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Abstract We study the law of the iterated logarithm in the framework of game-
theoretic probability of Shafer and Vovk. We investigate hedges under which a
game-theoretic version of the upper bound of the law of the iterated logarithm holds
without any condition on Reality’s moves in the unbounded forecasting game. We
prove that in the unbounded forecasting game with an exponential hedge, Skeptic can
force the upper bound of the law of the iterated logarithm without conditions on Real-
ity’s moves. We give two examples such a hedge. For proving these results we derive
exponential inequalities in the game-theoretic framework which may be of indepen-
dent interest. Finally, we give related results for measure-theoretic probability which
improve the results of Liu and Watbled (Stochastic Processes and their Applications
119:3101–3132, 2009).

Keywords Exponential inequality · Game-theoretic probability · Law of the
iterated logarithm

1 Introduction

In this paper, we investigate the law of the iterated logarithm in the framework of
game-theoretic probability of Shafer and Vovk (2001). We consider the following
protocol.
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616 S. Takazawa

The Unbounded Forecasting Game with a Hedge

Protocol:
K0 := 1.
FOR n = 1, 2, . . .:
Forecaster announces vn > 0.
Skeptic announces Mn ∈ R and Vn ≥ 0.
Reality announces xn ∈ R.
Kn := Kn−1 + Mn xn + Vn(h(xn) − vn).
END FOR

In this game, in order to prevent Skeptic from becoming infinitely rich, Reality is
forced to behave probabilistically. In Chapter 4 of Shafer and Vovk (2001), a game-
theoretic version of the strong law of large numbers is proved under the variance
hedge (quadratic hedge) h(x) = x2. Namely, in the unbounded forecasting game with
the quadratic hedge h(x) = x2, Skeptic has a strategy that does not risk bankruptcy
and allows him to become infinitely rich if (x1 + · · · + xn)/n �→ 0. Kumon et al.
(2007) established a game-theoretic version of the strong law of large numbers under
other types of nonnegative symmetric hedges h(x) such that

∑∞
n>c 1/h(n) < ∞ for

some c ≥ 0. In addition, Takazawa (2009) proposed an exponential inequality in the
unbounded forecasting game with the hedge h(x) = x2.

As regards the convergence rate of the strong law of large numbers in games with
bounded variables, there exist various researches (see Horikoshi and Takemura (2008),
Kumon and Takemura (2008), Kumon et al. (2008)). In Kumon and Takemura (2008),
it is proved that in the bounded forecasting game a simple single strategy that is based
only on the past average of Reality’s moves weakly forces the strong law of large
numbers with the convergence rate of O(

√
log n/n). In Kumon et al. (2008), it is

proved that the Bayesian strategy of Skeptic weakly forces the strong law of large
numbers with the convergence rate of O(

√
log n/n) in coin-tossing games. Horikoshi

and Takemura (2008) considered the lower bound on the convergence rate of the
strong law of large numbers in fair-coin game. Moreover, Vovk (2007) presented a
game-theoretic version of Azuma–Hoeffding’s inequality in the bounded forecasting
game.

In Chapter 5 of Shafer and Vovk (2001), a game-theoretic version of the law of the
iterated logarithm is proved under the variance hedge h(x) = x2.

Theorem 1 (Theorem 5.2 of Shafer and Vovk (2001)) In the unbounded forecasting
game with the quadratic hedge h(x) = x2, Skeptic can force

An → ∞ and |xn| = o

(√
An

log log An

)

⇒ lim sup
n→∞

Sn√
2An log log An

≤ 1,

where Sn = ∑n
i=1 xi and An = ∑n

i=1 vi .

This result corresponds to the upper bound of Kolmogorov’s law of the iterated log-
arithm (see e.g. Petrov (1995)) and Stout’s martingale version of the upper bound of
the law of the iterated logarithm (see Stout (1970)). In Kolmogorov’s and Stout’s law
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Exponential inequalities and LIL for unbounded forecasting game 617

of the iterated logarithm, the upper bound and the lower bound hold under the same
conditions. On the other hand, in the unbounded forecasting game with the quadratic
hedge h(x) = x2, the lower bound of the law of the iterated logarithm does not hold
(see Proposition 5.1 of Shafer and Vovk (2001)). In order to have the lower bound,
we must make the unbounded forecasting protocol more favorable to Skeptic, that is,
we must slightly restrict Reality’s freedom of action and slightly increase Skeptic’s
freedom of action, as follows:

The Predictably Unbounded Forecasting Game

Protocol:
K0 := 1.
FOR n = 1, 2, . . .:
Forecaster announces vn > 0 and cn ≥ 0.
Skeptic announces Mn ∈ R and Vn ∈ R.
Reality announces |xn| ≤ cn .
Kn := Kn−1 + Mn xn + Vn(x2

n − vn).
END FOR

Theorem 2 (Theorem 5.1 of Shafer and Vovk (2001)) In the predictably unbounded
forecasting game, Skeptic can force

An → ∞ and cn = o

(√
An

log log An

)

⇒ lim sup
n→∞

Sn√
2An log log An

= 1,

where Sn = ∑n
i=1 xi and An = ∑n

i=1 vi .

This is one of the differences between measure-theoretic probability and game-
theoretic probability. In the game-theoretic framework, it is natural to consider the
upper bound and lower bound of the law of the iterated logarithm under different
conditions, because Skeptic can force the upper bound under weaker conditions than
the lower bound.

In this paper, we investigate hedges under which a game-theoretic version of the
upper bound of the law of the iterated logarithm holds without any condition on
Reality’s moves in the unbounded forecasting game. In the view of game-theoretic
probability, the conditional statement of Theorem 1 is not desirable because Reality’s
moves and Forecaster’s moves cannot necessarily be limited. Therefore, it is of inter-
est to establish protocols under which the law of the iterated logarithm holds under
conditions favorable to Reality. In particular, if we consider only the upper bound of
the law of the iterated logarithm, it is natural to drop conditions on Reality’s moves.
The following theorem is our result in this direction.

Theorem 3 Let Sn = ∑n
i=1 xi and An = ∑n

i=1 vi . Then, in the unbounded forecast-
ing game with the hedge h(x) = e|x | − 1, for any t ∈ (−1, 1), the process

exp

(

t Sn − t2

1 − |t | · An

e

)

is a game-theoretic supermartingale. Furthermore, set Bn =2e−1 ∑n
i=1 vi (=2e−1 An).
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618 S. Takazawa

Then, Skeptic can force

lim
n→∞ Bn < ∞ ⇒ lim sup

n→∞
|Sn| < ∞,

lim
n→∞ Bn = ∞ ⇒ lim sup

n→∞
|Sn|√

2Bn log log Bn
≤ 1.

The notion of a game-theoretic supermartingale will be defined in Sect. 2. The first
part of Theorem 3 says that in the unbounded forecasting game with the hedge h(x) =
e|x | − 1, for any t ∈ (−1, 1), Skeptic can guarantee

Kn = exp

(

t Sn − t2

1 − |t | · An

e

)

,

if he is allowed to discard part of his capital at each step.
If we translate Theorem 3 in measure-theoretic terms, we have the following result.

Theorem 4 Let (Xi ) be a martingale differences sequence and Sn = ∑n
i=1 Xi . Set

An = ∑n
i=1 E

[
e|Xi | − 1 | Fi−1

]
. For all t ∈ (−1, 1), let

Vn = exp

(

t Sn − t2

1 − |t | · An

e

)

.

Then Vn is a positive supermartingale with E[Vn] ≤ 1. Furthermore, set Bn = 2e−1 An.
If Bn < ∞ a.s. for all n and limn→∞ Bn = ∞ a.s., then

lim sup
n→∞

|Sn|√
2Bn log log Bn

≤ 1 a.s.

At the same time, by the first part of Theorem 4, we have an exponential inequality
in the measure-theoretic framework.

Theorem 5 Let (Xi ) be a martingale differences sequence and Sn = ∑n
i=1 Xi . Set

An = ∑n
i=1 E

[
e|Xi | − 1 | Fi−1

]
. Then, for all a, b > 0,

P(|Sn| ≥ a, An ≤ b) ≤ 2 exp

{

−
(√

a + e−1b −
√

e−1b
)2

}

. (1)

In game-theoretic probability, we can define upper probability (see Sect. 2). Then,
from Theorem 3, we have an exponential inequality in the game-theoretic framework.

Theorem 6 In the unbounded forecasting game with the hedge h(x) = e|x | − 1, if all
vn are given in advance, then for all a > 0,

P̄(|Sn| ≥ a) ≤ 2 exp

{

−
(√

a + e−1 An −
√

e−1 An

)2
}

, (2)

where Sn = ∑n
i=1 xi and An = ∑n

i=1 vi .
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Exponential inequalities and LIL for unbounded forecasting game 619

Note that although Theorem 6 includes the assumption that all vn are given in advance,
Theorem 3 does not include the assumption. We mention that our game-theoretic result
(2) is simple compared with a corresponding measure-theoretic result (1). This repre-
sents effectiveness of game-theoretic probability.

Furthermore, in the case where h(x) = exp(x2/2) − 1, we have similar results to
the case where h(x) = e|x | − 1.

We mention that the lower bound of the law of the iterated logarithm simply does not
hold in the generality of the unbounded forecasting game with a hedge h(x) = e|x | −1
and h(x) = exp(x2/2) − 1. This is because the argument in Shafer and Vovk (2001),
Proposition 5.1, still applies. Therefore, this paper concentrates on the upper bound
of the law of the iterated logarithm.

The organization of the rest of this paper is as follows: In Sect. 2, we give some
notations on game-theoretic probability. In Sect. 3, we propose an exponential inequal-
ity and prove the upper bound of the law of the iterated logarithm in the unbounded
forecasting game with the hedge h(x) = e|x | − 1. In Sect. 4, we propose an expo-
nential inequality and prove the upper bound of the law of the iterated logarithm in
the unbounded forecasting game with the hedge h(x) = exp(x2/2) − 1. Finally, in
Sect. 5, we provide the related results for measure-theoretic probability.

2 Notation

In this section, we give some notations on game-theoretic probability.

The Unbounded Forecasting Game with a Hedge

Protocol:
K0 := 1.
FOR n = 1, 2, . . .:
Forecaster announces vn > 0.
Skeptic announces Mn ∈ R and Vn ≥ 0.
Reality announces xn ∈ R.
Kn := Kn−1 + Mn xn + Vn(h(xn) − vn).
END FOR

Skeptic starts with the initial capital of K0 = 1. In each round n, Forecaster
announces vn > 0 first. Next Skeptic announces Mn ∈ R and Vn ≥ 0 and Real-
ity decides xn ∈ R after seeing Skeptic’s move Mn and Vn . In this protocol, we
consider a hedge h(xn). It is nonnegative and has a finite price 0 < vn < ∞. Skeptic
is only allowed to buy arbitrary amount of this hedge, that is, Vn is restricted to be
nonnegative (Vn ≥ 0).

The set � of all infinite sequences v1x1v2x2 . . . of Forecaster’s and Reality’s moves
is called sample space. ω = v1x1v2x2 . . . denotes an infinite sequence of Forecaster’s
and Reality’s moves and ωn = v1x1v2x2 . . . vn xn denotes a sequence of Forecaster’s
and Reality’s moves up to round n. An event E is a subset of �.

We denote by Kn Skeptic’s capital at the end of round n. For a strategy P of Skeptic,
KP

n (ω) denotes the capital process of P . We say that P satisfies the collateral duty if
its capital process is always nonnegative, that is, if
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620 S. Takazawa

KP
n (ω) ≥ 0, ∀ω ∈ �, ∀n ≥ 0.

We also say that P is prudent if it satisfies the collateral duty. When P is prudent, the
capital process KP is called a (game-theoretic) nonnegative martingale.

A process S is a real-valued function of v1x1 . . . vn xn in the unbounded forecasting
game. We say that a process S is a game-theoretic supermartingale if there is a strategy
for Skeptic that guarantees

S(v1x1 . . . vn xn) − S(v1x1 . . . vn−1xn−1) ≤ Kn − Kn−1,

for all n and for all v1x1v2x2 . . .; in other words, a game-theoretic supermartingale is
a possible capital process for Skeptic who is allowed to discard part of his capital at
each step.

We say that Skeptic can weakly force an event E if there exists a prudent strategy
P of Skeptic such that

lim sup
n→∞

KP
n (ω) = ∞, ∀ω �∈ E .

Similarly, we say that Skeptic can force an event E if there exists a prudent strategy
P of Skeptic such that

lim
n→∞ KP

n (ω) = ∞, ∀ω �∈ E .

Shafer and Vovk (2001) derived the following two lemmas.

Lemma 1 (Lemma 3.1 of Shafer and Vovk (2001)) If Skeptic can weakly force E,
then he can force E.

Lemma 2 (Lemma 3.2 of Shafer and Vovk (2001)) If Skeptic can weakly force each
of a sequence E1, E2, . . . of events, then he can weakly force ∩∞

k=1 Ek.

Following Shafer and Vovk (2001), Takeuchi (2004), and Takemura et al. (2009),
for an event E , we define upper probability P̄(E) as

P̄(E) = inf
{

α ≥ 0 | There exists a prudent strategy P of Skeptic such that

sup
n≥1

KP
n (ω) ≥ 1/α for all ω ∈ E

}
.

Note that 0 ≤ P̄(E) ≤ 1, because Skeptic can choose Mn = 0 and Vn = 0 for all n.
In addition, if Skeptic can force E , then P̄(EC ) = 0.

3 An exponential inequality and LIL in the unbounded forecasting
game with the hedge h(x) = e|x| − 1

In this section, we consider the unbounded forecasting game with the hedge h(x) =
e|x | − 1.

123



Exponential inequalities and LIL for unbounded forecasting game 621

The Unbounded Forecasting Game I

Protocol:
K0 := 1.
FOR n = 1, 2, . . .:
Forecaster announces vn > 0.
Skeptic announces Mn ∈ R and Vn ≥ 0.
Reality announces xn ∈ R.
Kn := Kn−1 + Mn xn + Vn(e|xn | − 1 − vn).
END FOR

We start with the following theorem. This theorem is inspired by Lemma 2.6 in Liu
and Watbled (2009).

Theorem 7 In the unbounded forecasting game I, for any t ∈ (−1, 1), the process

n∏

i=1

exp

(

t xi − t2

1 − |t | · vi

e

)

is a game-theoretic supermartingale.

Proof We consider the following strategy P:

Mn = t exp

(

− t2

1 − |t | · vn

e

)

Kn−1,

Vn = 1

vn

{

1 − exp

(

− t2

1 − |t | · vn

e

)}

Kn−1.

Under this strategy, Skeptic’s capital process KP
n , starting with the initial capital of

K0 = 1, is written as

KP
n =

n∏

i=1

[

exp

(

− t2

1 − |t | · vi

e

)

+ t xi exp

(

− t2

1 − |t | · vi

e

)

+ 1

vi

(
e|xi | − 1

){

1 − exp

(

− t2

1 − |t | · vi

e

)}]

.

In order to prove the theorem, it suffices to show that for any t ∈ (−1, 1),

exp

(

t x − t2

1 − |t | · v

e

)

≤ exp

(

− t2

1 − |t | · v

e

)

+ t x exp

(

− t2

1 − |t | · v

e

)

+1

v

(
e|x | − 1

){

1 − exp

(

− t2

1 − |t | · v

e

)}

.
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622 S. Takazawa

For x ≥ 0 and k ≥ 0, let

fk(x) = ex−1 − e−1 − xk

k! .

Then we have fk(0) = 0 for all k, and for k ≥ 1,

f ′
k(x) = ex−1 − xk−1

(k − 1)! = fk−1(x) + e−1.

Since

f ′
1(x) = ex−1 − 1,

we have

f ′
2(x) ≥ f1(1) + e−1 = 0.

It follows that f2(x) ≥ 0 for any x ≥ 0. Hence, for all k ≥ 2, we have

fk(x) ≥ fk(0) = 0

Therefore for −1 < t < 1,

et x = 1 + t x +
∞∑

k=2

tk xk

k!

≤ 1 + t x +
∞∑

k=2

|t |k
(

e|x |−1 − e−1
)

= 1 + t x + t2

1 − |t |
(

e|x |−1 − e−1
)
. (3)

Since ye−y ≤ 1 − e−y for y ≥ 0, we have

exp

(

t x − t2

1 − |t | · v

e

)

≤ exp

(

− t2

1 − |t | · v

e

)

+ t x exp

(

− t2

1 − |t | · v

e

)

+ t2

1 − |t |
(

e|x |−1 − e−1
)

exp

(

− t2

1 − |t | · v

e

)

≤ exp

(

− t2

1 − |t | · v

e

)

+ t x exp

(

− t2

1 − |t | · v

e

)

+1

v

(
e|x | − 1

){

1 − exp

(

− t2

1 − |t | · v

e

)}

.
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Exponential inequalities and LIL for unbounded forecasting game 623

Therefore, the process

n∏

i=1

exp

(

t xi − t2

1 − |t | · vi

e

)

is a game-theoretic supermartingale. 
�
From Theorem 7, we have the following result similar to Theorem 4.1 of Liu and

Watbled (2009).

Theorem 8 Let Sn = ∑n
i=1 xi and An = ∑n

i=1 vi . In the unbounded forecasting game
with the hedge h(x) = e|x | − 1, if all vn are given in advance, then for all a > 0,

P̄(|Sn| ≥ a) ≤ 2 exp

{

−
(√

a + e−1 An −
√

e−1 An

)2
}

.

Proof From Theorem 7, for 0 ≤ t < 1, Skeptic’s capital Kn is bounded as

Kn ≥
n∏

i=1

exp

(

t xi − t2

1 − t
· vi

e

)

≥ exp

(

ta − t2

1 − t
· An

e

)

,

on the event { Sn ≥ a }. For 0 ≤ t < 1, let

f (t) = ta − t2

1 − t
· An

e
.

Then f ′(t) = 0 if and only if

t = 1 −
√

e−1 An
√

a + e−1 An

.

Since

f

(

1 −
√

e−1 An
√

a + e−1 An

)

=
(√

a + e−1 An −
√

e−1 An

)2
,

we have

Kn ≥ exp

{(√
a + e−1 An −

√
e−1 An

)2
}

.

Therefore we obtain

P̄(Sn ≥ a) ≤ exp

{

−
(√

a + e−1 An −
√

e−1 An

)2
}

.
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624 S. Takazawa

We can find the same upper-bound for P̄(Sn ≤ −a). Hence we have

P̄(|Sn| ≥ a) ≤ 2 exp

{

−
(√

a + e−1 An −
√

e−1 An

)2
}

.


�
Remark 1 We mention that Theorem 8 is stronger than Liu and Watbled’s (4.3) in
Theorem 4.1. This is because Liu and Watbled’s formula (4.3) can be written, in the
same notation, as

P(|Sn| > a) ≤ 2 exp

{

−
(√

a + An + n − √
An + n

)2
}

.

Furthermore, by an argument similar to Theorem 5.2 of Shafer and Vovk (2001),
we obtain the law of the iterated logarithm in the unbounded forecasting game with
the hedge h(x) = e|x | − 1.

Theorem 9 Let Sn = ∑n
i=1 xi and Bn = 2e−1 ∑n

i=1 vi . Then, in the unbounded fore-
casting game with the hedge h(x) = e|x | − 1, Skeptic can force

lim
n→∞ Bn < ∞ ⇒ lim sup

n→∞
|Sn| < ∞,

lim
n→∞ Bn = ∞ ⇒ lim sup

n→∞
|Sn|√

2Bn log log Bn
≤ 1.

Proof By Theorem 7, there exists a strategy for Skeptic P(1/2) such that

KP(1/2)
n ≥ exp

(
1

2
Sn − 1

4
Bn

)

.

It follows that

lim
n→∞ Bn < ∞ and lim sup

n→∞
Sn = ∞ ⇒ lim sup

n→∞
KP(1/2)

n = ∞.

Therefore Skeptic can force

lim
n→∞ Bn < ∞ ⇒ lim sup

n→∞
Sn < ∞.

Next, we will show that Skeptic has a prudent strategy P such that

lim
n→∞ Bn = ∞ and lim sup

n→∞
Sn√

2Bn log log Bn
> 1 ⇒ lim

n→∞ KP
n = ∞. (4)

Let E = { ω | limn→∞ Bn = ∞} and

E0 =
{

ω | lim sup
n→∞

Sn√
2Bn log log Bn

>
(1 + δ)2

√
1 − ε

}

.
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Exponential inequalities and LIL for unbounded forecasting game 625

In order to prove (4), it suffices to show that for any δ ∈ (0, 1) and for any ε ∈ (0, 1),
there exists a prudent strategy P of Skeptic such that for all ω ∈ E ∩ E0,

lim sup
n→∞

KP
n (ω) = ∞.

Fix temporarily a number ε ∈ (0, 1). For any θ ∈ (0, ε), we consider the following
strategy P(θ) with initial capital 1:

M (θ)
n = θ exp

(

− θ2

1 − θ
· vn

e

)

K(θ)
n−1,

V (θ)
n = 1

vn

{

1 − exp

(

− θ2

1 − θ
· vn

e

)}

K(θ)
n−1.

From Theorem 7, Skeptic’s capital K(θ)
n satisfies

K(θ)
n ≥ exp

(

θ Sn − θ2

2(1 − θ)
Bn

)

≥ exp

(

θ Sn − θ2

2(1 − ε)
Bn

)

.

For any δ ∈ (0, 1), set

nk = min
{

n | Bn ≥ (1 + δ)k
}
,

k(n) = ⌊
log1+δ Bn

⌋
.

Then, for each n, there exists r(n) ∈ [0, 1) such that k(n) = log1+δ Bn − r(n). Let

θ(k) =
√

2(1 − ε)(1 + δ)−k log k.

Then there exists a positive integer N (δ, ε) such that θ(k) < ε for all k ≥ N (δ, ε).
For nk ≤ m < nk+1,

√

2(1 − ε)B−1
m log log

Bm

1 + δ
≤ θ(k(m))

≤
√

2(1 − ε)(1 + δ)r(m) B−1
m log

(
log Bm

log(1 + δ)

)

.

Therefore for sufficiently large m,

1

1 + δ

√
2(1 − ε) log log Bm

Bm
≤ θ(k(m)) ≤

√
2(1 − ε)(1 + δ) log log Bm

Bm
.
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626 S. Takazawa

Hence we have

K(θ(k(m)))
m ≥ exp

(

θ(k(m))Sm − θ(k(m))2

2(1 − ε)
Bm

)

≥ exp

(
Sm

1 + δ

√
2(1 − ε) log log Bm

Bm
− (1 + δ) log log Bm

)

= exp

{(
2
√

1 − ε

(1 + δ)2

Sm√
2Bm log log Bm

− 1

)

(1 + δ) log log Bm

}

,

for sufficiently large m. Set

Ek =
nk+1−1⋃

m=nk

{

ω | Sm√
2Bm log log Bm

>
(1 + δ)2

√
1 − ε

}

.

Define

τk = min

{

nk ≤ m < nk+1 | Sm√
2Bm log log Bm

>
(1 + δ)2

√
1 − ε

}

,

letting min ∅ = nk+1 − 1. We consider the following strategy P [k]:

M [k]
n =

⎧
⎨

⎩

θ(k) exp

(

− θ(k)2

2(1 − θ(k))
vn

)

K(θ(k))
n−1 , n ≤ τk,

0, n > τk,

V [k]
n =

⎧
⎨

⎩

1

vn

{

1 − exp

(

− θ(k)2

2(1 − θ(k))
vn

)}

K(θ(k))
n−1 , n ≤ τk,

0, n > τk .

For sufficiently large n, Skeptic’s capital K[k]
n satisfies

K[k]
n ≥ exp

(
(1 + δ) log log Bnk

)

≥ exp
(
(1 + δ) log log(1 + δ)k

)

= (k log(1 + δ))1+δ ,
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Exponential inequalities and LIL for unbounded forecasting game 627

on Ek . Let

K0 =
∞∑

k=N (δ,ε)

k−(1+δ),

P(δ, ε) = 1

K0

∞∑

k=N (δ,ε)

k−(1+δ)P [k],

KP(δ,ε)
n = 1

K0

∞∑

k=N (δ,ε)

k−(1+δ)K[k]
n .

It follows that

lim
n→∞ Bn = ∞ and lim sup

n→∞
Sn√

2Bn log log Bn
>

(1 + δ)2

√
1 − ε

⇒ lim sup
n→∞

KP(δ,ε)
n = ∞.

Therefore, by Lemma 1 and Lemma 2, Skeptic can force

lim
n→∞ Bn = ∞ ⇒ lim sup

n→∞
Sn√

2Bn log log Bn
≤ 1.

The theorem is proved. 
�

4 An exponential inequality and LIL in the unbounded forecasting game
with the hedge h(x) = exp(x2/2) − 1

In this section, we consider the unbounded forecasting game with the hedge h(x) =
exp(x2/2) − 1.

The Unbounded Forecasting Game II

Protocol:
K0 := 1.
FOR n = 1, 2, . . .:
Forecaster announces vn > 0.
Skeptic announces Mn ∈ R and Vn ≥ 0.
Reality announces xn ∈ R.
Kn := Kn−1 + Mn xn + Vn(exp(x2

n/2) − 1 − vn).
END FOR

First we show the following theorem.

Theorem 10 In the unbounded forecasting game II, for any t ∈ (−1, 1), the process

n∏

i=1

exp

(

t xi − t2

1 − |t |vi

)
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is a game-theoretic supermartingale.

Proof We consider the following strategy P:

Mn = t exp

(

− t2

1 − |t |vn

)

Kn−1, Vn = 1

vn

{

1 − exp

(

− t2

1 − |t |vn

)}

Kn−1.

Under this strategy, Skeptic’s capital process KP
n , starting with the initial capital of

K0 = 1, is written as

KP
n =

n∏

i=1

[

exp

(

− t2

1 − |t |vi

)

+ xi t exp

(

− t2

1 − |t |vi

)

+ 1

vi

{

exp

(
x2

i

2

)

− 1

}{

1 − exp

(

− t2

1 − |t |vi

)}]

.

In order to prove the theorem, it suffices to show that for any t ∈ (−1, 1),

exp

(

t x − t2

1 − |t |v
)

≤ exp

(

− t2

1 − |t |v
)

+ xt exp

(

− t2

1 − |t |v
)

+1

v

{

exp

(
x2

2

)

− 1

}{

1 − exp

(

− t2

1 − |t |v
)}

.

For x ≥ 0 and k ≥ 2, let

gk(x) = exp

(
x2

2

)

− 1 − xk

k! .

Then, for all j ≥ 1, we have

g′
2 j (x) = x

{

exp

(
x2

2

)

− x2 j−2

(2 j − 1)!
}

≥ x

{

exp

(
x2

2

)

− 1

( j − 1)!
(

x2

2

) j−1
}

≥ 0,

and

g′
2 j+1(x) = x

{

exp

(
x2

2

)

− x2 j−1

(2 j)!
}

≥ x

2

{

2 exp

(
x2

2

)

− x2 j

(2 j)! − x2 j−2

(2 j)!
}

≥ x

2

{

2 exp

(
x2

2

)

− 1

j !
(

x2

2

) j

− 1

( j − 1)!
(

x2

2

) j−1
}

≥ 0.

123



Exponential inequalities and LIL for unbounded forecasting game 629

Hence, for all k ≥ 2, we have

gk(x) ≥ gk(0) = 0

Therefore for −1 < t < 1,

et x = 1 + t x +
∞∑

k=2

tk xk

k!

≤ 1 + t x +
∞∑

k=2

|t |k
{

exp

(
x2

2

)

− 1

}

= 1 + t x + t2

1 − |t |
{

exp

(
x2

2

)

− 1

}

.

Since ye−y ≤ 1 − e−y for y ≥ 0, we have

exp

(

t x − t2

1 − |t |v
)

≤ exp

(

− t2

1 − |t |v
)

+ xt exp

(

− t2

1 − |t |v
)

+ t2

1 − |t |
{

exp

(
x2

2

)

− 1

}

exp

(

− t2

1 − |t |v
)

≤ exp

(

− t2

1 − |t |v
)

+ xt exp

(

− t2

1 − |t |v
)

+1

v

{

exp

(
x2

2

)

− 1

}{

1 − exp

(

− t2

1 − |t |v
)}

.

Therefore, the process

n∏

i=1

exp

(

t xi − t2

1 − |t |vi

)

is a game-theoretic supermartingale. 
�
By the same arguments as Theorem 8 and Theorem 9, in the unbounded forecasting

game with the hedge h(x) = exp(x2/2) − 1, we obtain an exponential inequality and
the law of the iterated logarithm, respectively.

Theorem 11 Let Sn = ∑n
i=1 xi and An = ∑n

i=1 vi . In the unbounded forecasting
game with the hedge h(x) = exp(x2/2) − 1, if all vn are given in advance, then for
all a > 0,

P̄(|Sn| ≥ a) ≤ 2 exp

{

−
(√

a + An − √
An

)2
}

.
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Theorem 12 Let Sn = ∑n
i=1 xi and Cn = 2

∑n
i=1 vi . Then, in the unbounded fore-

casting game with the hedge h(x) = exp(x2/2) − 1, Skeptic can force

lim
n→∞ Cn < ∞ ⇒ lim sup

n→∞
|Sn| < ∞,

lim
n→∞ Cn = ∞ ⇒ lim sup

n→∞
|Sn|√

2Cn log log Cn
≤ 1.

5 The related results for measure-theoretic probability

In this section, we give exponential inequalities and the upper bound of the law of the
iterated logarithm for a sequence of martingale differences. We obtain the following
measure-theoretic results from Theorems 7–9.

Theorem 13 Let (Xi ) be a sequence of martingale differences and Sn = ∑n
i=1 Xi .

Set

An =
n∑

i=1

E
[
e|Xi | − 1 | Fi−1

]
,

and Bn = 2e−1 An.

(1) For all t ∈ (−1, 1), let

Vn = exp

(

t Sn − t2

1 − |t | · An

e

)

.

Then Vn is a positive supermartingale with E[Vn] ≤ 1.
(2) For all a, b > 0,

P(|Sn| ≥ a, An ≤ b) ≤ 2 exp

{

−
(√

a + e−1b −
√

e−1b
)2

}

.

(3) If Bn < ∞ a.s. for all n and limn→∞ Bn = ∞ a.s., then

lim sup
n→∞

|Sn|√
2Bn log log Bn

≤ 1 a.s.

Theorem 13 can be derived from Theorems 7–9 along the lines of Corollaries
8.1–8.3 in Shafer and Vovk (2001). This is because strategies for Skeptic constructed
in the proof of Theorems 7–9 are measurable.

Of course, we can provide the measure-theoretic proof of Theorem 13 indepen-
dent of the game-theoretic probability. We can derive an exponential inequality for a
sequence of martingale differences by an argument similar to Theorem 2.1 of Bercu
and Touati (2008). Also, we can prove the upper bound of the law of the iterated loga-
rithm for a sequence of martingale differences by an argument similar to Theorem 1.1
of Stout (1973), or by using Corollary 4.2 of de la Peña et al. (2004).
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Remark 2 In Corollary 5.2 of Liu and Watbled (2009), it is proved that if (Xi ) is a
sequence of martingale differences such that for some constants λi > 0,

E[e|Xi | | Fi−1] ≤ λi a.s., (5)

then we have

lim sup
n→∞

|Sn|√
n log n

≤ 2
√

L∗ a.s., (6)

where Sn = ∑n
i=1 Xi and L∗ = lim supn→∞(λ1 + · · · + λn)/n. On the other hand,

Theorem 13 derives the upper bound of the law of the iterated logarithm for a sequence
of martingale differences without the boundedness condition (5) for the conditional
exponential moments. In addition, this result is sharper than (6).

Similarly, by Theorems 10–12, we have the following theorem.

Theorem 14 Let (Xi ) be a sequence of martingale differences and Sn = ∑n
i=1 Xi .

Set

An =
n∑

i=1

E

[

exp

(
X2

i

2

)

− 1 | Fi−1

]

,

and Cn = 2An.

(1) For all t ∈ (−1, 1), let

Vn = exp

(

t Sn − t2

1 − |t | An

)

.

Then Vn is a positive supermartingale with E[Vn] ≤ 1.
(2) For all a, b > 0,

P(|Sn| ≥ a, An ≤ b) ≤ 2 exp

{

−
(√

a + b − √
b
)2

}

.

(3) If Cn < ∞ a.s. for all n and limn→∞ Cn = ∞ a.s., then

lim sup
n→∞

|Sn|√
2Cn log log Cn

≤ 1 a.s.

Remark 3 In Theorem 4.2 of Liu and Watbled (2009), it is proved that if (Xi ) is a
sequence of martingale differences such that for some constants λi > 0 and R > 0,

E
[
exp(R X2

i ) | Fi−1

]
≤ λi a.s., (7)

123



632 S. Takazawa

then for each L ≥ (λ1 + · · · + λn)/n, there exist a constant c > 0 depending only on
L and R such that for all t ∈ R,

E[et Sn ] ≤ exp(cnt2),

and for all a > 0,

P(|Sn| > a) ≤ 2 exp

(

− a2

4cn

)

,

where Sn = ∑n
i=1 Xi . On the other hand, Theorem 14 derives an exponential inequal-

ity and the upper bound of the law of the iterated logarithm for a sequence of martin-
gale differences without the boundedness condition (7) for the conditional exponential
moments.
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