
Ann Inst Stat Math (2012) 64:255–273
DOI 10.1007/s10463-010-0310-9

Asymptotic normality of Powell’s kernel estimator

Kengo Kato

Received: 18 May 2009 / Revised: 22 April 2010 / Published online: 14 October 2010
© The Institute of Statistical Mathematics, Tokyo 2010

Abstract We establish asymptotic normality of Powell’s kernel estimator for the
asymptotic covariance matrix of the quantile regression estimator for both i.i.d. and
weakly dependent data. As an application, we derive the optimal bandwidth that min-
imizes the approximate mean squared error of the kernel estimator. We also derive the
corresponding results to censored quantile regression.

Keywords Asymptotic normality · Bandwidth selection · Censored quantile
regression · Density estimation · Kernel method · Quantile regression

1 Introduction

This paper establishes asymptotic normality of Powell’s (1991) kernel estimator for
the asymptotic covariance matrix of the quantile regression estimator. Let us first intro-
duce a quantile regression model. Let (Yi , Xi )(i = 1, 2, . . . , n) be i.i.d. observations
from (Y, X) where Y is a response variable and X is a d-dimensional covariate vector.
The τ th (τ ∈ (0, 1)) conditional linear quantile regression model is defined as

QY (τ |X) = X′β0(τ ), (1)

where QY (τ |X) = inf{y : P(Y ≤ y|X) ≥ τ } is the τ th conditional quantile function of
Y given X. Koenker and Bassett (1978) propose the estimator β̂KB(τ ) for β0(τ ) which
minimizes the objective function

∑n
i=1 ρτ (Yi −X′

iβ), where ρτ (u) = {τ − I (u ≤ 0)}u
is called the check function (I (·) denotes the indicator function). It is well known that,
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256 K. Kato

under suitable regularity conditions, β̂KB(τ ) satisfies consistency and asymptotic nor-
mality (see Koenker 2005, Chapter 4). Let f (y|x) denote the conditional density of
Y given X = x. Then the asymptotic covariance matrix of

√
n(β̂KB(τ ) − β0(τ ))

is given by J−1(τ )�(τ )J−1(τ ), where J(τ ) = E[ f (X′β0(τ )|X)XX′] and �(τ) =
τ(1 − τ)E[XX′]. The estimation of the matrix �(τ) is straightforward. However, the
matrix J(τ ) involves the conditional density and we should care for the estimation
of J(τ ). Section 3.4 of Koenker (2005) introduces two approaches to the estimation
of the matrix J(τ ). The first one, suggested by Hendricks and Koenker (1992), is a
natural extension of the scalar sparsity estimation by Siddiqui (1960). On the other
hand, Powell (1991) proposes the kernel estimator

ĴP(τ ) = 1

nh

n∑

i=1

K

(
Yi − X′

i β̂(τ )

h

)

Xi X′
i ,

where β̂(τ ) is a
√

n-consistent estimator of β0(τ ) (usually, we take β̂(τ ) = β̂KB(τ ))
and K (·) is the uniform kernel K (u) = 2−1 I (|u| ≤ 1). Powell (1991) shows that ĴP(τ )

is consistent under some regularity conditions. Especially, he imposes the condition
on the bandwidth h that h → 0 and nh2 → ∞. The recent study by Angrist et al.
(2006) shows that ĴP(τ ) is uniformly consistent over a closed interval of τ even when
the model is misspecified. However, to the author’s knowledge, there is no literature
that rigorously studies the asymptotic distribution of ĴP(τ ) itself.

This paper establishes asymptotic normality of ĴP(τ ) under the conditions that the
conditional density is twice continuously differentiable and that the bandwidth h is
such that h → 0 and (n1/2h)/ log n → ∞. The condition on the bandwidth is close
to the one required for proving consistency of ĴP(τ ). As an application, we evaluate
the approximate mean squared error (AMSE) of ĴP(τ ) and derive the optimal h that
minimizes the AMSE, which is another contribution of this paper. Since the kernel
estimator contains the estimated parameter in the sum, the direct calculation of the
mean squared error (MSE) is infeasible. So the evaluation of the MSE is not a triv-
ial task. We also derive the corresponding results to censored quantile regression. It
should be noted that Powell originally suggests to use the kernel method to estimate
the asymptotic covariance matrix for censored quantile regression (see Powell 1984,
1986). In addition, we extend the results to weakly dependent data.

We now review the literature related to this paper. Koul (1992) discusses the uniform
convergence of the kernel estimator of the error density in a linear model based on the
weak convergence results of the residual empirical processes. Chai et al. (1991), Chai
and Li (1993) and Li (1995) show several important asymptotic results for the kernel
estimation of the error density in a linear model with fixed design when using the least
squares method and the least absolute deviation method to estimate the coefficients.
Especially, the latter two papers show asymptotic normality of the histogram estimator
(namely, the estimator using the uniform kernel) of the error density. Unfortunately,
the proof of Lemma 4 in Chai and Li (1993), which is a key to their asymptotic nor-
mality results, is incorrect. See the remark after the proof of Lemma 1 below. Besides,
the differences of the present paper from theirs are as follows: (i) Chai and Li treat the
estimation of the scalar unconditional error density and the present paper treats the
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Asymptotic normality of Powell’s kernel estimator 257

estimation of the matrix that involves the conditional density. This difference affects
the bandwidth selection. See Sect. 3. (ii) Chai and Li impose the stringent condition
that the covariate vectors are bounded over all observations. The present paper removes
this condition. (iii) Chai and Li only treat independent data, while the present paper
treats both i.i.d. and weakly dependent data. After submitting the paper, I found that
Hall and Horowitz (1990) address a similar issue to ours; however, they do not directly
analyze Powell’s estimator that the present paper handles, and their proof strategy is
different from ours.

The estimation of the innovation density in parametric time series models is studied
by Robinson (1987), Liebscher (1999), Müller et al. (2005) and Schick and Wefelmeyer
(2007). Among them, Liebscher (1999) establishes asymptotic normality of the resid-
ual-based kernel estimator of the innovation density for a nonlinear autoregressive
model. He assumes that the kernel function is Lipschitz continuous, which is essential
to his proof, while the uniform kernel treated in the present paper is not continuous at
the end points. The estimation of the error density in nonparametric regression causes
much attention in recent years. Several authors who address this issue include Ahmad
(1992), Cheng (2002, 2004, 2005), Efromovich (2005, 2007a,b) and Liang and Niu
(2009). Cheng (2005) and Liang and Niu (2009) show asymptotic normality of their
kernel estimators; both of them uses the uniform kernel when deriving the asymptotic
distributions.

The rest of the paper is organized as follows. In Sect. 2, we prove asymptotic
normality of Powell’s kernel estimator ĴP(τ ) for i.i.d. data. In Sect. 3, we use the
asymptotic distribution to evaluate the AMSE and derive the optimal h that minimizes
the AMSE. In Sect. 4, we derive the corresponding results to censored quantile regres-
sion. In Sect. 5, we establish asymptotic normality of ĴP(τ ) under a weak dependence
condition. In Sect. 6, we leave some concluding remarks.

We introduce some notations used in the present paper. Let I (A) denote the indi-

cator of an event A. The symbols “
p→” and “

d→” denote “convergence in probability”
and “convergence in distribution”, respectively. We use the stochastic orders op(·)
and Op(·) in the usual sense. For a real number a, [a] denotes the greatest integer not
exceeding a. For a d × d matrix A = [a1 · · · ad ], vec(A) = (a′

1, . . . , a′
d)′.

2 Asymptotic normality of Powell’s kernel estimator

In this section, we study the first order asymptotic property of ĴP(τ ) under the i.i.d.
condition. Throughout this and the next sections, we fix τ and suppress the dependence
on τ for notational convenience. For example, we simply write β0 for β0(τ ). Then,
the model (1) may be written as

Y = X′β0 + U, QU (τ |X) = 0, (2)

where QU (τ |X) = inf{u : P(U ≤ u|X) ≥ τ }. It should be noted that the distribution
of U generally depends on τ and X. For example, let us consider a linear location
scale model
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Y = X′θ0 + (X′γ 0)ε, (3)

where X′γ 0 > 0 and ε is independent of X. In this model, U corresponds to X′γ {ε −
F−1(τ )}, where F is the distribution function of ε. Typically, the model (3) allows for
the heteroscedasticity of U .

We now return to the general model (2). Let f0(u|x) denote the conditional density
of U given X = x. Then the matrix J is expressed as E[ f0(0|X)XX′]. In order to
justify our asymptotic theory, we impose the following regularity conditions:

Assumption 1 {(Ui , Xi ), i = 1, 2, . . . } is an i.i.d. sequence whose marginal distri-
bution is the same as (U, X).

Assumption 2 The conditional density f0(u|x) of U given X = x is twice continu-
ously differentiable with respect to u for each x. Furthermore, there exist measurable
functions G j (x)( j = 0, 1, 2) such that | f ( j)

0 (u|x)| ≤ G j (x) ( j = 0, 1, 2) for every
realization (u, x) of (U, X), E[(‖X‖2 + ‖X‖4 + ‖X‖5)G0(X)] < ∞, E[(‖X‖2 +
‖X‖3)G1(X)] < ∞ and E[‖X‖2G2(X)] < ∞, where f ( j)

0 (u|x) = ∂ j f0(u|x)/∂u j

for j = 0, 1, 2.

Assumption 3 As n → ∞, h → 0 and (n1/2h)/ log n → ∞.

We state some remarks on the conditions. We substantially assume the existence of
the fifth order moment of X, which is slightly stronger than the one assumed in proving
consistency of ĴP. For example, Angrist et al. (2006) assume the fourth order moment
of X to prove (uniform) consistency of ĴP. The first part of Assumption 2 is standard
in the (conditional) density estimation literature (for example, see Fan and Yao 2005,
Chapter 5). Unlike the fully nonparametric conditional density estimation, the effect of
localization on the X-space does not work in the present situation. Thus, the latter part
of Assumption 2 is needed to ensure the dominated convergence. Assumption 3 allows
for bandwidth rules such as the rule used in R implementation of the kernel estimation
in quantreg package (Koenker 2009), the Bofinger (1975) and the Hall-Sheather
(1988) rules. The Bofinger and the Hall-Sheather rules are originally for the scalar
sparsity estimation but also used for the kernel estimation by some authors. Powell
(1991) and other authors show consistency of ĴP under the condition that h → 0 and
nh2 → ∞.

For any fixed matrix A ∈ R
d×d , define

sn(β) = 1

nh

n∑

i=1

Zi K

(
Yi − X′

iβ

h

)

= 1

nh

n∑

i=1

Zi K

(
Ui − X′

i (β − β0)

h

)

, (4)

where Zi = tr(AXi X′
i ). We first show asymptotic normality of sn(β̂). Then, we use

the Cramér-Wold device to derive the asymptotic distribution of ĴP. The proof of
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asymptotic normality of sn(β̂) consists of series of lemmas. Lemma 1 uses the empir-
ical process technique to establish the uniform convergence in probability. See, for
example, Chapter 2 of van der Vaart and Wellner (1996) for related materials.

Lemma 1 Suppose that Assumptions 1–3 hold. Then, for any fixed l > 0, we have
sn(β)−E[sn(β)]=sn(β0)−E[sn(β0)]+op((nh)−1/2) uniformly in ‖√n(β−β0)‖≤ l.

Proof We have to show sn(β0+n−1/2t)−E[sn(β0+n−1/2t)] = sn(β0)−E[sn(β0)]+
op((nh)−1/2) uniformly in ‖t‖ ≤ l. Observe that

h{sn(β0 + n−1/2t) − sn(β0)}

= 1

n

n∑

i=1

Zi

{

K

(
Ui − n−1/2X′

i t

h

)

− K

(
Ui

h

)}

= 1

2

{
1

n

n∑

i=1

Zi I (h < Ui ≤ h + n−1/2X′
i t)

− 1

n

n∑

i=1

Zi I (−h ≤ Ui < −h + n−1/2X′
i t)

+ 1

n

n∑

i=1

Zi I (−h + n−1/2X′
i t ≤ Ui < −h)

− 1

n

n∑

i=1

Zi I (h + n−1/2X′
i t < Ui ≤ h)

}

=: 1

2
{W1n(t) − W2n(t) + W3n(t) − W4n(t)}. (5)

It suffices to show that n1/2h−1/2{W jn(t)−E[W jn(t)]} p→ 0 uniformly in ‖t‖ ≤ l for
j = 1, 2, 3, 4. We only prove the j = 1 case since the proofs for the other cases are
completely analogous.

Fix any ε > 0. Define U∗
i (t) = Zi I (h < Ui ≤ h + n−1/2X′

i t). Let σ1, . . . , σn be
independent and uniformly distributed over {−1, 1} and independent of (U1, X1), . . . ,

(Un, Xn). Using the symmetrization technique (van der Vaart and Wellner 1996,
Lemma 2.3.7), we have

ηnP

(

sup
‖t‖≤l

|W1n(t) − E[W1n(t)]| > n−1/2h1/2ε

)

≤ 2P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

n∑

i=1

σiU
∗
i (t)

∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

)

,
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where ηn = 1 − (4/(ε2h)) sup‖t‖≤l E[{U∗
1 (t)}2]. Let F0(u|x) denote the conditional

distribution function of U given X = x. Then, we have

sup
‖t‖≤l

E[{U∗
i (t)}2] ≤ E[|Z |2 I (h < U ≤ h + n−1/2l‖X‖)]

= E[|Z |2{F0(h + n−1/2l‖X‖|X) − F0(h|X)}]
≤ ln−1/2E[|Z |2G0(X)‖X‖],

where we have used F0(h + n−1/2l‖X‖|X) − F0(h|X) ≤ ln−1/2G0(X)‖X‖. Since
nh2 → ∞, ηn = 1 − o(1) as n → ∞ and consequently ηn ≥ 1/2 for large n. Thus,
for large n,

P

(

sup
‖t‖≤l

|W1n(t) − E[W1n(t)]| > n−1/2h1/2ε

)

≤ 4P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

n∑

i=1

σiU
∗
i (t)

∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

)

.

Let Dn = {(Ui , Xi ), i = 1, . . . , n}. Given Dn , at most finite elements are con-
tained in the functional set {σ (n) �→ n−1∑n

i=1 σiU∗
i (t) : ‖t‖ ≤ l}, where σ (n) =

(σ1, . . . , σn), since every element of the functional set is of the form σ (n) �→ n−1
∑

i∈{subset of {1,...,n}} σi Zi . Let kn denote the cardinality of this set. Then, there exist kn

points t j ∈ {t : ‖t‖ ≤ l}, j = 1, . . . , kn such that

P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

n∑

i=1

σiU
∗
i (t)

∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

∣
∣
∣
∣Dn

)

≤
kn∑

j=1

P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

σiU
∗
i (t j )

∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

∣
∣
∣
∣Dn

)

.

It is noted that kn and t j ( j = 1, . . . , kn) depend on Dn . Observe that for any ‖t‖ ≤ l,

−|Zi |I (h < Ui ≤ h + n−1/2l‖Xi‖) ≤ σiU
∗
i (t)

≤ |Zi |I (h < Ui ≤ h + n−1/2l‖Xi‖).

By Hoeffding’s inequality (van der Vaart and Wellner 1996, Lemma 2.2.7),

sup
‖t‖≤l

P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

σiU
∗
i (t)

∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

∣
∣
∣
∣Dn

)

≤ 2 exp

(

− ε2h

32vn

)

,

123



Asymptotic normality of Powell’s kernel estimator 261

where vn = n−1∑n
i=1 |Zi |2 I (h < Ui ≤ h + n−1/2l‖Xi‖). Hence,

P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

n∑

i=1

σiU
∗
i (t)

∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

∣
∣
∣
∣Dn

)

≤ 2kn exp

(

− ε2h

32vn

)

.

We now bound kn . It is not difficult to see that kn is bounded by the cardinality of
the set

{
A ∩ {(U1, X1), . . . , (Un, Xn)} : A ∈ A}, where A = {{(u, x) : u > h, u ≤

h + x′t} : h ∈ R, t ∈ R
d
}
. Application of Lemma 2.6.15 in van der Vaart and Wellner

(1996) shows that the VC dimension VA of A is finite, namely 0 < VA < ∞. Then,
Sauer’s lemma (van der Vaart and Wellner 1996, Corollary 2.6.3) implies that kn is
bounded by cnVA for some constant c not depending on Dn . Therefore, we have

P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

n∑

i=1

σiU
∗
i (t)

∣
∣
∣
∣
∣
>

n−1/2h1/2
n ε

4

∣
∣
∣
∣Dn

)

≤ 2cnVA−1 exp

(

−ε2hn

32vn

)

. (6)

Define

An =
{

vn >
ε2hn

32VA log n

}

.

Using (6) and the obvious inequality, we have

P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

n∑

i=1

σiU
∗
i (t)

∣
∣
∣
∣
∣
>

n−1/2h1/2
n ε

4

)

≤ P(An) + 2cnVA−1E

[

exp

(

−ε2hn

32vn

)

I (Ac
n)

]

≤ P(An) + 2cn−1.

To show that P(An) → 0, it suffices to show that (log n)h−1
n vn

p→ 0. By Markov’s
inequality, for any δ > 0,

P

(

vn >
hnδ

log n

)

≤ δ−1(log n)h−1
n E[|Z |2 I (hn < U ≤ hn + n−1/2l‖X‖)]

≤ lδ−1n−1/2(log n)h−1
n E[|Z |2G0(X)‖X‖] → 0.

Therefore, we complete the proof. 
�
Remark 1 The proof of Lemma 4 in Chai and Li (1993) states that the cardinality
of the functional set {σ (n) �→ n−1∑n

i=1 σi I (an < ei < an + hi ) : 0 < hi ≤ bn}
is bounded by (n + 1), where {ei } is arbitrarily fixed, an is the bandwidth such that
an → 0 and bn = Cn−1/2. However, this statement is incorrect. For example, if
an < ei < an + bn for i = 1, . . . , n, the cardinality of the functional set is 2n .
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Lemma 2 Suppose that Assumptions 1–3 hold. Then, for any fixed l > 0, we have
E[sn(β)] = E[sn(β0)] + O(n−1/2) uniformly in ‖√n(β − β0)‖ ≤ l.

Proof We have to show E[sn(β0 + n−1/2t)] = E[sn(β0)] + O(n−1/2) uniformly in
‖t‖ ≤ l. Observe that for any ‖t‖ ≤ l,

|E[sn(β0 + n−1/2t)] − E[sn(β0)]|
=
∣
∣
∣
∣E

[

Z
∫

K (u){ f0(uh + n−1/2X′t|X) − f0(uh|X)}du

]∣
∣
∣
∣

≤ ln−1/2E [|Z |G1(X)‖X‖] .

This yields the desired result. 
�

Lemma 3 Under Assumptions 1–3, we have (nh)1/2{sn(β0) − E[sn(β0)]} d→
N (0, E[Z2 f0(0|X)]/2).

Proof This result can be proved by checking the conditions of the Lindeberg–Feller
central limit theorem. Since the argument is standard, we omit the detail. 
�

Suppose that β̂ is
√

n-consistent for β0, namely β̂ = β0 + Op(n−1/2). Then, by
Lemmas 1 and 2,

(nh)1/2{sn(β̂) − E[sn(β0)]}
= (nh)1/2{sn(β̂) − E[sn(β)]|

β=β̂
} + (nh)1/2{E[sn(β)]|

β=β̂
− E[sn(β0)]}

= (nh)1/2{sn(β0) − E[sn(β0)]} + op(1).

Using the Taylor expansion, we see that

E[sn(β0)] = E[Z f0(0|X)] + h2

6
E[Z f (2)

0 (0|X)] + o(h2).

We now describe the asymptotic distribution of the matrix estimator ĴP. Let S =
XX′. Since tr(AS) = vec(A′)′ vec(S), the asymptotic covariance matrix of sn(β̂)

is written as 2−1 vec(A′)′E[ f0(0|X) vec(S) vec(S)′] vec(A′). Therefore, the Cramér-
Wold device leads to the next theorem:

Theorem 1 Suppose that Assumptions 1–3 hold and β̂ is
√

n-consistent for β0. Then,

(nh)1/2
{

ĴP − J − h2

6
E[ f (2)

0 (0|X)XX′] + o(h2)

}

is asymptotically normally distributed with zero mean matrix. The asymptotic covari-
ance of the ( j, k)-th and the (l, m)-th elements is given by
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1

2
E[ f0(0|X)X j Xk Xl Xm],

where j, k, l, m = 1, . . . , d.

We end this section with a remark. While we put the conditional quantile restric-
tion on U , the proof of Theorem 2 does not use the restriction. Therefore, Theo-
rem 2 is valid for any β̂ such that β̂ = β0 + Op(n−1/2) for some β0. For example,
when the model (1) is misspecified, β̂KB is

√
n-consistent for β0 that uniquely solves

E[{τ − I (Y ≤ X′β0)}X] = 0, where the existence and the uniqueness of such β0 is
assumed. See Angrist et al. (2006) for a proof of this result. Thus, Theorem 2 is valid
for β̂ = β̂KB even when the model is misspecified.

3 Application: bandwidth selection

Since ĴP contains the estimated parameter in the sum, the direct calculation of the bias
and the variance of ĴP is infeasible. However, Theorem 2 enables us to approximate
the mean squared error (MSE) of ĴP. From Theorem 2, we can see that the MSE is
approximated as

MSE(h) := E[tr{(ĴP − J)2}]

� h4

36

d∑

j,k=1

(
E[ f (2)

0 (0|X)X j Xk]
)2 + 1

2nh

d∑

j,k=1

E[ f0(0|X)X2
j X2

k ]

=: AMSE(h).

The optimal h that minimizes AMSE(h) is given by

hopt = n−1/5

⎧
⎪⎨

⎪⎩

4.5
∑d

j,k=1 E[ f0(0|X)X2
j X2

k ]
∑d

j,k=1

(
E[ f (2)

0 (0|X)X j Xk]
)2

⎫
⎪⎬

⎪⎭

1/5

where we assume that the denominator is not zero. It should be noted that hopt depends
on τ , namely hopt = hopt(τ ), since the distribution of U generally depends on τ . We
further note that hopt depends on the distribution of X, which is the difference from
the scalar (unconditional) density estimation. In the simple case where f0(u|x) is
independent of x, namely f0(u|x) = f0(u), hopt depends on the (unconditional) error
density and the second and the fourth order moments of X.

It is well known that convergence in distribution does not necessarily imply moment
convergence. In order to make the argument rigorous, we introduce the truncated MSE

MSET (h) := E

[

min

[

tr

{

n4/5
(

ĴP − J
)2
}

, T

]]
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and take the limit n → ∞ and T → ∞. Andrews (1991) uses the same device to eval-
uate covariance matrix estimators that contain estimated parameters in the different
context. Then, the optimality of hopt is stated as follows.

Proposition 1 Suppose that Assumptions 1–3 hold and β̂ is
√

n-consistent for β0.
Then, limT →∞ limn→∞{MSET (h) − MSET (hopt)} ≥ 0, where the inequality is strict
unless h = hopt + o(n−1/5).

Proof The proposition follows from the fact that for a bounded sequence of random
variables, convergence in distribution implies moment convergence of any order. 
�

As in the usual density estimation, hopt involves unknown quantities and is not
directly usable. In the density estimation literature, there are several methods, namely
rule of thumb, cross validation and plug-in methods, to cope with this difficulty. For
a comprehensive treatment on practical aspects of density estimation, see Sheather
(2004) and references therein. For example, the optimal bandwidth hopt for a Gauss-
ian location model

Y = X′θ0 + ε, ε|X ∼ N (0, 1),

is given by

hopt = n−1/5

{
4.5
∑d

j,k=1 E[X2
j X2

k ]
α(τ)

∑d
j,k=1

(
E[X j Xk]

)2

}1/5

,

where α(τ) = {1 − �−1(τ )}2φ(�−1(τ )),�(·) and φ(·) are the distribution function
and the density function of the standard normal distribution. Thus, a rule of thumb
bandwidth for the Gaussian location model is given by

ĥROT = n−1/5

⎧
⎨

⎩

4.5
∑d

j,k=1

(
n−1∑n

i=1 X2
i j X2

ik

)

α(τ)
∑d

j,k=1

(
n−1

∑n
i=1 Xi j Xik

)2

⎫
⎬

⎭

1/5

.

4 Censored quantile regression

Powell (1984, 1986) originally suggests to use the kernel method to estimate the
asymptotic covariance matrix for censored quantile regression. In Powell’s censored
quantile regression model, the latent variable Y ∗ is left censored by the observable,
possibly random censoring point C . We observe Y = max{Y ∗, C}, X and C . Suppose
that Y ∗ is independent of C conditionally on X and satisfies the τ -th conditional linear
quantile restriction

QY ∗(τ |X, C) = X′β0(τ ),
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Asymptotic normality of Powell’s kernel estimator 265

which yields the τ th conditional censored quantile regression model

QY (τ |X, C) = max{C, X′β0(τ )}.

Without loss of generality, we may set C = 0. Thus, we consider the model

QY (τ |X) = max{0, X′β0(τ )}. (7)

As in Sect. 2, we fix τ and suppress the dependence on τ for notational convenience.
Then, the model (7) may be written as

Y = max{0, X′β0 + U }, QU (τ |X) = 0,

where U = Y ∗−X′β0 in this case. Powell (1984, 1986) proposes the estimator β̂CQ for
β0 which minimizes

∑n
i=1 ρτ (Yi −max{0, X′

iβ}). Assuming that the parameter space
of β0 is a compact subset of R

d , Powell (1984, 1986) shows that, under suitable regular-
ity conditions, β̂CQ satisfies consistency and asymptotic normality. Let f0(u|x) denote
the conditional density of U given X = x. Then the asymptotic covariance matrix of√

n(β̂CQ −β0) is given by J−1
CQ�CQJ−1

CQ, where �CQ = τ(1 − τ)E[I (X′β0 > 0)XX′]
and JCQ = E[I (X′β0 > 0) f0(0|X)XX′]. The difference from the ordinary quantile
regression is the appearance of the additional indicator term inside the expectations.
Powell (1984, 1986) proposes the kernel estimator for JCQ

ĴPCQ = 1

nh

n∑

i=1

I (X′
i β̂ > 0)K+

(
Yi − X′

i β̂

h

)

Xi X′
i ,

where β̂ is a
√

n-consistent estimator of β0 and K+(·) is the one-sided uniform kernel
K+(u) = I (0 ≤ u ≤ 1). Powell (1984) shows consistency of ĴPCQ under the condition
that h → 0 and nh2 → ∞ but does not investigate the asymptotic distribution.

We now show asymptotic normality of ĴPCQ. For censored quantile regression, we
impose the following regularity conditions:

Assumption 4 {(Ui , Xi ), i = 1, 2, . . . } is an i.i.d. sequence whose marginal distri-
bution is the same as (U, X).

Assumption 5 E[‖X‖5] < ∞. In addition,

E[‖X‖2 I (|X′β0| ≤ z‖X‖)] = O(z), z → 0. (8)

Assumption 6 The conditional density f0(u|x) of U given X = x is continuously
differentiable with respect to u for each x. Furthermore, there exist some constant
A0 > 0 and measurable function G1(x) such that f0(u|x) ≤ A0, | f (1)

0 (u|x)| ≤ G1(x)

for every realization (u, x) of (U, X) and E[(‖X‖2 + ‖X‖3)G1(X)] < ∞ where
f (1)
0 (u|x) = ∂ f0(u|x)/∂u.
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Assumption 7 As n → ∞, h → 0 and (n1/2h)/ log n → ∞.

The additional condition (8) corresponds to Assumption R.2. in Powell (1984). For an
intuitive interpretation of this condition, see Powell (1984, pp.310). The other condi-
tions are almost identical to Assumptions 1–3.

For any fixed A ∈ R
d×d , define

sn(β) = 1

nh

n∑

i=1

Zi I (X′
iβ > 0)K+

(
Yi − X′

iβ

h

)

= 1

nh

n∑

i=1

Zi I (X′
iβ > 0)K+

(
Ui − X′

i (β − β0)

h

)

,

where Zi = tr(AXi X′
i ). The second equality is due to the fact that for X′

iβ >

0, I (X′
iβ ≤ Yi ≤ X′

iβ + h) = I (X′
iβ ≤ Y ∗

i ≤ X′
iβ + h) by the definition of Y.

The next lemma is essential to our purpose.

Lemma 4 Under Assumptions 4–7, the conclusions of Lemmas 1 and 2 are also valid
in the present situation.

Proof Decompose the difference sn(β) − sn(β0) as

sn(β) − sn(β0) = 1

nh

n∑

i=1

Zi I (X′
iβ > 0)

{

K+
(

Ui − X′
i (β − β0)

h

)

− K+
(

Ui

h

)}

+ 1

nh

n∑

i=1

Zi K+
(

Ui

h

)

{I (X′
iβ > 0) − I (X′

iβ0 > 0)}

=: s̄1n(β) + s̄2n(β).

It is not difficult to see from the proofs of Lemmas 1 and 2 that for any fixed l >

0, (nh)1/2{s̄1n(β) − E[s̄1n(β)]} = op(1) and E[s̄1n(β)] = O(n−1/2) uniformly in
‖√n(β − β0)‖ ≤ l. In addition, observe that

I (u + v > 0) − I (u > 0) =
{

I (−u < v) if u ≤ 0,

−I (u ≤ −v) if u > 0.

Thus, for any ‖√n(β − β0)‖ ≤ l,

|s̄2n(β)| ≤ 1

nh

n∑

i=1

|Zi |K+
(

Ui

h

)

I (|X′
iβ0| ≤ |X′

i (β − β0)|)

≤ 1

nh

n∑

i=1

|Zi |K+
(

Ui

h

)

I (|X′
iβ0| ≤ ln−1/2‖Xi‖). (9)
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The expectation on the right-hand side of (9) is bounded by A0E[|Z |I (|X′β0| ≤
ln−1/2‖X‖)], which is of order O(n−1/2) by (8). Therefore, the proof is completed.


�
By Lemma 4, for any

√
n-consistent estimator β̂, we have (nh)1/2{sn(β̂) − E[sn

(β0)]} = (nh)1/2{sn(β0)−E[sn(β0)]}+op(1). The Lindeberg–Feller central limit the-

orem shows that (nh)1/2{sn(β0) − E[sn(β0)]} d→ N (0, E[Z2 I (X′β0 > 0) f0(0|X)]).
Therefore, arguing as in Sect. 2, we get the following theorem:

Theorem 2 Suppose that Assumptions 4–7 hold and β̂ is
√

n-consistent for β0. Then,

(nh)1/2
{

ĴPCQ − JCQ − h

2
E[ f (1)

0 (0|X)I (X′β0 > 0)XX′] + o(h)

}

is asymptotically normally distributed with zero mean matrix. The asymptotic covari-
ance of the ( j, k)th and the (l, m)th elements is given by

E[ f0(0|X)I (X′β0 > 0)X j Xk Xl Xm],

where j, k, l, m = 1, . . . , d.

Based on Theorem 2, we can evaluate the AMSE of ĴPCQ and derive the optimal h
that minimizes the AMSE. The optimal h for censored quantile regression is given by

hopt = n−1/3

⎧
⎪⎨

⎪⎩

2
∑d

j,k=1 E[ f0(0|X)I (X′β0 > 0)X2
j X2

k ]
∑d

j,k=1

(
E[ f (1)

0 (0|X)I (X′β0 > 0)X j Xk]
)2

⎫
⎪⎬

⎪⎭

1/3

.

Note that the order of the optimal bandwidth is n−1/3 because the one-sided uniform
kernel is not symmetric about the origin. The estimation of the constant term of hopt is
analogous to Sect. 3. For instance, a rule of thumb bandwidth for the Gaussian location
model described in Sect. 3 is given by

ĥROT = n−1/3

⎧
⎪⎨

⎪⎩

2
∑d

j,k=1

(
n−1∑n

i=1 I
(

X′
i β̂ > 0

)
X2

i j X2
ik

)

γ (τ)
∑d

j,k=1

(
n−1

∑n
i=1 I (X′

i β̂ > 0)Xi j Xik

)2

⎫
⎪⎬

⎪⎭

1/3

,

where γ (τ) = {�−1(τ )}2φ(�−1(τ )).

5 Extension to weakly dependent data

So far this paper has considered i.i.d. data. We now make note of sufficient conditions
for asymptotic normality of Powell’s kernel estimator for weakly dependent data.
For simplicity, we only deal with the uncensored quantile regression model (2). Let
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{(Ui , Xi ), i = 1, 2, . . .} be a strictly stationary sequence whose marginal distribution
is the same as (U, X). Under a sufficient weak dependence condition (and additional

regularity conditions), it can be shown that
√

n(β̂KB −β0)
d→ N (0, J−1�J−1), where

� is the asymptotic covariance matrix of n−1/2∑n
i=1{τ − I (Ui ≤ 0)}Xi (of course, if

{(Ui , Xi )} is i.i.d., � = �). See, for example, Phillips (1991, pp.459). In this case, the
estimation of � is not straightforward. It should be noted that Theorem 1 in Andrews
(1991) does not apply to the estimation of � since the smoothness of the moment func-
tion is violated in the present situation. However, we concentrate on the estimation of
J in this paper and will discuss the estimation of � in another place.

Here we state some regularity conditions to ensure asymptotic normality of ĴP.

Assumption 8 {(Ui , Xi ), i =1, 2, . . . } is a strict stationary sequence whose marginal
distribution is the same as (U, X).

Assumption 9 The sequence {(Ui , Xi ), i = 1, 2, . . . } is β-mixing; that is

β( j) := sup
i≥1

E

⎡

⎣ sup
A∈F∞

i+ j

|P(A|F i
1) − P(A)|

⎤

⎦ → 0, as j → ∞,

where F j
i is the σ -field generated by {(Uk, Xk), k = i, . . . , j}( j ≥ i). In addition,

∞∑

j=1

jλ{β( j)}1−2/δ < ∞, (10)

for some δ > 2 and λ > 1 − 2/δ.

Assumption 10 E[‖X‖max{6,2δ}] < ∞, where δ is given in Assumption 9.

Assumption 11 The conditional density f0(u|x) of U given X = x is twice continu-
ously differentiable with respect to u for each x. Furthermore, there exist A0 > 0 and
G j (x)( j = 1, 2) such that f0(u|x) ≤ A0, | f ( j)

0 (u|x)| ≤ G j (x)( j = 1, 2) for every
realization (u, x) of (U, X), E[(‖X‖2+‖X‖3)G1(X)] < ∞ and E[‖X‖2G2(X)] < ∞,
where f ( j)

0 (u|x) = ∂ j f0(u|x)/∂u j for j = 1, 2.

Assumption 12 Let f0(u1, u1+ j |x1, x1+ j ; j) denote the conditional density of
(U1, U1+ j ) given (X1, X1+ j ) = (x1, x1+ j )( j ≥ 1). Then, there exists a constant
A1 > 0 independent of j such that f0(u1, u1+ j |x1, x1+ j ; j) ≤ A1 for every realiza-
tion (u1, u1+ j , x1, x1+ j ) of (U1, U1+ j , X1, X1+ j ).

Assumption 13 As n → ∞, h → 0 and (n1/2h)/ log n → ∞. In addition, there
exists a sequence of positive integers s = sn satisfying s → ∞ and s = o((nh)1/2)

as n → ∞ such that

(n/h)1/2β(s) → 0 as n → ∞. (11)
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The β-mixing condition is required for establishing the uniform convergence result
corresponding to Lemma 1 because our approach uses the blocking technique as in
Yu (1994) and Arcones and Yu (1994). The blocking technique enables us to employ
the symmetrization technique and an exponential inequality available in the i.i.d. case.
In order to validate the blocking technique, we use Lemma 4.1 in Yu (1994), which
requires the β-mixing condition. A set of conditions such as (10), E[‖X‖2δ] < ∞,
the boundedness of the conditional densities (included in Assumptions 11–12) and
the latter part of Assumption 13 is typically assumed in the density estimation and
the nonparametric regression literature. See Condition 1 of Theorem 6.3 in Fan and
Yao (2005) (we note that Theorem 6.3 of Fan and Yao (2005) assumes the α-mixing
condition, which is weaker than the β-mixing condition). These conditions are suffi-
cient for asymptotic normality of (nh)1/2{sn(β0) − E[sn(β0)]}, where sn(β) is given
by (4). A sufficient condition on the mixing coefficient β( j) to satisfy the conditions
(10) and (11) is provided in Fan and Yao (2005, pp.387).

Below we follow the notations used in Sect. 2. The next lemma is essential to our
purpose.

Lemma 5 Under Assumptions 8–13, the conclusion of Lemma 1 is valid in the present
situation.

Proof Working with the same notations as in the proof of Lemma 1, we show that

n1/2h−1/2{W1n(t) − E[W1n(t)]} p→ 0, uniformly in ‖t‖ ≤ l.
Before proceeding to the proof, as in Yu (1994) and Arcones and Yu (1994), we

introduce a sequence of independent blocks. Divide the n-sequence {1, . . . , n} into
blocks of length an = [n(1−2/δ)/(1−2/δ+λ)] one after the other:

Hk = {i : 2(k − 1)an + 1 ≤ i ≤ (2k − 1)an},
Tk = {i : (2k − 1)an + 1 ≤ i ≤ 2kan},

for k = 1, . . . , μn , where μn = [n/(2an)]. Let {(Ũi , X̃i ), i ∈ ∪μn
k=1 Hk} be a set of

random vectors such that blocks {(Ũi , X̃i ), i ∈ Hi } (k = 1, . . . , μn) are indepen-
dent and have the same distribution as {(Ui , Xi ), i ∈ H1}. Replacing (Ui , Xi ) with
(Ũi , X̃i ), define Z̃i and Ũ∗

i (t) as Zi and U∗
i (t), respectively, for i ∈ ∪μn

k=1 Hk .
Fix any ε > 0. Observe that

P

(

sup
‖t‖≤l

|W1n(t) − E[W1n(t)]| > n−1/2h1/2ε

)

≤ P

⎛

⎝ sup
‖t‖≤l

∣
∣
∣
∣
∣
∣

1

n

2anμn∑

i=1

{U∗
i (t) − E[U∗

i (t)]}
∣
∣
∣
∣
∣
∣
>

n−1/2h1/2ε

2

⎞

⎠

+P

⎛

⎝ sup
‖t‖≤l

∣
∣
∣
∣
∣
∣

1

n

n∑

i=2anμn+1

{U∗
i (t) − E[U∗

i (t)]}
∣
∣
∣
∣
∣
∣
>

n−1/2h1/2ε

2

⎞

⎠ . (12)
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A simple calculation shows that the second term on the right-hand side of (12) con-
verges to zero (use the fact that sup‖t‖≤l |U∗

i (t)| ≤ |Zi |I (h < Ui ≤ h+n−1/2l‖Xi‖)).
On the other hand, using the same argument as in Lemma 4.2 of Yu (1994), the first
term on the right-hand side of (12) is bounded by

2P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

μn∑

k=1

{Ṽk(t) − E[Ṽk(t)]}
∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

)

+ 2μnβ(an),

where Ṽk(t) = ∑
i∈Hk

Ũ∗
i (t). Because of the condition (10), μnβ(an) = o(1). There-

fore, it suffices to show that

P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

μn∑

k=1

{Ṽk(t) − E[Ṽk(t)]}
∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

)

→ 0.

Let σ1, . . . , σμn be independent and uniformly distributed over {−1, 1} and inde-
pendent of {(Ũi , X̃i ), i ∈ Hk}(k = 1, . . . , μn). Since {t �→ Ṽk(t), k = 1, . . . , μn} is
a sequence of i.i.d. stochastic processes, the symmetrization technique (van der Vaart
and Wellner 1996, Lemma 2.3.7) yields that

ξnP

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

μn∑

k=1

{Ṽk(t) − E[Ṽk(t)]}
∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

)

≤ 2P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

μn∑

k=1

σi Ṽk(t)

∣
∣
∣
∣
∣
>

n−1/2h1/2ε

16

)

,

where ξn = 1 − (16μn/(ε2nh)) sup‖t‖≤l E[{Ṽ1(t)}2]. We show that sup‖t‖≤l

E[{Ṽ1(t)}2] = O(ann−1/2). By stationarity,

E[{Ṽ1(t)}2] = anE[{U∗
1 (t)}2] + 2an

an−1∑

j=1

(1 − j/an)E[U∗
1 (t)U∗

1+ j (t)].

Observe that sup‖t‖≤l E[{U∗
1 (t)}2] = O(n−1/2). By conditioning on (X1, X1+ j ), we

have

|E[U∗
1 (t)U∗

1+ j (t)]|

≤ E

[

|Z1 Z1+ j |
∫ h+n−1/2l‖X1‖

h

∫ h+n−1/2l‖X1+ j ‖

h
f0(u1, u1+ j |X1, X1+ j ; j)du1du1+ j

]

≤ const. × n−1E[|Z1 Z1+ j | · ‖X1‖‖X1+ j‖]
= O(n−1),
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uniformly in ‖t‖ ≤ l and j ≥ 1. This yields that

sup
‖t‖≤l

∣
∣
∣
∣
∣
∣

an−1∑

j=1

E[U∗
1 (t)U∗

1+ j (t)]
∣
∣
∣
∣
∣
∣
= O(ann−1) = o(n−1/2).

Thus, we have shown that sup‖t‖≤l E[{Ṽ1(t)}2] = O(ann−1/2), which implies that
ξn = 1− O(n−1/2h−1) = 1−o(1) and consequently ξn ≥ 1/2 for large n. Therefore,
for large n,

P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

μn∑

k=1

{
Ṽk(t) − E[Ṽk(t)]

}
∣
∣
∣
∣
∣
>

n−1/2h1/2ε

4

)

≤ 4P

(

sup
‖t‖≤l

∣
∣
∣
∣
∣

1

n

μn∑

k=1

σi Ṽk(t)

∣
∣
∣
∣
∣
>

n−1/2h1/2ε

16

)

.

The rest of the proof is similar to the latter part of the proof of Lemma 1. Argu-
ing as in the proof of Lemma 1, it is shown that the cardinality of the functional set
{σ (μn) �→ n−1∑μn

k=1 σi Ṽk(t) : ‖t‖ ≤ l}, where σ (μn) = (σ1, . . . , σμn ), is bounded
by some polynomial of n uniformly over every realization of {(Ũi , X̃i ), i ∈ ∪μn

k=1 Hk}.
In addition, Hoeffding’s inequality implies that

sup
‖t‖≤l

Pσ

(∣
∣
∣
∣
∣

1

n

μn∑

k=1

σi Ṽk(t)

∣
∣
∣
∣
∣
>

n−1/2h1/2ε

16

)

≤ 2 exp

(

− hε2

512wn

)

,

where Pσ denotes the probability with respect to σ (μn) only and wn = n−1∑μn
k=1

{∑i∈Hk
|Z̃i |I (h < Ũi ≤ h + n−1/2l‖X̃i‖)}2. Thus, it suffices to show that

(log n)h−1wn
p→ 0. (13)

From the evaluation of E[{Ṽ1(t)}2] above, it is shown that

E

⎡

⎢
⎣

⎧
⎨

⎩

∑

i∈H1

|Z̃i |I (h < Ũi ≤ h + n−1/2l‖X̃i‖)
⎫
⎬

⎭

2
⎤

⎥
⎦ = O(ann−1/2),

which leads to E[wn] = O(μnann−3/2) = O(n−1/2). Since n1/2h/ log n → ∞, (13)
follows from Markov’s inequality. Therefore, we complete the proof. 
�

The proof of Lemma 2 does not use the independence assumption and hence the
conclusion of Lemma 2 applies to the present situation. Thus, for any

√
n-consistent

estimator β̂, we have (nh)1/2{sn(β̂) − E[sn(β0)]} = (nh)1/2{sn(β0) − E[sn(β0)]} +
op(1). In addition, mimicking the proof of Theorem 6.3 in Fan and Yao (2005),
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it can be shown that under Assumptions 8–13, (nh)1/2{sn(β0) − E[sn(β0)]} d→
N (0, E[Z2 f (0|X)]/2). Therefore, arguing as in Sect. 2, we get the following theorem:

Theorem 3 Suppose that Assumptions 8–13 hold and β̂ is
√

n-consistent for β0. Then,
the conclusion of Theorem 1 holds under the present situation.

The conclusion of Theorem 4 is the same as that of Theorem 2 which assumes the
i.i.d. condition. Therefore, the optimal bandwidth that minimizes the AMSE under the
weak dependence condition is the same as that under the i.i.d. condition.

6 Concluding remarks

In this paper, we have shown asymptotic normality of Powell’s kernel estimator for
the asymptotic covariance matrix of the quantile regression estimator for both i.i.d and
weakly dependent data. The asymptotic distribution of the kernel estimator enables
us to calculate the approximate mean squared error. It should be noted that since the
kernel estimator contains the estimated parameter in the sum, the direct calculation of
the mean squared error is infeasible. We have derived the optimal bandwidth that min-
imizes the AMSE. In addition, we have derived the corresponding results to censored
quantile regression.

As pointed out by a referee, despite the fact that Lemma 1 exploits the specific prop-
erty of the uniform kernel, the results of this paper can be extended to, for instance,
general kernels of bounded variation, with some obvious modifications. In that case,
we can write K as a difference of two non-decreasing functions and apply the essen-
tially same argument as Lemma 1 to such K .
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