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Abstract Estimators based on the mode are introduced and shown empirically to
have smaller Kullback–Leibler risk than the maximum likelihood estimator. For one
of these, the midpoint modal estimator (MME), we prove the Kullback–Leibler risk is
below 1

2 while for the MLE the risk is above 1
2 for a wide range of success probabil-

ities that approaches the unit interval as the sample size grows to infinity. The MME
is related to the mean of Fisher’s Fiducial estimator and to the rule of succession for
Jefferey’s noninformative prior.

Keywords Kullback–Leibler risk · Modal estimators · MLE

1 Introduction

Eguchi and Yanagimoto (2008) provide an asymptotic adjustment to the MLE that
improves the Kullback–Leibler risk. We show that for the binomial family of distribu-
tions the Kullback–Leibler risk for the MLE is above 1/2 for a wide range of success
probabilities that approaches the unit interval as the sample size grows to infinity.
We introduce an estimate, the midpoint modal estimate, that has Kullback–Leibler
risk below 1/2 on an interval of success probabilities that also approaches the unit
interval as the sample size grows to infinity. The relationship between the MLE and
the midpoint modal estimate (MME) is explored with particular attention to post-data
considerations. The paper is outlined as follows. Section 2 defines modal estimators,
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360 P. Vos, Q. Wu

Sect. 3 contains the main result on Kullback–Leibler risk, Sect. 4 contains discussion
and comments regarding the relationship between these estimators.

2 Modal set estimators

For fixed sample size n, we consider estimators for distributions in the binomial family

Bn =
{

fn : Xn �→ R : Bn(x; p) =
(

n

x

)
px (1 − p)n−x , 0 < p < 1

}
,

on the sample space Xn = {0, 1, 2, . . . , n}. Sometimes the degenerate cases where
p = 0 and p = 1 are considered part of the binomial family. We would not include
these, but these cases can often be treated as special cases. The notation B(n, p) ∈ Bn

emphasizes that points in Bn are distributions, but it is more common and less cumber-
some to use parameter values to refer to these distributions. In particular, the estimate
B(n, p̂)will be denoted by simply p̂, θ̂ (log odds), or some other parameter. However,
when constructing and evaluating estimators, we maintain the perspective that the
object of interest is a distribution. For the estimators we consider, a better notation
relating parameters and the distributions they name is p̂ = p(B̂) because the estimate
is obtained directly from Bn . Our estimators, like the maximum likelihood estimator
(MLE), are parameter invariant as are the evaluation criteria that we consider.

A modal distribution for x is any distribution in Bn for which x is a mode. The set
of all modal distributions for x is the modal set estimate for x; expressed in terms of
the parameter p the modal set estimate is

[p](x) = {
p : f (x; p) ≥ f (x ′; p), ∀x ′ ∈ Xn

}
.

Compare this to the MLE which consists of a set with a single point:

p̂(x) = {
p : f (x; p) ≥ f (x; p′), ∀p′ ∈ [0, 1]

}
.

The distribution that maximizes the likelihood is obtained by maximizing over the
distribution space Bn (including the degenerate distributions with p = 0 and p =
1) while modal distributions satisfy a weaker condition, namely, that of assigning
the greatest probability to the value that was observed. The median, like the mode,
provides another set estimator

{
p : F(x; p) ≥ 1

2
and F(x − 1; p) ≤ 1

2

}

where F is the cumulative distribution function. The logic of the median estimator is
that because data in the tails provide evidence against a value for p, an estimate for p
should consist of values for which the observed data x is far from the tails.
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Estimators that dominate the MLE in terms of KL risk 361

A simple calculation shows that

[p](x) =
[

x

n + 1
,

x + 1

n + 1

]
,

so that

⋃
x∈Xn

[p](x) = [0, 1].

Except for the endpoints of the modal set estimates, this estimator partitions the para-
meter space.

Often it will be convenient to approximate the estimate [p](x) with a single distri-
bution p′. A simple method for approximating the distributions in [p](x) is to use the
midpoint as determined on the success probability scale. This gives the MME B ∈ Bn

having success parameter

x + 1
2

n + 1
. (1)

Fisher (1973, pp. 62 to 68) shows that this is the mean of the posterior distribution for
the success parameter when Jeffrey’s prior is used. He also shows that the mean of the
fiducial distribution when expanded in powers of n−1 is the same as (1) to at least the
n−4 term.

3 Kullback–Leibler risk

For binomial distributions, the Kullback–Leibler divergence D is defined on Bn × Bn

but can be expressed as a function Dn on (0, 1) × (0, 1) as

D(B(n, p), B(n, p′)) = Dn(p, p′) = n A(p, p′) − nH(p) (2)

where A(p, p′) = −p log p′−(1− p) log(1− p′) and H(p) = A(p, p) is the entropy
function for a Bernoulli trial with success parameter p.

We consider the Kullback–Leibler risk for an estimator P̃ defined by

n RKL(p, P̃) = E p D(B(n, P̃), B(n, p)). (3)

The risk can be partitioned into two non negative quantities as follows:

n RKL(p, P̃) = E p Dn(P̃, p)

= E p(n A(P̃, p) − nH(P̃))

= n A(E p P̃, p) − nE p H(P̃)
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= n A(E p P̃, p) − nH(E p P̃) + nH(E P̃) − nE p H(P̃)

= Dn(E p P̃, p) + n
(

H(E p P̃) − E p H ˜(P)
)

. (4)

Since the MLE P̂ is unbiased for p the first term on the right hand side of (4) is zero.
We call n−1 Dn(E p P̃, p) the square of the Kullback–Leibler (KL) bias for P̃ . The sec-
ond term, the difference between the entropy of the expected value and the expected
value of the entropy of the estimator, we call the KL variance of P̃ . Interpreting the
entropy H(p) as the amount of information in the distribution named by p, the KL
variance for the MLE p̂ (or any unbiased estimator) can be understood as the loss of
information due to using p̂ rather than the true distribution p. For KL biased estimators
the same interpretation holds with p replaced with the mean of the estimator.

We define the KL bias and KL variance of an estimator P̃ (equivalently, the distri-
bution B(1, P̃)) as

BiasKL(P̃) = sign(EP̃ − p) × D1/2
1 (E p P̃, p) (5)

VarKL(P̃) = ED1(P̃, E p P̃)

= H(E p P̃) − E p H ˜(P). (6)

The equality in (6) follows from the linearity in the function A in its first argument.
Note that P̃ stands for the random distribution B(1, P̃) but the KL bias depends only
on the KL divergence from the fixed distribution B(1, EP̃) to B(1, p); the KL variance
is the difference between the entropy of this fixed distribution and the mean entropy of
the random distribution B(1, P̃). Heskes (1998) considers bias and variance decom-
position of KL divergence but defines risk as ED(p, P̃) which for the binomial is
infinite. Eguchi and Yanagimoto (2008) define risk as we do, but do not consider the
bias/variance decomposition. Using these definitions (4) becomes

RK L(p, P̃) = Bias2
KL(P̃) + VarKL(P̃).

The risk for the MLE and the MME are shown in Fig. 1. Figure 1 suggests the
following theorems.

Theorem 1 For each sample size n, there exist 0 < plo(n) < phi (n) < 1 such that
when plo(n) ≤ p ≤ phi (n) the Kullback–Leibler risk n RKL(p, P̂) > 1

2 . Furthermore,
plo(n) = 1 − phi (n) = O(n−1).

Proof We expand H( p̂) around H(p) using a Taylor series. First,

p̂ log( p̂) − p log(p) = (1 + log(p))( p̂ − p) + 1

2!p ( p̂ − p)2 + R1

where

R1 = n
∞∑

k=2

(−1)k+1(k − 1)!
(k + 1)!pk

E
[
( p̂ − p)k+1

]
.

123



Estimators that dominate the MLE in terms of KL risk 363

0.0 0.2 0.4 0.6 0.8 1.0

0.
40

0.
45

0.
50

0.
55

p

n 
R

is
k

Fig. 1 Kullback–Leibler Risk risk for MLE (>1/2) and MME (<1/2) for n = 10, 20, 50, and 100. Risks
for these estimators converge as n → ∞

Second,

(1 − p̂) log(1 − p̂) − (1 − p) log(1 − p)

= (−1 − log(1 − p))( p̂ − p) + 1

2!(1 − p)
( p̂ − p)2 + R2

where

R2 = n
∞∑

k=2

(k − 1)!
(k + 1)!(1 − p)k

E
[
( p̂ − p)k+1

]
.

Given E[ p̂] = p and E[( p̂ − p)2] = p(1 − p)/n, we have

nE[H(p) − H( p̂)] = 1

2
+ R1 + R2.

To show n RKL(pP̂) > 1
2 , it suffices to show R1 + R2 > 0. Writing R1 + R2 in a

different way gives

R1 + R2 = n
∞∑

k=2

E[( p̂ − p)k+1]
(k + 1)k

(
(−1)k+1

pk
+ 1

(1 − p)k

)
.
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It is not hard to see that the terms in R1 + R2 with k = 3, 5, 7, . . . are all positive. Or
by using the mean value theorem, we have

R1 + R2 = n
4∑

k=2

E[( p̂ − p)k+1]
(k + 1)k

(
(−1)k+1

pk
+ 1

(1 − p)k

)
+ R,

where

R = n

30
E

[
( p̂ − p)6

(
1

p∗5
+ 1

(1 − p∗)5

)]
> 0

and p∗ is in between p̂ and p. In other words, a sufficient condition of nE[H(p) −
H( p̂)] > 1

2 is R1 + R2 − R ≥ 0.
The following are the 3rd, 4th and 5th central moments of p̂ where q = 1 − p.

E[( p̂ − p)3] = pq(q − p)

n2

E[( p̂ − p)4] = 3p2q2

n2 + pq(1 − 6pq)

n3

E[( p̂ − p)5] = 10p2q2(q − p)

n3 + pq(q − p)(1 − 12pq)

n4

Some further algebra shows that

E[( p̂ − p)3]
(

− 1

p2 + 1

q2

)
= (−1 + 4pq)

n2 pq

E[( p̂ − p)4]
(

1

p3 + 1

q3

)
=

(
3pq

n2 + 1 − 6pq

n3

)
(1 − 3pq)

p2q2

E[( p̂ − p)5]
(

− 1

p4 + 1

q4

)
=

(
10pq

n3 + 1 − 12pq

n4

)
(1 − 2pq)(−1 + 4pq)

p3q3

Let x = 1
pq , then x ≥ 4 with the equality holds if and only if p = q = 1

2 . Some
additional algebra shows that

f (x) � 60n3(R1 + R2 − R)

= −3x3 − (25n − 54)x2 + (5n2 + 135n − 240)x − (5n2 + 150n − 288).

Since f (4) = 5n(3n − 2) > 0 and f (0) < 0 for n ≥ 2, this cubic has three real roots,
one of which is >4. It is enough to show that the largest root of f (x) tends to ∞ as
n → ∞. The derivative of f (x) is a quadratic whose largest root

−25

9
n + 6 + 1

9

√
670 n2 − 1485 n + 756

goes to infinity as n → ∞. Therefore, the largest root of f (x) tends to infinity. ��
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Estimators that dominate the MLE in terms of KL risk 365

Theorem 2 For each sample size n, there exist 0 < plo(n) < phi (n) < 1 such that
when plo(n) ≤ p ≤ phi (n) the Kullback–Leibler risk n RK L(p, P̃) < 1

2 . Further-
more, plo(n) = 1 − phi (n) = O(n−1).

Proof We write the definition of the risk explicitly as

R(p, p̃) = Ā(E p̃, p) − E H( p̃)

= −E p̃ log(p)−(1−E p̃) log(1− p)+E[ p̃ log( p̃)]+E[(1− p̃) log(1− p̃)]
= E[ p̃ log( p̃) − p̃ log(p) + (1 − p̃) log(1 − p̃) − (1 − p̃) log(1 − p)]

By using Taylor series expansion and the mean value theorem, we have

p̃ log( p̃) − p̃ log(p) + (1 − p̃) log(1 − p̃) − (1 − p̃) log(1 − p)

= p̃( p̃ − p)

p
− (1 − p̃)( p̃ − p)

q

− p̃( p̃ − p)2

2!p2 − (1 − p̃)( p̃ − p)2

2!q2 + p̃( p̃ − p)3

3!p3

− (1 − p̃)( p̃ − p)3

3!q3 − p̃( p̃ − p)4

4!p4∗
− (1 − p̃)( p̃ − p)4

4!q4∗

where p∗ is in between p̃ and p and q∗ = 1 − p∗. It is clear that

E

[
− p̃( p̃ − p)4

4!p4∗
− (1 − p̃)( p̃ − p)4

4!q4∗

]
< 0.

For p̃ = X+ 1
2

n+1 , we have the central moments

E[ p̃] = np + 1
2

n + 1

E[( p̃ − Ep̃)2] = npq

(n + 1)2

E[( p̃ − Ep̃)3] = npq(q − p)

(n + 1)3

E[( p̃ − Ep̃)4] = 3n2 p2q2 + npq(1 − 6pq)

(n + 1)4

Then

E
[
( p̃ − p)2] = E[( p̃ − Ep̃)2] + (Ep̃ − p)2 = npq

(n + 1)2 + 1 − 4pq

4(n + 1)2

E
[
( p̃ − p)3] = E[( p̃ − Ep̃)3] + 3E[( p̃ − Ep̃)2](Ep̃ − p)

+ 3E[ p̃ − Ep̃](Ep̃ − p)2 + (Ep̃ − p)3
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= npq(q − p)

(n + 1)3 + 3npq(q − p)

2(n + 1)3 + (q − p)3

8(n + 1)3

E
[
( p̃ − p)4] = E

[
( p̃ − Ep̃)4

]
+ 4E

[
( p̃ − Ep̃)3

]
(Ep̃ − p)

+ 6E[( p̃ − Ep̃)2](Ep̃ − p)2 + (Ep̃ − p)4

= 3n2 p2q2 + npq(1 − 6pq)

(n + 1)4 + 2npq(q − p)2

(n + 1)4

+3npq(q − p)2

2(n + 1)4 + (q − p)4

16(n + 1)4

As a result,

E

[
p̃( p̃− p)

p
− (1− p̃)( p̃− p)

q

]
= E

[
( p̃− p)2

]
pq

= n

(n + 1)2 + 1−4pq

4(n + 1)2 pq

E

[
− p̃( p̃ − p)2

2!p2 − (1 − p̃)( p̃ − p)2

2!q2

]
= E

[
( p̃ − p)3

] (
− 1

2p2 + 1

2q2

)

−E
[
( p̃ − p)2

] (
1

2p
+ 1

2q

)

= −5n(1 − 4pq)

4pq(n + 1)3 − (1 − 4pq)2

16p2q2(n + 1)3

− n

2(n + 1)2 − 1 − 4pq

8(n + 1)2 pq

E

[
p̃( p̃ − p)3

3!p3 − (1 − p̃)( p̃ − p)3

3!q3

]
= E

[
( p̃ − p)4

] (
1

6p3 + 1

6q3

)

+E
[
( p̃ − p)3

](
1

6p2 − 1

6q2

)

=
(

3n2 p2q2 + npq(1 − 6pq)

(n + 1)4

+7npq(q− p)2

2(n + 1)4 + (q− p)4

16(n + 1)4

)
1−3pq

6p3q3

+ 5npq(1 − 4pq)

12p2q2(n + 1)3 + (1 − 4pq)2

48p2q2(n + 1)3

Finally, let x = 1
pq ≥ 4 and we have

f (x) � 96(n + 1)4
(

n R(p, p̃) − 1

2

)

= nx3+(68n2 − 15n)x2−(20n3+560n2−84n)x+32n3+880n2−352n−48.
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Since

f (0) = −48 − 352n + 880n2 + 32n3 > 0

and

f (4) = −48 − 192n − 48n3 − 272n2 < 0

f (x) has a root for x > 4. It is enough to show that the largest root of f ′(x) tends to
infinity as n → ∞. This follows by noting that

f ′(x) = 3nx2 + 2(68n2 − 15n)x − (20n3 + 560n2 − 84n)

whose largest root

−68

3
n + 5 + 1

3

√
4684n2 − 360n − 27

tends to infinity as n → ∞. ��

4 Discussion and comments

We have shown how the MME dominates the MLE in terms of Kullback–Leibler risk.
This estimator, and modal estimators more generally, have other important properties
as well. Like the MLE, the modal estimates are defined on the space of distributions and
so are parameter-invariant. In particular, the modal estimate will be the same whether
the success probability or log odds are used to parametrize the binomial family of
distributions.

Both the MLE and the modal estimates allow for post-data interpretations. The MLE
is the distribution that assigns the largest probability to the observed value among all
distributions in the family. Each modal estimate satisfies a weaker criterion: a modal
estimate is a distribution that assigns the largest probability to the observed value
among all values in the sample. Fisher consistency is a post-data consideration that
applies to both the MLE and modal set estimators. For the binomial, the MLE is Fisher
consistent because when the sample mean (i.e. p̂) equals the true mean, the MLE is
the true distribution. The modal set estimator is Fisher consistent in that it contains
the MLE. We make the following comments:

(1) Fisher consistency does not apply unless the success probability is of the form
x/n for some integer x . A weaker form of consistency is to require that when the
observation is the most likely value under the true distribution, i.e., the mode of the
true distribution, the observation is also the mode of the estimate. We call this weak
Fisher consistency for the mode. By definition, all modal estimates are weakly Fisher
consistent for the mode. The plus-four estimate ((x +2)/(n +4)) is a popular estimate
that is not weakly Fisher consistent for the mode. The standard asymptotic confidence
interval based on this estimate was originally suggested by Wilson in 1927 and has
started to appear in popular introductory statistics text such as Moore et al. (2009).
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The plus-four estimate can be a distribution that assigns much lower probability to
the observed data than to other values not observed. For example, when xobs = 0
out of n = 10 trials is observed, the plus-four estimate assigns greater probability to
unrealized values x = 1 and x = 2. In fact, the plus-four estimate assigns greater
probability to unobserved values when xobs ∈ {0, 1, 2, 8, 9, 10}.

(2) In addition to consistency for the mean and mode, consistency can also be
defined for the median. In particular, an estimator is weakly Fisher consistent for the
median if the observed value is a median for the true distribution then the observed
value is also a median for the estimate. Formally, the median set estimator [̂p]x is
defined to be the collection of values p such that the corresponding distribution has
the observed value as its median. This is an interval whose endpoints can be expressed
in terms of the beta distribution:

[̂p]x =
[
β̇x

n+1, β̇x+1
n+1

]
, (7)

where β̇x
n+1 is the median of the beta distribution Beta(x, n + 1 − x). Equation (7)

follows from the relationship between the binomial random variable (B : n, p) and the
beta random variable (β : x, n+1−x) :Pr[(B : n, p)≥ x]=Pr[(β : x, n+1−x) ≤ p].
By definition, estimators that take values in [̂p]x for each x are weakly Fisher consis-
tent for the median. It can be shown that the MME is Fisher consistent for the median
(Wu and Vos 2009).

(3) One motivation for the set estimators is the behavior of the MLE across differing
sample sizes. For a sample of size n the MLE takes values in

{
0

n
,

1

n
, . . .

n − 1

n
,

n

n

}
.

The MLE for this sample size cannot be the MLE for a sample increased by one
observation except for the case where all observations are successes or all failures.
The set estimator approach is to identify all estimates (distributions) that are on an
equal footing for a given value in the sample space. The point estimate, for example
the MME, is obtained as a summary of the distributions in the set.

(4) The modal set estimates for x = 0 and x = n specify the values for p that spec-
ify claims too weak to be addressed by a sample of size n. For example, the data cannot
address claims of the form p ≥ p0 when p0 is very small because small observations
would be evidence against this claim and yet x = 0 is the most likely observation for
small success probabilities. In particular, for a sample of size n = 9, the data cannot
address claims of the form p ≥ 0.10 because the smallest possible observation is the
mode for success probabilities of 0.10 or less. If the claim is strengthened to p ≥ 0.11,
observing 0 out of 9 successes provides some evidence against this claim since zero
is no longer the most likely observation. If claims such as p ≥ 0.10 are of interest,
a sample size of n = 9 is not large enough, but the claim p ≥ 0.11 differs from
p ≥ 0.10 in that, for the latter, the extreme tail and mode are the same sample space
value. Similar comments hold for success probabilities near 1 so that union of modal
set estimators for sample values from x = 1 to x = n − 1, or ( 1

n+1 , n
n+1 ), represent

the addressable claims for p for a sample of size n. Theorem 1 claims only that the
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Table 1 The first two columns
list sample size n and lower
endpoint of addressable values
for p. The last two columns list
MLE, plo the lowest value for
which the Kullback–Leibler risk
for the MLE is > 1

2 and MME,
plo the lowest value for which
the Kullback–Leibler risk for the
MME is < 1

2 . Upper endpoint of
addressable values and the
corresponding values for MLE,
phi and MME, phi follow by
symmetry

n 0.5/(n + 1) MLE, plo MME, plo

1 0.2500 0.1997 0.0173

2 0.1667 0.1554 0.0219

3 0.1250 0.1226 0.0213

4 0.1000 0.0991 0.0197

5 0.0833 0.0828 0.0181

10 0.0455 0.0450 0.0124

15 0.0312 0.0308 0.0093

20 0.0238 0.0234 0.0074

25 0.0192 0.0189 0.0062

30 0.0161 0.0158 0.0053

35 0.0139 0.0136 0.0046

40 0.0122 0.0120 0.0041

45 0.0109 0.0107 0.0037

50 0.0098 0.0096 0.0034

60 0.0082 0.0080 0.0028

70 0.0070 0.0069 0.0025

80 0.0062 0.0060 0.0022

90 0.0055 0.0054 0.0019

100 0.0050 0.0048 0.0017

200 0.0025 0.0024 0.0009

300 0.0017 0.0016 0.0006

400 0.0012 0.0012 0.0005

500 0.0010 0.0010 0.0004

1000 0.0005 0.0005 0.0002

2000 0.0002 0.0002 0.0001

range of values for which the risk for the MLE exceeds 1
2 approaches the unit interval.

In fact, inspection of the risk shows that it exceeds 1
2 for all success probabilities on

an interval wider than the addressable range of values: (.5/(n + 1), (n + .5)/(n + 1)).
Selected values appear in Table 1.

(5) There are other reasonable summaries measures for the modal set estimator
besides the midpoint estimator we consider here. One approach to approximate the
distributions in [p](x) is to use the distribution that minimizes the maximum possible
Kullback–Leibler error that can be incurred. The minimax approximation p̃(x) to the
modal estimate [p](x) is defined by

p̃(x) = arg min
p′∈[0,1]

max
p∈[p](x)

Dn(p, p′).

Since Dn(p + ε, p) and Dn(p − ε, p) are increasing function of ε we see that p̃ is the
point in [p](x) such that

Dn

(
x

n + 1
, p̃

)
= Dn

(
x + 1

n + 1
, p̃

)
. (8)
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Using Eq. (2) and solving (8) for p̃ gives

log

(
p̃

1 − p̃

)
= (n + 1)H

(
x

n + 1

)
− (n + 1)H

(
x + 1

n + 1

)
(9)

which shows that the minimax Kullback–Leibler approximation to the modal set esti-
mate is the binomial distribution in Bn whose log odds is the difference in the entropies
for the distributions B(n + 1, x

n+1 ) and B(n + 1, x+1
n+1 ). The numerical values for this

estimator and the MME are not too different.
(6) The post-data approach to inference is due to Fisher but has been described

by others as well. See, for example, Kempthorne and Folks (1971). For data from
continuous distributions the difference between the post-data approach and traditional
frequentist long run inference appears to be largely a matter of interpretation with no
difference in methodology. For discrete distributions, however, methodology designed
for optimal, or even improved, long run properties can lead to difficulties from a post-
data perspective. Problems that can arise for the binomial have been considered by
Vos and Hudson (2005) and Vos and Hudson (2008).

(7) Modal estimates can be extended beyond the one sample binomial setting. Esti-
mates for the log odds in the 2 × 2 table include the sample odds ratio and a modified
version suggested by Agresti (2002)

η̃ =
(
n11 + 1

2

) (
n22 + 1

2

)
(
n12 + 1

2

) (
n21 + 1

2

)

where nij is the observed number of occurrences in the i j th cell. It is easily shown that
the modal set estimates provide the following partition of the odds ratio parameter

{
jn22

n12n21
: max(0, n1· − n2·) ≤ j ≤ min(n1·, n·1)

}

where n12, n21, and n22 are functions of n11 defined by fixing the margin totals n1· =
n11 + n12, n2· = n21 + n22, n·1 = n11 + n21, and n·2 = n12 + n22. The sample odds
ratio and modified version η̃ are modal estimators. Extension to logistic regression,
however, is more complicated especially when the covariates are continuous. For dis-
crete covariates where there are multiple replications on each cell, Agresti (2002, page
168) recommends plotting

η̂i = log
yi + 1

2

ni − yi + 1
2

and describes these as the least biased estimator of this form for the true logit. Writing
this logit as a proportion gives the modal estimate considered in this paper.

(8) The modal estimate can be viewed as a shrinkage estimator because the sample
proportion is moved closer to the value 1

2 . Copas (1997) explores the relationship
between shrinkage and regression to the mean for both linear and logistic regression.
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Whether there is a relationship between regression to the mean and the shrinkage of
the modal estimate is not clear but would be interesting for further study.

Acknowledgments We are grateful to a referee for pointing out the relationship between shrinkage and
regression to the mean as well as suggesting application of modal estimates to the case of two binomial
samples.
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