1 Performance on simulated data sets

To show the utility of this multi-scale (MS) approach, we analyzed the same data sets
used for single scale (SS) classification. However, instead of presenting all results
in another table, for better visualization, following the idea of Friedman (1994),
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Fig. 3 Efficiencies of different single scale and multi-scale classifiers: 1 PD(SS), 2 PD(MS), 3 MD(SS), 4
MD(MS), 5 MD1/2(SS), 6 MD1/2(MS), 7 MD3/4(SS), 8 MD3/4(MS)

we used the notion of efficiency to compare the performance of different SS and MS
classifiers. Since the modified HD classifier had much higher error rates compared
to its corresponding versions based on PD and MD, we did not consider it for this
comparison. Note that we have analyzed 15 simulated data sets (see Tables 1, 3 and 4)
in this paper. For each of these data sets, we define the efficiency of the t th classifier as
ηt = {mint et }/et , where et is the error rate of the t th classifier, and the minimization
is done over all classifiers considered for comparison (i.e., SS and MS versions of MD,
MD1/2, MD3/4 and PD). Note that on each data set, the best classifier has ηt = 1, and
it is less than 1 for all other classifiers. A small value of ηt indicates poor performance
of the t th classifier. We computed ηt for different SS and MS classifiers on all these
15 data sets, and the results are summarized using box-plots in Fig. 3, which clearly
shows the importance of MS classification. For all depth-based classifiers, the overall
performance of MS methods was better than of their SS counterparts. Among different
depth-based classifiers, MD had higher dispersion in efficiency because of its lack of
robustness. The MS version of PD had the best overall performance, followed by its
SS version. The performance of MD1/2 and MD3/4 was also comparable.

5 Analysis of benchmark data sets

Now, we investigate the performance of different depth-based classifiers on four well
known benchmark data sets. The vowel data was created by Peterson and Barney
(1952) by a spectrographic analysis on vowels. The other three data sets are taken
from the CMU data archive (http://www.statlib.cmu.edu). Since the descriptions of
these data sets are available at these sources, we do not repeat them here. For the
analysis of biomedical data, we ignored the observations with missing values. Though
there are originally 214 observations in the glass data, 146 (70+76) of them were from
two bigger classes, and we considered those two classes only. In this data set, there
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are four variables with almost all values equal to zero. We ignored them and carried
out our analysis with the remaining five. For the synthetic data and the vowel data,
the training and the test sets are well specified. In these cases, we report the test set
error rates of different classifiers. In other two cases, we formed the training and the
test sets by randomly partitioning the data in a such way that proportions of different
classes in these two sets are as close as possible. In both these cases, we used 100
observations for training and the rest as test cases. This random partitioning was done
500 times, and the average test set error rates (over these 500 trials) of different SS and
MS classifiers are reported in Table 5 along with their corresponding SE. To facilitate
comparison, we also report the error rates of some standard parametric [LDA and
QDA] and nonparametric [kernel discriminant analysis (KDA) and nearest neighbor
classification (k-NN)] classifiers. Throughout this section, training sample propor-
tions of different classes are taken as their prior probabilities. In the case of glass
data and biomedical data, since the dimension of the measurement vector was >2,
it was not computationally feasible to use the grid search method. Instead, we used
the Nelder–Mead algorithm available in R (see Wilcox 2005) for computing PD. The
gradient descent method or the method of random selection of unit vectors (as in
Maronna and Yohai 1995) can also be used for this purpose. This random search
method is computationally faster, but in our experiments, it led to higher error rates
than the Nelder–Mead algorithm. So, here we report the error rates of the PD classifier
based on Nelder–Mead algorithm only. This algorithm retains the affine invariance
property in PD calculation (see, e.g., Lagarias et al. 1998), but it makes the modi-
fied PD classifier computationally expensive compared to modified MD and modified
robust MD classifiers.

In the synthetic data, since the prior probabilities of two classes are equal, we tried
both maximum depth and modified depth-based classification. For maximum depth
classification, error rates of PD (10.3%), MD (10.8%), MD1/2 (11.5%) and MD3/4

Table 5 Misclassification rates (in %) of different classifiers and their standard errors in real data sets

Method ↓ Synthetic data Vowel data Biomedical data Glass data

LDA 10.80 25.26 15.66 (0.14) 30.59 (0.25)

QDA 10.20 19.83 12.57 (0.12) 36.13 (0.26)

k-NN 11.70 17.75 17.88 (0.15) 22.88 (0.24)

KDA 11.00 19.85 16.82 (0.14) 22.07 (0.23)

HD 12.00 35.73 14.11 (0.14) 33.93 (0.29)

MD(SS) 13.00 20.75 12.44 (0.13) 26.59 (0.25)

MD(MS) 11.60 20.70 12.04 (0.12) 26.14 (0.25)

MD1/2(SS) 11.00 19.22 14.64 (0.14) 26.02 (0.29)

MD1/2(MS) 10.10 19.23 14.58 (0.14) 26.08 (0.28)

MD3/4(SS) 10.30 19.22 14.25 (0.13) 24.92 (0.25)

MD3/4(MS) 10.40 19.23 14.03 (0.14) 24.43 (0.25)

PD(SS) 10.00 20.80 12.37 (0.14) 25.70 (0.34)

PD(MS) 10.50 21.56 12.18 (0.13) 25.24 (0.33)
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(11.5%) were quite close, but HD (12.8%) and SD (13.8%) had relatively higher error
rates. In this data set, the underlying distributions are neither elliptically symmetric
nor they satisfy any location shift model. In spite of that, error rates of the maximum
depth classifiers were comparable to that of KDA (11.0%) and k-NN (11.7%). For
all depth functions except MD, the modified depth-based classifiers performed even
better, and the SS version of the modified PD classifier had the best error rate. In this
vowel data, k-NN led to the best error rate (17.75%), but the error rates of all other
classifiers, except LDA (25.26%) and the modified HD classifier (35.73%) was also
competitive.

In the biomedical data, QDA yielded significantly lower error rate (12.57%) than
KDA (16.82%) and k-NN (17.88%) methods. This gives the indication that the Gauss-
ian model may fit the data well. Because of the validity of underlying model assump-
tions, modified depth-based classifiers had significantly lower error rates than KDA
and k-NN. Modified MD and PD classifiers had error rates even smaller than QDA.
However, LDA and QDA performed very poorly in the glass data. This indicates lack
of normality in the data set. The nonparametric methods had the best error rates in
this data set, but all depth-based classifiers except HD also performed well. Results
on this data set show the advantage of dealing with a broader (elliptic) class.

One should also notice that the overall performance of MS classifiers was better
than SS methods. It becomes more evident in the case of biomedical data and glass
data, when the error rates are computed over 500 partitions. In those two data sets,
almost all MS methods outperformed their SS counterparts.

6 Concluding remarks

This paper investigates possible applications of PD in supervised classification. Like
robust MD, the use of PD makes the classifier robust against outliers. Unlike the usual
version of L1 D, PD does not suffer from lack of affine invariance. Moreover, because
of the continuity of its empirical version, it usually performs better than HD and SD.
Another major advantage of using PD is its simple relationship with Mahalanobis dis-
tance, and because of that, the PD classifier can be easily modified. The resulting mod-
ified classifier performs well for a wide variety of classification problems. While usual
parametric methods like LDA and QDA work well under the normality of underlying
distributions, the depth-based methods cater for a more general class of parametric
models. Moreover, unlike usual nonparametric classifiers, they do not suffer from the
curse of dimensionality. So, if we have a small training set in high dimension, depth-
based methods are expected to outperform the nonparametric methods when the data
clouds are nearly elliptic, which is quite common.

The multi-scale method proposed here is simple, and easy to implement. It provides
the flexibility of considering the results for different scales of smoothing, simulta-
neously. While smaller scales of smoothing take care of the local nature of the density
function and the class boundary, larger scales capture the global pattern. Incorporat-
ing these two important features in a classifier, one can expect improved performance.
Using several simulated and benchmark data sets, we have amply demonstrated that
in this article.
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Appendix: Proofs

Proof of Theorem 1 Error rate of d1(·) is given by�(d1) =
∑J

j=1
π j P{d1(X) 	= j |

X ∈ j th class}. Under the assumptions of Theorem 1, the population version of d1(·)
is the Bayes classifier. So, we have

|�(d1)−�B | ≤ 1

J

J∑
j=1

∫ ⏐⏐⏐⏐⏐⏐
J∏

i=1,i 	= j

I

{
PD(x, Fjn j )

PD(x, Fini )
> 1

}

−
J∏

i=1,i 	= j

I

{
PD(x, Fj )

PD(x, Fi )
> 1

}⏐⏐⏐⏐⏐⏐
f j (x) dx.

If f j (x) is elliptically symmetric, it satisfies conditions (C0)−(C3)of Zuo and Serfling

(2000b). So, for j = 1, . . . , J , we have supx∈Rd |PD(x, Fjn j ) − PD(x, Fj )| a.s.→ 0 as
n j → ∞. Now, the convergence of �(d1) to �B follows from the Dominated Con-
vergence Theorem (DCT). �

Lemma 1 If the population distribution F has elliptically symmetric density with
location and scale parameters μ and Σ , we have R(x, F) = {

(x − μ)′Σ−1

(x − μ)
}1/2 = CF .O(x, F), where CF is a constant.

Proof of Lemma 1 For any α ∈ R
d , since α′X is symmetric about α′μ, we

have μF (α
′X) = α′μ, and hence O(x, F) = sup

α:‖α‖=1

{ |α′x−μF (α
′X)|

σF (α′X)

}
=

sup
α:‖α‖=1

{ |α′(x−μ)|
sdF (α′X) .

sdF (α
′X)

σF (α′X)

}
, where ‘sdF ’ denotes the standard deviation. Since

Y = Σ−1/2(X − μ) is spherically distributed, for any α ∈ R
d , α′Y d= ||α||Y1,

where Y1 is the first component of Y = (Y1, . . . ,Yd)
′ (see, e.g., Fang et al. 1989).

Thus, we get α′X = α′μ + α′Σ1/2X = μα + l ′αY d= μα + ||lα||Y1, where
μα = α′μ and lα = Σ1/2α. Now, σF (α

′X) = ||lα||σF (Y1) and sdF (α
′X) =

||lα||sdF (Y1) ⇒ sdF (α
′X)

σF (α′x) = sdF (Y1)
σF (Y1)

= 1/CF (say). Since CF is free of
α, the proof follows from the fact that supα:‖α‖=1{|α′(x − μ)|/sdF (α

′X)} =
{(x − μ)′Σ−1(x − μ)}1/2. �

Proof of Proposition 1 Let μ j and Σ j be the location and the scale parameters of
f j . Under elliptic symmetry of f j , we have f j (x) = Γ (d/2)(2π)−d/2|Σ j |−1/2

g j (R(x, Fj ))/R(x, Fj )
d−1, where g j is the p.d.f. of R(x, Fj ) = {(x − μ j )

′Σ−1
j

(x − μ j )}1/2 (see, e.g., Fang et al. 1989). From Lemma 1, it follows that
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dB(x) = arg max
1≤ j≤J

π j f j (x) = arg max
1≤ j≤J

λ jθ j {O(x, Fj )}/{O(x, Fj )}d−1,

where θ j is the density function of O(x, Fj ) and the constant λ j depends on Fj and π j .
Since PD(x, Fj ) = {1 + O(x, Fj )}−1, usual results of sampling distribution lead to a
proof of Proposition 1. �

Lemma 2 Define γ̂n(x) = r (2)n2,h2
(x)/r (1)n1,h1

(x) and recall γ (x) = r (2)(x)/r (1)(x).
Under the assumptions of Theorem 2, for all ε > 0, there exists Aε such that for

i = 1, 2, P(Aε | X ∈ i th class) > 1 − ε and supx∈Aε |γ̂n(x) − γ (x)| P→ 0 as
min{n1, n2} → ∞.

Proof of Lemma 2 For i = 1, 2, define ρ̂ihi as in Sect. 2 and ρ∗
ihi
(δ) = 1

ni hi

∑ni
j=1

K { δ−δ(i)(xi j )

hi
}. Also note that supx |ρ̂ihi (δ̂

(i)
ni (x))−ρi (δ

(i)(x))| ≤ supx |ρ̂ihi (δ̂
(i)
ni (x))−

ρ̂ihi (δ
(i)(x))|+ supx |ρ̂ihi (δ

(i)(x))− ρ∗
ihi
(δ(i)(x))|+ supx |ρ∗

ihi
(δ(i)(x))−ρi (δ

(i)(x))|.
Under elliptic symmetry of fi , we have supx |δ̂(i)ni (x)−δ(i)(x)| = OP (n

−1/2
i ) (see, e.g.,

Zuo 2003). So, under (A3), it is easy to check that supx |ρ̂ihi (δ̂
(i)
ni (x))−ρ̂ihi (δ

(i)(x))| ≤
MK supx |δ̂(i)ni (x) − δ(i)(x)|/h2

i
P→ 0 as ni → ∞, where MK = supt |K ′

(t)| < ∞.

Using similar arguments, we have supx |ρ̂ihi (δ
(i)(x))−ρ∗

ihi
(δ(i)(x))| P→ 0 as ni → ∞.

Using the properties of the kernel density estimate (see, e.g., Silverman 1986), under
(A3) and uniform continuity of PD (follows from elliptic symmetry of fi ; see, e.g.,

Zuo 2003), we have supx |ρ∗
ihi
(δ(i)(x)) − ρi (δ

(i)(x))| P→ 0 as ni → ∞. Combin-

ing the above, we get supx |ρ̂ihi (δ̂
(i)
ni (x)) − ρi (δ

(i)(x))| P→ 0 as ni → ∞. Now
using uniform continuity (see, e.g., Zuo 2003) and vanishing at infinity proper-
ties of PD, for any given ε > 0, we can find η = η(ε) > 0 such that the set
Aε = {x : η ≤ δ(1)(x), δ(2)(x) ≤ 1 − η} has probability bigger than 1 − ε w.r.t.
probability distributions of both classes. Now, for i = 1, 2, it is easy to check

that sup
x∈Aε

∣∣∣∣
(δ̂
(i)
ni (x))

d−3

(1−δ̂(i)ni (x))
d−1

− (δ(i)(x))d−3

(1−δ(i)(x))d−1

∣∣∣∣
P→ 0 and hence sup

x∈Aε
|r (i)ni ,hi

(x) − r (i)(x)| P→
0 as ni → ∞. Also note that infx∈Aε r (i)(x) > 0 both for i = 1, 2, and this leads to
the proof of Lemma 2. �

Lemma 3 Define �CV
n (k) = ∑2

i=1, j 	=i
πi
ni

∑ni
l=1 I

{
r ( j)

n j ,h j
(xil )

r (i)ni ,hi
(xil )

≥ ki

}
, �(k) =

∑2
i=1, j 	=i πi P

{
r ( j)(X)
r (i)(X)

≥ ki

∣∣∣∣ X ∈ i th class

}
, where n = (n1, n2), k1 = 1/k and

k2 = k. Also define, cn = argmink �
CV
n (k) and c = argmink �(k). If c is unique,

then under the assumptions of Theorem 2, cn
P→ c as min{n1, n2} → ∞.

Proof of Lemma 3 Since �(·) has a unique minima, supk |�CV
n (k)−�(k)| P→ 0 ⇒

cn
P→ c. So, we need to prove that supk |�CV

n (k)−�(k)| P→ 0 as min{n1, n2} → ∞.
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Note that

|�CV
n (k)−�(k)| ≤

2∑
i=1, j 	=i

πi

ni

ni∑
l=1

∣∣∣∣∣∣
I

⎧⎨
⎩

r ( j)
n j ,h j

(xil)

r (i)ni ,hi
(xil)

≥ ki

⎫⎬
⎭

− P

{
r ( j)(X)
r (i)(X)

≥ ki

∣∣∣∣ X ∈ i th class

}∣∣∣∣∣

≤
2∑

i=1, j 	=i

πi

ni

ni∑
l=1

∣∣∣∣∣∣
I

⎧⎨
⎩

r ( j)
n j ,h j

(xil)

r (i)ni ,hi
(xil)

≥ ki

⎫⎬
⎭ − I

{
r ( j)(xil)

r (i)(xil)
≥ ki

}∣∣∣∣∣∣

+
2∑

i=1, j 	=i

πi

ni

ni∑
l=1

∣∣∣∣∣I
{

r ( j)(xil)

r (i)(xil)
≥ ki

}

− P

{
r ( j)(X)
r (i)(X)

≥ ki

∣∣∣∣ X ∈ i th class

}∣∣∣∣∣ .

Define An(k1) = 1
n1

∑n1
i=1 |I {γ (x1i ) ≥ k1} − P{γ (X) ≥ k1|X ∈ 1st class}| and

Bn(k1) = 1
n1

∑n1
i=1

∣∣I {γ̂n(x1i ) ≥ k1} − I {γ (x1i ) ≥ k1}
∣∣ . Using the Glivenko–Can-

telli lemma, one can show that supk1
|An(k1)| a.s.→ 0. Under (A2), given any ε > 0, we

get a δε > 0 such that supk1
|Fγ,1(k1 + δε/2)− Fγ,1(k1 − δε/2)| < ε, and Aε (as in

Lemma 2) such that P(Aε | X ∈ j th class) > 1 − ε for j = 1, 2. Using δε and Aε ,
define the set Sε = {x : |γ (x)− k1| > δε/2} ∩ {x : x ∈ Aε}. Now, we have

Bn(k1) = 1

n1

∑
{i : x1i /∈Sε}

|I {γ̂n(x1i ) < k1} − I {γ (x1i ) < k1}|

+ 1

n1

∑
{i : x1i ∈Sε}

|I {γ̂n(x1i ) < k1} − I {γ (x1i ) < k1}|

≤ 1

n1

n1∑
i=1

I {x1i /∈ Sε} + 1

n1

∑
{i : x1i ∈Sε}

|I {γ̂n(x1i ) < k1} − I {γ (x1i ) < k1}|.

Note that 1
n1

∑n1
i=1 I {x1i /∈ Sε} a.s.→ P(X1 /∈ Sε) ≤ P(|γ (X1) − k1| ≤

δε/2) + P(X1 /∈ Aε) < 2ε [using (A2) and Lemma 2] as min{n1, n2} → ∞.
Using Lemma 2, we have |γ (x) − k1| > δε/2 ⇒ ∃ N0 ≥ 1 such that for all
n = (n1, n2) with min{n1, n2} ≥ N0, we have |γ̂n(x) − k1| > δε/2. This implies
that 1

n1

∑
{i :S(x1i )} |I {γ̂n(x1i ) < k1} − I {γ (x1i ) < k1}| = 0, and hence Bn(k1) ≤ 2ε.

Now, using the same argument for i = 2, we get a proof of Lemma 3. �
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Proof of Theorem 2 Note that |�(d2)−�B | ≤ ∑2
j=1

∫
∣∣∣∣∣
∏2

i=1,i 	= j I

{
r ( j)

n j ,h j
(x)

r (i)ni ,hi
(x)

≥ cn

}

−∏2
i=1,i 	= j I

{
r ( j)(x)
r (i)(x)

≥ c
} ∣∣∣∣∣ f j (x) dx. Using Lemmas 2, 3 and the DCT (since indi-

cators are bounded functions), we have |�(d2)−�B | P→ 0. Now, taking expectation
w.r.t. the training sample and again using the DCT, Theorem 2 is proved. �

Proof of Theorem 3 If we can show that for any fixed x, p∗
n(1|x) P→ p(1|x) as min{n1,

n2} → ∞, the rest of the proof follows from the DCT. If possible, let us assume

that p∗
n(1|x) P

� p(1|x). So, ∃ ε0 > 0 and a sub-sequence {nk = (n1k, n2k) : k ≥ 1}
such that |p∗

nk
(1|x)−p(1|x)| > ε0 for all k ≥ 1. Let {Hnk , k ≥ 1} be the corresponding

sequence of bandwidth range. Since p∗
nk
(1|x) is a weighted average of p̂nk ,h1,h2(1|x) s,

one can get a sub-sequence {(hnk
1 , hnk

2 ) ∈ Hnk , k ≥ 1} such that | p̂nk ,h
nk
1 ,h

nk
2
(1|x) −

p(1|x)| > ε0 for all k ≥ 1. So, along this sub-sequence p̂nk ,h
nk
1 ,h

nk
2
(1|x) P

� p(1|x).
But, this sequence of bandwidths satisfy the regularity condition (A3), and hence it
leads to a contradiction. �
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