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Abstract Adaptive smoothing has been proposed for curve-fitting problems where
the underlying function is spatially inhomogeneous. Two Bayesian adaptive smooth-
ing models, Bayesian adaptive smoothing splines on a lattice and Bayesian adaptive
P-splines, are studied in this paper. Estimation is fully Bayesian and carried out by
efficient Gibbs sampling. Choice of prior is critical in any Bayesian non-parametric
regression method. We use objective priors on the first level parameters where feasible,
specifically independent Jeffreys priors (right Haar priors) on the implied base linear
model and error variance, and we derive sufficient conditions on higher level compo-
nents to ensure that the posterior is proper. Through simulation, we demonstrate that
the common practice of approximating improper priors by proper but diffuse priors
may lead to invalid inference, and we show how appropriate choices of proper but
only weakly informative priors yields satisfactory inference.
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1 Introduction

Adaptive non-parametric regression is a problem that has attracted considerable atten-
tion on a variety of fronts. Ordinary non-parametric regression (e.g., Wand and Jones
1995; Eubank 1999) is well known to perform badly when estimating highly vary-
ing functions that have peaks, jumps or frequent curvature transitions. Consequently,
many authors have proposed modifications or alternative methods to circumvent these
difficulties. Our aim here is to examine a special case, Bayesian non-parametric regres-
sion. We consider two related methods. The first method, suitable to data collected on
a lattice, generalizes a class of intrinsic Gaussian Markov random field priors related
to smoothing splines. This class of priors is attractive because the sparse nature of
the precision matrix allows efficient computation. The second method is Bayesian
P-splines. As with all Bayesian non-parametric methods, choices must be made for
certain prior parameters. We believe that “objective” Bayesian methods (e.g., Berger
2006) are attractive to many analysts. However, it is highly problematic that one can
specify completely “objective” improper priors in an infinite dimensional problem
such as non-parametric regression, and proper priors at some stage are necessary.
Thus our goal is to produce rigorously justified priors that are (a) reasonably objec-
tive, (b) have guaranteed proper posteriors, and (c) are parameterized in a way that
necessary subjective information is easily elicited.

We term the two methods Bayesian adaptive smoothing splines (BASS) and
Bayesian adaptive P-splines (BAPS). BASS is closely related to the method in Lang
et al. (2002), where non-informative priors on the variance components were used
with no proof that the posterior is proper. Similarly, BAPS is closely related to a series
of papers (Lang and Brezger 2004; Baladandayuthapani et al. 2005; Crainiceanu et al.
2007) in which proper priors were used to ensure proper posteriors. Those priors, how-
ever, are diffuse and improper in the limit. The practice of using proper but diffuse
priors is known to be dangerous (Hobert and Casella 1996) and may result in prob-
lematic MCMC. In Fig. 2 (see Sect. 3.2), we give an example showing how the diffuse
priors recommended in Baladandayuthapani et al. (2005) produce MCMC trace plots
that appear acceptable for the first few thousand iterations, but the simulation is far from
convergence. In order to use these methods, we believe it is crucial to establish the nec-
essary theory to avoid cases where the posterior is actually highly dependent on choices
made for a supposedly “objective” proper but diffuse prior. We derive sufficient condi-
tions on objective, partially improper priors for BASS and BAPS such that the posterior
is guaranteed to be proper. With these priors, the posterior is relatively insensitive to
choice of prior parameters, and Bayesian inference using our priors is rigorously justi-
fied. We also give practical guidelines for choosing among these priors in application.

An exhaustive literature review is beyond the scope of this article, but the work
here is motivated by a number of authors, both frequentist and Bayesian. For example,
Staniswalis (1989) and Staniswalis and Yandell (1992) used local bandwidth selection
for kernel estimates and adaptive smoothing; Cummins et al. (2001) introduced a local
cross-validation criterion for adaptive smoothing splines. The BASS methodology is
directly related to Abramovich and Steinberg (1996) and Pintore et al. (2006), who
used a reproducing kernel Hilbert space representation to derive a smoothing spline
when the smoothness penalty is a function λ(t) of the design space t . In particular,
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Bayesian adaptive spline smoothing 579

Pintore et al. proposed a piecewise constant model for λ(t), which provides a con-
venient computational framework with closed form solutions to the corresponding
reproducing kernels of the Hilbert space. Adaptive P-spline models were introduced
by Ruppert and Carroll (2000), who proposed penalized splines with a truncated power
basis that achieve adaptivity by introducing locally smoothing parameters to differ-
ence penalties on the regression coefficients, and then taking another layer P-spline
prior on the smoothing parameters.

Another large class of adaptive smoothing methods is based on wavelet shrink-
age. Within a Bayesian context, a suitable prior distribution for wavelet coefficients
is chosen to adaptively produce sparsity (e.g., Chipman et al. 1997; Clyde et al. 1998;
Abramovich et al. 1998). Johnstone and Silverman (2005) and Pensky (2006) have
shown that empirical Bayes wavelet estimators not only attain the frequentist optimal-
ity over a wide range of inhomogeneous spaces (i.e., Besov spaces) but also outperform
standard wavelet estimators in finite sample situations, although their work is beyond
the scope of this paper.

There are also several other Bayesian methods including the multiple hyperparam-
eter interpolation model of Mackay and Takeuchi (1998), the mixture of splines model
of Wood et al. (2002), regression splines with adaptive knot selection (Friedman 1991;
Smith and Kohn 1996; Denison et al. 1998; Di Matteo et al. 2001), and non-stationary
Gaussian processes (GP) regression models (Paciorek and Schervish 2004, 2006).

The rest of the paper is organized as follows. In Sect. 2, we review an application of a
basic non-parametric regression model used to fit discretized smoothing splines based
on a difference approximation. We then show how these processes are generalized to
be spatially adaptive for BASS. Sufficient conditions are given in Sect. 2.3 for propri-
ety of the posteriors of BASS and a more general additive model. We then adapt the
theoretical results to BAPS in Sect. 3. Some issues about Bayesian computation are
discussed in Sect. 4, and several examples are presented in Sect. 5. Conclusions are
provided in Sect. 6.

2 Bayesian adaptive smoothing splines

2.1 Smoothing splines on a lattice

Consider the single component non-parametric regression model

yi = f (xi ) + εi , i = 1, . . . , n, (1)

where xi ∈ R and εi is a mean zero noise term with constant variance. The smoothing
spline estimator of f is the solution to the optimization problem

f̂ = arg min
f

[
n∑

i=1

(yi − f (xi ))
2 + λ

∫ (
f (p)(x)

)2
dx

]
(2)

for an appropriate smoothing parameter λ, where the cost function (2) trades off fidelity
to the data in terms of sum squared error against roughness of the fit as measured by the
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L2 penalty on the pth order derivative (see, e.g., Wahba 1990; Green and Silverman
1994; Eubank 1999). Many authors have noted that a global λ makes smoothing splines
perform poorly when estimating spatially inhomogeneous functions.

To establish a connection with a Bayesian model, assume independent and identi-

cally distributed Gaussian errors εi , i.e., εi
i id∼ N (0, τ−1). We also assume the regular

lattice structure x1 < x2 < · · · < xn and x j+1 − x j = h for j = 1, . . . , n − 1.
Extensions to non-equally spaced design are briefly outlined at the end of this section.
For future convenience, we adopt the notation zi = f (xi ), i = 1, . . . , n. With y =
(y1, . . . , yn)′, z = (z1, . . . , zn)′, and ε = (ε1, . . . , εn)′, the matrix form of model (1) is

y = z + ε, ε ∼ N (0, τ−1In). (3)

Following a number of authors including Fahrmeir and Wagenpfeil (1996) and
Speckman and Sun (2003), a suitable prior on z is motivated by a difference approx-
imation for the smoothing spline penalty term in (2) as follows.

Assuming h is small and f (p)(x) is continuous, f (p)(xk) ≈ h−p∇ p f (xk) for
k = p + 1, . . . , n, where

∇ p f (xk) =
p∑

j=0

(−1) j
(

p

j

)
f (xk− j ),

is the pth order backward difference operator. Then a discretized version of the penalty
term in (2) is

∫ (
f (p)(x)

)2
dx ≈ h−(2p−1)

n∑
k=p+1

[∇ p f (xk)
]2

. (4)

Again with zk = f (xk), the quadratic form in (4) can be written as z′A(p)z =
(Bpz)′(Bpz), where Bp is the (n − p) × n full rank matrix defined by

Bpz =

⎛
⎜⎜⎝

...

∇ pzk
...

⎞
⎟⎟⎠

n−p

.

Thus Bpz is the vector of all pth order backward differences and A(p) = B′
pBp is an

n ×n pth order “structure matrix” of rank n − p. If we let λh = λh−(2p−1), the vector
ẑ defined by

ẑ = arg min
z

[
( y − z)′( y − z) + λhz′A(p)z

]
, (5)

is a discretized smoothing spline. The minimization criterion in (5) suggests that the
prior taken on z for Bayesian smoothing splines (BSS) be
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[z | δ] ∝ δ
1
2 (n−p)|A(p)|

1
2+ exp

(
− δ

2
z′A(p)z

)
, (6)

where δ is a precision that must be specified or estimated. In this expression and the
following, we use Bayesian convention where [·] and [·|·] denote unconditional and
conditional densities, respectively. Notice that the determinant |A(p)|+ is given by the
product of the non-zero eigenvalues of A(p) and is irrelevant in Bayesian computations.

Prior density (6) is an intrinsic Gaussian Markov random field (IGMRF) on a reg-
ular lattice in the sense that z is a random vector that follows an improper multivariate
normal distribution and satisfies Markov conditional independence assumptions (Rue
and Held 2005). Note that the null space of A(p) is spanned by pth order polynomi-
als. Speckman and Sun (2003) termed (6) “partially informative” because it is flat on
the null space of A(p) and a proper Gaussian prior on the range space of A(p). This
prior is also an example of an intrinsic autoregressive (IAR) model used for spatial
effects in Bayesian hierarchical models (e.g., Besag and Kooperberg 1995; Fahrmeir
and Wagenpfeil 1996). Since the error terms εi in (3) are normal and independent
of z, the posterior distribution of z can be shown to be Nn

(
Sλh y, τ−1Sλh

)
, where the

smoothing parameter is λh = δ/τ and the smoother matrix is Sλh = (In + λhA(p)
)−1

.
The posterior mean ẑ = Sλh y satisfies (5) and is a Bayesian version of the discretized
smoothing spline.

Although we will focus on prior (6) in this article, extension of the IGMRF to a non-
equally spaced design is straightforward. Letting hk = xk − xk−1, k = 1, . . . , n − 1,
we define ∇k f (xk) = h−1

k ( f (xk) − f (xk−1)) and ∇2
k f (xk) = h−1

k (∇k f (xk) −
∇k−1 f (xk−1)). When p = 2, one possible approximation of the penalty (2) for
non-equally spaced x is

∫
f ′′(x)2dx ≈

n∑
k=3

hk

(
∇2

k f (xk)
)2

. (7)

Hence we may derive a second order IGMRF on an irregular lattice using the quadratic
form in (7). The IGMRFs with other orders can be obtained in a similar way and they
are all of form (6) but with different a matrix A(p). Other approaches for constructing
irregularly spaced IGMRFs are available in, for instance, Rue and Held (2005) and
Lindgren and Rue (2008).

2.2 Adaptive IGMRF priors

An alternative representation of (6) in the context of dynamic or state space modeling
is given by

p∑
j=0

(−1) j
(

p

j

)
zk− j

i id∼ N
(

0, δ−1
)
, k = p + 1, . . . , n. (8)
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As suggested by Lang et al. (2002) and Knorr-Held (2003), an adaptive extension
of (8) can be achieved by replacing the constant precision δ with locally varying
precisions δk . Heuristically, the δk should be large for the flat parts of the function
to be estimated while they should be small for the sharp features. This procedure
is equivalent to variable bandwidth selection in non-parametric density and function
estimation.

To complete the specification of the adaptive prior, a further prior is taken on δk .
Let δk = δeγk for k = p +1, . . . , n, where δ is a scale parameter and

∑n
k=p+1 γk = 0

for identifiability. We then assume the γk are also smooth and take a qth order IGMRF
prior on γ = (γp+1, . . . , γn)′ subject to the constraint 1′γ = 0. The priors on z and γ

can now be written in matrix notation as

[z | δ, γ ] ∝ δ
1
2 (n−p)|A(p)

γ |
1
2+ exp

(
− δ

2
z′A(p)

γ z
)

, (9)

where A(p)
γ = B′

pD(p)
γ Bp is a pth order adaptive structure matrix with a diagonal matrix

D(p)
γ = diag(eγp+1 , . . . , eγn ), and

[γ | η] ∝ η
1
2 (n−p−q) exp

(
−η

2
γ ′A(q)γ

)
I(1′γ=0), (10)

where A(q) is the (n − p) × (n − p) qth order structure matrix as defined in (6).
Note that (10) defines a singular (proper if q = 1) distribution. We refer to (9) and (10)
together as an adaptive IGMRF prior for fixed p and q. Since the IGMRF developed
from (7) has a similar dynamic expression (with different coefficients) as in (8), the
adaptive extension also applies to non-equally spaced design. The resulting adaptive
IGMRF on irregular lattice is of the form (9) and (10) as well.

The adaptive IGMRF prior has appealing properties for Bayesian inference and
computation. First, it often improves function estimation since the variable precisions
can adapt to changes in curvature of the underlying functions (see examples in Sect. 5).
Second, we do not need to compute |A(p)

γ |+ in each MCMC iteration because it is a con-
stant according to Lemma 2 in Appendix A. Third, the full conditional distributions of
z and γ are normal and log concave, respectively, which is quite convenient for imple-
menting Gibbs sampling. Finally, the sparseness of A(p)

γ speeds computation. Further
discussion regarding computation is in Sect. 4. In applications, the values of p and q
must be decided beforehand. From our experience, p = 1 corresponding to linear
splines does not smooth enough while p = 2 (cubic splines) or p = 3 often has good
performance for the applications we have tried in function estimation. Following Lang
et al. (2002), we suggest taking q = 1. Our experience is that the random walk prior
with q = 1 on the γk works well in practice and yields fairly fast MCMC computation.
The assumption also simplifies the theoretical development in Sect. 2.3. More impor-
tantly, the prior for γ in (10) is improper if q ≥ 2, which leads to improper posteriors
according to Sun and Speckman (2008). However, one may take a higher order proper
prior on γ other than an IGMRF, e.g., a conditional autoregressive (CAR) prior.

123



Bayesian adaptive spline smoothing 583

Our approach differs from the locally adaptive dynamic modeling in Lang et al.
(2002) with respect to the priors used on local precisions, although they appear sim-
ilar. In our context, Lang et al. directly took a first order IGMRF prior for γk =
log(δk). Since the precision matrix (A(1) in our notation) is rank deficient, the prior
can be expressed as a flat prior on γp+1, for example, and a proper Gaussian prior on
γp+2, . . . , γn . Equivalently, one could write log(δk) = γ0 + γk , k = p + 1, . . . , n,
with a flat prior on γ0 and a singular proper normal prior on γp+1, . . . , γn subject to∑

j>p γ j = 0. Identifying γ0 = log δ, the first order IGMRF prior on the γk puts the
implicit flat prior on log δ, [log δ] ∝ 1. But this is equivalent to the invariance prior
on the implicit variance δ−1, i.e., [δ−1] ∝ 1/δ. Speckman and Sun (2003) considered
the non-adaptive BSS with parameters τ and δ (in our notation) and showed that if the
invariance prior is used for δ−1, the posterior is improper for any choice of inverse-
gamma prior on τ−1. This would seem to imply that the more complicated setup of
Lang et al. with the additional prior on the γk would also have an improper posterior.

The adaptive prior proposed here is related to the independent gamma priors on the
δk introduced by Carter and Kohn (1996) (also see Lang et al. 2002; Brezger et al.
2007). The models proposed here are also related to autoregressive conditional het-
eroscedasticity (ARCH) models used widely in econometric time series analysis and
stochastic volatility models with time-varying and autocorrelated conditional variance,
which have various applications for financial data, prediction and filtering. There is a
growing literature of Bayesian analysis of these models, e.g., Jacquier et al. (1994),
Vrontos et al. (2000), and Nakatsuma (2000).

2.3 Propriety of the posterior for the adaptive IGMRF

To complete the hierarchial specification of BASS, we need hyperpriors on the pre-
cision components τ , δ and η. Since it is difficult to elicit subjective priors on those
precision components, especially on δ and η, objective or non-informative priors might
be preferred in this situation. However, priors that are improper may yield improper
posteriors, resulting in invalid Bayesian inference (Hobert and Casella 1996). For
non-adaptive smoothing splines, Speckman and Sun (2003) derived necessary and
sufficient conditions for the propriety of the posterior for the class of PIN priors with
inverse gamma type non-informative priors on both τ and δ. Sun and Speckman (2008)
investigated non-informative priors in the context of additive models and concluded
that the invariance (improper) prior can be taken on τ , but in this case the priors for
the smoothing parameter ξ = δ/τ must be proper. Motivated by their work, we first
reparameterize the precision components and then find possible objective priors on
the new parameters. Let ξ1 = δ/τ and ξ2 = η/δ, forming a one-to-one transformation
between (τ, ξ1, ξ2) and (τ, δ, η). The adaptive IGMRF prior then can be written as

[z | τ, ξ1, γ ] ∝ (τξ1)
1
2 (n−p) exp

(
−τξ1

2
z′A(p)

γ z
)

,

(11)

[γ | τ, ξ1, ξ2] ∝ (τξ1ξ2)
1
2 (n−p−q) exp

(
−τξ1ξ2

2
γ ′A(q)γ

)
I(1′γ=0).
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584 Y. R. Yue et al.

Finally, we use the Jeffrey’s prior (invariance prior) on τ ,

[τ ] ∝ 1

τ
. (12)

There are several reasons for this reparameterization. First of all, note that ξ1 is the
smoothing parameter in the non-adaptive case; ξ2 plays a similar role at the higher
level, controlling the smoothness of γ . Thus, it may be more meaningful to deal with
ξ1 and ξ2 than with δ and η in terms of smoothing. Second, this prior is related to
Zellner’s g-prior, widely used in Bayesian linear regression and model selection (e.g.,
Zellner 1986; Berger and Pericchi 2001; Marin and Robert 2007). Third, in very gen-
eral work on testing, Dass and Berger (2003) showed that a right-Haar prior, in this
context the invariance prior on τ , has optimal properties. Finally, this reparameteriza-
tion is analogous to Sun and Speckman (2008), motivating the form of priors we can
use.

Using the reparameterized adaptive IGMRF priors, we investigate possible
objective priors on ξ1 and ξ2 for which the posterior is proper, i.e.,∫∫∫∫∫

[ y | z, τ ] [z | ξ1, τ, γ ] [γ | τ, ξ2] [τ ] [ξ1, ξ2] dz dγ dτ dξ1 dξ2 < ∞. (13)

The following theorem gives sufficient conditions for the priors on (τ, ξ1, ξ2) to ensure
(13).

Theorem 1 Consider the non-parametric model (3) with prior distribution [z, γ , τ |
ξ1, ξ2] given by (11) and (12). If [ξ1, ξ2] is proper and Eξ

−(n−p)/2
2 < ∞ (n > p),

then the joint posterior of (z, τ, ξ1, ξ2, γ ) is proper.

The proof is in Appendix A.1. The results on [τ ] and [ξ1] in the theorem coincide
with those in Sun and Speckman (2008). The strong condition on [ξ2] suggests that ξ2
must be a priori bounded away from zero. This makes intuitive sense since one would
never want the prior on γ to interpolate data in any sense. Notice that this theorem
also applies to the non-equally spaced design because the proof does not require the
equally spaced condition.

Remark 1 Although only IGMRF priors are considered in this paper, one may take
other smooth processes, e.g., CAR models, to build this kind of two-layer adaptive
prior. The strategy of the proofs in the appendix should also apply and yield similar
theoretical results. We also extend this one-dimensional adaptive smoothing method
to a two-dimensional spatial model in Yue and Speckman (2010).

2.4 Choice of hyperpriors for ξ1 and ξ2

From Sun and Speckman (2008), it’s clear that the priors on ξ1 and ξ2 must be proper
if the invariance prior (or any proper but diffuse approximation) is used for δ. In
the spirit of an objective Bayesian analysis, we propose the following weakly infor-
mative priors. Following Liang et al. (2008), we suggest a Pareto prior for ξ1, i.e.,
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[ξ1|c] = c/(c + ξ1)
2, ξ1 ≥ 0, c > 0. The prior on ξ2 is a little more difficult since the

theorem requires negative moments. One solution is a proper inverse gamma prior,
i.e., [ξ2|a, b] ∝ ξ

−(a+1)
2 e−b/ξ2 , ξ2 > 0, a > 0, b > 0, since this prior has all negative

moments.
To complete the choice of hyperpriors, values for the hyperparameters a, b and c

must be specified. Our strategy is based on the notion of equivalent degrees of freedom
(e.d.f.), first used by White (2006). Since the priors on ξ1 and ξ2 must be proper, they
must be subjective. The difficulty is in eliciting prior information for these hyperpa-
rameters. We believe e.d.f. is a useful way to elicit such information.

The trace of the smoother matrix is commonly used to define the degrees of freedom
for a frequentist non-parametric regression method (Hastie et al. 2001). Motivated by
a discussion on prior effective degrees of freedom in Hastie and Tibshirani (2000), we
choose c for the prior on ξ1 so that the median prior degrees of freedom is desirable. For

the non-adaptive case (γ ≡ 0), the smoother matrix is Sξ1 = (In + ξ1A(p)
)−1

. Since
trace(Sξ1) is a monotone function of ξ1, the median of its distribution is trace(Sκ),

where Sκ = (
In + κA(p)

)−1
and κ is the median of the prior on ξ1. For the Pareto

prior given above, the median is c. Therefore, we choose the value c that sets trace(Sc)

equal to a desired prior degrees of freedom.
The situation for [ξ2] is more complicated. We first expand the conditional poster-

ior of γ as in the Laplace approximation and then compute an equivalent smoother

matrix
(
W + 2ξ2A(q)

)−1
W , where W is a data-dependent diagonal matrix (see Appen-

dix B.1). For a given shape parameter a, we solve for a scale parameter b giving desired
degrees of freedom. We suggest a = .5 corresponding to Zellner–Siow priors (Zellner
and Siow 1980).

The notion of “degrees of freedom” relates directly to the complexity of the model.
For a parametric model, the degrees of freedom is exactly the number of parameters
in the model. “Equivalent degrees of freedom” has exactly the same interpretation.
Thus a researcher can use his or her knowledge of the problem to select appropriate
prior distributions for ξ1 and ξ2. In Sect. 5, we provide more guidelines on the choice
of the prior degrees of freedom.

In Fig. 1, we compare MCMC trace plots for estimation of a spatially inhomoge-
neous function taken from Di Matteo et al. (2001) (described in Example 2 in Sect. 5)
under the prior of Lang et al. (2002) and the model here. For the Lang et al. prior, we
used gamma(.0001, .0001) priors on δ and η. The trace plots of δ and η are presented
in panels (a) and (b). The MCMC samples suggest two modes for the posterior, which
could well be caused by the near impropriety of the posterior. On the contrary, the
Markov chains of ξ1 and ξ2 with prior degrees of freedom equal 10 and 15, respectively,
converge fast and mix well as shown in panels (c) and (d).

2.5 Adaptive IGMRF in additive models

In this section, the adaptive IGMRF is used as a prior in an additive model. The
models not only are able to fit underlying inhomogeneous spatial patterns but can
also include covariates and repeated measurements. We derive sufficient conditions
to ensure proper posteriors.
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Fig. 1 Trace plots of MCMC samples of δ and η using the Lang et al. (2002) priors (a, b), and of ξ1 and
ξ2 from Theorem 1 (c, d) for Example 2. The plots show one million iterations sampled every 100 times;
the y-scale in a and b are truncated for clarity

Consider the additive model

yi = x′
1iβ + x′

2i z + εi , εi
i id∼ N (0, τ−1), (14)

where y = (y1, . . . , yN )′ is an N × 1 vector of data, X1 = (x11, . . . , x1N )′ and
X2 = (x21, . . . , x2N )′ are known design matrices with dimensions N × m and N × n,
β is an m × 1 vector of fixed effects, z is an n × 1 vector of nonlinear effects, and
ε = (ε1, . . . , εN )′ is an N × 1 vector of random normally distributed errors with
mean 0 and variance τ−1. Typically, X2 is an incidence matrix indicating the loca-
tion of each observation. Note that any location could have repeated, single or no
observations. Model (14) can thus be represented as

y = X1β + X2z + ε, ε ∼ N (0, τ−1IN ). (15)

Obviously, (15) is a more general model than (3). The objective Bayesian hierarchical
linear mixed model here has a constant prior on β,

[β] ∝ 1, (16)

and the adaptive IGMRF prior in (11) for z. A similar approach has been suggested
by many authors, e.g., Sun et al. (1999), who used conditional autoregressive priors
on z. The model proposed here can be viewed as a spatially adaptive extension of Sun
et al.’s method.
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Hyperpriors are required for τ , ξ1 and ξ2 to complete the hierarchical structure. We
consider the following cases.

Case 1 There are repeated observations for at least one location.
Case 2 There is at most one observation for each location and at least one location has
a missing observation.

With the invariance prior on τ , the following theorem provides sufficient conditions
on the joint prior of (ξ1, ξ2) to ensure a proper posterior distribution in each case.

Theorem 2 Consider the additive model (15) with prior distribution [z, γ , τ | ξ1, ξ2]
given by (11), (12), and (16). Let Np be an n × p matrix whose columns span the
null space of A(p), and let C(X1) and C(X2Np) denote the column spaces of X1 and
X2Np, respectively. Assume that rank(X1) = m and C(X2Np) ∩ C(X1) = ∅. Then
the joint posterior of (β, z, τ, ξ1, ξ2, γ ) is proper if the following conditions hold for
the two cases:

Case 1 (a) [ξ1, ξ2] is proper; (b) N ≥ m + p + 1;
Case 2 (a) [ξ1, ξ2] is proper; (b) N ≥ m + p; (c) E(ξ1ξ2)

−(N−m−p)/2 < ∞.

The proof is in Appendix A.2. Assumption (c) in Case 2 indicates that both ξ1 and ξ2
have priors with finite negative moments. Following the priors from Theorem 1, we
suggest taking independent Pareto priors for ξ1 and ξ2 in Case 1 and proper inverse
gamma priors in Case 2. Sun et al. (1999, 2001) investigated the posteriors for similar
linear mixed models and motivated this work. Again, this theorem also applies to
non-equally spaced designs.

3 Bayesian adaptive P-splines

In this section, we consider a BAPS model based on work by a number of authors
including Lang and Brezger (2004), Baladandayuthapani et al. (2005), Crainiceanu
et al. (2007), and we adapt the theoretical results from the adaptive IGMRF to BAPS.

3.1 Regression P-splines

P-splines (Eilers and Marx 1996; Ruppert et al. 2003) have become popular for non-
parametric regression due to the use of a relatively small number of basis functions.
In addition, P-splines can be viewed as linear mixed models and are easy to compute
with widely available statistical software (e.g., Ngo and Wand 2004).

Consider again the non-parametric regression model (1) with εi
i id∼ N (0, τ−1). As

defined by Ruppert et al. (2003), the P-spline method for estimating f is to use a large
regression spline model,

f (xi ) = β0 + β1xi + · · · + βpx
p
i +

mt∑
j=1

b j (xi − t j )
p
+, (17)
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where p ≥ 0 is an integer, β = (β0, . . . , βp)
′ and b = (b1, . . . , bmt )

′ are two vectors
of regression coefficients, t1 < · · · < tmt are fixed knots, and a p

+ denotes a p I (a ≥ 0).
Denote by X the n × (p +1) matrix with i th row equal to (1,xi , . . . ,x

p
i ) and by Z the

n×mt matrix with i th row equal to ((xi − t1)
p
+, . . . , (xi − tmt )

p
+), and let θ = (β ′, b′)′,

T = (X, Z), and y = (y1, . . . , yn)′. We define θ̂ as

θ̂ = arg min
θ

[
(y − Tθ)′(y − Tθ) + λb′b

]
. (18)

Then f̂ = T θ̂ is called a pth order P-spline fit. To avoid overfitting, the penalty term
b′b in (18) shrinks the b j towards zero by an amount controlled by the smoothing
parameter λ.

The model proposed by Eilers and Marx (1996) and treated, for example by Lang
and Brezger (2004), is a variation. The truncated power basis in (17) is replaced by
a B-spline basis B j (xi ) with the same set of knots, and the quadratic penalty in (18)
is replaced by b′A(q)b for q = 1 or 2. We expect that results similar to those obtained
in Theorem 3 below are possible for this version as well. However, for simplicity, we
confine attention to the version of Ruppert et al. (2003).

The minimizing criterion in (18) reveals that P-splines have a natural linear mixed
model representation given by

y = Xβ + Zb + ε, ε ∼ N (0, τ−1In),

where β is a vector for fixed effects, b ∼ N (0, δ−1Imt ) is a vector of random effects,
and X and Z can be viewed as design matrices for fixed and random effects, respec-
tively. Inspired by this fact, Bayesian P-splines (Ruppert et al. 2003; Lang and Brezger
2004) use a stochastic process model as a prior for the regression function,

( y | β, b, τ ) ∼ N (Xβ + Zb, τ−1In),

[β] ∝ 1, (b | δ) ∼ N (0, δ−1Imt ).
(19)

It is easy to see that the posterior mean in (19) given τ and δ provides a Bayesian
version of P-splines as defined in (18), and the smoothness is controlled by the ratio
δ/τ . Note that for fully Bayesian inference we also need to specify priors on τ and δ.

3.2 Spatially adaptive Bayesian P-splines

As with smoothing splines, P-splines with a single smoothing parameter are not opti-
mal for estimating spatially adaptive functions (Wand 2000). There is a growing liter-
ature (e.g., Ruppert and Carroll 2000; Lang and Brezger 2004; Baladandayuthapani
et al. 2005; Crainiceanu et al. 2007) on extending P-spline methodology to spatially
adaptive smoothing parameters. Following Baladandayuthapani et al. (2005), we mod-
ify the homoscedastic prior on the random effects b j in (19) using spatially adaptive
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precisions δ j ,

(b j | δ j )
ind∼ N (0, δ−1

j ), j = 1, . . . , mt .

Baladandayuthapani et al. directly modeled log(δ j ) as a P-spline of degree q(q < p),

log(δ j ) = βγ 0 + βγ 1t j + · · · + βγ q tq
j +

ms∑
k=1

bγ k(t j − sk)
q
+, (20)

where βγ = (βγ 0, . . . , βγ q)′, bγ = (bγ 1, . . . , bγ ms )
′, and s1 < · · · < sms are fixed

knots. Then they used a diffuse inverse gamma prior on the error variance τ−1 and a nor-
mal prior with a large variance on the fixed effects βγ . In the limit, their prior is equiv-
alent to using improper invariance priors for τ and δ = exp(βγ 0), i.e., [τ, δ] ∝ 1/(τδ).
However, Sun et al. (2001) proved that even ignoring the non-constant terms in (20),
this limiting prior with δ j ≡ exp(βγ 0) for all j will lead to an improper posterior in
the general linear mixed model. Clearly, the limiting flat priors on βγ 1, . . . , βγ q are
also not justified. Therefore, MCMC computation is problematic using the Baladan-
dayuthapani et al. prior. Since the limiting posterior is improper, one would expect
that the posterior for proper but diffuse priors depends heavily on the priors.

We propose a modification to the Baladandayuthapani et al. prior and investigate
propriety of the corresponding posteriors with improper priors. As in Sect. 2.2, define
δ j = δ exp(γ j ) and let γ j be a P-spline of degree q = 0 or 1 with log δ replacing βγ 0
in (20). Suppose first that q = 0. Then

γ j =
ms∑

k=1

bγ k I (t j ≥ sk), j = 1, . . . , mt . (21)

Baladandayuthapani et al. used a normal prior with mean zero and variance η−1 on
the random effects bγ k ,

(bγ k | η)
i id∼ N (0, η−1), k = 1, . . . , ms .

When q = 1, the P-spline we use for γ is

γ j =
ms∑

k=0

bγ k(t j − sk)+, j = 1, . . . , mt . (22)

Model (22) is obtained by replacing the fixed effect linear term βγ 1 with a new knot
s0 = 0 and a new random effect bγ 0. Following the q = 0 case, we take independent
normal priors on the bγ k . In our experience, the cases q = 0 or 1 suffice for most
applications. For q ≥ 2, it is more difficult to specify a sensible proper prior on γ

because of the need to specify proper priors on the low order fixed effects such as βγ 1.
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Fig. 2 Trace plots of MCMC samples for the spatially adaptive P-spline of Baladandayuthapani et al.
(2005) (left panel) and BAPS (right panel) for the Doppler function

Following the BASS model, an invariance prior is taken on τ as in (12). With repa-
rameterizations ξ1 = δ/τ and ξ2 = η/δ, the BAPS model that we propose with q = 0
or 1 has the matrix form

( y | β, b, τ ) ∼ N (Xβ + Zb, τ−1In),

[τ ] ∝ 1

τ
, [β] ∝ 1, (b | γ , τ, ξ1) ∼ N (0, (τξ1)

−1D−1
γ ), (23)

γ = Zγ bγ , (bγ | τ, ξ1, ξ2) ∼ N (0, (τξ1ξ2)
−1Ims+q),

where Dγ = diag(eγ1 , . . . , eγmt ) and Zγ is the design matrix in (21) and (22). The
parameters τ, ξ1 and ξ2 in (23) need hyperpriors for fully Bayesian inference. Again
we derive sufficient conditions on those priors to ensure the propriety of posteriors for
BAPS.

Theorem 3 For the BAPS model in (23), assume [ξ1, ξ2] is proper. Then the joint
posterior of (β, b, τ, ξ1, ξ2, γ ) is proper.

See the proof in Appendix A.3. Note that the theorem is valid for any choice of
P-spline basis. In practice, we suggest choosing hyperpriors and hyperparameters for
ξ1 and ξ2 in the same way as for BASS additive models, with knots selected as in
Baladandayuthapani et al. (2005). Note that we can also use BAPS in additive models,
where important covariates and repeated observations can be taken into account, and
it is easy to generalize the theorem accordingly.

In Fig. 2 (left panel), we present trace plots of an MCMC simulation for the Doppler
function example used in Baladandayuthapani et al. (2005) to illustrate the problem.
The estimates are from a run of two million iterations sampled every 200 trials.
The plots show that it takes very many iterations (over one million) for the Markov
chain to converge, and the mixing is also very poor for some variables. Baladan-
dayuthapani et al. suggested only 10,000 MCMC iterations with a burn-in period of
1,000. This is clearly invalid. We also present the trace plots from the BAPS analy-
sis in the right panel of Fig. 2, in which the MCMC chains mix well and converge
quickly.
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4 Bayesian computation

We give explicit full conditional distributions of BASS and BAPS. The Gibbs sampler
is used to estimate posterior distributions. We show how block sampling and orthog-
onal transformation can be used to speed convergence of the chains.

4.1 Gibbs sampler for BASS

Letting S1(z) = z′A(p)
γ z and S2(γ ) = γ ′A(q)γ , the full conditionals of the posterior

of BASS have the following properties.

(C1) (z | ·) ∼ Nn(μz, Q−1
z ), where μz = τQ−1

z y and Qz = τ In + τξ1A(p)
γ .

(C2) (τ | ·) ∼ Gamma
( 1

2 (3n − 2p − q), 1
2

[‖y − z‖2 + ξ1S1(z) + ξ1ξ2S2(γ )
])

.
(C3) (ξ1 | ·) ∼ Gamma

( 1
2 (2n − 2p − q) + 1, 1

2τ [S1(z) + ξ2S2(γ )] + θ
)
.

(C4) (θ | ·) ∼ Gamma(2, ξ1 + c), where θ is an auxiliary variable.

(C5) [γ� | ·] ∝ exp

[
− 1

2τξ1eγ�

(∑p
j=0

(p
j

)
(−1) j z�− j

)2

− 1
2τξ1ξ2

∑q
k=0

(∑q
j=0

(q
j

)
(−1) jγ�+k− j

)2
]

subject to 1′γ = 0.

(C6) [ξ2 | ·] ∝ ξ
1
2 (n−p−q)−a−1

2 exp
[− 1

2τξ1ξ2S2(γ ) − b/ξ2
]
.

Note that A(p)
γ in (C1) is a band matrix with bandwidth p+1. The entire vector z can

be sampled efficiently using a band Cholesky decomposition. The full conditionals
for γ� and ξ2 are both log concave, so either adaptive rejection Metropolis sampling
(ARMS) (Gilks and Wild 1992; Gilks et al. 1995) or the Metropolis–Hastings (MH)
method can be used to sample them. To enforce the linear restriction on γ�, one can
either re-center after each MCMC cycle by subtracting mean γ̄ from each γ� (Besag
et al. 1995) or employ the orthogonal transformation strategy described below.

4.2 Orthogonal transformation and dimension reduction

If we sample the γ � from the full conditional in (C5) by ARMS, the Markov chains tend
to converge rather slowly because of the correlation and autocorrelation between the
IGMRF and its hyperparameters (Rue and Held 2005). To improve mixing and speed
computation, we propose an orthogonal transformation combined with a dimension
reduction technique as follows.

First, compute the spectral decomposition A(q) = P�P′, where P = [p1, . . . , pn−p]
is orthogonal, � = diag(λ1, . . . , λn−p), λ1 = 0 ≤ λ2 ≤ · · · ≤ λn−p, and A(q) is the
precision matrix in the prior density of γ . Note that the constant vector 1 = (1, . . . , 1)′
is always in the null space of A(q) for any q ≥ 1. Without loss of generality, let p1 = 1.
By an orthogonal change of variable, φ = P′γ has prior

[φ | τ, ξ1, ξ2] ∝ (τξ1ξ2)
1
2 (n−p−1) exp

(
−τξ1ξ2

2

n−p∑
k=2

λkφ
2
k

)
,
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where φ = (φ1, . . . , φn−p)
′, and we enforce φ1 = 0 to ensure the identifiability.

Following the principal components dimension reduction for splines introduced by
Van Der Linde (2003), we reduce the dimension of φ by using the first m � n basis
vectors of P.

Again, consider p = 2 and q = 1. With γk = e′
k−2

∑m
j=2 p jφ j for 3 ≤ k ≤ n, where

e� = (0, . . . , 0, 1, 0, . . . , 0)′(n−2)×1 has “1” at the �th position, the log likelihood of
the full conditional of φ� for 2 ≤ � ≤ m is (up to additive constant)

h(φ�) = −τξ1

2

⎡
⎣ n∑

k=3

exp

⎛
⎝e′

k−2p�φ� + e′
k−2

m∑
j=2, j �=�

p jφ j

⎞
⎠

× (zk − 2zk−1 + zk−2)
2

⎤
⎦− τξ1ξ2

2
λ�φ

2
� .

Since h(φ�) is also log concave, ARMS can be used again. The full conditionals of
other parameters change accordingly, and the sampling scheme remains. The orthogo-
nal transformation improves the mixing of the chains dramatically, and the simulation
also becomes much faster since a small m, say m = 10 or m = 20, may be used in
practice. Note that the dimension m is comparable to ms in BAPS.

An alternative to dimension reduction is block sampling for the full γ vector. We
have used the method of Lang et al. (2002) to obtain comparable results.

4.3 Gibbs sampler for BAPS

For simplicity, assume β in (23) has a normal prior with large variance, say σ 2
β = 106,

which is essentially equivalent to the constant prior. Let θ = (β ′, b′)′ and choose
[ξ1|c] = c/(c + ξ1)

2 and [ξ2|a, b] ∝ ξ
−(a+1)
2 e−b/ξ2 . The full conditionals of the

BAPS model are listed below.

(C7) (θ | ·) ∼ N (μθ , Q−1
θ ), where μθ = τQ−1

θ T ′y, Qθ = τT ′T + �y , and �y =
diag(1/σ 2

β , . . . , 1/σ 2
β , τξ1eγ1 , . . . , τ ξ1eγmt ) is the prior precision on θ .

(C8) (τ | ·)∼ Gamma
( 1

2 (n + mt +ms + q), 1
2 (‖y − Tθ‖2 + ξ1b′Dγ b + ξ1ξ2b′

γ bγ )
)
.

(C9) (ξ1 | ·) ∼ Gamma
(

1
2 (mt + ms + q) + 1, 1

2τb′Dγ b + 1
2τξ2b′

γ bγ + ρ1

)
.

(C10) (ξ2 | ·) ∼ Gamma
(

1
2 (ms + q) + 1, 1

2τξ1b′
γ bγ + ρ2

)
.

(C11) (ρi | ·) ∼ Gamma(2, ξi + ci ) for i = 1, 2.

(C12) [bγ | ·] ∝ |Dγ | 1
2 exp

(
− 1

2τξ1b′Dγ b − 1
2τξ1ξ2b′

γ bγ

)
.

To speed convergence of the Markov chains, we employ a block-move MH algorithm
(Carter and Kohn 1996; Knorr-Held and Richardson 2003; Lang et al. 2002) to sam-
ple bγ . The basic idea is that we first split bγ into several blocks and then update each
block using a MH sampler that has the prior for bγ as the proposal distribution. The
details can be found in Yue and Speckman (2010).
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5 Examples

In this section, we present a simulation study to evaluate the performance of BASS
and BAPS. Based on the examples in Di Matteo et al. (2001), we first compare
BASS visually to its non-adaptive version, the BSS under prior (6). We then com-
pare BASS and BAPS quantitatively with BARS (Di Matteo et al. 2001) and the
non-stationary GP model of Paciorek and Schervish (2004) in terms of standardized
mean squared error (MSE).

The data were generated with the three mean functions used in Di Matteo et al.
(2001): a smoothly varying function, a spatially inhomogeneous function, and a func-
tion with a sharp jump. According to the strategy described in Sect. 2.3, we choose
values of a, b and c to have desirable prior e.d.f. For the BASS prior and p = 2 (p = 3),
we chose c = 254(3, 926) for the first two examples and c = 3, 914(240, 848) for
the third one. These produce a median prior e.d.f. of ten corresponding to ξ1 in all
situations. For ξ2 we chose prior e.d.f. to be 5, 15, and 60 in Examples 1–3, respec-
tively. Letting a = .5, the corresponding values of b are .003 (.0017), .0009 (.0004)
and .0001 (.00008) for p=2 (p=3).

Example 1 We first describe a simulated smooth example. The test function is a natu-
ral spline with three knots at (.2, .6, .7) and coefficients β = (20, 4, 6, 11, 6)′ evaluated
at n = 101 equally spaced points on [0,1] with Gaussian noise and standard devia-
tion τ−1/2 = 0.9. The true function is plotted as a dashed line in Fig. 3. Panels
(a) and (b), respectively, show the fits from BASS and BSS when p = 2, from which
little difference can be found. This behavior can be explained by panel (c), where the
estimates of γk and 95% credible intervals are plotted. There is no evidence that adap-
tive smoothing is needed in this case. Similar simulation results are given for p = 3
in panels (d)–(f). Note that in this example there appears to be little loss in efficiency
in using the adaptive prior when it is not needed.

Example 2 The second simulated data example is a spatially inhomogeneous function,

g(t) = sin(t) + 2 exp(−30t2), t ∈ [−2, 2],

again evaluated at n =101 regularly spaced points. The standard deviation of the noise
is τ−1/2 = .3. The “true” data are plotted in Fig. 4. Clearly, the smoothness of the
process varies significantly due to a sharp peak in the middle. The results obtained
from BSS with p = 2 are displayed in panel (b). The estimate shows typical fixed
bandwidth behavior with serious undersmoothing in the flat portions of the graph
on the left and right. A single smoothing parameter is thus clearly not adequate to
accommodate the varying smoothness of the structure of the data. Panel (a) shows
the estimate from BASS with p = 2, which is clearly able to adapt to the changes of
smoothness with noticeably smoother fits on both sides and a much better fit of the
peak. To see how the adaptive scheme works, panel (c) displays the estimated γk . The
precision is high on the left and the right where the function is flat and appropriately
low for the peak. From panels (d)–(f), the p = 3 prior appears to have similar spatially
adaptive behavior as the p = 2 case. However, due to the higher autocorrelation of the
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Fig. 3 Example 1: a BASS fit (p=2); b BSS fit (p=2); c posterior mean of γk and 95% credible intervals
(p = 2); d BASS fit (p = 3); e BSS (p = 3); f posterior mean of γk and 95% credible intervals (p = 3)

(dotted line true function, solid line fit)

p=3 prior, some oversmoothing is apparent. By comparing panels (a)–(d), p=3 has
a better fit for both flat parts than p = 2 but does not catch the peak as well as p = 2
does. This is also demonstrated clearly by panels (c) and (f). For this case, twenty
basis vectors (m = 20) are adequate. Increasing m had no appreciable effect on the
posterior means for γ or z.

Example 3 Finally, we consider another natural spline example but with a discon-
tinuity. The internal knots are located at (.4, .4, .4, .4, .7) and the coefficients are
(2,−5, 5, 2,−3,−1, 2). We generated n = 201 data points regularly on [0,1] with
zero-mean Gaussian noise added and τ−1/2 = .55. The true function is given as a
dashed line in Fig. 5. A jump can be seen around the 80th point and the rest of the
curve is smooth. As in the previous example, it appears both visually and from the
behavior of the estimated γk given in panel (c) that BASS with p = 2 in panel (a) is
capable of capturing the features of the data more precisely than BSS with p = 2,
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Fig. 4 Example 2: a BASS fit (p=2); b BSS fit (p=2); c posterior mean of γk (p=2); d BASS (p=3);
e BSS fit (p=3); f posterior mean of γk (p=3) (dotted line true function, solid line fit)

which clearly undersmooths the flat regions and oversmooths the sharp jump as shown
in panel (b). The result of the comparison between p = 3 and p = 2 is similar to
Example 2. The prior with p = 3 tends to oversmooth the data. For this extreme
case, we need more orthogonal basis elements from Sect. 4.2 than in Example 2, for
example m = 60.

We also performed a small simulation study to compare BASS, BAPS, BSS, BARS
and the non-stationary GP model. We generated 50 sets of noisy data and compared
the above models using the means, averaged over the 50 sets, of the standardized
MSE,

∑
k( f̂k − fk)

2/
∑

k( fk − f̄ )2, where f̂k is the posterior mean at xk , and f̄ is
the mean of true values. MSE and its 95% confidence intervals are reported in Table 1
[the results for BARS and non-stationary GP are from Paciorek and Schervish (2004)].
BASS (p = 2, 3) outperforms BSS in the last two examples and even performs well
in the first example where BSS is appropriate. It is hard to compare BASS to BARS
and the non-stationary GP for the first two examples: there is much overlap in the
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Fig. 5 Example 3: a BASS fit (p = 2); b BSS fit (p = 2); c posterior mean of γk (p = 2); d BASS fit
(p = 3); e BSS fit (p = 3); f posterior mean of γk (p = 3) (dotted line true function, solid line fit)

confidence intervals and the number of simulations is small (only 50). However, BASS
does surprisingly well (outperforming the non-stationary GP and BAPS) in estimat-
ing the jump function of Example 3. BAPS is much better than the other methods in
Example 1, performs equally well as the other adaptive models in Example 2, and does
a competitive job in Example 3: not as good as BASS and BARS but outperforming
the non-stationary GP.

As requested by a referee, the estimates using BASS with p = 2 and 3 for all three
examples corresponding to the 10th percentile, 50th percentile and 90th percentile
MSE are also plotted in Figs. 6 and 7. The figures show consistent results with MSE:
BASS with p = 2 performs worse, better and about the same as BASS with p = 3 in
Examples 1–3, respectively. The figures also show small variability of the estimates
based on the BASS model.

Finally, we did a small sensitivity study on the priors [ξ1 | c] and [ξ2 | a, b]. In our
experience, the adaptive fit is quite robust to the choice of prior for ξ1 but somewhat
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Table 1 Simulation study

Method Function 1 Function 2 Function 3

BSS (p = 2) .0100 (.0090, .0110) .022 (.020, .024) .097 (.0940, .0990)

BSS (p = 3) .0088 (.0077, .0099) .027 (.025, .029) .130 (.1280, .1340)

BASS (p = 2) .0097 (.0086, .0107) .011 (.010, .013) .008 (.0075,.0094)

BASS (p = 3) .0089 (.0078, .0099) .013 (.012, .015) .008 (.0073, .0086)

BAPS .0055 (.0054, .0056) .012 (.011, .013) .017 (.0157, .0183)

BARS .0081 (.0071, .0092) .012 (.011, .013) .005 (.0043, .0056)

Non-stat. GP .0083 (.0073, .0093) .015 (.013, .016) .026 (.0210, .0300)

Mean and 95% confidence interval for standardized MSE based on 50 samples obtained for the three test
functions described in Sect. 5
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Fig. 6 Top panels plot the BASS estimates (p = 2) corresponding to the 10th worst percentile MSE for
three simulated examples. Middle and bottom panels are similar plots corresponding to the 50th percentile
MSE and 10th best percentile MSE, respectively. In all cases the true function is given by the dotted line
and the estimate is given by the solid line

more sensitive to the choice for ξ2. We experimented with various prior e.d.f. choices
between 5 and 50 for ξ2 when using prior e.d.f. ≈10 for ξ1 in Example 2 and plotted
the posterior densities of ξ2 under prior e.d.f. ≈5 and 50 in Fig. 8 (left). As can be
seen, the two posteriors obviously differ in shapes and posterior means. It is interesting
that the overall fit, however, is much less affected by the choice of the prior e.d.f. as
shown in the right panel of Fig. 8. In conclusion, the performance of BASS seems
to be quite robust to the choice of hyperpriors if [ξ2] is chosen to have reasonable
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Fig. 7 Top panels plot the BASS estimates (p = 3) corresponding to the 10th worst percentile MSE for
three simulated examples. Middle and bottom panels are similar plots corresponding to the 50th percentile
MSE and 10th best percentile MSE, respectively. In all cases the true function is given by the dotted line
and the estimate is given by the solid line
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Fig. 8 Posterior densities of ξ2 (left) and adaptive fits (right) under prior e.d.f. ≈5 (solid line) and prior
e.d.f. ≈50 (dashed line)

prior e.d.f. for the approximate smoother on γ . The value of prior e.d.f. can reflect the
sample size n and the assumed complexity of the underlying process. In our simulated
examples, we have had success using prior e.d.f. ≈10 with n = 101 for moderately
varying function in Example 2 and prior e.d.f. ≈60 with n =201 for the highly varying
function in Example 3.
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6 Summary and discussion

In this paper, we examine two spline-based Bayesian adaptive smoothing methods,
BASS and BAPS. Those models allow spatial adaptivity in the spline penalty by using
locally varying precisions δk , whose logarithm is modeled as another spline function.
A reparameterization on the precision components is proposed, and sufficient condi-
tions for the propriety of posterior distributions are derived on the proper priors for
smoothing parameters ξ1 and ξ2 when the objective invariance prior is used for the
error variance. We also suggest using the trace of appropriate smoother matrices to
choose mildly informative priors on ξ1 and ξ2.

Based on both theoretical and empirical evidence, we conclude that one should be
careful when using diffuse proper priors that are improper in the limit. Those priors
may cause slow convergence and poor mixing in MCMC. Therefore, the propriety of
posteriors should be rigorously checked before doing Bayesian inference with diffuse
priors.

Appendix A. Proofs

To begin, we need the following lemmas.

Lemma 1 Suppose A is an m × m full rank matrix and B is an m × n matrix with
rank(B) = m(m < n). Define |C|+ to be the product of the non-zero eigenvalues of
a non-negative matrix C. Then

|B′AB|+ = |BB′A|.

Proof Let B′ = P�Q′ be the singular value decomposition of B′, where P is an n ×m
matrix, Q is an m × m matrix, P′P = Q′Q = Im , and �2 is a diagonal matrix whose
diagonal entries are the eigenvalues of BB′. Then

|BB′A| = |Q�P′P�Q′A|
= |Q�2Q′A|
= |�|2|A|.

On the other hand,

|B′AB|+ = |P�Q′AQ�P′|+
= |�Q′AQ�|
= |�|2|A|. ��

Lemma 2 For the adaptive IGMRF priors defined in (9) and (10), |A(p)
γ |+ = |BpB′

p|.
Proof By Lemma 1, |A(p)

γ |+ =|B′
pD(p)

γ Bp|+ =|D(p)
γ BpB′

p|. Since 1′γ =0, it follows
that

|D(p)
γ BpB′

p| = |D(p)
γ ||BpB′

p| = exp(1′γ )|BpB′
p| = |BpB′

p|. ��
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Lemma 3 Suppose h(x) is a positive non-decreasing function. If F and G are distri-
bution functions and there exist constants M > 0 and N > 0 such that M[1− F(t)] ≥
N [1 − G(t)] for all t , then M

∫
h(x)dF(x) ≥ N

∫
h(x)dG(x).

Proof Let hn(x) =∑i ai IAi be a simple function, where the Ai = [ti , ti+1) form
a finite decomposition of the support of h(x) and ai+1 ≥ ai ≥ 0 for all i . Let
bi = ai − ai−1 (b0 = 0) and Bi = Ai ∪ Ai+1 ∪ · · ·. Since bi ≥ 0 for all i , we have

M
∫

hn(x)dF(x) = M
∑

i

ai F(Ai )

= M
∑

i

bi F(Bi )

≥ N
∑

i

bi G(Bi )

= N
∫

hn(x)dG(x).

Since there exists a sequence {hn} such that 0 ≤ hn ↑ h, the lemma is true by the
monotone convergence theorem. ��
Lemma 4 Without loss of generality, assume 0 = x1 < x2 < · · · < xn = 1 and

set h j = x j − x j−1, j = 2, . . . , n. Suppose e j
ind∼ N (0, h j (τξ1ξ2)

−1) and
Xk = ∑k

j=p+1 e j for k = p + 1, . . . , n. Let X̄ = ∑n
k=p+1 Xk/(n − p) and

γmax = maxp+1≤k≤n γk , where the prior on γk is defined in (10) with q = 1 and
possibly unequally spaced points. Then

(a) γmax
D= maxp<k≤n

(
Xk − X̄

)
;

(b) There is a constant 0 < c < ∞ such that P(γmax ≥ t0) < 4
[
1 − �

(
t0c

√
τξ1ξ2

)]
for all t0 > 0.

Proof Part (a) is obvious. To prove (b), let B(t), 0 ≤ t ≤ 1, be standard Brownian
motion, let Vn = maxp<k≤n Xk , and let Wn = −X̄ . Since

e j
D= 1√

τξ1ξ2

[
B
(
x j − xp

)− B
(
x j−1 − xp

)] ind∼ N
(

0, h j (τξ1ξ2)
−1
)
,

j = p + 1, . . . , n,

we have

Xk =
k∑

j=p+1

e j
D= 1√

τξ1ξ2
B
(
xk − xp

)
,

X̄ ∼ N

(
0,

c1

τξ1ξ2

)
,
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for some constant 0 < c1 < ∞. Thus,

P(γmax ≥ t0) ≤ P(max(Vn, Wn) ≥ t0/2)

≤ P(Vn ≥ t0/2) + P(|Wn| ≥ t0/2)

= P

(
max

p<k≤n
Xk ≥ t0

2

)
+ P

(
|X̄ | ≥ t0

2

)

< P

[
1√

τξ1ξ2
max

0≤t≤1
B(t) ≥ t0

2

]
+ 2

[
1 − �

(
t0

2
√

c1

√
τξ1ξ2

)]

= 2

[
1 − �

(
t0
2

√
τξ1ξ2

)]
+ 2

[
1 − �

(
t0

2
√

c1

√
τξ1ξ2

)]

< 4
[
1 − �

(
t0c
√

τξ1ξ2

)]
,

where c = min{1/2, 1/(2
√

c1)}. ��
Lemma 5 (Marshall and Olkin 1979) Assume that two n × n symmetric matrices S1
and S2 are both non-negative definite. Let λ1(Si ) ≤ λ2(Si ) ≤ · · · ≤ λn(Si ) be the
eigenvalues of Si for i = 1, 2. Then

n∏
j=1

[λ j (S1) + λ j (S2)] ≤ |S1 + S2| ≤
n∏

j=1

[λ j (S1) + λn− j+1(S2)].

Lemma 6 Let F and G be two n ×n non-negative matrices, where F has rank (n −q)

and G has rank (n − p) for p, q ≥ 0. Assume F + G is positive definite. Denote by
λmin(F) and λmin(G) the smallest non-zero eigenvalues of F and G, respectively.

(a) |F + G| ≥ λmin(F)n[1 +λmin(G)/λmin(F)](n−p) if F is positive definite (q = 0);
(b) |F + G| ≥ C0|G|+ for some constant 0 < C0 < ∞, where 0 < C0 < ∞ depends

only on F, and |G|+ denotes the product of the non-zero eigenvalues of G.

Proof To prove (a), let λi (F) and λi (G) be the eigenvalues in ascending order of F
and G, respectively. Note that λ1(F) = λmin(F) and λ1(G) = · · · = λp(G) = 0.
Following Lemma 5, we have

|F + G| ≥
n∏

i=1

[λi (F) + λi (G)]

≥
n∏

i=1

[λmin(F) + λi (G)]

= λmin(F)p
n∏

i=p+1

[λmin(F) + λi (G)]

≥ λmin(F)p[λmin(F) + λmin(G)](n−p)

= λmin(F)n[1 + λmin(G)/λmin(F)](n−p).
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To prove (b), let Qn×n = (Q1, Q2), where Q′Q = In and Q2 spans the null space of
G, so Q′

2G = 0. Since F + G is positive definite, Q′
2FQ2 is invertible. Then, we have

|F + G| = ∣∣Q′ (F + G) Q
∣∣

=
∣∣∣∣Q′

1FQ1 + Q′
1GQ1 Q′

1FQ2
Q′

2FQ1 Q′
2FQ2

∣∣∣∣
=
∣∣∣Q′

1F
1
2

[
In − F

1
2 Q2

(
Q′

2FQ2
)−1 Q′

2F
1
2

]
F

1
2 Q1 + Q′

1GQ1

∣∣∣ ∣∣Q′
2FQ2

∣∣
≥ ∣∣Q′

1GQ1

∣∣ ∣∣Q′
2FQ2

∣∣
= C0 |G|+ , 0 < C0 < ∞. ��

A.1 Proof of Theorem 1

Since [τ ] ∝ 1/τ , the joint posterior density of (z, τ, ξ1, ξ2, γ ) is proportional to

h(z, τ, ξ1, ξ2, γ ) = τ
n
2 −1 exp

[
−τ

2
(y − z)′(y − z)

] ∣∣∣τξ1A(p)
γ

∣∣∣ 1
2

+

× exp

(
−τξ1

2
z′A(p)

γ z
)

[γ | τ, ξ1, ξ2] [ξ1, ξ2].

Integrating out z, let

h∗(τ, ξ1, ξ2, γ ) =
∫

Rn
hdz

∝ τ
1
2 (n−p)−1 exp

{
−
[

1

2
y′ (In − (In + ξ1A(p)

γ )−1
)

y
]

τ

}

×
∣∣∣ξ1A(p)

γ

∣∣∣ 1
2

+∣∣∣In + ξ1A(p)
γ

∣∣∣ 1
2

[γ | τ, ξ1, ξ2][ξ1, ξ2].

Following Lemma 1, we have

∣∣∣ξ1A(p)
γ

∣∣∣ 1
2

+ =
∣∣∣ξ1B′

pD(p)
γ Bp

∣∣∣ 1
2

+ = ξ
1
2 (n−p)

1

∣∣∣BpB′
pD(p)

γ

∣∣∣ 1
2 = ξ

1
2 (n−p)

1

∣∣∣BpB′
p

∣∣∣ 1
2
,

since |D(p)
γ |= exp(

∑n
k=p+1 γk)= exp(0)= 1. Define u = γmin = min(γp+1, . . . , γn)

and let F = In , G = ξ1A(p)
γ and H = ξ1euA(p). It is trivial that G ≥ H. Decompose

A(p) with eigenvector matrix P and eigenvalues 0 < λp+1 ≤ · · · ≤ λn . Then, using
Lemma 6,
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∣∣∣In + ξ1A(p)
γ

∣∣∣ 1
2 ≥ [1 + λmin(G)]

1
2 (n−p)

≥ [1 + λmin(H)]
1
2 (n−p) = (1 + λp+1ξ1eu) 1

2 (n−p)
. (24)

Since G ≥ H,

y′
[

In −
(

In + ξ1A(p)
γ

)−1
]

y ≥ y′
[

In −
(

In + ξ1euA(p)
)−1
]

y

≥ ‖d∗‖2
(

1 − 1

1 + λp+1ξ1eu

)
, (25)

where d = P′y and d∗ = (dp+1, . . . , dn)′. Note that ‖d∗‖2 > 0 with probability
one since ε1, . . . , εn are i.i.d. normal. The inequalities in (24) and (25) yield an upper
bound for h∗,

h∗(τ, ξ1, ξ2, γ ) ≤ g(τ, ξ1, ξ2, u)[γ | τ, ξ1, ξ2] [ξ1, ξ2],

where

g(τ, ξ1, ξ2, u) = C ξ
1
2 (n−p)

1

(1 + λp+1ξ1eu)
1
2 (n−p)

×τ
1
2 (n−p)−1 exp

[
−τ

2
‖d∗‖2

(
1 − 1

1 + λp+1ξ1eu

)]

for some constant 0 < C < ∞. Therefore, we have

∫
γp+1

· · ·
∫

γn

h(τ, ξ1, ξ2, γ )dγn · · · dγp+1 ≤
∫ 0

−∞
g(τ, ξ1, ξ2, u) [u | τ, ξ1, ξ2] [ξ1, ξ2]du.

Thus it suffices to show

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ 0

−∞
g(τ, ξ1, ξ2, u) [u | τ, ξ1, ξ2] [ξ1, ξ2]du dτ dξ1 dξ2 < ∞. (26)

Letting w = −u, we have

∫ 0

−∞
g(τ, ξ1, ξ2, u) [u | τ, ξ1, ξ2] du =

∫ ∞

0
g(τ, ξ1, ξ2,−w) [w | τ, ξ1, ξ2] dw.

Note that W = −γmin and γmax are identically distributed. Now let F denote the cdf
of W and G the cdf of V , where V has density
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[v | τ, ξ1, ξ2] ∝ √τξ1ξ2 exp

(
−c2τξ1ξ2

2
v2
)

, v ≥ 0.

Noting that g(τ, ξ1, ξ2,−w) is non-decreasing in w, Lemmas 3 and 4 together imply

∫ ∞

0
g(τ, ξ1, ξ2,−w) [w | τ, ξ1, ξ2] dw ≤ 4

∫ ∞

0
g(τ, ξ1, ξ2,−v) [v | τ, ξ1, ξ2] dv.

(27)

Substituting (27) into condition (26), it suffices to show

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
g(τ, ξ1, ξ2,−v) [v | τ, ξ1, ξ2] dv dτ dξ1 dξ2 < ∞. (28)

Letting g∗(τ, ξ1, ξ2, v) denote the integrand in (28),

g∗(τ, ξ1, ξ2, v) ∝ ξ
1
2 (n−p)

1
√

ξ1ξ2

(1 + λp+1ξ1e−v)
1
2 (n−p)

[ξ1, ξ2]

×τ
1
2 (n−p−1) exp

{
−
[

1

2
‖d∗‖2

(
1 − 1

1 + ξ1λp+1e−v

)
+ c2ξ1ξ2

2
v2

]
τ

}
.

Finally,

∫ ∞

0
g∗dτ

∝ ξ
1
2 (n−p)

1(
1 + ξ1λp+1e−v

) 1
2 (n−p)

√
ξ1ξ2 [ξ1, ξ2][

1
2‖d∗‖2

(
1 − 1

1+λp+1ξ1e−v

)
+c2ξ1ξ2v2/2

] 1
2 (n−p+1)

.

(29)

Without loss of generality, let λp+1 = 1, r0 = (n − p + 1)/2 and s = min
{‖d∗‖2/2, c2/2}. It suffices to show

∫ ∞

0

∫ ∞

0

∫ ∞

0
g∗∗(v, ξ1, ξ2) [ξ1, ξ2] dv dξ1 dξ2 < ∞, (30)

where, up to a multiplicative constant,

g∗∗(v, ξ1, ξ2) =
(

ξ1
1+ξ1e−v

)r0− 1
2 √

ξ1ξ2(
ξ1e−v

1+ξ1e−v + ξ1ξ2v2
)r0

is an upper bound of (29). We treat two cases separately.
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Case 1 0 ≤ v ≤ 1. On the range ξ1 > 1, we have

ξ1

1 + ξ1e−v
= 1

ξ−1
1 + e−v

< ev < e,

ξ1e−v

1 + ξ1e−v
= 1

1 + ξ−1
1 ev

>
1

1 + ev
>

1

1 + e
.

Using these two inequalities,

∫ 1

0
g∗∗dv <

∫ 1

0

er0− 1
2
√

ξ1ξ2(
1

1+e + ξ1ξ2v2
)r0

dv

= er0− 1
2

∫ √
ξ1ξ2

0

1(
1

1+e + w2
)r0

dw (w = √ξ1ξ2v)

< er0− 1
2

∫ ∞

0

1(
1

1+e + w2
)r0

dw = C1 < ∞.

On the range 0 < ξ1 ≤ 1, we have

e−v

1 + ξ1e−v
= 1

ξ1 + ev
>

1

1 + e
,

1 + ξ1e−v > 1.

Thus for 0 < ξ1 ≤ 1,

∫ 1

0
g∗∗dv =

∫ 1

0

(
1

1+ξ1e−v

)r0− 1
2 √

ξ2(
e−v

1+ξ1e−v + ξ2v2
)r0

dv

<

∫ 1

0

√
ξ2(

1
1+e + ξ2v2

)r0
dv

=
∫ √

ξ2

0

1(
1

1+e + w2
)r0

dw (w = √ξ2v)

<

∫ ∞

0

1(
1

1+e + w2
)r0

dw = C2 < ∞.

From this calculation, we conclude that
∫ 1

0 g∗∗(v, ξ1, ξ2) dv has finite expectation for
any proper joint prior on (ξ1, ξ2).
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Case 2 v > 1. On this range, we have

∫ ∞

1
g∗∗dv =

∫ ∞

1

(
1

1+ξ1e−v

)r0− 1
2 √

ξ2(
e−v

1+ξ1e−v + ξ2v2
)r0

dv

<

∫ ∞

1

√
ξ2

(ξ2v2)r0
dv

= 1

ξ
r0− 1

2
2

∫ ∞

1
v−2r0 dv

= C3

ξ
r0− 1

2
2

.

Combining the two cases, it is clear that (30) holds for any joint prior on (ξ1, ξ2)

satisfying the moment condition of the theorem, and the proof is complete.

A.2 Proof of Theorem 2

With [τ ] ∝ 1/τ , the joint posterior density of (β, z, τ, ξ1, ξ2, γ ) is proportional to

h(β, z, τ, ξ1, ξ2, γ ) = τ
N
2 exp

[
−τ

2
(y − X1β − X2z)′(y − X1β − X2z)

]

×
∣∣∣τξ1A(p)

γ

∣∣∣ 1
2

+ exp

(
−τξ1

2
z′A(p)

γ z
)

1

τ
[γ | τ, ξ1, ξ2] [ξ1, ξ2].

Since X1 has full rank, X′
1X1 is invertible. Let T = (X1, X2) and θ = (β ′, z′)′. The

usual least squares estimator of θ is θ̂ = (β̂
′
, ẑ′

)′ = (T ′T)−T ′y, where (T ′T)− is a
generalized inverse. Let the sum of squared errors be

SSE = y′ (IN − T(T ′T)−T ′) y,

and define

M1 = IN − X1(X′
1X1)

−1X′
1

R1 = X′
2M1X2 + ξ1A(p)

γ

R2 = X′
2M1X2 − X′

2M1X2R−1
1 X′

2M1X2.

Note that R1 is positive definite by assumption in the theorem. Following Sun et al.
(1999, 2001), the posterior density after integrating out β and z is proportional to
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h∗(τ, ξ1, ξ2, γ ) = ∫
Rm+n h dβ dz given by

τ
1
2 (N−m−p)−1

∣∣∣ξ1A(p)
γ

∣∣∣ 1
2

+ |R1|− 1
2

× exp
[
−τ

2

(
SSE + ẑ′R2ẑ

)] [γ | τ, ξ1, ξ2] [ξ1, ξ2]. (31)

Letting F = X′
2M1X2 and G = ξ1A(p)

γ in Case 1, we have from Lemma 6

|R1| 1
2 = |F + G| 1

2 ≥ C
1
2
0 |G|

1
2+ = C

1
2
0

∣∣∣ξ1A(p)
γ

∣∣∣ 1
2

+ . (32)

Since SSE > 0 and ẑ′R3ẑ ≥ 0, (32) yields an upper bound for h∗,

h∗(τ, ξ1, ξ2, γ ) ≤ C
− 1

2
0 g(τ ) [γ | τ, ξ1, ξ2] [ξ1, ξ2],

where

g(τ ) = τ
1
2 (N−m−p)−1 exp

(
−τ

2
SSE

)
.

Note that g(τ ) is an integrable function given N ≥ m + p +1. Then it suffices to show

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫
Rn−p

g(τ ) [γ | τ, ξ1, ξ2] [ξ1, ξ2] dγ dτ dξ1 dξ2 < ∞. (33)

Since [γ | τ, ξ1, ξ2] is a proper density function and g(τ ) is integrable, the left hand
side of (33) after integrating out γ and τ is

C1

∫ ∞

0

∫ ∞

0
[ξ1, ξ2] dξ1dξ2, for some 0 < C1 < ∞.

Hence, proper priors on ξ1 and ξ2 ensure the propriety of the posterior in Case 1.
In Case 2, SSE = 0 and it is necessary to find a lower bound for ẑ′R2ẑ in (31). For

convenience, suppress the superscript in the notation A(p). Again let u = mink γk .
Since G ≥ ξ1euA, we have

ẑ′R2ẑ = ẑ′ [F − F (F + G)−1 F
]

ẑ

≥ ẑ′ [F − F
(
F + ξ1euA

)−1 F
]

ẑ. (34)

Note that F is positive semidefinite in this case. Suppose rank(F) = r ≤ (n − 1). Do
the spectral decomposition

F = P�P′ = (P1 P2
) (�1 0

0 0

)(
P′

1
P′

2

)
,
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where P1 and P2 span the range and null spaces of F, and �1 is a diagonal matrix of
non-zero eigenvalues of F. Let

(
� + ξ1euP′AP

)−1 =
(

�1 + ξ1euP′
1AP1 ξ1euP′

1AP2
ξ1euP′

2AP1 ξ1euP′
2AP2

)−1

=
(

S11 S12
S21 S22

)
.

(35)

Using a well-known formula (e.g., Christensen 2002, p. 423), S11 =(�1 + ξ1euK)−1,
where Kr×r =P′

1A1/2(In − M)A1/2P1, and M =A1/2P2
(
P′

2AP2
)−1 P′

2A1/2 is a pro-
jection matrix. Note that K is non-negative. Suppose it has rank (r − �) for � ≥ 0.
Following (34) and (35),

ẑ′R2ẑ ≥ ẑ′P
[
� − �

(
� + ξ1euP′AP

)−1
�
]

P′ẑ.

= ẑ′
(P1, P2)

[(
�1 0
0 0

)
−
(

�1 0
0 0

)(
S11 S12
S21 S22,

)(
�1 0
0 0

)](
P′

1
P′

2

)
ẑ

= ẑ′P1(�1 − �1S11�1)P′
1ẑ

= ẑ′P1�
1
2
1

[
Ir −

(
Ir + ξ1eu�

− 1
2

1 K�
− 1

2
1

)−1
]

�
1
2
1 P′

1ẑ

≥ ‖d∗‖2
(

1 − 1

1 + λmin(J)ξ1eu

)
, (36)

where J = �
−1/2
1 K�

−1/2
1 , λmin(J) is the smallest non-zero eigenvalue of J, d∗ =

(d�+1, . . . , dr )
′, dr×1 = P′

J �
1/2
1 P′

1ẑ, and P J is the eigenvector matrix of J. We then
use (32) and (36) to give an upper bound for h∗,

h∗(τ, ξ1, ξ2, γ ) ≤ C
− 1

2
0 g(τ, ξ1, ξ2, u)[γ | τ, ξ1, ξ2] [ξ1, ξ2],

where

g(τ, ξ1, ξ2, u) = τ
1
2 (N−m−p)−1 exp

{
−τ

2

[
‖d∗‖2

(
1 − 1

1 + λmin (J) ξ1eu

)]}
.

Following the proof of Theorem 1, it suffices to show

∫ ∞

0

∫ ∞

0

∫ ∞

0
g∗∗(v, ξ1, ξ2) [ξ1, ξ2] dv dξ1 dξ2 < ∞,

where

g∗∗(v, ξ1, ξ2) =
√

ξ1ξ2(
ξ1e−v

1+ξ1e−v + ξ1ξ2v2
)r0

,
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for r0 = (N − m − p + 1)/2. Note that r0 is assumed to be positive. When 0 ≤ v ≤ 1
and ξ1 > 1,

∫ 1

0
g∗∗dv < C2 < ∞.

When 0 ≤ v ≤ 1 and 0 < ξ1 ≤ 1,

∫ 1

0
g∗∗dv < C3ξ

−r0+ 1
2

1 , 0 < C3 < ∞.

When v > 1,

∫ ∞

1
g∗∗dv < C4(ξ1ξ2)

−r0+ 1
2 , 0 < C4 < ∞.

Hence, it suffices to have proper priors on ξ1 and ξ2 with finite expected value of

(ξ1ξ2)
−r0+ 1

2 in Case 2. The theorem has been proved.

A.3 Proof of Theorem 3

The joint posterior density of (β, b, τ, ξ1, ξ2, γ ) is proportional to

h(β, z, τ, ξ1, ξ2, γ ) = τ n/2 exp
[
−τ

2
(y − Xβ − Zb)′(y − Xβ − Zb)

]
× | τξ1Dγ |1/2 exp

(
−τξ1

2
b′Dγ b

)
1

τ
[γ | τ, ξ1, ξ2] [ξ1, ξ2].

Following the proof of Theorem 2, let T = (X, Z) and denote the least squares esti-

mator by (β̂
′
, b̂

′
)′ = (T ′T)−T ′y. Again let the sum of squared errors be SSE =

y′(In − T(T ′T)−T ′)y and define

M = In − X(X′X)−1X′

R1 = Z′MZ + ξ1Dγ

R2 = Z′MZ − Z′MZR−1
1 Z′MZ.

As in (31), the posterior of (τ, ξ1, ξ2, γ ) is proportional to

h∗ = τ
1
2 (n−p−1)−1|ξ1Dγ | 1

2 |R1|− 1
2

× exp
[
−τ

2

(
SSE + b̂

′
R2b̂
)]

[γ | τ, ξ1, ξ2] [ξ1, ξ2].

Note that SSE > 0 in P-splines since one always used far fewer knots than observa-
tions. Again let F = Z′MZ and G = ξ1Dγ . The rest of proof exactly follows Case 1
in Theorem 2.
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Appendix B. Derivations of smoother matrices

B.1 Smoother matrix for γ in BASS

Recall that negative two times the logarithm of the full conditional density of γ in
BASS up to additive constant is

L(γ ) = τξ1z′A(p)
γ z + τξ1ξ2γ

′A(q)γ , (37)

where A(p)
γ = B′

pD(p)
γ Bp and D(p)

γ = diag(eγp+1 , . . . , eγn ) for given p and q. Note
that in (37) we ignore the linear constraint on γ since it is irrelevant for the purpose.
Letting z̃ = Bpz = (z̃ p+1, . . . , z̃n)′, expand L(γ ) about the mode γ̃k as in the Laplace
approximation,

L(γ ) = τξ1

n∑
k=p+1

z̃2
keγk + τξ1ξ2γ

′A(q)γ

≈ τξ1

n∑
k=p+1

z̃2
k

[
eγ̃k + (γk − γ̃k)e

γ̃k + 1

2
(γk − γ̃k)

2eγ̃k

]
+ τξ1ξ2γ

′A(q)γ

= τξ1

[
(1 − γ̃ )′ Wγ + 1

2
γ ′Wγ + ξ2γ

′A(q)γ

]
, (38)

where W = diag
(

z̃2
p+1eγ̃p+1 , . . . , z̃2

neγ̃n

)
and 1 = (1, . . . , 1)′. By taking the first

derivative in γ and setting it to be zero, the approximate posterior mode γ̃ satisfies

γ̃ =
(

W + 2ξ2A(q)
)−1

W(γ̃ − 1).

Therefore the equivalent smoother matrix for γ is
(
W + 2ξ2A(q)

)−1
W . Note that in

practice we take γ̃k = 0 when there is no prior information about the posterior mode
for choosing a prior for ξ1.

B.2 Smoother matrix for γ in BAPS

Negative two times the logarithm of the full conditional density of bγ in BAPS (up to
additive constant) is

L(bγ ) = τξ1b′Dγ b + τξ1ξ2b′
γ bγ , (39)
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where Dγ = diag(eγ1 , . . . , eγmt ) and γ = Zγ bγ . Again we expand (39) around the
mode γ̃ as in (38)

L(bγ ) ≈ τξ1

mt∑
k=1

b2
k

[
eγ̃k + (γk − γ̃k)e

γ̃k + 1

2
(γk − γ̃k)

2eγ̃k

]
+ τξ1ξ2b′

γ bγ

= τξ1

[
(1 − γ̃ )′ WZγ bγ + 1

2
b′
γ Z′

γ WZγ bγ + ξ2b′
γ bγ

]
,

where W = diag
(
b2

1eγ̃1 , . . . , b2
mt

eγ̃mt
)
. Therefore, the posterior mode b̃γ for the

approximation satisfies

b̃γ =
(

Z′
γ WZγ + 2ξ2Imt

)−1
Z′

γ W(γ̃ − 1).

The equivalent smoother matrix in BAPS for γ is Zγ

(
Z′

γ WZγ + 2ξ2Imt

)−1
Z′

γ W ,

and e.d.f. is

trace

(
Zγ

(
Z′

γ WZγ + 2ξ2Imt

)−1
Z′

γ W
)

= trace

(
Imt + 2ξ2

(
Z′

γ WZγ

)−1
)

.

Following BASS, we take γ̃k = 0 in order to choose the prior on ξ2.
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