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Abstract We consider the problems of parameter estimation for several models
of threshold ergodic diffusion processes in the asymptotics of large samples. These
models are the direct continuous time analogues of the well known in time series
analysis threshold autoregressive models. In such models, the trend is switching when
the observed process attaints some (unknown) values and the problem is to estimate
it or to test some hypotheses concerning these values. The related statistical problems
correspond to the singular estimation or testing, for example, the rate of convergence
of estimators is T and not

√
T as in regular estimation problems. We study the asymp-

totic behavior of the maximum likelihood and Bayesian estimators and discuss the
possibility of the construction of the goodness-of-fit test for such models of observa-
tion.

Keywords Parameter estimation · Threshold models · Singular estimation ·
Ergodic diffusion process · Goodness-of-fit test · Cramer-von Mises type tests

1 Introduction

The simplest example of the threshold model is the following threshold autoregressive
(TAR) time series:

X j+1 = �1 X j 1{X j<ϑ} + �2 X j 1{X j ≥ϑ} + ε j+1, j = 0, . . . , n − 1, (1)
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where ε j are i.i.d. N (0, s2), �1 �= �2 and |�i | < 1. Therefore, we have two different
autoregressive processes depending on the region of observations {x : x < ϑ} or
{x : x ≥ ϑ}. This time series has ergodic properties with invariant density close to a
weighted sum of two Gaussian densities. If we suppose that s2, �1, �2 are known and
ϑ ∈ � = (α, β) is unknown parameter, then we obtain the first problem of threshold
ϑ estimation. It is easy to see that the likelihood ratio is a piece-wise constant (dis-
continuous) function of ϑ , the Fisher information is equal infinity (see e.g., Chan and
Kutoyants 2008). As usual in singular estimation problems, the rate of convergence of
maximum likelihood ϑ̂n or Bayesian ϑ̃n estimators is n and not

√
n i.e.; the quantities

n(ϑ̂n − ϑ) and n(ϑ̃n − ϑ) have non-degenerate limits.
There are many different threshold regression models of such type extensively

developed in econometrics and, of course, the identification of these models attracts
attention of statisticians (see e.g. the works by Quandt 1958; Tong 1990; Chan 1993;
Hansen 2000; Fan and Yao 2003; Koul et al. 2003; Chan and Kutoyants 2008 and
the references therein). Note that continuous time models actually find a wide range
of applications in econometrical problems and occupy a central place in financial
mathematics (see e.g., the work by Shreve 2004).

Our goal is to study several models of continuous time analogues (diffusion pro-
cesses) of such threshold type time series and to describe the properties of estimators
of the thresholds for these models. Note that the general theory of parameter estimation
(in regular case) for ergodic diffusion processes is actually well developed (see e.g.
Kutoyants 2004; Yoshida 2009 and references therein), but the problems of threshold
estimation are of singular type and need a special consideration. To illustrate these
statements of the problem, let us consider the following process

dXt = −ρ1 Xt 1{Xt<ϑ}dt − ρ2 Xt 1{Xt ≥ϑ}dt + σdWt , 0 ≤ t ≤ T, (2)

where Wt is Wiener process, ρ1 �= ρ2 and ρi > 0. We call it Threshold Ornstein–
Uhlenbeck (TOU) process because it can be considered as a mixture of two different
Ornstein–Uhlenbeck processes with switching. If we suppose that σ, ρ1, ρ2 are known
and ϑ ∈ � = (α, β) is unknown parameter then we obtain the problem of parameter
(threshold) ϑ estimation.

It is in some sense similar to TAR (1) and the link between them can be clarified
by the following consideration. Let us consider the discrete time approximation of the
process (2) with t j = jδ, j = 1, . . . , n − 1, where δ = T/n, then we obtain

Xt j+1 = (1 − ρ1δ) Xt j 1
{

Xt j<ϑ
} + (1 − ρ2δ) Xt j 1

{
Xt j ≥ϑ

} + σ
[
Wt j+1 − Wt j

]
.

This process coincides with (1) if we put X j = Xt j, �i = (1 − ρi δ) and ε j+1 =
σ [Wt j+1 − Wt j ] ∼ N (0, σ 2δ), i.e., s2 = σ 2δ. Hence, the regression model (1) is a
discrete time approximation of the TOU process (2). Note that these continuous time
threshold processes are studied by Decamps et al. (2006) as interest rates models.

The threshold estimation problems for both models are of singular type and the limit
distributions of the MLE’s n(ϑ̂n − ϑ) and T (ϑ̂T − ϑ) are of argsup type functionals
of the compound Poisson and Wiener processes, respectively.
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The process (Xt )t≥0 has ergodic properties, the invariant density is a mixture of two
Gaussian, the Fisher information is equal to infinity and we show that the maximum
likelihood and Bayesian estimators converge to two different limit laws.

We consider several other threshold type models of ergodic diffusion processes and
study the asymptotic properties of the maximum likelihood and Bayesian estimators.
The main result of this work is Theorem 1 in Sect. 3, where we describe the properties
of estimators in the case of nonlinear trend coefficients and many thresholds exist.

We discuss as well the construction of the goodness-of-fit tests for such threshold
models.

2 Threshold Ornstein–Uhlenbeck process

2.1 Threshold estimation

We start with the TOU process

dXt = −ρ1 Xt 1{Xt<ϑ}dt − ρ2 Xt 1{Xt ≥ϑ}dt + σdWt , X0, 0 ≤ t ≤ T, (3)

where we suppose that the following condition is fulfilled.

Condition A∗. The constants ρ1 �= ρ2, ρi > 0 and σ 2 > 0 are known and the
parameter ϑ ∈ � = (α, β), α > 0 is unknown. The initial value X0 is independent
on the Wiener process random variable.

The value ϑ = 0 is excluded because in the case ϑ = 0 there is no jump in the
trend coefficient and the properties of estimators are quite different. This is due to the
property: −ρ1x = −ρ2x = 0 if x = 0 and therefore there is no switching at this point.
As ρ1 �= ρ2 the MLE is consistent and asymptotically normal with “regular rate”

√
T .

We consider the problem of estimation of the threshold ϑ by the continuous time
observations X T = (Xt , 0 ≤ t ≤ T ) and we are interested in the asymptotic behavior
of estimators as T → ∞.

Note that the conditions ES of the existence of solution and RP of the ergodicity
are fulfilled (see Kutoyants 2004, Sects. 1.1, 1.2) and the process (Xt )t≥0 has ergodic
properties with the invariant density

f (ϑ, x) = p1 (x, ϑ) e− ρ1 (x2−ϑ2)
σ2 + p2 (x, ϑ) e− ρ2 (x2−ϑ2)

σ2 .

Here p1 (x, ϑ) = G (ϑ)−1 1{x<ϑ}, and p2 (x, ϑ) = G (ϑ)−1 1{x≥ϑ} and G (ϑ) is the
normalizing constant. To simplify the exposition we suppose that the random variable
X0 has the density function f (ϑ, x), hence the observed process is stationary.

We are interested in the asymptotic behavior of the maximum likelihood esti-
mator (MLE) and Bayesian estimator (BE) of the parameter ϑ ; therefore, we
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need the likelihood ratio function L
(
ϑ, X T

)
. This function can be written as

(see Liptser and Shiryayev 2001)

ln L
(
ϑ, X T

)
= − ρ1

σ 2

∫ T

0
Xt1{Xt<ϑ} dXt − ρ2

σ 2

∫ T

0
Xt1{Xt ≥ϑ} dXt

− ρ2
1

2σ 2

∫ T

0
X2

t 1{Xt<ϑ} dt − ρ2
2

2σ 2

∫ T

0
X2

t 1{Xt ≥ϑ} dt + ln f (ϑ, X0).

The contribution of the term ln f (ϑ, X0) is asymptotically negligeable and we will
always omitted it for simplicity of exposition (see the details in Kutoyants 2004).

The MLE ϑ̂T and BE (for quadratic loss function) ϑ̃T are defined as usual by the
relations

L
(
ϑ̂T , X T

)
= sup
θ∈�

L
(
θ, X T

)
and ϑ̃T =

∫ β
α
θ p (θ) L

(
θ, X T

)
dθ∫ β

α
p (θ) L

(
θ, X T

)
dθ

. (4)

Here p (θ), α ≤ θ ≤ β is positive on � continuous density a priori.
To describe theirs properties, we need the following notations. Let us introduce

– the random process

Z0 (u) = exp

{
W (u)− |u|

2

}
, u ∈ R,

where W (·) is two-sided Wiener process,
– two random variables û and ũ defined by the relations

Z0
(
û
) = sup

u∈R
Z0 (u), ũ =

∫
R u Z0 (u) du∫
R Z0 (u) du

(5)

– the function

�2
ϑ = (ρ2 − ρ1)

2 ϑ2

G (ϑ) σ 2 e− ρ2
1ϑ

2

σ2 .

The function �2
ϑ is equal to the square of the jump divided by the diffusion coefficient

at the point ϑ and multiplied by the value of the invariant density at the point of jump
(see e.g. (16) below).

The properties of estimators are given in the following proposition.

Proposition 1 Let the condition A∗ be fulfilled, then the MLE ϑ̂T and the BE ϑ̃T are
uniformly on compacts K ⊂ � consistent: for any ν > 0

sup
ϑ∈K

Pϑ
{∣∣∣ϑ̂T − ϑ

∣∣∣ > ν
}

−→ 0,
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have two different limit distributions

T
(
ϑ̂T − ϑ

)
�⇒ û

�2
ϑ

, T
(
ϑ̃T − ϑ

)
�⇒ ũ

�2
ϑ

,

theirs moments converge: for any p > 0

Eϑ
∣∣∣T
(
ϑ̂T − ϑ

)∣∣∣
p −→ E

∣∣∣∣∣
û

�2
ϑ

∣∣∣∣∣
p

, Eϑ
∣∣∣T
(
ϑ̃T − ϑ

)∣∣∣
p −→ E

∣∣∣∣∣
ũ

�2
ϑ

∣∣∣∣∣
p

.

For the proof, see Sect. 5.
Note that the same normalization and the same type limits (with different �ϑ ),

we have in the problem of delay ϑ estimation by the observations of the following
Gaussian process

dXt = −ρ Xt−ϑ dt + σdWt , 0 ≤ t ≤ T

see details in Küchler and Kutoyants (2000) (or in Kutoyants 2004, Sect. 3.3).
Remind that the BEs are usually asymptotically efficient in singular parameter esti-

mation problems (Ibragimov and Khasminskii 1981). The following lower bound is
valid: for all estimators ϑ̄T

lim
δ→0

lim
T →∞

sup
|ϑ−ϑ0|<δ

T 2 Eϑ
(
ϑ̄T − ϑ

)2 ≥ Eũ2

�4
ϑ0

see Ibragimov and Khasminskii (1981), Sect. 1.9 (or Kutoyants 2004, Proposition
2.24). We call an estimator ϑ∗

T asymptotically efficient if for all ϑ0 ∈ � we have the
equality

lim
δ→0

lim
T →∞ sup

|ϑ−ϑ0|<δ
T 2 Eϑ

(
ϑ∗

T − ϑ
)2 = Eũ2

�4
ϑ0

.

It can be verified that the convergence of the moments of BEs is uniform on the com-
pacts in � and that the function �ϑ is continuous. From these properties, we obtain
immediately the asymptotic efficiency of the BEs (in the sense of this lower bound).

The quantities Eû2 and Eũ2 were calculated by

Eû2 = 26 > Eũ2 = 16ζ (3) ∼ 19.2

where ζ (·) is Riemann zeta function. This relation shows the difference between the
limit variances of the MLE and BE.
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2.2 All parameters unknown

It is possible to describe the properties of estimators in the case when all three param-
eters (ρ1, ρ2, ϑ) = (ϑ1, ϑ2, ϑ3) = ϑ ∈ � are unknown and we observe

dXt = −ϑ1 Xt 1{Xt<ϑ3}dt − ϑ2 Xt 1{Xt ≥ϑ3}dt + σdWt , 0 ≤ t ≤ T . (6)

We have � = (α1, β1)× (α2, β2)× (α3, β3). Let us denote by ξ the random variable
with the density f (ϑ, x).

Proposition 2 Suppose that β1 < α2 and α2 > 0, then the MLE ϑ̂T , BE ϑ̃T are
consistent, have the following limit distributions

√
T
(
ϑ̂1,T − ϑ1

)
�⇒ ζ1 ∼ N

(
0,

σ 2

Eϑ ξ21{ξ<ϑ3}

)
,

√
T
(
ϑ̂2,T − ϑ2

)
�⇒ ζ2 ∼ N

(
0,

σ 2

Eϑ ξ21{ξ≥ϑ3}

)
,

T
(
ϑ̂3,T − ϑ3

)
�⇒ û

�2
ϑ

, T
(
ϑ̃3,T − ϑ3

)
�⇒ ũ

�2
ϑ

.

The BE ϑ̃1,T , ϑ̃2,T have the same asymptotic properties as ϑ̂1,T , ϑ̂2,T , the random
variables ζ1 and ζ2 are independent and are independent of û, ũ.

See the proof in Sect. 5.
The construction of the MLE can be slightly simplified by the following

“separation”.
The MLE of the first two components can be written as

ϑ̂1,T = −
∫ T

0 Xt 1
{

Xt<ϑ̂3,T

} dXt

∫ T
0 X2

t 1
{

Xt<ϑ̂3,T

} dt
, ϑ̂2,T = −

∫ T
0 Xt 1

{
Xt ≥ϑ̂3,T

} dXt

∫ T
0 X2

t 1
{

Xt ≥ϑ̂3,T

} dt

but to study these expressions can be quite difficult because the estimator ϑ̂3,T depends
on the whole trajectory X T and therefore the random function Xt 1{Xt<ϑ̂3,T }, 0 ≤ t ≤
T depends of the “future”. Hence, the stochastic integral needs a special treatment.
The problem can be simplified as follows: let us estimate the parameter ϑ3 by the
first X

√
T = {Xt , 0 ≤ t ≤ √

T } observation and denote by ϑ∗
3,

√
T

the corresponding

consistent estimator. We suppose that there exists b > 0 such that

Pϑ

{∣∣∣ϑ∗
3,

√
T

− ϑ3

∣∣∣ > T −b
}

−→ 0 (7)
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as T → ∞. Then, we define the estimators (see the comment at the end of Sect. 2)

ϑ◦
1,T = −

∫ T√
T Xt 1

{
Xt<ϑ

∗
3,

√
T

} dXt

∫ T√
T X2

t 1
{

Xt<ϑ
∗
3,

√
T

} dt
, ϑ◦

2,T = −
∫ T√

T Xt 1
{

Xt ≥ϑ∗
3,

√
T

} dXt

∫ T√
T X2

t 1
{

Xt ≥ϑ∗
3,

√
T

} dt
. (8)

Now the stochastic integrals are well defined and the consistency and asymptotic
normality of these estimators follow from the usual limit theorems, i.e., we have

√
T
(
ϑ◦

1,T − ϑ1
) = −σ

1√
T

∫ T√
T Xt 1

{
Xt<ϑ

∗
3,

√
T

} dWt

1
T

∫ T√
T X2

t 1
{

Xt<ϑ
∗
3,

√
T

} dt

with (law of large numbers; see Sect. 5)

1

T

∫ T

√
T

X2
t 1

{
Xt<ϑ

∗
3,

√
T

} dt −→ Eθ ξ21{ξ<ϑ3} (9)

and (central limit theorem)

1√
T

∫ T

√
T

Xt 1
{

Xt<ϑ
∗
3,

√
T

} dWt �⇒ ζ ∼ N
(

0,Eθ ξ21{ξ<ϑ3}
)
.

hence

√
T
(
ϑ◦

1,T − ϑ1
) �⇒ N

(
0,

σ 2

Eθ ξ21{ξ<ϑ3}

)
.

Note that the independence of the random variables ζ1 and ζ2 follows from the fol-
lowing property of stochastic integral

Eθ

(∫ T

0
Xt 1{Xt<ϑ3} dWt

∫ T

0
Xt 1{Xt ≥ϑ3} dWt

)
= 0.

The possibility to simplify the estimation of ϑ3 we discuss at the end of the next
section.

2.3 Misspecification

Let us return to the initial problem of threshold estimation and suppose that the
observed process is

dXt = −ρ1 Xt 1{Xt<ϑ0}dt − ρ2 Xt 1{Xt ≥ϑ0}dt + h (Xt ) dt + σdWt , (10)
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where h (·) is some unknown function (contamination) and ϑ0 is the true value. We
assume that the statistician uses this model without h (·) (wrong model) and tries to
estimate ϑ , i.e., he (or she) supposes that the observed process is TOU (3) and con-
struct, say, the MLE ϑ̂T as if h (·) ≡ 0. Then, he substitutes the observations (10) (of
course, containing h (·)). Such situation can be considered as typical for many applied
problems, when there is a difference between the theoretical model and the real data.
Remind that in regular case the MLE and BE are usually not consistent and converge
to the value which minimizes the Kullback–Leibler distance (see Kutoyants 2004,
Sect. 2.6.1). The Kullback–Leibler distance in our problem is (suppose for instant that
ϑ0 < ϑ)

DK−L (ϑ, ϑ0) = E∗
ϑ0

ln
dP∗

ϑ0

dPϑ

(
X T
)

= T

2σ 2 E∗
ϑ0

[
ρ1ξ

[
1{ξ<ϑ}−1{ξ<ϑ0}

]+ρ2ξ
[
1{ξ≥ϑ}−1{ξ≥ϑ0}

]+h (ξ)
]2

= T

2σ 2 E∗
ϑ0

[
(ρ1 − ρ2) ξ 1{ϑ0<ξ<ϑ} + h (ξ)

]2
,

where E∗
ϑ0

denotes the expectation with respect to the measure P∗
ϑ0

which corresponds
to the process (10) (we denote its density as fh (ϑ0, x)). It can be shown (see Kutoyants
2004, Sect. 2.6.1) that

ϑ̂T −→ ϑ∗ = arg inf
ϑ∈� DK−L (ϑ, ϑ0).

We are interested in the following question: when ϑ∗ = ϑ0, i.e., when the MLE is
nevertheless consistent? Surprisingly, it is possible even for not too small functions
h (·). Suppose, for simplicity, that ϑ ∈ � = (α, β), α > 0.

Let us introduce the function

K (ϑ, ϑ0) =
{

E∗
ϑ0

[
(ρ1 − ρ2) ξ 1{ϑ0<ξ<ϑ} + h (ξ)

]2
, if ϑ ≥ ϑ0

E∗
ϑ0

[
(ρ2 − ρ1) ξ 1{ϑ<ξ<ϑ0} + h (ξ)

]2
, if ϑ ≤ ϑ0

and suppose that ρ2 > ρ1. Then for ϑ > ϑ0 we have

K (ϑ, ϑ0) =
[∫ ϑ0

−∞
+
∫ ∞

ϑ

]
h (x)2 fh (ϑ0, x) dx

+
∫ ϑ

ϑ0

[(ρ1 − ρ2) x + h (x)]2 fh (ϑ0, x) dx,

and

∂K (ϑ, ϑ0)

∂ϑ
= −h (ϑ)2 fh (ϑ0, ϑ)+ [(ρ1 − ρ2) ϑ + h (ϑ)]2 fh (ϑ0, ϑ)

=
[
(ρ1 − ρ2)

2 ϑ2 + 2 (ρ1 − ρ2) ϑh (ϑ)
]

fh (ϑ0, ϑ).
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Therefore, if

h (y) <
y

2
(ρ2 − ρ1) , for α < y < β,

then for ϑ > ϑ0

∂K (ϑ, ϑ0)

∂ϑ
> 0

and similarly, if

h (y) > − y

2
(ρ2 − ρ1), for α < y < β,

then for ϑ < ϑ0

∂K (ϑ, ϑ0)

∂ϑ
< 0.

We see that if the function h (·) satisfies the condition

|h (y)| < y

2
(ρ2 − ρ1), α < y < β, (11)

thenϑ∗ = ϑ0 and the MLE ϑ̂T is consistent even for this “wrong model” (see Kutoyants
2004, Sect. 3.4.5 for another example). Note, that there is no conditions on h (y) for
y �∈ [α, β].

Let us return to the problem of the construction of the preliminary consistent esti-
mator of the parameter ϑ3 by observations (6). Suppose that β1 − α1 < α2 − β1 and
β2 − α2 < α2 − β1. Let us put

ϑ̂1 = α1 + β1

2
, ϑ̂2 = α2 + β2

2

and consider the problem of estimation ϑ3 by the “wrong model”

dXt = −ϑ̂1 Xt 1{Xt<ϑ3}dt − ϑ̂2 Xt 1{Xt ≥ϑ3}dt + σdWt , 0 ≤ t ≤ √
T

with “known” ϑ̂1, ϑ̂2. This corresponds well to the model (10) with

h (x) = (ϑ̂1 − ϑ1)x1{x<ϑ3} + (ϑ̂2 − ϑ2)x1{x≥ϑ3}.

We see that the condition (11) is fulfilled, hence the MLE ϑ̂3,
√

T is consistent and can

be used in the construction of the estimators (8). Note that the estimator ϑ̂3,
√

T even
has “singular” rate of convergence, but its limit distribution is different of that of the
true MLE. Note that the similar problem was considered in Kutoyants (2004), Sect.
3.4.5.
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3 General threshold model

Suppose that the observed diffusion process X T = {Xt , 0 ≤ t ≤ T } satisfies the equa-
tion

dXt =
k+1∑
j=1

S j (Xt ) 1{ϑ j−1<Xt ≤ϑ j}dt + σ (Xt ) dWt , X0, (12)

where ϑ0 = −∞, ϑ j ∈ � j = (
α j , β j

)
, j = 1, . . . , k, ϑk+1 = ∞, β j < α j+1.

The unknown parameter is ϑ = (ϑ1, . . . , ϑk) ∈ � = �1 × · · · × �k . Our goal is
to estimate ϑ and to describe the asymptotic properties of estimators as T → ∞. As
before, we are interested in the estimators obtained by the maximum likelihood and
Bayesian methods.

This model can be called “Nonlinear Threshold Diffusion Process”. Of course, all
considered above models are nonlinear due to the indicator functions. Here, we use
the term “nonlinear” because the linear function ρx in the trend coefficient −ρx 1{·}
is replaced by more general function S (x).

ES. The functions S j (·) are locally bounded, the function σ (·)2 is continuous and
positive and for some A > 0 the condition

x S1 (x)1{x<α1} + x Sk+1 (x)1{x≥βk } + σ (x)2 ≤ A
(

1 + x2
)

(13)

holds.

This condition provides the existence of unique weak solution (see Durret 1996).
The asymptotic behavior of the diffusion process is defined by the following con-

dition.

A. The functions S1 (x), Sk+1(x) and σ (x) satisfy the conditions

|σ (x)|−1 ≤ B
(
1 + |x |m)

with some B > 0 and m > 0 and

lim
x→−∞

S1 (x)

σ (x)2
> 0, lim

x→∞
Sk+1 (x)

σ (x)2
< 0.

By this condition the process (Xt )t≥0 has ergodic properties. Let us denote by
f (ϑ, x) the density of its invariant law and by ξ the random variable with such den-
sity function. Note that by this condition ξ has all polynomial moments (see Kutoyants
2004).

The identifiability condition in this statistical problem is the following one

inf
y∈(α j ,β j)

∣∣S j (y)− S j+1(y)
∣∣ > 0, j = 1, . . . , k. (14)
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We suppose that all measures
{

P(T )ϑ ,ϑ ∈ �
}

induced by this process in the space

(C (0, T ) ,B (0, T )) are equivalent to the measure P(T ), which corresponds to the
process

dXt = σ (Xt ) dWt , X0, 0 ≤ t ≤ T

(see Liptser and Shiryayev 2001). The likelihood ratio

L
(
ϑ, X T

)
= dP(T )ϑ

dP(T )

(
X T
)
, ϑ ∈ �,

in this problem is the random function

ln L
(
ϑ, X T

)
=

k+1∑
j=1

∫ T

0

S j (Xt )

σ (Xt )
2 1{ϑ j−1<Xt ≤ϑ j}dXt

−
k+1∑
j=1

∫ T

0

S j (Xt )
2

2σ (Xt )
2 1{ϑ j−1<Xt ≤ϑ j}dt.

The MLE ϑ̂T is defined by the same equation

L
(
ϑ̂T , X T

)
= sup

θ∈�

L
(
θ , X T

)
,

where the function L
(
ϑ, X T

)
is not differentiable with respect to ϑ .

Note that

1{ϑ j−1<x≤ϑ j} = 1{x≤ϑ j} − 1{x≤ϑ j−1}.

Hence

k+1∑
j=1

S j (x)1{ϑ j−1<x≤ϑ j} =
k+1∑
j=1

S j (x)1{x≤ϑ j} −
k+1∑
j=1

S j (x)1{x≤ϑ j−1}

= Sk+1 (x)+
k∑

j=1

[
S j (x)− S j+1 (x)

]
1{x≤ϑ j}

and we can write the likelihood ratio as product of k + 1 “likelihood ratios”

L̂
(
ϑ, X T

)
= dP(T )ϑ

dP(T )0

(
X T
)

= Lk+1

(
X T
) k∏

j=1

L j

(
ϑ j , X T

)
, (15)
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where

ln Lk+1

(
X T
)

=
∫ T

0

Sk+1 (Xt )

σ (Xt )
2 dXt −

∫ T

0

Sk+1 (Xt )
2

2σ (Xt )
2 dt

and

ln L j

(
ϑ j , X T

)
=
∫ T

0

S j (Xt )− S j+1 (Xt )

σ (Xt )
1{Xt ≤ϑ j} dXt

−
∫ T

0

[
S j (Xt )

2 − S j+1 (Xt )
2]

2σ (Xt )
2 1{Xt ≤ϑ j} dt.

This allows us to reduce the calculation of the MLE ϑ̂T of multidimensional param-
eter ϑ to k one-dimensional problems :

ϑ̂ j,T = argmaxϑ j ∈� j
L j

(
ϑ j , X T

)
, j = 1, . . . , k,

and to put ϑ̂T =
(
ϑ̂1,T , . . . , ϑ̂k,T

)
.

To introduce the BE ϑ̃T we suppose that ϑ is a random vector with a known contin-
uous positive density a priori p (θ) , θ ∈ � and the loss function � (u) ≥ 0, u ∈ Rk

is symmetric � (−u) = � (u), strictly convex and has polynomial majorant. The esti-
mator ϑ̃T is defined as solution of the following equation

∫

�

Eθ�
(
ϑ̃T − θ

)
p (θ) dθ = inf

ϑ∈�

∫

�

Eθ� (ϑ − θ) p (θ) dθ .

Remind that in the case � (u) = |u|2 this estimator is

ϑ̃T =
∫
� θ L

(
θ, X T

)
p (θ) dθ∫

� L
(
θ, X T

)
p (θ) dθ

.

Let us introduce ûϑ = (û1,ϑ , . . . , ûk,ϑ
)
, where

û j,ϑ = û j

γ j (ϑ)
2 , γ j (ϑ)

2 =
(
S j+1

(
ϑ j
)− S j

(
ϑ j
))2

σ
(
ϑ j
)2 f

(
ϑ, ϑ j

)
, (16)

and û1, . . . , ûk are independent random variables defined by the equalities

û j = argsupu∈R

[
W j (u)− 1

2
|u|
]
.

Here W j (·) , j = 1, . . . , k are independent two-sided Wiener processes.
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Let us define the random vector ũϑ as solution of the following equation

∫

Rk
� (ũϑ − u) Z (u) du = inf

v∈Rk

∫

Rk
� (v − u) Z (u) du,

where

Z (u) = exp

⎧⎨
⎩

k∑
j=1

[
γ j (ϑ)W j

(
u j
)−

∣∣u j
∣∣

2
γ j (ϑ)

2

]⎫⎬
⎭. (17)

Theorem 1 Suppose that these conditions ES,A and (14) are fulfilled, then the MLE
ϑ̂T and BE ϑ̃T are consistent, have the following limit distributions:

T
(
ϑ̂T − ϑ

) �⇒ ûϑ , T
(
ϑ̃T − ϑ

) �⇒ ũϑ

and the moments converge : for any p > 0

lim
T →∞ T p Eϑ

∣∣ϑ̂T − ϑ
∣∣p = E

∣∣ûϑ

∣∣p, lim
T →∞ T p Eϑ

∣∣∣ϑ̃T − ϑ

∣∣∣
p = E |ũϑ |p.

The proof is given in the Sect. 5.

4 Examples of threshold models

Below we consider several other threshold type ergodic diffusion processes and discuss
the properties of parameter estimators for these models.

4.1 Simple threshold model

Suppose that the observed process is

dXt = ρ1 1{Xt<ϑ}dt − ρ2 1{Xt ≥ϑ}dt + σdWt , 0 ≤ t ≤ T, (18)

where ρi > 0 and ϑ ∈ (α, β). Then this process is ergodic with exponential type
invariant density

f (ϑ, x) = 1

G (ϑ)
exp

{
−2ρ (x, ϑ) |x − ϑ |

σ 2

}
,

where ρ (x, ϑ) = ρ11{x<ϑ} + ρ21{x≥ϑ} and G (ϑ) is the normalizing constant.
The MLE ϑ̂T and BE ϑ̃T have the same properties as in Proposition 1 and the

corresponding function �2
ϑ = σ−42 ρ2ρ1 (ρ2 + ρ1).

The proof see in the Sect. 5.
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4.2 Simple switching

Suppose that in the model (18), we have ρ1 = ρ2 = ρ > 0. Then, the observed
process is

dXt = −ρ sgn (Xt − ϑ) dt + σdWt , 0 ≤ t ≤ T, (19)

where ϑ ∈ � = (α, β). This Simple Switching Process was studied in Kutoyants
(2004), Sect. 3.4.1. Remind that it has Laplace type invariant density

f (ϑ, x) = ρ

σ 2 e− 2ρ
σ2 |x−ϑ |

.

The likelihood ratio formula has the representation

L
(
ϑ, X T

)
= exp

{
− ρ

σ 2

∫ T

0
sgn (Xt − ϑ) dXt − ρ2T

2σ 2

}
.

Hence, the MLE ϑ̂T is defined by the equation

∫ T

0
sgn
(

Xt − ϑ̂T

)
dXt = inf

ϑ∈(α,β)

∫ T

0
sgn (Xt − ϑ) dXt .

Note that the last stochastic integral we find in Tanaka–Meyer representation of the
local time �T (x) of diffusion process (see Revuz and Yor 1991)

�T (ϑ) = |XT − ϑ | − |X0 − ϑ | −
∫ T

0
sgn (Xt − ϑ) dXt

and the maximum likelihood is in some sense asymptotically equivalent to the max-
imum local time estimator. Remind that f ◦

T (x) = �T (x) /Tσ 2 is the consistent,
asymptotically normal and asymptotically efficient (in nonparametric statement) esti-
mator of the invariant density (see Kutoyants 2004 for details), and we have obviously

sup
ϑ∈�

f (ϑ0, ϑ) = f (ϑ0, ϑ0).

We have the same asymptotic properties of the MLE and BE as in the Proposition 1.
The proof can be found in Kutoyants (2004), Sect. 3.4.
Note that the observation window (−∞,∞) can be essentially reduced. Let us put

ϑ�√
T

= 1√
T

∫ √
T

0
Xt dt.
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This is an estimator of the method of moments (Eϑξ = ϑ). It is consistent and asymp-
totically normal

T 1/4
(
ϑ�√

T
− θ
)

�⇒ N
(

0, d2 (ϑ)
)

(see Kutoyants (2004), p. 270, where d2 (ϑ) is calculated). Introduce the window

BT =
[
ϑ�√

T
− T −1/8, ϑ�√

T
+ T −1/8

]
.

The MLE and BE we define with the help of the following LR

L
(
ϑ, X T√

T

)
= exp

{
− ρ

σ 2

∫ T

√
T

sgn(Xt − ϑ)1{Xt ∈BT }dXt

− ρ2

2σ 2

∫ T

√
T
1{Xt ∈BT }dt

}
.

Then, these estimators have the same asymptotic properties as if the observation win-
dow is BT = (−∞,∞).

This a bit surprising result is probably typical for singular estimation problems.
The analyse of the proof of the properties of estimators (see Kutoyants 2004, Sect.
3.4) shows that only the values of Xt close to the true value ϑ0 have contribution to the
limit likelihood ratio. Hence, all other observations are irrelevant and can be deleted
by introducing this window. This is a general property of threshold models and the
similar construction can be done in the case of all other threshold models studied in
this work.

4.3 Multi threshold O–U process

Suppose that the observed process is

dXt = −
k+1∑
l=1

ρl Xt 1{ϑl−1<Xt ≤ϑl}dt + σdWt , 0 ≤ t ≤ T, (20)

where ρ1> 0, ρk+1> 0, ρl �= ρm > 0, ϑ0 =−∞, ϑk+1 =∞ and ϑ = (ϑ1, . . . , ϑk) ∈
� = �1 × · · · × �k , �l = (αl , βl), βl < αl+1. Then this process is a particular
case of (12) and conditions of ergodicity and identifiability are fulfilled. Therefore we
obtain the mentioned in the Theorem 1 properties of the estimators for the details, see
Sect. 5.

123



398 Y. A. Kutoyants

5 Proofs

First note that the parameter estimation problems for the models of the observations (3),
(18)–(20) are particular cases of the threshold estimation problem for stochastic pro-
cess (12). Therefore, it is sufficient to prove the Theorem 1.

5.1 Proof of Theorem 1

The proof of this theorem is based on the two remarkable theorems by (Ibragimov
and Khasminskii 1981; Theorems 1.10.1, 1.10.2) and some results obtained before in
Kutoyants (2004). Let us remind the main steps of this approach. Introduce the random
function (normalized likelihood ratio)

ZT (u) = L
(
ϑ + u

T , X T
)

L
(
ϑ, X T

) , u ∈ U T = U1,T × · · · × Uk,T ,

where U j,T = (
T
(
α j − ϑ j

)
, T
(
β j − ϑ j

))
. The properties of estimators follow,

roughly speaking, from the weak convergence of this function to the limit random
field (17): ZT (u) �⇒ Z (u).

Suppose that we have already this convergence and (for simplicity) assume that
k = 1 (for the multidimensional case see. Then for the MLE we have (ϑ is the true
value):

Pϑ
{

T
(
ϑ̂T − ϑ

)
< x

}

= P

{
sup

T (θ−ϑ)<x
L
(
θ, X T ) > sup

T (θ−ϑ)≥x
L
(
θ, X T )

}

= P

{
sup

T (θ−ϑ)<x

L
(
ϑ, X T

)

L
(
ϑ0, X T

) > sup
T (θ−ϑ)≥x

L
(
ϑ, X T

)

L
(
ϑ0, X T

)
}

= P
{

sup
u<x

ZT (u) > sup
u≥x

ZT (u)

}

−→ P
{

sup
u<x

Z (u) > sup
u≥x

Z (u)

}

= P
(

û

γ (ϑ)2
< x

)
, i.e. T

(
ϑ̂T − ϑ

) �⇒ û

γ (ϑ)2
. (21)

where we put θ = ϑ + T −1u and γ1 (ϑ) = γ (ϑ).
To describe the behavior of the BE we take we for simplicity the square loss function

and use the same change of variables θ = ϑ + u/T ≡ θu and,
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ϑ̃T =
∫ β
α
θp (θ) L

(
θ, X T

)
dθ∫ β

α
p (θ) L

(
θ, X T

)
dθ

= ϑ + 1

T

∫
UT

up (θu) L
(
θu, X T

)
du∫

UT
p (θu) L

(
θu, X T

)
du

= ϑ + 1

T

∫
UT

up (θu)
L
(
θu ,X T

)
L(ϑ,X T )

du

∫
UT

p (θu)
L(θu ,X T )
L(ϑ,X T )

du
= ϑ + 1

T

∫
UT

up (θu) ZT (u) du∫
UT

p (θu) ZT (u) du
.

Then, using the convergence p (θu) → p (ϑ), we can write

Pϑ
{

T
(
ϑ̃T − ϑ

)
< x

}
= P

{∫
UT

u p (θu) ZT (u) du∫
UT

p (θu) ZT (u) du
< x

}

−→ P
{∫

R u Z (u) du∫
R Z (u) du

< x

}
= P

(
ũ

γ (ϑ)2
< x

)
. (22)

The random variables û and ũ are defined in (5).
We see that to prove the theorem we need to prove the convergences (21), (22).

These convergences together with the estimates on the large deviations of estimators
will provide the convergence of moments. The corresponding sufficient conditions
are given in the mentioned above theorems by Ibragimov and Khasminskii. Let us
introduce the conditions

A. The finite dimensional distributions of the random function ZT (·) converge to
the finite dimensional distributions of the function Z (·).

B. There exist constants B > 0,m > 0, b > 0 and d such that for any R > 0 and
|u| ≤ R, |v| ≤ R

Eϑ

∣∣∣∣Z
1

2m
T (u)− Z

1
2m
T (v)

∣∣∣∣
2m

≤ B
(

1 + Rb
)

|u − v|d . (23)

C. For any N > 0, there exists constant CN > 0, such that

Eϑ Z
1
2
T (u) ≤ CN

|u|N
. (24)

These conditions are the version of the conditions of Theorems 1.10.1 (with d > k)
and 1.10.2 Ibragimov and Khasminskii (1981), which we will verify in this work.

We start with the condition A. Let us consider the case when all u j > 0 and denote
h j (x) = S j (x) /σ (x). Note that

1{
ϑ j−1+ u j−1

T <Xt ≤ϑ j + u j
T

} − 1{ϑ j−1<Xt ≤ϑ j}
= 1{

ϑ j<Xt ≤ϑ j + u j
T

} − 1{
ϑ j−1<Xt ≤ϑ j−1+ u j−1

T

} = 1{B j} − 1{B j−1}

in obvious notation.
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Then, the likelihood ratio ZT (u) can be written as follows

ln ZT (u) =
k+1∑
j=1

∫ T

0
h j (Xt )

[
1{B j} − 1{B j−1}

]
dWt

−1

2

k∑
j=1

∫ T

0

[
h j (Xt )− h j+1 (Xt )

]2
1{B j}dt.

Using the local time estimator f ◦
T (x) of the invariant density f (ϑ, x) we write

∫ T

0

[
h j (Xt )− h j+1 (Xt )

]2
1{B j}dt

= T
∫ ∞

−∞
[
h j (x)− h j+1 (x)

]2
1{
ϑ j<x≤ϑ j + u j

T

} f ◦
T (x) dx

= T
∫ ϑ j + u j

T

ϑ j

[
h j (x)− h j+1 (x)

]2
f ◦
T (x) dx

= T
∫ ϑ j + u j

T

ϑ j

[
h j (x)− h j+1 (x)

]2
f (ϑ, x) dx

+T
∫ ϑ j + u j

T

ϑ j

[
h j (x)− h j+1 (x)

]2 [
f ◦
T (x)− f (ϑ, x)

]
dx .

For the random function ηT (x) = T
(

f ◦
T (x)− f (ϑ, x)

)
we have the estimate: for

any p > 0 there exist constants C∗ > 0 and c∗ > 0 such that

Eϑ |ηT (x)|p ≤ C∗ e−c∗|x | (25)

see Proposition 1.11 in Kutoyants (2004). This estimate allows us to prove that the
last integral tends to zero as T → ∞. We have as well

T
∫ ϑ j + u j

T

ϑ j

[
h j (x)− h j+1 (x)

]2
f (ϑ, x) dx

−→ u j
[
h j
(
ϑ j
)− h j+1

(
ϑ j
)]2

f
(
ϑ, ϑ j

) = u jγ j (ϑ)
2.

Therefore,

k∑
j=1

∫ T

0

[
h j (Xt )− h j+1 (Xt )

]2
1{B j}dt −→

k∑
j=1

u jγ j (ϑ)
2.
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The central limit theorem for stochastic integrals yields the asymptotic normality of
the vector ξT = (ξ1,T , . . . , ξk,T

)

ξ j,T =
∫ T

0

[
h j (Xt )− h j+1 (Xt )

]
1{B j}dWt �⇒ N

(
0, u jγ j (ϑ)

2
)

with asymptotically independent components, because

Eϑξ j,T ξl,T = 0, l �= j.

Moreover, if we put ξ j,T = ξ j,T
(
u j
)

and consider the vector ξ j,T =(
ξ j,T

(
u j,1

)
, . . . , ξ j,T

(
u j,n

))
, where u j,1, . . . , u j,n is some collection of values from

U j,T , then

Eϑξ j,T
(
u j,r
)
ξ j,T

(
u j,q

) = T
∫ ϑ j + u j,r ∧u j,q

T

ϑ j

[
h j (x)− h j+1 (x)

]2
f (ϑ, x) dx

−→ [
u j,r ∧ u j,q

]
γ j (ϑ)

2 .

Using this equality and preceding limits, we can show the convergence

(
ξ j,T

(
u j,1

)
, . . . , ξ j,T

(
u j,n

)) �⇒ γ j (ϑ)
(
W j
(
u j,1

)
, . . . ,W j

(
u j,1

))
.

Therefore, the condition A is fulfilled.
To verify B, we do it twice. The first time we check this condition with m = 1,

which is sufficient for BEs (multidimensional case) and then (for MLE), we verify
it for the partial likelihoods Z j,T (u). Following Kutoyants (2004), Lemma 3.28, we
write (we suppose that v j < u j )

Eϑ

∣∣∣Z1/2
T (u)− Z1/2

T (v)

∣∣∣
2 ≤ 1

4

k∑
j=1

E∗
∫ T

0

[
h j (Xt )− h j+1 (Xt )

]2
1{

B̃ j

}dt

= 1

4

k∑
j=1

T
∫ ∞

−∞
[
h j (x)−h j+1 (x)

]2
1{
ϑ j + v j

T <x≤ϑ j + u j
T

} f∗ (x) dx

= 1

4

k∑
j=1

T
∫ ϑ j + u j

T

ϑ j + v j
T

[
h j (x)− h j+1 (x)

]2
f∗ (x) dx

≤ C
k∑

j=1

∣∣u j − v j
∣∣ ≤ C ‖u − v‖. (26)
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Here E∗ and f∗ (·) are expectation and invariant density which correspond to the
stochastic differential equation

dXt =
k+1∑
j=1

S j (Xt )

[
1{
ϑ j−1+ u j−1

T <Xt ≤ϑ j + u j
T

} + 1{
ϑ j−1+ v j−1

T <Xt ≤ϑ j + v j
T

}
]

dt

+ σ (Xt ) dWt , X0, 0 ≤ t ≤ T

(see details in Kutoyants 2004, p. 379).
The condition B in the case of the study the MLE we check for the components

Z j,T
(
u j
)
, u j ∈ U j,T separately as follows. Let us introduce the stochastic process

Vj,t =
(

Z j,t
(
u j
)

Z j,t
(
v j
)
)1/16

, Vj,0 = 1, 0 ≤ t ≤ T

and denote

g j (x) = S j (x)− S j+1 (x)

σ (x)
.

Then the process

Vj,t = exp

{
1

16

∫ t

0

S j (Xs)− S j+1 (Xs)

σ (Xs)
2 1{

ϑ j + v j
T <Xs≤ϑ j + u j

T

} dXs

− 1

32

∫ t

0

S j (Xs)
2 − S j+1 (Xs)

2

σ (Xs)
2 1{

ϑ j + v j
T <Xs≤ϑ j + u j

T

} ds

}

by Itô formula admits the representation (under measure P(T )ϑ )

Vj,T = 1 + 1

16

∫ T

0
Vj,t

S j (Xs)− S j+1 (Xs)

σ (Xs)
1{
ϑ j + v j

T <Xs≤ϑ j + u j
T

} dWt

− 15

512

∫ T

0
Vj,t

(
S j (Xs)− S j+1 (Xs)

σ (Xs)

)2

1{
ϑ j + v j

T <Xs≤ϑ j + u j
T

} dt,

Remind that

1{
ϑ j + v j

T <x≤ϑ j + u j
T

}
k+1∑
l=1

Sl (x)1{ϑl−1<x≤ϑl} = S j+1 (x)1{
ϑ j + v j

T <x≤ϑ j + u j
T

}.
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Therefore we can write

Eϑ

∣∣∣Z1/16
j,T

(
u j
)− Z1/16

j,T

(
v j
)∣∣∣

4 = Eϑ Z1/4
j,T

(
v j
) ∣∣1 − Vj,T

∣∣4

≤
(

Eϑ Z1/2
j,T

(
v j
))1/2 (

Eϑ

∣∣1 − Vj,T
∣∣8)1/2

≤
(

Eϑ

∣∣1 − Vj,T
∣∣8)1/2

because Eϑ Z1/2
j,T

(
v j
) ≤ 1. Further

Eϑ

∣∣1 − Vj,T
∣∣8 ≤ C1 Eϑ

(∫ T

0
Vj,t g j (Xt )

2 1{
ϑ j + v j

T <Xs≤ϑ j + u j
T

} dt

)8

+C2 Eϑ

(∫ T

0
Vj,t g j (Xt ) 1

{
ϑ j + v j

T <Xs≤ϑ j + u j
T

} dWt

)8

. (27)

For the last (stochastic) integral we have the estimates

Eϑ

(∫ T

0
Vj,t g j (Xt ) 1

{
ϑ j + v j

T <Xs≤ϑ j + u j
T

} dWt

)8

≤ CEϑ

(∫ T

0
V 2

j,t g j (Xt )
2 1{

ϑ j + v j
T <Xs≤ϑ j + u j

T

} dt

)4

≤ CEϑ sup
0≤t≤T

V 8
j,t

(∫ T

0
g j (Xt )

2 1{
ϑ j + v j

T <Xs≤ϑ j + u j
T

} dt

)4

≤ C

(
Eϑ sup

0≤t≤T
V 16

j,t

)1/2

×
(

Eϑ

(∫ T

0
g j (Xt )

2 1{
ϑ j + v j

T <Xs≤ϑ j + u j
T

} dt

)8)1/2

.

Remind that V 16
t is martingale and Eϑ V 16

T = 1. Using once more the local time
estimator of the density we write

∫ T

0
g j (Xt )

2 1{
ϑ j + v j

T <Xs≤ϑ j + u j
T

}dt = T
∫ ϑ j + u j

T

ϑ j + v j
T

g j (x)
2 f ◦

T (x) dx .
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Hence

Eϑ

(∫ T

0
g j (Xt )

2 1{
ϑ j + v j

T <Xs≤ϑ j + u j
T

}dt

)8

≤ (u j − v j
)7

T
∫ ϑ j + u j

T

ϑ j + v j
T

g j (x)
16 Eϑ f ◦

T (x)
8 dx ≤ C

(
u j − v j

)8
.

The expectation Eϑ f ◦
T (x)

8 due to the estimate (25) is a bounded function. For the
first integral in (27), the similar calculations yield the estimate

Eϑ

(∫ T

0
Vj,t g j (Xt )

2 1{
ϑ j + v j

T <Xs≤ϑ j + u j
T

} dt

)8

≤ C
(
u j − v j

)8
.

Therefore, for
∣∣u j
∣∣ ≤ R,

∣∣v j
∣∣ ≤ R

Eϑ

∣∣∣Z1/16
j,T

(
u j
)− Z1/16

j,T

(
v j
)∣∣∣

8 ≤ C
(
u j − v j

)2 + (u j − v j
)4

≤ C
(

1 + R2
) ∣∣u j − v j

∣∣2 . (28)

To verify condition C, we follow the proof of the Lemmas 3.29 and 2.11 in Kutoyants
(2004). By condition (14), we have

Eϑ

k∑
j=1

∫ T

0

[
h j (Xt )− h j+1 (Xt )

]2
1{ϑ j<Xt ≤ϑ j +δ j}dt

= T
k∑

j=1

∫ ϑ j +δ j

ϑ j

[
h j (x)− h j+1 (x)

]2
f (ϑ, x) dx

= T
k∑

j=1

κ jδ j (1 + o (1)) ≥ κT |δ|

with some positive constants κ, κ j . Here δ = (δ1, . . . , δk) and we suppose for sim-
plicity that all δ j > 0. Hence, the inequality (24) follows from the mentioned above
lemmas.

The properties of BE follow from the Theorem 1.10.2 in Ibragimov and Khasminskii
(1981) because the conditions A, (26) and (24) are sufficient for this theorem.

For the MLE, we do not apply directly the Theorem 1.10.1 in Ibragimov and
Khasminskii (1981) because it requires in condition B that d > k. We follow
the modification of this theorem discussed in the proof of the Proposition 2.40
in Kutoyants (2004). Let us consider the vector of likelihood ratios Y (u)T =
(Z1/4

1,T (u1), . . . , Z1/4
k,T (u1)). For the components Z1/4

j,T

(
u j
)
, j = 1, . . . , k we have the

joint convergence of its dimensional distributions to the distribution of the limit random
field
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Y(u) = (Z1/4
1 (u1), . . . , Z1/4

k (u1)) with independent components and the conditions
B and C. Therefore, we have the tightness of the corresponding vector of measures
and for each component we have the large deviations estimates: for any L > 0 and
N > 0 there exists CN > 0 such that

P(T )ϑ

{
sup

|u j |>L
Z1/4

j,T

(
u j
) ≥ 1

L N

}
≤ CN

L N
.

These estimates and the factorization of the likelihood ratio (15) allows us to finish
the proof of the properties of MLE mentioned in Theorem 1. Note that the MLE ϑ̂ j,T

can be written as

ϑ̂ j,T = argmaxθ j ∈� j
L1/4

j

(
θ j , X T

)

too. ��

5.2 Proof of Proposition 2

To prove the Proposition 2, we consider the normalized likelihood ratio (we take
u > 0)

ln ZT (v,w, u) = ln
L
(
ϑ1 + v√

T
, ϑ2 + w√

T
, ϑ3 + u

T , X T
)

L
(
ϑ1, ϑ2, ϑ3, X T

)

= − v

σ
√

T

∫ T

0
Xt1{Xt<ϑ3}dWt − w

σ
√

T

∫ T

0
Xt1{Xt ≥ϑ3}dWt

+
(
ϑ2 − ϑ1 + w − v√

T

)
1

σ

∫ T

0
Xt1

{
ϑ3<Xt ≤ϑ3+ u√

T

}dWt

− 1

σ 2

∫ T

0

[
− v√

T
1{Xt<ϑ3} − w√

T
1{Xt ≥ϑ3}

+
(
ϑ2 − ϑ1 + w − v√

T

)
1{
ϑ3<Xt ≤ϑ3+ u√

T

}
]2

X2
t dt

≡ v�1,T + w�2,T +
(
ϑ2 − ϑ1

σ
+ w − v

σ
√

T

)
�3,T (u)− 1

2
JT ,

where the last equality introduce the notation for these integrals. For the last integral
we can write

JT = v2

σ 2T

∫ T

0
X2

t 1{Xt<ϑ3}dt + w2

σ 2T

∫ T

0
X2

t 1{Xt ≥ϑ3}dt

+ (ϑ2 − ϑ1)
2

σ 2

∫ T

0
X2

t 1{ϑ3<Xt ≤ϑ3+ u
T }dt + o (1). (29)
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For the first two integrals by the law of large numbers we have

1

T

∫ T

0
X2

t 1{Xt<ϑ3} dt −→ Eϑξ
21{ξ<ϑ3}, (30)

1

T

∫ T

0
X2

t 1{Xt ≥ϑ3} dt −→ Eϑξ
21{ξ≥ϑ3}, (31)

and for the last one using the local time estimator of the density we obtain

∫ T

0
X2

t 1{ϑ3<Xt ≤ϑ3+ u
T }dt = T

∫ ϑ3+ u
T

ϑ3

x2 f ◦
T (x) dx = T

∫ ϑ3+ u
T

ϑ3

x2 f (ϑ, x) dx

+ T
∫ ϑ3+ u

T

ϑ3

x2 ( f ◦
T (x)− f (ϑ, x)

)
dx =u ϑ2

3 f (ϑ, ϑ3)+o(1),

where in o (1) we used once more the estimate (25). Therefore,

JT −→ v2

σ 2 Eϑξ
21{ξ≤ϑ3} + w2

σ 2 Eϑξ
21{ξ≥ϑ3} + u

(ϑ2 − ϑ1)
2 ϑ2

3

σ 2 f (ϑ, ϑ3) .

For the stochastic integrals �1,T and �2,T from (30), (31) and by the central limit
theorem we have the convergence

�1,T �⇒ ζ1 ∼ N (0, I1), I1 = 1

σ 2 Eϑξ
21{ξ≤ϑ3} (32)

�2,T �⇒ ζ2 ∼ N (0, I2), I2 = 1

σ 2 Eϑξ
21{ξ≥ϑ3}, (33)

where the random variables ζ1 and ζ2 are independent.
Let us consider �T = λ1�3,T (u1)+ λ2�3,T (u2). We have

�T =
∫ T

0

[
λ1 Xt1{ϑ3<Xt ≤ϑ3+ u1

T

} + λ2 Xt1{ϑ3<Xt ≤ϑ3+ u2
T

}
]

dWt .

Note that

∫ T

0

[
λ1 Xt1{ϑ3<Xt ≤ϑ3+ u1

T

} + λ2 Xt1{ϑ3<Xt ≤ϑ3+ u2
T

}
]2

dt

= λ2
1

∫ T

0
X2

t 1
{
ϑ3<Xt ≤ϑ3+ u1

T

}dt + λ2
2

∫ T

0
X2

t 1
{
ϑ3<Xt ≤ϑ3+ u2

T

}dt

+2λ1λ2

∫ T

0
X2

t 1
{
ϑ3<Xt ≤ϑ3+ u1∧u2

T

}dt

−→
[
u1 λ

2
1 + u2 λ

2
2 + 2λ1λ2 (u1 ∧ u2)

]
ϑ2

3 f (ϑ, ϑ3) ≡ d2.
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Hence�T is asymptotically normal�T ⇒ �with the limit variance d2. Remind that
the same variance has the random variable

� = λ1ϑ3
√

f (ϑ, ϑ3) W (u1)+ λ2ϑ3
√

f (ϑ, ϑ3) W (u2),

where W (·) is a Wiener process. Therefore we have the convergence of the finite
dimensional distributions of �3,T (u) to the finite dimensional distributions of the
process ϑ3

√
f (ϑ, ϑ3) W (u):

(
�3,T (u1) , . . . ,�3,T (uk)

)

�⇒
(
ϑ3
√

f (ϑ, ϑ3) W (u1) , . . . , ϑ3
√

f (ϑ, ϑ3) W (uk)
)
. (34)

This convergence together with (32) and (33) allows to write the likelihood ratio
random field as

ZT (v,w, u) = exp

{
v�1,T − v2

2
I1 + w�2,T − w2

2
I2

+
(
ϑ2 − ϑ1

σ

)
�3,T (u)− |u|

2
γ (ϑ)2 + o (1)

}
.

where �1,T and �2,T are asymptotically normal, and

γ (ϑ)2 = (ϑ2 − ϑ1)
2 ϑ2

3

σ 2 f (ϑ, ϑ3) ≡ γ 2.

Therefore we have the convergence of the finite dimensional distributions of ZT

(v,w, u) to that of the random function

Z (v,w, u) = evζ1− v2
2 I1 ewζ2−w2

2 I2 eγW (u)− |u|
2 γ

2
, v, w, u ∈ R3.

where ζ1, ζ2 and W (·) are independent.
To check the condition B in the case of Bayesian estimation we following (26) write

(u2 > u1 > 0)

Eϑ

∣∣∣Z1/2
T (v1, w1, u1)− Z1/2

T (v2, w2, u2)

∣∣∣
2

≤ 1

4σ 2 E∗
∫ T

0

[
(v1 − v2)1{Xt<ϑ3}√

T
+ (w1 − w2)1{Xt ≥ϑ3}√

T

+
(
ϑ1 − ϑ2 + v2 − v1 − w2 + w1√

T

)
1{ϑ3+ u1

T <Xt<ϑ3+ u2
T

}
]2

X2
t dt

≤ C1 (v1 − v2 )
2 + C2 (w1 − w2 )

2 + C3 |u2 − u1| .

In the case of MLE this estimate is not sufficient because the condition d > 3 is
not fulfilled. We slightly modify the proof of (28). Let us denote u = (v,w, u) and
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put

VT =
(

ZT (v2, w2, u2)

ZT (v1, w1, u1)

) 1
32

.

Then

Eϑ

∣∣∣∣Z
1

32
T (v1, w1, u1)− Z

1
32
T (v2, w2, u2)

∣∣∣∣
8

= Eϑ Z
1
4
T (v2, w2, u2) |1 − VT |8

≤
(

Eϑ Z
1
2
T (v2, w2, u2)

) 1
2 (

Eϑ |1 − VT |16
) 1

2 ≤
(

Eϑ |1 − VT |16
) 1

2
.

The process Vt , 0 ≤ t ≤ T by Itô formula admits the representation

VT = 1 − a
∫ T

0
Vt (�S (Xt ))

2 dt + b
∫ T

0
Vt (�S (Xt )) dWt

with corresponding constants a > 0 and b > 0 and �S (Xt ) ≡ �St is the difference
of two trend coefficients. Hence

Eϑ |1 − VT |16 ≤ AEϑ

(∫ T

0
Vt (�St )

2 dt

)16

+ BEϑ

(∫ T

0
Vt (�St ) dt

)16

≤ AEϑ

(∫ T

0
Vt (�St )

2 dt

)16

+ CEϑ

(∫ T

0
V 2

t (�St )
2 dt

)8

.

Further

Eϑ

(∫ T

0
V 2

t (�St )
2 dt

)8

≤ Eϑ sup
0≤t≤T

V 16
t

(∫ T

0
(�St )

2 dt

)8

≤
(

Eϑ sup
0≤t≤T

V 24
t

) 2
3
(

Eϑ

(∫ T

0
(�St )

2 dt

)24) 1
3

≤
(

Eϑ

(∫ T

0
(�St )

2 dt

)24) 1
3

because Eϑ sup0≤t≤T V 24
t ≤ 1. Now with the help of (29) we can write

Eϑ

(∫ T

0
(�S (Xt ))

2 dt

)24

= Eϑ

(
T
∫ ∞

−∞
(�S (x))2 f ◦

T (x) dx

)24

≤ C1 (v2 − v1)
48 + C2 (w2 − w1)

48 + C3 (u2 − u1)
24 .
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After substitution of these estimates we obtain

Eϑ

∣∣∣∣Z
1

32
T (v1, w1, u1)− Z

1
32
T (v2, w2, u2)

∣∣∣∣
8

≤ A |v2 − v1|8 + B |w2 − w1|8 + C |u2 − u1|4 .

Therefore for the values |vi | + |wi | + |ui | ≤ R we have

Eϑ

∣∣∣∣Z
1

32
T (v1, w1, u1)− Z

1
32
T (v2, w2, u2)

∣∣∣∣
8

≤ C
(

1 + R4
) (

|v2 − v1|4 + |w2 − w1|4 + |u2 − u1|4
)
. (35)

Hence the condition B is fulfilled with m = 4 and d = 4 > 3 for the random field

YT (v,w, u) = Z
1
4
T (v,w, u).

To verify the condition C we follow the proof of Lemma 2.11 in Kutoyants (2004).
We write (u > 0)

Eϑ JT = v2

σ 2T

∫ T

0
Eϑ X2

t 1{Xt<ϑ3}dt + w2

σ 2T

∫ T

0
Eϑ X2

t 1{Xt ≥ϑ3}dt

+
(
ϑ2 − ϑ1

σ
+ v − w

σ
√

T

)2 ∫ T

0
Eϑ X2

t 1{ϑ3<Xt ≤ϑ3+ u
T }dt

+2
w√
T

(
ϑ2 − ϑ1

σ
+ v − w

σ
√

T

)∫ T

0
Eϑ X2

t 1{ϑ3<Xt ≤ϑ3+ u
T }dt.

Note that

0 < κ ≡ α2 − β1

σ
<

1

σ

∣∣∣∣ϑ2 + w√
T

−
(
ϑ1 + v√

T

)∣∣∣∣ <
β2 − α1

σ
≡ K .

Hence

Eϑ JT ≥ v2

σ 2 Eϑξ
21{ξ<ϑ3} + w2

σ 2 Eϑξ
21{ξ≥ϑ3} + κ2T

∫ ϑ3+ u
T

ϑ3

x2 f (ϑ, x) dx

−2
|w|√

T
K T

∫ ϑ3+ u
T

ϑ3

x2 f (ϑ, x) dx .

Let us put δ = κ2/4K , then for |v|√
T

+ |w|√
T

+ |u|
T ≤ δ we have

Eϑ JT ≥ v2I1 + w2I2 + |u| κ2

2 α
2
3 inf
α3<x≤β3

f (ϑ, x), (36)
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and for the vector h = (h1, h2, h3) with h1 = v√
T
, h2 = w√

T
, h3 = u

T , and ‖h‖ ≥ δ

we can write

Eϑ JT

T
= h2

1

∫ ϑ3

−∞
x2 f (ϑ, x) dx + h2

2

∫ ∞

ϑ3+h3

x2 f (ϑ, x) dx

+ (ϑ1 − ϑ2 + h1)
2
∫ ϑ3+h3

ϑ3

x2 f (ϑ, x) dx

≥ h2
1

∫ ϑ3

−∞
x2 f (ϑ, x) dx + h2

2

∫ ∞

β3

x2 f (ϑ, x) dx

+ (α2 − β1)
2
∫ ϑ3+h3

ϑ3

x2 f (ϑ, x) dx > κ1 > 0. (37)

Here we used the representation

−ϑ11{x<ϑ3} − ϑ21{x≥ϑ3} + (ϑ1 + h1)1{x<ϑ3+h3} − (ϑ2 + h2)1{x≥ϑ3+h3}
= h11{x<ϑ3} + h21{x≥ϑ3+h3} + (ϑ1 − ϑ2 + h1)1{ϑ3<x≤ϑ3+h3}.

Now having (36) and (37), we can follow the proof of Lemma 2.11 in Kutoyants
(2004) and obtain the estimate (24). ��

5.3 Proof of (9)

The properties of modified (simplified) estimators defined by the equalities (8) will be
proved if we verify the law of large numbers (9). For any ε > 0 using the consistency
(7), we can write

Pϑ

{∣∣∣∣
1

σ 2T

∫ T

√
T

X2
t 1
{

Xt<ϑ̂
∗
3,

√
T

}dt − I1

∣∣∣∣ > ε

}
≤ Pϑ

{∣∣∣ϑ̂∗
3,

√
T

− ϑ3

∣∣∣ ≥ T −b
}

+Pϑ

{∣∣∣∣
1

σ 2T

∫ T

√
T

X2
t 1
{

Xt<ϑ̂
∗
3,

√
T

}dt − I1

∣∣∣∣ > ε,

∣∣∣ϑ̂∗
3,T − ϑ3

∣∣∣ < T −b
}

≤ Pϑ

{
sup

|θ−ϑ3|<T −b

∣∣∣∣
1

σ 2T

∫ T

√
T

X2
t 1{Xt<θ}dt − I1

∣∣∣∣ > ε

}
+ o (1).

Further

sup
|θ−ϑ3|<T −b

∣∣∣∣
1

σ 2T

∫ T

√
T

X2
t 1{Xt<θ}dt − I1

∣∣∣∣

= sup
|θ−ϑ3|<T −b

∣∣∣∣
1

σ 2T

∫ T

0
X2

t 1{Xt<θ}dt − I1

∣∣∣∣+ o (1)
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= sup
|θ−ϑ3|<T −b

∣∣∣∣
∫ θ

−∞
x2

σ 2 f ◦
T (x) dx −

∫ ϑ3

−∞
x2

σ 2 f (ϑ, x) dx

∣∣∣∣+ o (1)

≤
∣∣∣∣
∫ ϑ3

−∞
x2

σ 2

[
f ◦
T (x)− f (ϑ, x)

]
dx

∣∣∣∣+
∫ ϑ3+T −b

ϑ3

x2

σ 2 f ◦
T (x) dx + o (1).

Here f ◦
T (x) = σ−2T −1�T (x) is the local time estimator of the invariant density. To

finish the proof we just mention, that

∫ ϑ3

−∞
x2

σ 2

[
f ◦
T (x)− f (ϑ, x)

]
dx −→ 0

by the law of large numbers. ��

6 Discussion

6.1 Goodness-of-fit testing

Suppose that the basic hypothesis (H0) is simple: the observations X T = (Xt , 0 ≤
t ≤ T ) come from the Eq. (12) with known ϑ0. There are several ways to construct
the goodness-of-fit tests. It is possible, for example, to use the Cramér-von Mises and
Kolmogorov–Smirnov type statistics proposed in Dachian and Kutoyants (2007) or in
Negri and Nishiyama (2009). Let us discuss another approach developed in Kutoyants
(2010) which is more close to classical statement. Introduce the empirical distribution
function F̂T (·) = T −1

∫ T
0 1{Xt<x} dt and the corresponding C-vM statistics

V
2
T = T

∫ ∞

−∞
H (ϑ0, x)

[
F̂T (x)− F (ϑ0, x)

]2
dF (ϑ0, x),

with weight function

H (ϑ0, x) = � ′ (ϑ0, x)

f (ϑ0, x) [F (ϑ0, x)− 1]2 M (� (ϑ0, x)).

where M(·) is some function providing the finitness of this integral and

� (ϑ0, x) =
∫ x

−∞
F (ϑ0, y)2

σ (y)2 f0 (ϑ0, y)
dy

+F (ϑ0, x)2
∫ ∞

x

(
F (ϑ0, y)− 1

F (ϑ0, x)− 1

)2 dy

σ (y)2 f (ϑ0, y)
.

It is shown that if M (s) = e−s then

V
2
T (ϑ0) �⇒

∫ ∞

0
W (s)2 e−s ds,
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where W (·) is a Wiener process, i.e.; we have asymptotically distribution free test
ψ̂T = 1{

V
2
T (ϑ0)>rα

} (see Kutoyants (2010)). The threshold rα , of course, is solution

of the following equation P
{∫∞

0 W (s)2 e−s ds > rα
} = α. The similar result can be

proved for the large class of functions M (·) satisfying the obvious conditions.
In the case of composite basic hypothesis it is supposed that the observed process

satisfies the equation (12), but the value of ϑ is unknown. Then we can use the same
statistic with parameter replaced by some estimator(MLE or BE) and show that the
test ψ̂T = 1{

V
2
T

(
ϑ̂T

)
>rα

} with the same rα is asymptotically distribution-free (see

Kutoyants 2010 for details).

6.2 Conclusion

The studied estimators have some particularities which are typical for singular esti-
mation problems. Let us mention some of them.

1. The rate of convergence is T and not
√

T as in regular models.
2. The asymptotically efficient estimators are BE and not MLE.
3. The likelihood ratios (LR) converge to the exponential functional of Wiener pro-

cess (not LAN).
4. The estimation problem is more robust than in regular case and admits the con-

sistent estimation even for wrong models.
5. The one-step MLE does not exist but it is possible to “localize” the problem by

the first
√

T observations and to use the narrow windows for observations.
6. In multidimensional case the limit LR is a product of one-dimensional independent

LRs.
7. The goodness-of-fit test even with parametric basic hypothesis is asymptotically

distribution-free.

Of course, there are a lot of open problems. For example, it can be interesting to
study the properties of estimators for multidimensional threshold diffusion processes,
partially observed linear switching systems or to use the multithreshold model for
approximation of some trend coefficients.

Acknowledgments I would like to thank the associate editor and two referees for the useful comments.
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