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Abstract Model selection uncertainty in longitudinal data analysis is often much
more serious than that in simpler regression settings, which challenges the valid-
ity of drawing conclusions based on a single selected model when model selection
uncertainty is high. We advocate the use of appropriate model selection diagnostics
to formally assess the degree of uncertainty in variable/model selection as well as
in estimating a quantity of interest. We propose a model combining method with its
theoretical properties examined. Simulations and real data examples demonstrate its
advantage over popular model selection methods.

Keywords Adaptive regression by mixing · Longitudinal data · Model combining ·
Model selection · Model selection diagnostics · Model selection uncertainty

1 Introduction

Longitudinal data arise frequently in many scientific studies where each of independent
subjects is measured repeatedly over a time period. A variety of modeling approaches
have been proposed for handling such data. Linear models, as is the focus of this paper,
are commonly used for continuous response (see, e.g., Diggle et al. 2002; Fitzmaurice
et al. 2004; semi-parametric and nonparametric models are useful for modeling more
flexible structures (see e.g., Lin and Ying 2001; Ruppert et al. 2003). When multiple
models are considered (which is almost always the case), model comparison is a critical
step for reaching reliable conclusions.
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For longitudinal data, model/variable selection issues have not been much
addressed. A few exceptions include Pan (2001), Cantoni et al. (2007), and Yafune
et al. (2005), where familiar model selection methods are adapted to the longitudinal
case. Fitzmaurice et al. (2004) give a general strategy to obtain a sensible choice of
models for both the covariance and the mean: first select an appropriate model for the
covariance and then select a model for the mean. In a semi-parametric setting, Fan
and Li (2004) propose a penalized weighted least squares procedure and establish an
asymptotic efficiency property for selecting significant variables. Huang et al. (2006)
propose nonparametric methods for covariance matrix selection and estimation by
modified Cholesky decomposition. Wang and Qu (2009) derive a consistent model
selection rule in the estimation equations approach.

The problem of model selection uncertainty is now well known (see, e.g., Draper
1995; Chatfield 1995; Breiman 1996; Hoeting 1999). In the context of longitudinal
data analysis, the issue can be substantially more serious due to the uncertainty in
both mean and covariance modeling, which makes it usually much harder to choose
the “best” combination of the mean and variance models when compared with the
cross-sectional data case.

Clearly, in medical and other applications, interpretations are desirable and impor-
tant. The approach of selecting a single model and then basing all inference on the
model is natural and often helpful for that purpose. In case of high uncertainty in
model selection, a convenient interpretation/conclusion on which variables are impor-
tant for explaining the response may be seriously misleading. Going beyond being
aware of the uncertainty in model selection, a proper assessment of the uncertainty
in finding the best model as well as in estimating a quantity of interest is desirable.
It is quite possible that the model selection uncertainty has a substantial impact on
some quantities of interest but not so on others. It is thus important to differentiate
situations between severe uncertainty and negligible ones for estimating a parameter
of scientific significance.

Methods that try to address the problem of model selection uncertainty have
been proposed from different perspectives, including Bayesian model averaging (e.g.,
Hoeting 1999), some non-Bayesian approaches (e.g., Buckland et al. 1997; Breiman
1996; Hjort and Claeskens 2003). Yang (2001, 2003) propose a model combining
method ARM based on information-theoretic tools. In addition to its applicability
to combine both parametric and nonparametric methods, another advantage of this
approach is that the good performance of the combined estimator is theoretically
characterized with non-asymptotic risk bounds. In our opinion, non-asymptotic char-
acterizations of performance are preferred to asymptotic expressions when model
selection uncertainty is high due to the frequent lack of reliability of asymptotic argu-
ments. To our knowledge, no model combining methods with risk properties have
been derived for longitudinal data analysis.

The objective of this work is mainly twofold. First, we propose model selection
diagnostic measures to assess reliability of model selection for longitudinal data. When
the measures indicate there is not much model selection uncertainty, conclusion and
interpretations based on a properly selected model are sound. When there is much
evidence of severe model selection uncertainty, however, results based on a single
selected model may not be trusted. A sensible alternative is to focus on estimating the
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regression function by model combination. Second, we study a model combination
method and obtain oracle inequalities for combining longitudinal models.

The rest of the paper is organized as follows. We set up the problem in Sect. 2.
Model selection diagnostics to assess the uncertainty in model selection are proposed
in Sect. 3. In Sect. 4, we propose the ARM algorithm for longitudinal data and give
theoretical results on the combined estimator. In Sect. 5, we compare ARM with model
selection methods via fair and informative simulations. An application on real data sets
is presented in Sect. 6. Concluding remarks are in Sect. 7. The proofs of the theoretical
results are in Appendix.

2 Problem setup

Let Yi j , j = 1, . . . , ni be the sequence of observed measurements on the i th sub-
ject, i = 1, . . . , m; ti j be the time when the j th measurement for the i th subject is
taken. Associated with each Yi j there are p explanatory variables, Xi jk, k = 1, . . . , p.
Consider the regression model:

Yi j = f (Xi j ) + ei j , j = 1, 2, . . . , ni , i = 1, . . . m,

where f is the true regression function, Xi j = (Xi j1, . . . , Xi jp)
′ is the vector of pre-

dictors, and the ei j are Gaussian errors conditional on the predictors. We expect the
errors to be correlated within subjects. Throughout this paper, Xi = (Xi1, . . . , Xini )

′
are assumed to be independent of each other for different subjects and E(ei j |Xi j ) = 0
for all i and j . Using vector and matrix notation, the model is

Yi = f (Xi ) + ei , i = 1, . . . , m, (1)

where Yi = (Yi1, Yi2, . . . , Yini )
T , f (Xi ) = ( f (Xi1), f (Xi2), . . . , f (Xini ))

T and ei

is conditionally Gaussian with mean 0 and covariance matrix Vi . In the mixed-effect
model framework, ei can be further divided into two parts, ei = Zi bi + εi , where bi

is the random effect from N (0, G) and εi is the within-subject random errors from
N (0, Ri ) for some positive definite matrices G and Ri .

For estimating f , linear combinations of the predictors are considered. Suppose
that K such linear models are considered as candidates for fitting the data. The kth
model is

Yi = fk(Xi ;βk) + ei and ei ∼ N (0, Vi (αk)), i = 1, . . . , m;

where fk is a linear combination of a subset of the predictors, and βk and αk are
the parameters for the mean function and covariance function, respectively. Here Vi

denotes a specific covariance structure. For instance, if an exchangeable covariance
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structure is used for model k, then Vi denotes the form and αk is the correlation param-
eter (usually denoted by ρ) between any two observations within the same subject.
For a given model, let ̂βk and α̂k be the maximum likelihood or other appropriate
estimators.

Although the focus of this work is on linear models for simplicity, the methodology
and theory work more generally. The explanatory variables can be time-invariant or
time-variant.

When there is much uncertainty in model selection, finding the “true model” is not
realistic. Prediction, as emphasized by Geisser (1993, Chapter 1), is perhaps of more
interest, and it serves as a means to assess different statistical models/methods. We
consider the loss function of the form

(Yi − ̂Yi )
T V −1

i (Yi − ̂Yi ), (2)

which is equivalent in expectation to { f (Xi )− ̂f (Xi )}T V −1
i { f (Xi )− ̂f (Xi )}, a suit-

able loss for estimating f . For theoretical results, we will consider the risk

∑

i

E
{

f (Xi ) − ̂f (Xi )
}T

V −1
i

{

f (Xi ) − ̂f (Xi )
}

.

For empirical comparison of model selection and model combining methods using
real data, we will consider random data splittings and use an average prediction error
as the performance measure (see Sect. 6 for details).

3 Model selection diagnostics through instability measures

Whereas some researchers favor model combining over model selection, we do not
believe simply combining the candidate models is always the solution. First, if the
quantities of interest are minimally affected by model selection uncertainty, why should
one bother to use a much more complicated approach? Second, unlike statements under
idealized assumptions (e.g., Burnham and Anderson 2004, p. 293), in reality any model
combining method can do much worse than model selection, especially when the best
model is readily identified (see Juditsky and Nemirovski 2000; Yang 2004; Tsybakov
2003, for results that quantify the “price” of combining procedures). We will see in
Sect. 6 that combining by ARM is certainly not always superior to model selection. A
natural question then is: when should model combining be favored? This is our moti-
vation of considering instability measures to describe model selection uncertainty. In
our opinion, model selection diagnostics are at least as important as model diagnos-
tics. It is perfectly possible that a selected model passes the usual model diagnostics
yet the model selection diagnostics show that the process is highly uncertain and thus
the selected model is not trustworthy. Without model selection diagnostic measures,
presenting only the estimates from the selected model is potentially misleading.

In this section, we propose to use simple and intuitive instability measures for
selecting a model as well as for estimating a quantity of interest. The measures, based
on well-known bootstrap and data perturbation ideas, in our opinion, provide critical
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information regarding reliability of a selected model or an estimate based on it. An
application on real data will be given in Sect. 6.

3.1 Bootstrap instability in selection (BIS)

Breiman (1996) uses nonparametric bootstrap methods (e.g., Efron and Tibshirani
1993) to perform Bagging to improve an estimator. Note, in our context, in order to
keep the correlation structure, resampling should be applied on subjects. The bootstrap
instability in selection (BIS) is based on parametric bootstrap resampling as follows:

Step 1 Apply a model selection strategy on the original data to select the “best” model
(both mean and covariance).

Step 2 Generate bootstrap samples from the selected model. Let Ỹi = ̂f (Xi ) + ẽi ,
i = 1, . . . , m, where ẽi is generated from N (0, ̂Vi ) distribution and ̂f is based
on the selected model with estimated parameters, and let (Ỹi , Xi )

m
i=1 be the

bootstrap sample.
Step 3 Apply the model selection strategy again on the bootstrap sample and choose

the “best” model.
Step 4 Repeat Steps 2 and 3 a large number of times (say B). Then, BIS is defined to

be the fraction of times that the original “best” model is not selected.

If the model selection is stable for the current problem, we expect that most of the time
we will choose the same mean and covariance models as in Step 1. Thus, if BIS is
larger than 50%, we need to honestly admit the infeasibility of finding the best model
by the model selection method.

3.2 Bootstrap instability in estimation (BIE)

Instability can also be measured in terms of estimation of the regression function or
other unknown quantities.

Suppose a one-dimensional model-independent estimand is Q. Then BIE of Q
is calculated in the same way as BIS except that after a model is chosen we obtain
an estimate of Q, denoted by ̂Q and ̂Q(b) from the original data and bootstrap data
respectively and ̂Q is assumed not to be zero. BIE based on B bootstrap samples is
given by

BIE(̂Q) =
1
B

∑

b |̂Q − ̂Q(b)|
|̂Q| .

A large BIE value, say greater than 0.5, indicates severe instability in estimation of Q.
It should be noticed that the above instability in estimation in fact consists of two

sources of uncertainty: the parameter estimation uncertainty and the instability due to
model selection. Even if no model selection procedure is performed, the parameter
estimates from the bootstrap samples are different from the original one and a high
value in BIE may well be mainly from the parameter estimation. We propose BIEs as
follows:

123



238 S. Liu, Y. Yang

First, let BIEp be the pure bootstrap instability in estimation (without model selec-
tion) calculated in a similar way as BIE, i.e.,

BIEp(̂Q) =
1
B

∑

b |̂Q − Q̌(b)|
|̂Q| ,

where Q̌(b) is estimated from the bootstrap sample based on the originally selected
model. Then we define the bootstrap instability in estimation due to model selection
as

BIEs(̂Q) = BIE(̂Q)/BIEp(̂Q) − 1.

If the instability in estimation indeed mainly comes from the model selection uncer-
tainty, we expect a large BIEs value.

3.3 Perturbation instability in estimation

Data perturbation is an alternative to bootstrap resampling for measuring instability,
and it can bring in additional information about the model selection process. Some
related previous uses of perturbation are in Breiman (1996), Ye (1998), Shen and Ye
(2002), and Yuan and Yang (2005). Our construction of perturbation instability has
two distinct features. One is that we measure the perturbation instability due to model
selection (not the overall instability) and the other is that we perturb two components,
which provides information on sources of high instability that is not available in BIE.

We focus on the mixed-effect model case, where there are between-subject and
within-subject variabilities corresponding to two kinds of randomness, random effects,
and (within-subject) random errors. We generate a new set of perturbation random
effects b̃i from N (0, τ 2

1
̂G) and a new set of perturbation random errors ε̃i from

N (0, τ 2
2
̂Ri ), where τ1 and τ2 are perturbation sizes between 0 and 1, and ̂G and ̂Ri are

estimates for G and Ri based on the selected model. Consider Ỹi = Yi + Zi b̃i + ε̃i for
i = 1, 2, . . . , m and apply the model selection procedure under examination on the
perturbed data (Ỹi , Xi ) for i = 1, 2, . . . , m. In general, the random effects b̃i can be
a vector, but we only consider random intercept model and thus it is a scalar here. At
each permutation size (τ1, τ2), we do this a large number of time (say M) and compute
the average deviation of the perturbed estimates of the quantity of interest:

I (τ1, τ2) = 1

M

M
∑

r=1

|̂Q − Q̃(r)|,

where Q̃(r) is obtained from the r th perturbed data.
From the definition, how fast I changes in τ1 and τ2 is a suitable instability measure.

Let I ′
τ1

= ∂ I (τ1,τ2)
∂τ1

|τ1=0,τ2=0 and I ′
τ2

= ∂ I (τ1,τ2)
∂τ2

|τ1=0,τ2=0. Then PIE for estimating Q
based on the model selection procedure can be defined as

PIE(̂Q) =
√

{

I ′
τ1

}2 + {

I ′
τ2

}2
,
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and we define the perturbation instability in estimation due to model selection as

PIEs(̂Q) = PIE(̂Q)/PIEp(̂Q) − 1,

where PIEp is the pure perturbation instability in estimation without model
selection.

To understand the main source of instability between the two components of
randomness, namely random effects and random errors, the vector PIE = (I ′

τ1
, I ′

τ2
)T

gives useful information. It can provide better insight into the problem and may be
helpful for planning a future study. If a large instability is mainly due to random errors,
then the improvement for a more accurate estimation should focus on instrumental
devices, for instance, designing a better questionnaire for a survey study or implement-
ing a more precise measuring device for a plant-growth experiment; if the instability
is mainly due to subject variation, then perhaps selecting more homogeneous subjects
can help for estimating some quantities of interest (other than the random effect).

To estimate PIE, we first fix τ2 = 0 and consider equally spaced τ1 values from 0
to 1 with width 0.1, and obtain the corresponding values I (τ1, 0) and then use simple
linear regression (I (τ1, 0) versus τ1) to estimate the first term in PIE, I ′

τ1
, by the slope

of the linear regression. Then, we fix τ1 = 0 and let τ2 vary from 0 to 1 to estimate
the second term, I ′

τ2
, in the same way. Combining the two terms leads to a reasonable

estimate of PIE. Note that the perturbation plot of I versus τ1 or τ2 (with τ2 or τ1 fixed
at zero) is typically linear in τ1 or τ2 (see, e.g., Figs. 1 and 2 in a simpler regression
context in Yuan and Yang, 2005), and thus the derivative of I can be estimated by the
slope of linear regression.
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Fig. 1 Comparing ARM with selection by AIC/BIC where the true model is specified by (6) with ρ = 0.1.
RR refers to risk reduction of ARM compared to the best of AIC and BIC. l1 and l2 refer to the estimation
risks based on the squared L2 loss without or with normalization by the covariance matrix respectively
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Fig. 2 Comparing ARM with selection by AIC/BIC where the true model is specified by (6) with ρ = 0.5.
RR refers to risk reduction of ARM compared to the best of AIC and BIC. l1 and l2 refer to the estimation
risks based on the squared L2 loss without or with normalization by the covariance matrix respectively

3.4 On using the model-selection diagnostic measures

We have proposed three instability measures as model-selection diagnostic values to
assess the uncertainty due to model selection for longitudinal data analysis. They allow
us to make a proper judgment regarding the model selection reliability. Based on our
numerical investigations, we suggest the following for application:

1. First look at the BIS value. If BIS is no larger than 0.5, we are reasonably com-
fortable about the selected model and then work with it for inference or prediction.
However, if BIS is greater than 0.5, we know that model selection uncertainty is too
high and the selected model cannot be taken as the best (or true) with reasonable
confidence. We then continue as follows:

2. For an estimand of interest, we find its BIE or PIE. If the values are no larger than
0.5, the model selection uncertainty does not seem to have much effect on estimat-
ing the quantity of interest and the estimate of the estimand from the selected model
can be reasonably trusted. Otherwise (i.e., if BIE ≥ 0.5 or PIE ≥ 0.5), continue as
follows:

3. Compute BIEs or PIEs . Lack of reliability due to model selection is announced if
BIEs or PIEs is bigger than 1, which roughly means that the instability due to model
selection alone is worse than that of parameter estimation. Then model averaging
should be considered for the estimation task. Otherwise (i.e., BIEs and PIEs are no
larger than 0.5), uncertainty due to model selection does not cause much additional
trouble beyond uncertainty of parameter estimation (which cannot be avoided) and
thus may be tolerated.

Of course, the above suggestions are not meant to be taken rigidly. Specific context
and subject area knowledge/judgment are relevant.
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3.5 Pre-combining strategies

For longitudinal data analysis, a large number of combinations of covariance models
and mean models can be explored to better capture the complexity of the data. For
the mean, besides variable selection, one often considers transformations as well. The
computational cost can be very high for combining all these models. To alleviate the
burden, we consider some pre-combining strategies to reduce the number of models
to be combined.

We first consider a large or full (including all the terms) model for the mean and
screen on covariance models. We randomly split the data into two parts and use the
first part to do estimation and the second to compute the prediction errors. We then
compute weights for the different covariance models. The weighting is similar to the
one we use in the ARM algorithm to be proposed in Sect. 5. Based on the weights, we
decide which covariance models to be removed. Once the covariance specifications
are narrowed down, one can use various model selection methods to screen out less
important variables. A demonstration will be given in the data example section.

4 Combining longitudinal models by ARM

4.1 The algorithm of ARM for longitudinal data

For combining longitudinal models, the correlation between observations within sub-
jects must be taken into account. We propose the following ARM algorithm. For
simplicity, assume m is even in computing the weights for the models.

1. Randomly split the data into two parts Z (1) = (Xi , Yi ), 1 ≤ i ≤ m/2 and Z (2) =
(Xi , Yi ), m/2 + 1 ≤ i ≤ m. Note that we are splitting on subjects, the natural
sampling unit in the context of longitudinal data.

2. Estimate βk and Vi (αk) by MLE (or other sensible methods) on Z (1). Let
̂fk,Z (1) (x) = ̂fk,Z (1) (x; ̂βk,Z (1) ).

3. Assess the accuracies of the models using the second part of the data Z (2). For each
k, for m/2 + 1 ≤ i ≤ m, predict Yi by ̂fk,Z (1) (Xi , ̂βk,Z (1) ). Compute the overall
measure of discrepancy:

Dk =
m

∑

i=m/2+1

{Yi − ̂fk,Z (1) (Xi )}T
̂Vi (̂αk,Z (1) )

−1{Yi − ̂fk,Z (1) (Xi )}. (3)

Ideally, we would use the true covariance matrix, Vi , in the above equation, but in
practice an estimate, ̂Vi , is used.

4. Compute the weight for model k:

Wk = �m
i=m/2+1|̂Vi (̂αk,Z (1) )|−1/2 exp(−Dk/2)

∑K
l=1 �m

i=m/2+1|̂Vi (̂αl,Z (1) )|−1/2 exp(−Dl/2)
, (4)

where |̂Vi | denotes the determinant of ̂Vi .
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5. Repeat the above steps P − 1 times and let Wk,p denote the weight of model k at
the pth permutation for 0 ≤ p ≤ P − 1. Let ̂Wk = 1

P

∑P−1
p=0 Wk,p be the final

weight of model k.
6. The ARM estimator of the true regression function f is ̂f (x) = ∑K

k=1
̂Wk ̂fk,Z

(x; ̂βk,Z ).

In the above algorithm, data splitting ratio is 1 : 1. Our experience suggests that
half-half splitting works well, which results in optimal estimation of the regression
function in rate of convergence, as well be seen in the next section. It should be pointed
out that, although our focus in this paper is on linear models, the ARM method does not
require the candidate models to be linear or parametric. In fact, it works for combining
general linear, nonlinear and nonparametric/semi-parametric models.

4.2 A theoretical result for ARM

Risk bounds will be given in this section under two difference losses, Kullback–Leibler
divergence and squared L2 loss. In statistics and machine learning literature, besides
the risk at a given sample size, cumulative risks are often of interest as well. Suppose
we begin the estimation process at the sample size m0 and continue the task sequen-
tially as more observations come in one by one. Let ̂fk,l(x) = ̂fk,l(x; ̂βk,l) be the
estimate of the true regression function and ̂Vi (̂αk,l) be the estimate of Vi by model k
based on data (Yi , Xi )

l
i=1. For i = m0 + 1, let Wk,i = 1/K and for m0 + 1 < i ≤ m,

let Wk,i be

�i−1
l=m0+1|̂Vl (̂αk,l−1)|− 1

2 exp
[

− 1
2

∑i−1
l=m0+1{Yl − ̂fk,l−1(Xl )}T

̂Vl (̂αk,l−1)
−1{Yl − ̂fk,l−1(Xl )}

]

∑K
k=1 �i−1

l=m0+1|̂Vl (̂αk,l−1)|− 1
2 exp

[

− 1
2

∑i−1
l=m0+1{Yl − ̂fk,l−1(Xl )}T ̂Vl (̂αk,l−1)−1{Yl − ̂fk,l−1(Xl )}

] .

(5)

Now for i = 1, 2, . . . , m, the true density function of Yi given the predictors is

pi = 1

(2π)ni /2|Vi |1/2 exp

[

−1

2
{yi − f (xi )}T V −1

i {yi − f (xi )}
]

;

the estimated density function under model k is

q̂k,i = 1

(2π)ni /2|̂Vi (̂αk,i−1)|1/2

× exp

[

−1

2
{yi − ̂fk,i−1(xi )}T

̂Vi (̂αk,i−1)
−1{yi − ̂fk,i−1(xi )}

]

;

and the combined estimate is

ĝi =
∑

k

1

(2π)ni /2|̂Vi (̂αk,i−1)|1/2
Wk,i

× exp

[

−1

2
{yi − ̂fk,i−1(xi )}T

̂Vi (̂αk,i−1)
−1{yi − ̂fk,i−1(xi )}

]

.
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Let D(p||g) = ∫

p(x) log p(x)
g(x)

dx denote the Kullback–Leibler (K–L) divergence
between p and g. We have the following oracle inequality. Proofs of the theorems in
this section are given in Appendix.

Theorem 1 The cumulative risk of the combined procedure by ARM satisfies

m
∑

i=m0+1

E D(pi ||̂gi ) ≤ log K + inf
k

m
∑

i=m0+1

E D(pi ||̂qk,i ).

Thus in terms of the cumulative K–L risk, our combined estimator achieves the
smallest among the candidates up to a penalty log K (which is negligible as m → ∞).
To derive a risk bound under the squared L2 loss, more conditions are required.

Condition 1 There exists a positive constant τ , such that for all i > 1, with probability
one,

sup
k

∣

∣

∣{ f (x) − ̂fk,i−1(x)}T V −1
i { f (x) − ̂fk,i−1(x)}

∣

∣

∣ ≤ τ.

Condition 2 There exist positive constants 0 < η1 ≤ 1 and 1 ≤ η2 < ∞, such that
with probability one for all i > 1 and k,

η1Vi ≤ ̂Vi (̂αk,i−1) ≤ η2Vi ,

where for two matrices A and B, A ≤ B means B − A is nonnegative definite.

A sufficient condition for Condition 2 is that the eigenvalues of each covariance
matrix family {Vi (αk)}, i = 1, 2, . . . , m and k = 1, . . . , K , are uniformly bounded
away from zero and infinity, which is typically satisfied for parametric covariance
models if the parameter αk is bounded away from boundaries.

Conditions 1 and 2 require that the individual estimates are not too far away
from the true values, as are commonly used for deriving risk bounds (not asymp-
totic expressions) for function estimation. The constants involved are not required
to be known. We give below a simple example that satisfies both conditions. Let
n∗ = max{nm0+1, . . . , nm}.
1. || f ||∞ ≤ A < ∞ for some constant A and the estimates ̂fk,i−1 are restricted to be

in the range;
2. Assume Vi = σ 2V0i , i ≥ 1, where the correlation matrix V0i is known and σ 2 is

unknown, but known to be between σ 2 > 0 and σ 2 < ∞. The estimates of σ 2 are
bounded accordingly;

3. n∗ ≤ B < ∞ for some positive constant B.

We define a loss function to gauge performance of covariance matrix estimation as

L(̂V , V ) = tr{V (̂V −1 − V −1)} − log{det(V ̂V −1)}.

Note that the same loss function can be found in Huang et al. (2006).
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Theorem 2 Assume that Conditions 1 and 2 are satisfied, then the risk of the combined
regression estimator satisfies

m
∑

i=m0+1

E

{

f (Xi ) −
∑

k

Wk,i ̂fk,i−1(Xi )

}T

V −1
i

{

f (Xi ) −
∑

k

Wk,i ̂fk,i−1(Xi )

}

≤ (2 + ξ)n∗ + 2.5τ

η1

⎛

⎝2η1 log K + inf
k

m
∑

i=m0+1

[

E
{

f (Xi ) − ̂fk,i−1(Xi )
}T

×V −1
i

{

f (Xi ) − ̂fk,i−1(Xi )
} + η1 E L{̂Vi (̂αk,i−1), Vi }

]

⎞

⎠,

where ξ = max{|η2−1|, |η1−1|}. If further (Yi , Xi ) are i.i.d. and Vi , i = 1, 2, . . . , m,
are identical with V (of dimension n0), then for the combined estimator f̃ =
∑K

k=1(
2
m

∑m
i=m/2+1 Wk,i ) ̂fk,m/2 with Wk,i computed by (5) with ̂fk,l = ̂fk,m/2 and

̂V (̂αk,l) = ̂V (̂αk,m/2), we have

E || f − f̃ ||2V ≤ 1

η1
{(2 + ξ)n0 + 5τ/2}

×
(

4η1 log K

m
+ inf

k

[

E || f − ̂fk,m/2||2V + η1 E L{̂V (̂αk,m/2), V }
]

)

,

where || f − g||2V denotes E{ f (x) − g(x)}T V −1{ f (x) − g(x)}.
In the above risk bound, the covariance estimation risk is involved. If the estima-

tors of the parameters in Vi are m
1
2 -consistent (see Liang and Zeger 1986), it does

not affect the rate of convergence. For example, under the sufficient conditions given
before the theorem, if the estimators of σ 2 of the best model converge in the usual
parametric rate, then the combined estimator retains its rate-optimality. Also note that
no assumptions about the forms of the true f and the true covariance matrix are made
(except the boundedness conditions). Theorems 1 and 2 point out that the combined
estimators perform optimally in rate of convergence among all candidates even if all
the candidate models are only approximations, which is more realistic in practice. The
risk bounds cannot be improved in order of magnitude, although the multiplicative
constant has the potential to be reduced for the squared error loss case.

5 Simulation results

In this section, we compare ARM and model selection methods through simulations
in R with the gls function. In what follows, we consider linear models, which has
two interpretations, either linear models with correlated errors (without the random
effects) or linear mixed-effect models.

For 50 subjects, each with five measurements, we consider the marginal mean model
β0 + X T

i jβ. Assume Xi j = (Xi j1, Xi j2, . . . , Xi j5)
T ∼ N (0, X ) with X having the
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pp′th element 0.5|p−p′| for p, p′ = 1, 2, . . . , 5 (the case with independent predictors
gives similar results, but will not be reported in this work). The error correlation within
subjects is exchangeable.

The model selection approach that is to be compared with ARM involves two steps,
the first for choosing an appropriate covariance model based on the full model for the
mean and the second for choosing the mean model given the covariance model. Here,
we use AIC or BIC to select both the covariance model and the mean model.

For comparison, we report two types of estimation risks. The first one is based on
the squared L2 loss, which is computed by 1

5mtest

∑mtest
i=1

∑5
j=1{ f (Xi j ) − ̂f (Xi j )}2 at

mtest = 500 new independently generated Xi j from the same distribution. The second
is computed by 1

mtest

∑mtest
i=1 { f (Xi )− ̂f (Xi )}T V −1

i { f (Xi )− ̂f (Xi )}. The permutation
size (in step 5) for ARM is set to be 40. The results summarized in the following
tables are the simulated global estimation risks (based on 100 replications) with the
corresponding standard errors given in the parentheses. There, risk reduction (denoted
by RR in the tables) is defined as the risk reduction of ARM compared to the best of
the two model selection methods under each of the two aforementioned loss functions.

5.1 Combining models with the true covariance structure

The true model is

Yi = β0 + Xiβ + ei , (6)

where Xi = (Xi1, Xi2, . . . , Xi5)
T , β0 = 1 and β = (1, 0.5, 0.2, 0, 0)T , and the

normal error vector ei has a compound symmetry covariance matrix with entries
ρσ 2, 1 ≤ i 	= j ≤ 5 and σ 2, 1 ≤ i = j ≤ 5.

For model selection, we fix the covariance model to be exchangeable and select
the mean model from all subset models by AIC/BIC. For ARM, we combine all the
candidate mean models (all under the same covariance structure). Note that the true
mean includes two small coefficients, which are difficult to identify when σ 2 is not
too small.

Case 5.1.1 (Small correlation) First consider a small correlation case with ρ = 0.1.
It is clear from Table 1 that combining is superior over selection in risk when σ 2 ≥ 1.
The improvement of combining over selection is increasing in σ 2 in the studied range.

Case 5.1.2 (Moderate correlation) Here ρ = 0.5. From Table 2, although combining
still beats selection when σ 2 ≥ 1, the difference is not as substantial as the previous
case.

5.2 Combining models with multiple covariance structures

We consider three different covariance structures, independence, exchangeable corre-
lation (or compound symmetry), and exponential spatial correlation. The true model
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Table 1 Comparing ARM with selection by AIC/BIC where the true model is specified by (6) with ρ = 0.1

σ 0.3 0.7 1 1.5 2

AIC l1 0.0021 0.0112 0.0247 0.0572 0.0993

(0.00015) (0.00067) (0.00156) (0.00376) (0.00548)

l2 0.099 0.105 0.113 0.120 0.118

(0.0068) (0.0062) (0.0074) (0.0079) (0.0064)

BIC l1 0.0018 0.0110 0.0271 0.0633 0.0973

(0.00013) (0.00086) (0.00173) (0.00401) (0.00583)

l2 0.083 0.103 0.129 0.134 0.115

(0.0057) (0.0084) (0.0084) (0.0085) (0.0070)

ARM l1 0.0020 0.0119 0.0220 0.0513 0.0843

(0.00013) (0.00062) (0.00122) (0.00364) (0.00463)

l2 0.092 0.112 0.102 0.107 0.098

(0.0056) (0.0056) (0.0055) (0.0076) (0.0051)

RR l1 −11% −8% 8% 10% 13%

l2 −11% −9% 10% 11% 15%

RR refers to risk reduction of ARM compared to the best of AIC and BIC. l1 and l2 refer to the estimation
risks based on the squared L2 loss without or with normalization by the covariance matrix respectively

Table 2 Comparing ARM with selection by AIC/BIC where the true model is specified by (6) with ρ = 0.5

σ 0.3 0.7 1 1.5 2

AIC l1 0.0025 0.0123 0.0255 0.0574 0.1055

(0.00019) (0.00098) (0.00202) (0.00463) (0.00839)

l2 0.111 0.110 0.118 0.118 0.124

(0.0070) (0.0070) (0.0084) (0.0073) (0.0081)

BIC l1 0.0023 0.0114 0.0252 0.0640 0.1178

(0.00019) (0.00102) (0.00212) (0.00454) (0.00903)

l2 0.093 0.095 0.115 0.142 0.149

(0.0064) (0.0091) (0.0098) (0.0064) (0.0105)

ARM l1 0.0023 0.0123 0.0249 0.0557 0.1016

(0.00019) (0.00097) (0.00195) (0.00456) (0.00858)

l2 0.098 0.110 0.112 0.111 0.115

(0.0058) (0.0064) (0.0061) (0.0067) (0.0079)

RR l1 0% −8% 1% 3% 4%

l2 −5% −15% 3% 6% 7%

RR refers to risk reduction of ARM compared to the best of AIC and BIC. l1 and l2 refer to the estimation
risks based on the squared L2 loss without or with normalization by the covariance matrix, respectively

is still the same but with β = (0.4, 0.4, 0.2, 0.2, 0.1)T . The selection procedure first
chooses a covariance structure among the three candidate structures and then chooses a
mean structure based on the chosen covariance. In this case, unlike the case in Sect. 5.1,
AIC has an advantage over BIC because the true model is the full model and hence
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AIC cannot overfit. We combine all the subset models with the covariance matrices,
the total number of which is 31 × 3 = 93. The results are presented in Figs. 1 and 2.

Case 5.2.1 (Small correlation) Here ρ = 0.1. Again, combining beats selection when
σ 2 is not small. The contrast is more evident than the previous cases.

Case 5.2.2 (Moderate correlation) Here ρ = 0.5. Comparisons can be done in two
aspects, in terms of the effect of correlation coefficient ρ or the effect of the number
of candidate covariance models. When compared to Fig. 1, combining still does a
better job than selection when σ 2 is not small, but the advantage becomes somewhat
smaller as the correlation is increased. When compared to Case 5.1.2 where only one
covariance structure is included, the advantage of ARM becomes larger when σ 2 is
bigger than 1.

In conclusion of our simulation, we have observed that model combining improves
over model selection in terms of estimation accuracy when σ 2 is not small. However,
the amount of improvement varies, with large improvement taking place when model
selection is difficult. While our proposed combining method beats the better one of
AIC and BIC when σ 2 is relatively large, it rarely loses to both of them.

To be fair, it should be pointed out that model combining does bring in difficulty in
interpretation, and when estimation/prediction is not the dominating interest, a mar-
ginal gain in predictive accuracy may not be enough to abandon the selected model for
a complicated convex weighting of the candidate models. However, when the insta-
bility measures indicate a very serious issue of model selection uncertainty, it is the
reliability of the inference based on the selected model (rather than the loss of accuracy
in prediction) that becomes the main concern for a sound statistical description of the
messages in the data.

6 Data examples

6.1 Description of the data and candidate models

A CD4 count data set (http://biosun1.harvard.edu/~fitzmaur/ala/), taken from a ran-
domized and double-blinded study of AIDS patients (Henry et al. 1998), is used.
Patients were randomly assigned to four treatment groups. Measurements of CD4
counts were collected at baseline and at 8-week intervals for a total of 40 weeks.
There are four covariates: time (in weeks), group(treatment), age and gender . The
response variable is the log transformed CD4 counts, log(CD4+1), available on 1,309
patients. Fitzmaurice et al. (2004, Chapter 8) provide a fairly complete analysis on
log(CD4 + 1), which suggests that the mean response function has a change point at
week 16. They used a piecewise linear spline with a knot at week 16 to model the
effect of time. In order to demonstrate the utility of our proposed model selection
uncertainty measures and model combination method in a more focused way, we con-
sider only the observations after week 16 so that it is adequate to consider a linear
term of week in the mean function. For random effects, again based on their results,
we only consider a random subject effect, i.e., a random intercept. Four different
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covariance models, independence, exchangeable correlation, Gaussian spatial corre-
lation, and exponential spatial correlation are considered. A screening indicates that

the latter two (corr(εi, j , εi, j ′) = exp{− ( j− j ′)2

ρ
} and corr(εi, j , εi, j ′) = exp{− | j− j ′|

ρ
})

are promising. Since the number of predictors is small, we did not screen on the mean
models. As for the mean, we consider 25 subset models that arise from two specifica-
tions: (1) the predictor time must be included; (2) only the predictors themselves and
the cross-product terms are considered. Thus overall we have 50 linear mixed models.

6.2 Alarmingly high model selection uncertainty and its different effects
on estimation

We compute the bootstrap instability in selection (BIS) for the model selection strat-
egy of Fitzmaurice et al. (2004) with AIC (minus twice the maximized likelihood plus
twice the number of parameters) as the selection criterion.

The BIS value based on 100 bootstrap samples is 0.68! It is clear that an alarmingly
high selection uncertainty exists in modeling the mean and the covariance. In such
a case, it is plainly wrong to simply draw conclusions based solely on the selected
model.

For the example, of interest are Q1, the difference between the average effect of the
first three treatments (zidovudine alternating monthly with 400 mg didanosine, zido-
vudine plus 2.25 mg of zalcitabine and zidovudine plus 400 mg of didanosine) and that
of the fourth one (zidovudine plus 400 mg of didanosine plus 400 mg of nevirapine)
on the CD4 counts (this describes two-drug effect versus three-drug effect), and Q2,
the difference between the first and the third (zidovudine or didanosine vs. zidovudine
and didanosine). If the treatment effects are denoted by μ1, μ2, μ3 and μ4, then the
quantities of interest are estimated by ̂Q1 = μ̂1+μ̂2+μ̂3

3 − μ̂4 and ̂Q2 = μ̂3 − μ̂1,
where μ̂i are based on the selected model (note that due to randomization, μ1, . . . , μ4
are well defined here).

How does model selection uncertainty affect those two quantities? The two mea-
sures of instability in estimation are BIE(̂Q1) = 0.29, BIE(̂Q2) = 0.66, PIE(̂Q1) =
0.17, and PIE(̂Q2) = 0.50. The two types of instability measure agree with each
other: selection uncertainty has a mild effect on Q1 but a large effect on Q2. Note that
the estimates for Q1 and Q2 (and their standard errors) from the originally selected
model by AIC are −0.33(0.066) and 0.24(0.082), respectively. It seems from the
standard error of Q2 that the estimate of 0.24 is reasonably accurate (it would change
by 27% in an average sense under normality of the estimator); however, according
to BIE, Q2 may easily change by 66%. The BIEs and PIEs values are 1.2 and 6.1,
respectively. Therefore, the standard error of Q2 is misleading and the estimate is not
reliable. Consequently, the conclusion that the treatment with both zidovudine and
didanosine is significantly more effective than alternating those two is not as confir-
mative as it appears to be. The model selection based estimates will be compared with
the combined estimates by our method later from a prediction perspective.

In conclusion, (1) model selection uncertainty is a high for the CD4 count data;
(2) the quantities of interest can be affected by model selection uncertainty to very
different degrees.
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For understanding the possible source of instability, we have PIE(̂Q1) =
(0.17, 0.05)T and PIE(̂Q2) = (0.31, 0.40)T . The instability in estimating Q1 is really
due to randomness of errors; while the instability in estimating Q2 comes from both
randomness of errors and that of random intercept.

6.3 Model combination reduces bias and instability in estimation

Recall that the estimates of Q1 and Q2 by AIC are −0.33(0.066) and 0.24(0.082),
respectively. The estimates by our method ARM are −0.45 and 0.03, respectively. The
ARM estimate of Q1 falls into the corresponding 95% confidence interval obtained
based on AIC, and both estimates indicate that the three-drug effect is larger than the
two-drug effect. However, the two estimates of Q2 are very different: the ARM esti-
mate does not fall into the AIC confidence interval, and it suggests that there is virtually
no improvement by using zidovudine and didanosine together. This example clearly
shows that model selection can give a much inflated confidence on an estimate, and it
illustrates the necessity of conducting model selection diagnostics. Besides reducing
instability, we will see that ARM also outperforms model selection in prediction.

It is worth pointing out that combining the models reduces the instability in esti-
mation. The PIE values of ARM are 0.05 and 0.35 for Q1 and Q2, respectively, a
significant reduction from the PIE values of AIC of 0.17 and 0.50, respectively. Note
that for estimating Q1, the pure perturbation instability (without model selection) is
also 0.05; thus ARM leads to a very stable estimate of Q1. For Q2, ARM does not
reduce the instability to the level of the pure perturbation instability (0.07).

6.4 Comparing predictive performances

The comparison of the selection and combining procedures is done as follows.

1. Randomly permute the order of the subjects and then split the data into two parts,
with the first part (mt subjects) as a training/estimation set, and the second part
(m − mt subjects) as the validation/testing set.

2. Based on the training set, a model is selected by AIC or BIC. The estimator based
on ARM is also obtained. For the purpose of comparison, we also consider an
“optimal” model (Opt) as follows: fit all the candidate models using the training
set and then find the one with the best predictive performance on the validation set.
So it has the smallest possible prediction error among the models.

3. Compute two types of prediction errors based on the validation set:

PE1 =
∑m

i=mt +1
∑ni

j=1(Yi, j − ̂Yi, j )
2

∑m
i=mt +1 ni

, PE2 =
∑m

i=mt +1(Yi −̂Yi )
T
̂V −1

i (Yi − ̂Yi )

m − mt
.

4. Repeat the above steps 500 times and obtain the average PE, APE, for each pro-
cedure. The error reduction of ARM relative to the better one of AIC and BIC
presented in Table 3 is computed by
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Table 3 Comparing of ARM
with AIC and BIC on real data.
Relative Error Reduction
(denoted by RER) is computed
by (7)

APE1 APE2

AIC 0.946 (0.0025) 2.414 (0.0122)

BIC 0.945 (0.0025) 2.411 (0.0122)

ARM 0.940 (0.0025) 2.408 (0.0123)

Optimal 0.932 (0.0026) 2.398 (0.0122)

RER 38% 23%

{APE(AIC/BIC) − APE(Opt)} − {APE(ARM) − APE(Opt)}
APE(AIC/BIC) − APE(Opt)

, (7)

where APE(AIC/BIC) = min{APE(AIC), APE(BIC)}.
Note that the above quantity measures the improvement of our method ARM over

the better one of AIC and BIC relative to the best model. Such a measure provides the
ability to differentiate the competing methods when the estimation problem is difficult
due to a high noise level which is the case for the CD4 data set. The numbers in the
parentheses in Table 3 are the standard deviations of PE over the splittings, divided
by

√
500.

The results show that ARM outperforms AIC and BIC. The relative error reductions
are 23 and 38% respectively. ARM beats both AIC and BIC 77 and 60% of the time
among the 500 replications for PE1 and PE2 respectively.

7 Concluding remarks

As was already pointed out in the literature, there exist gaps in model selection theory
and practice for longitudinal data analysis. While establishing model selection theo-
ries in this context is indeed in need, we believe model selection uncertainty presents
another challenge. Without a proper assessment of the influence of model selection on
the estimation of quantities of interest, interpretations based on a single final model,
no mater how good it looks like on its own, are potentially misleading.

We proposed several ways to do model-selection diagnostics from an instability
perspective, including BIS, BIE and PIE, which can guide on deciding whether selec-
tion is trustworthy. A high value of BIS indicates that finding the true or best model
is unrealistic. While some quantities of interest are sensitive to the model selection
process, others are not. In the latter case, the uncertainty is not a serious concern. Our
numerical investigations suggest that the model selection uncertainty can be very seri-
ous in longitudinal data analysis, and ARM significantly reduces risks in estimation.

In conclusion, model selection diagnostics should be done when model selection
is involved and model combining should be applied only when it is necessary.

Appendix: Proofs of the theorems

Proof of Theorem 1 Let m1 = m0 and m2 = m − m0, and

pm2 = �m
i=m1+1

1

(2π)ni /2|Vi |1/2 exp

[

−1

2
{yi − f (xi )}T V −1

i {yi − f (xi )}
]

,
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be the joint density of yi , m1 < i ≤ m (conditional on xi , m1 < i ≤ m), and

q̂m2 =
∑

k

1

K
�m

i=m1+1
1

(2π)ni /2|̂Vi (̂αk,i−1)|1/2

× exp

[

−1

2
{yi − ̂fk,i−1(xi )}T

̂Vi (̂αk,i−1)
−1{yi − ̂fk,i−1(xi )}

]

be an estimate of the joint density based on the candidate models. It follows from the
definitions of Wk,i , pi and ĝi that log pm2

q̂m2 = ∑m
i=m1+1 log pi

ĝi
. Then

m
∑

i=m1+1

E log
pi

ĝi
= E log

pm2

q̂m2
. (8)

The left side of (8) just equals
∑m

i=m1+1 E D(pi ||̂gi ). For the right side of (8), since
log(x) is an increasing function, for any model k0 we have

E log
pm2

q̂m2
≤ E

∫

pm2 log
pm2

1
K q̂m2

k0

= log K + E
∫

pm2 log
pm2

q̂m2
k0

,

where

q̂m2
k0

=
m

∏

i=m1+1

1

(2π)ni /2|̂Vi (̂αk0,i−1)|1/2

× exp

[

−1

2
{yi − ̂fk0,i−1(xi )}T

̂Vi (̂αk0,i−1)
−1{yi − ̂fk0,i−1(xi )}

]

.

Observe that for each k, as in Barron (1987), E
∫

pm2 log pm2

q̂
m2
k

= ∑m
i=m1+1 E D(pi ||̂qk,i ).

Thus we have for any k0,
∑m

i=m1+1 E D(pi ||̂gi ) ≤ log K +∑m
i=m1+1 E D(pi ||̂qk0,i ).

This completes the proof. ��
The following lemma will be used for proving Theorem 2. It generalizes a one-

dimensional result in Yang (2004).

Lemma 1 Let p and q be two probability densities on Rn with respect to a measure
ν, with mean vector μp and μq , and variance matrix p and q , respectively; then

∫

(
√

p − √
q)2dν ≥ (μp − μq)T −1

p (μp − μq)

2{n + tr(q−1
p ) + 1

2 (μp − μq)T −1
p (μp − μq)} .

Proof Let a be any length n vector of constants. By matrix manipulations and applying
Cauchy–Schwarz inequality, we have

(μp − μq)T −1
p (μp − μq)

= (
−1/2
p μp − 

−1/2
p μq)T (

−1/2
p μp − 

−1/2
p μq)
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=
{∫

(
−1/2
p x − a)p(x)ν(dx) −

∫

(
−1/2
p x − a)q(x)ν(dx)

}T

×
{∫

(
−1/2
p x − a)p(x)ν(dx) −

∫

(
−1/2
p x − a)q(x)ν(dx)

}

=
{∫

(
−1/2
p x − a)(p − q)dν

}T {∫

(
−1/2
p x − a)(p − q)dν

}

≤
{∫

(|−1/2
p x − a||√p + √

q|)|√p − √
q|dν

}T

×
{∫

(|−1/2
p x − a||√p + √

q|)|√p − √
q|dν

}

≤ 2
∫

(
√

p − √
q)2dν

∫

(
−1/2
p x − a)T (

−1/2
p x − a)(p + q)dν

= 2
∫

(
√

p − √
q)2dν

{

μT
p −1

p μp + tr(p
−1
p )

−aT 
−1/2
p μp − μT

p 
−1/2
p a + aT a

+ μT
q −1

p μq + tr(q−1
p ) − aT 

−1/2
p μq − μT

q 
−1/2
p a + aT a

}

.

Now taking a = 
−1/2
p

μp+μq
2 , with some simplifications we have

(μp − μq)T −1
p (μp − μq)

≤ 2
∫

(
√

p − √
q)2dν

{

n + tr(q−1
p ) + 1

2
(μp − μq)T −1

p (μp − μq)

}

.

The conclusion follows. ��
Proof of Theorem 2 Following the earlier notations, for each fixed k0, we have,

log
pm2

q̂m2
≤ log K

+ log
�m

i=m1+1
1

(2π)ni /2|Vi |1/2 exp[− 1
2 {yi − f (xi )}T V −1

i {yi − f (xi )}]
�m

i=m1+1
1

(2π)ni /2|̂Vi (̂αk0 ,i−1)|1/2 exp[− 1
2 {yi − ̂fk0,i−1(xi )}T ̂Vi (̂αk0,i−1)−1{yi − ̂fk0,i−1(xi )}]

= log K + 1

2

m
∑

i=m1+1

[

{yi − ̂fk0,i−1(xi )}T
̂Vi (̂αk0,i−1)

−1{yi − ̂fk0,i−1(xi )}

−{yi − f (xi )}T V −1
i {yi − f (xi )} + log

|̂Vi (̂αk0,i−1)|
|Vi |

]

. (9)

Now under Conditions 1 and 2, taking expectation conditioned on the first part of data,
denoted by Em1
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Em1

[

{Yi − ̂fk0,i−1(Xi )}T
̂Vi (̂αk0,i−1)

−1{Yi − ̂fk0,i−1(Xi )}

−{Yi − f (Xi )}T V −1
i {Yi − f (Xi )} + log

|̂Vi (̂αk0,i−1)|
|Vi |

]

= Em1

[

{ f (Xi ) − ̂fk0,i−1(Xi )}T
̂Vi (̂αk0,i−1)

−1{ f (Xi ) − ̂fk0,i−1(Xi )}

+ eT
i

̂Vi (̂αk0,i−1)
−1ei − eT

i V −1
i ei + log

|̂Vi (̂αk0,i−1)|
|Vi |

]

≤ Em1

[

1

η1
{ f (Xi ) − ̂fk0,i−1(Xi )}T V −1

i { f (Xi ) − ̂fk0,i−1(Xi )}

+ tr{Vi ̂Vi (̂αk0,i−1)
−1 − Ini } + log

|̂Vi (̂αk0,i−1)|
|Vi |

]

. (10)

Conditioned on the first part of data and xi as denoted by E ′
m1

, we have

E ′
m1

log
pi

ĝi
=

∫

pi log
pi

ĝi
dyi

≥
∫

(
√

pi − √

ĝi )
2dyi ≥

1
ni

{ f (xi ) − μ̃i }T V −1
i { f (xi ) − μ̃i }

2(2 + ξ + 5τ
2ni

)
,

where for the last inequality we apply Lemma 1 with μ̃i = ∑

k Wk,i ̂fk,i−1(xi ). Com-
bining this with (9) and (10), we obtain

m
∑

i=m1+1

1

n∗ E

{

f (Xi )−
∑

k

Wk,i ̂fk,i−1(Xi )

}T

V −1
i

{

f (Xi ) −
∑

k

Wk,i ̂fk,i−1(Xi )

}

≤ 1

η1

(

2 + ξ + 5τ

2n∗

)

⎛

⎝2η1 log K +
m

∑

i=m1+1

inf
k

[

E{ f (Xi )

− ̂fk,i−1(Xi )}T V −1
i { f (Xi ) − ̂fk,i−1(Xi )} + η1 E L{̂Vi (̂αk,i−1), Vi }

]

⎞

⎠.

This completes the proof of the theorem. ��
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