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Abstract We consider the parametric estimation with right-censored competing
risks data and with masked failure cause. We propose a new model, called the random
partition masking (RPM) model. The existing model based on the so called symmetry
assumption, but the RPM model does not need the symmetry assumption. We propose
a wide class of parametric distribution families of the failure time and cause, which
does not need the assumption of independence between the components of the system.
We also study the asymptotic properties of the maximum likelihood estimator under
the new model, and apply our procedure to a medical and an industrial data sets.
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1 Introduction

We consider the estimation problem based on right-censored (RC) competing risks
data with masked failure cause, called RMCR data hereafter. The background about
RMCR data is introduced in Sect. 1.1, the existing models and assumptions in the
literature are given in Sect. 1.2, and finally our objects of the paper are stated in
Sect. 1.3.
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70 Q. Yu et al.

1.1 Background on RMCR data

The study of RMCR data dates back to Friedman and Gertsbakh (1980). Real examples
of RMCR data in the reliability context and medical research can be found in Dinse
(1982), Reiser et al. (1995), and Flehinger et al. (2001). Sen et al. (2001) and Flehinger
et al. (2001). An extensive review of the literature is given by Mukhopadhyay (2006).

An RMCR observation consists of the failure time and the associated failure cause
of a J -component series system, a system that stops functioning as soon as one
of its constituent J components fails. We assume that the system under study is
non-repairable and the system lifetime is subject to censoring. Then the observation on
the failure time T and failure cause C of such systems can be described as follows. Let
the random variable X j denote the lifetime of the j th component, j = 1, . . . , J . By
the definition of a series system, it follows that T = min{X1, . . . , X J }. It is assumed
that the probability of a system failure due to simultaneous failures of two or more
distinct components is 0 (which is true when X j ’s are continuous and independent),
and thus there exists a unique positive integer C ∈ {1, . . . , J } associated with each
system failure time T , say XC = T .

In engineering applications, T could be the failure time of a system and C the part
of the system that causes the failure, and in such cases, X1, . . . , X J can be indepen-
dent. In medical research, T could be the survival time until death of a patient and
C the cause of death, and in such cases, X1, . . . , X J are likely to be dependent. It
is quite often in medical researches and industry applications that the failure time is
right censored by a censoring variable R. Let V be the minimum of T and R, and δ

(
de f= 1(T ≤R)) the indicator function of the event {T ≤ R}.

Let Cr be the range of C , that is, Cr = {1, . . . , J }, and let J be the collection of all
the subsets of Cr , including Cr but not the empty set ∅. In examining a failed system,
one may first check parts one by one in detecting the failure cause and may stop at
some point due to cost saving if it makes no sense economically to continue. In this
case, one may end up with only knowing which ones are not the cause of failure. Thus
one can say that at the failure time T the failure cause C is masked by M, a subset
of Cr . If T ≤ R, M is the observation on C . Notice that as in most papers on RMCR
data, we assume that there is no hope of acquiring any information about its future
cause of failure for an RC observation. Moreover, we do not consider the case that
there are stage-2 data available. That is, we assume that there is no re-examination
on a sub-sample of the original n observations for additional data on the true failure
causes, which is the case in Dinse (1986).

1.2 The current models

Let FT,C (t, c) be the cumulative distribution function (cdf) of (T,C), i.e. FT,C (t, c) =
P{T ≤ t,C ≤ c}, and denote by fT,C its density function (df) and by ST (t) =
P(T > t) the survival distribution function of T . Denote in an obvious way the “df”s
fM|T,C (A|t, c) = P{M = A|T = t,C = c}, fM|C (A|c) = P{M = A|C = c},
and the “cdf” FT,C,M,R , though M is a random set, not a random variable.
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Random partition model for MCR data 71

As pointed out by Craiu and Reiser (2006, p.2221), almost all of the research con-
cerned with masking makes the following two conditions, S1 and S2:

S1 (S1a) ∀ A in J , νc(A) is constant in c pertaining to A, where νc(A)
de f= fM|C (A|c).

(S1b) ∀ A in J and ∀ c, t > 0, νt,c(A) = νc(A), where νt,c(A)
de f= fM|T,C (A|t, c).

S2 (M, T ) and R are independent ((M, T ) ⊥ R) (see Mukhopadhyay 2006,
p. 80614).

S1 is called the symmetry assumption (see Flehinger et al. 1996). Moreover, it is also
assumed (see Mukhopadhyay 2006, p. 8101−8) the condition S3 below.

S3 (T1,C1,M1), . . . , (Tn1 ,Cn1 ,Mn1), Tn1+1, . . . , Tn are independent. T1, . . . , Tn

are i.i.d. copies of T , δ1 = · · · = δn1 = 1 and δn1+1 = · · · = δn = 0.

By S3, the likelihood of the observed RMCR data is given by (1) below.

(
n1∏

i=1

{∫
t=Vi ≤u, c∈Mi

dFT,C,M,R(t, c,Mi , u)

}) n∏
i>n1

P{T > Vi = R}, (1)

=
⎛
⎝ n1∏

i=1

⎧⎨
⎩

∑
t=Vi , c∈Mi

fT,C,M(t, c,Mi )SR(Vi−)
⎫⎬
⎭
⎞
⎠ n∏

i>n1

ST (Vi ) fR(Vi ) (by S2)

∝
⎛
⎝ n1∏

i=1

⎧⎨
⎩

∑
t=Vi , c∈Mi

fT,C (t, c)νt,c(Mi )

⎫⎬
⎭
⎞
⎠ n∏

i>n1

ST (Vi ) (
de f=�)

=
⎛
⎝ n1∏

i=1

⎧⎨
⎩

∑
t=Vi , c∈Mi

fT,C (t, c)νc(Mi )

⎫⎬
⎭
⎞
⎠ n∏

i>n1

ST (Vi ) (
de f=�c) (by S1b)

∝
⎛
⎝ n1∏

i=1

⎧⎨
⎩

∑
t=Vi , c∈Mi

fT,C (t, c)

⎫⎬
⎭
⎞
⎠ n∏

i>n1

ST (Vi ) (
de f= Lc) (by S1a)

(see, e.g., Flehinger et al. 2001, p. 502–504 and Sen et al. 2001, p.5254 for more details
on the derivation above).

The Lc is a desirable likelihood function, and together with S1, S2, S3 and (1), it
forms a model for RMCR data, called the Conditional Masking Probability (CMP)
model as it is based on fM|T,C , even though it vanishes in Lc. In the paper we will
refer to it as CMP Model 1. It has been argued that the symmetry assumption is mis-
leading (see Lin and Guess 1994; Guttman et al. 1995). Thus some people try to make
MLE or Bayesian inferences based on the likelihood �c in (1) assuming only S2, S3
and S1b without S1a (see, e.g., Flehinger et al. 2001, p.502–504; Mukhopadhyay and
Basu 2007, p. 333; Kuo and Yang 2000; Craiu and Duchesne 2004; Lawless 2003,
and Craiu and Reiser 2006). Likelihoods (1) and �c, together with the assumptions
S1b, S2 and S3 actually form the second model for RMCR data. Hereafter, we will
refer to it as CMP Model 2.
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1.3 The objects of the paper

There are two objects about RMCR data in this paper: (1) to propose a realistic model;
(2) to propose more general and convenient parametric families.

In the literature, there are two CMP models (see Sect. 1.2). CMP model 2 is not that
useful unless there are stage-2 data or prior information (for justification, see Exam-
ple 11), especially in the case of a non-parametric approach. However, CMP Model 1
is more useful. In the literature in order to justify CMP Model 1 or the likelihood Lc,
people make use of the symmetry assumption, which “is done purely for mathemati-
cal convenience without practical justification” (see Mukhopadhyay and Basu 2007,
p.33115). In this paper, we propose a new realistic RMCR model, called the random
partition masking (RPM) model, which does not need the symmetry assumption nor
S2 to justify Lc. Moreover, we show that under certain additional assumptions, the
RPM model satisfies the symmetry assumption. Thus our new model gives a practical
justification to CMP Model 1 for the first time.

In the literature, many distribution families of (T,C) are based on the assumption
S4 below (see e.g., Flehinger et al. 2001; Nagai 2004).

S4 X1, . . . , X J are independent and X j ’s are continuous.

In medical research S4 often fails. Thus this approach does not always work. Since
FT,C is of main interest, it is better to consider the family of FT,C directly, though
as noticed by Kalbfleisch and Prentice (2002) a parametric model for the dependency
is hard to specify. Craiu and Duchesne (2004), Lawless (2003), and Craiu and Reiser
(2006) propose a special parametric model in such case, where the cause specific

hazard functions λc(t)(
de f= fT,C (t, c)/ST (t−)) are piecewise constant. We propose a

more general and more convenient way to specify parametric models and apply them
to analyze some real data.

The paper is organized as follows. In Sect. 2, we propose the RPM model. In
Sect. 3, we propose a general form of parametric families for FT,C and study the MLE
of the parameters involved in the parametric form of FT,C . In Sect. 4, we establish
the asymptotic properties of the MLE. In Sect. 5, we present some simulation results.
Data analysis of real data sets using the new parametric form is presented in Sect. 6.
In Sect. 7 we compare the RPM model to the CMP models.

2 A new model for RMCR data

In order to formulate the RPM model, we first define some notations. Notice that each
value W of M is associated with at least one partition {W,W c}, where W c = Cr \ W .
Let P be the collection of all partitions of Cr that satisfy the following conditions:
Ph ∈ P implies that Ph = {Ph1, . . . , Phkh }, Phi ∈ J , ∪kh

i=1 Phi = Cr and Phi ∩Phj = ∅
∀i 
= j . By definition, for each given partition Ph and given C , there exists an i such
that C ∈ Phi . For instance, P1 = {{1}, {2}, . . . , {J }}, P2 = {{1}, {2}, {3, 4, . . . , J }}
and P3 = {Cr } are three such partitions.

The P2 can be interpreted as follows: In the process of determining the cause of
failure in a J -component series system, exactly two steps will be taken. Steps 1 and 2
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can determine whether the failure is due to causes 1 and 2, respectively. If the failure
is not due to these two causes, no further investigation will be taken for cost saving.
However, it is only one of the six examination schemes corresponding to P2 and each
has two steps. The first step can be either of the three inspections:

(1) whether the cause is due to part 1;
(2) whether the cause is due to part 2;
(3) whether the cause is not due to parts 1 and 2.

The second step can be either of the 2 remaining inspections. Thus P2 corresponds to
total of 6 examination schemes. All the 6 of them result in M = {1} if C = 1, {2} if
C = 2, {3, 4, . . . , J }, otherwise.

In other words, an inspection scheme for the system corresponds to a partition.
After an inspection scheme is chosen, that is, after a partition (Ph1, . . . , Phkh ) is cho-
sen, M can be uniquely determined. Notice that an inspection or partition Ph may
not simply be an examination procedure, but include information obtained from the
description of the symptoms of the failed system from the user or the symptoms of
the patient collected in a check list filled by the user or the patient. Moreover, for a
particular observation, if the failure cause is detected at the first step, there is no need
to continue the inspection scheme.

It is obvious that ||P||, the number of all distinct partitions denoted by nP , is finite.
Thus one can order these partitions as P1, P2, . . . , PnP . It is easy to define a random
variable, say �, taking values in {1, . . . , nP } with the df f�. The value of f�(h) can
be viewed as the proportion in the population that inspection scheme h has been taken.
Then M = Phj if � = h and C ∈ Phj . We shall make use of the assumption A1
below,

A1 (T,C) ⊥ (R,�).

While (V, δ) is the observation on T , the observation on C is not defined in the
literature if T > R, as M is missing if T > R. We define the observable random
variable on C by

Mo =
{

Cr if T > R,

Phj if T ≤ R,� = h and C ∈ Phj .
(2)

Let (Vi , δi ,Mi ), i = 1, . . . , n, be i.i.d. copies of (V, δ,Mo). (3)

Statements (2) and (3) together with A1 are the new model that we are proposing for
analyzing RMCR data. We call it the random partition masking model, as it is based on
the random partition of the set Cr . Under the RPM model, the full likelihood function is

Lfull =
n∏

i=1

⎛
⎜⎝
⎧⎨
⎩

nP∑
h=1

f�(h)1(Mi ∈Ph)SR|�(Vi − |h)
∑

t=Vi ,c∈Mi

fT,C (t, c)

⎫⎬
⎭
δi

× [ fR(Vi )ST (Vi )]1−δi

⎞
⎟⎠
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= L(FT,C )

n∏
i=1

⎛
⎝
( nP∑

h=1

f�(h)1(Mi ∈Ph)SR|�(Vi −|h)
)δi

[ fR(Vi )]1−δi

⎞
⎠,

where

L(FT,C ) =
n∏

i=1

⎛
⎜⎝
⎧⎨
⎩

∑
t=Vi ,c∈Mi

fT,C (t, c)

⎫⎬
⎭
δi [∫

t>Vi ,c∈Cr

dFT,C (t, c)

]1−δi

⎞
⎟⎠ , (4)

S(t−) = limx↑t S(x), FT,C is a bivariate cdf with its df fT,C , fR is the df of R, and
SR|� is the conditional survival function of R given �. Since the full likelihood can
be written as two factors and only the factor L involves FT,C , in order to find the
MLE of FT,C , or to estimate the parameters in FT,C , it suffices to define the likelihood
function by L(FT,C ).

If one further assumes S4 then the likelihood function becomes

L(FT,C ) =
n∏

i=1

⎛
⎝ ∑

j∈Mi

⎧⎨
⎩ fX j (Vi )

∏
k: k 
= j

SXk (Vi )

⎫⎬
⎭
⎞
⎠
δi
⎛
⎝ J∏

j=1

SX j (Vi )

⎞
⎠

1−δi

.

The following example illustrates the relation between J , P , M, and f�.

Example 1 Suppose that J = 3; Xi ∼ f (t; θi ) = θi e−θi t , t > 0, i = 1, 2, 3;
T = min{X1, X2, X3}, and R ∼ U (a, b), the uniform distribution on the interval
(a, b). Suppose that A1 and S4 hold. The J consists of 7 elements: {1}, {2}, {3}, {1, 2},
{1, 3}, {2, 3}, {1, 2, 3}. The collection P consists of 5 partitions: P1 = {{1}, {2}, {3}},
P2 = {{1}, {2, 3}}, P3 = {{2}, {1, 3}}, P4 = {{3}, {1, 2}}, P5 = {{1, 2, 3}}. One may
assume � = Z + 1, where Z ∼ bin(4, p). Notice that f� specifies a distribution on
P , not on J . Also � 
= M, as

fM(A) =
∑

h

fM|�(A|h) f�(h) =
∑

h:A∈Ph

P{C ∈ A} f�(h)

= P{C ∈ A}
∑

h: A∈Ph

f�(h).

3 The parametric estimation

3.1 Forms of parametric families

Unlike the form of parametric families for the RMCR data considered in the litera-
ture, we propose a general form for parametric families. In particular, a parametric
distribution family for (T,C) can be written as

fT,C (t, c) = pc f (t |c; γ ) where γ = (p1, . . . , pJ−1, γJ , . . . , γk) (5)
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is a k × 1 vector with k ≥ J or a function of ψ , say γ = g(ψ), where ψ is a k1 × 1
parameter vector with k1 ≤ k (see the end of Examples 2, 3 and 4), p = (p1, . . . , pJ )

is a probability vector, and f (·|c, γ ) is a df depending on (c, γ ). The reason is as
follows.

1. An arbitrary df fT,C satisfies fT,C (t, c) = fC (c) fT |C (t |c). Thus f (·|c; γ ) corre-
sponds to fT |C and pc corresponds to fC (c). Hence, form (5) always holds.

2. If T ⊥ C , then

fT,C (t, c) = pc fT (t), where pc = fC (c), (6)

which is naturally of form (5). For instance, under S4, it is often that the propor-
tional hazards (PH) models have been assumed for X1, . . . , X J (see Flehinger et al.
2001). This class of distributions satisfies (6). In particular, if SX j (t) = (So(t))θ j ,
where So is a survival function which is either a given form (e.g., in Example 8)
or a parametric form (e.g., in Example 9), then

fT,C (t, c) = h Xc (t)
J∏

j=1

SX j (t) (as hazard function h = f/S)

= θcho(t)(So(t))
θ1+···+θJ (due to the PH model)

= pcβho(t)(So(t))
β (7)

where β = ∑J
j=1 θ j , pc = θc/β = fC (c) and fT |C (t |c) = fT (t) = βho(t)

(So(t))β . Example 1 is one such special case with So(t) = e−t , t > 0.
3. In the literature, fT,C is specified through the distributions of X j ’s under S4,

which can also be expressed in form (5) (see Example 2). The class of distribution
families to be considered is larger than those induced by the distributions on X j ’s
under assumption S4. In fact, in medical research, S4 often does not hold and then
it is difficult to specify fT,C through the distributions of X j ’s.

4. It is quite convenient and easy to specify a parametric family for fT,C in the form
of (5) (see Examples 3 and 4).

Example 2 Suppose J = 2, X1 ∼ Exp(θ) and X2 ∼ U (a, b)(0 ≤ a < b), and X1 ⊥
X2. Then T and C are dependent. In fact, fT,C (t, 1) = θe−θ t {1(t∈(0,a))+1(t∈[a,b]) b−t

b−a }
and fT,C (t, 2) = 1(t∈(a,b))

b−a e−θ t . Moreover, fT |C (t |1) = fT,C (t, c)/p1 and fT |C (t |2) =
fT,C (t, c)/p2 with p2 = e−aθ−e−bθ

θ(b−a) and p1 = 1 − p2. Notice that fC (2) = p2 > 0
and fT (t) > 0 for t ∈ (0, b). However, fT,C (a/2, 2) = 0 < fT (a/2) fC (2). Thus
C 
⊥ T even though condition S4 holds. In this example, γ = (p1, a, b, θ) = g(ψ),
where ψ = (a, b, θ) (see (5)).

Example 3 Suppose that J = 3, fT |C (t |i) = βi e−βi t , t > 0. Thus T and C are
dependent. In this example, ψ = γ = (p1, p2, β1, β2, β3) (see (5)).

Example 4 Suppose that J = 3, T |(C = c) ∼ U (ac, bc), c = 1, 2, 3. The parameter
γ consists of ac’s, bc’s and pc’s. In this example, ψ = γ (see (5)).
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In Examples 2 and 4 we try to model the situation that certain parts of a system will
not fail in the early stage or some diseases will not happen in the childhood.

3.2 The MLE

Under the RPM model, the parametric MLE with RMCR data maximizes the likeli-
hood function in (4):

L(γ ) =
n∏

i=1

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

t=Vi ,c∈Mi

fT,C (t, c; γ )
⎞
⎠
δi (∫

t>Vi ,c∈Cr

dFT,C (t, c; γ )
)1−δi

⎫⎪⎬
⎪⎭ .

Verify that as far as the likelihood is concerned, L is the same as Lc in (1). We shall
make use of the following identifiability assumptions in addition to A1.

A2 The matrix (φ(W1), . . . , φ(Wm)) is of rank J , where W1, . . . ,Wm are all the
distinct values of Mo with P(Mo = W j ) > 0, j = 1, . . . ,m, φ(A) =
(1(1∈A), . . . , 1(J∈A))

′ with A ∈ J and B ′ is the transpose of the matrix B.
A3 The degree of freedom of the parameters related to fC should be at least one.
A4 The family { f (t, c; θ) : θ ∈ �} to which fT,C belongs satisfies that θ = θ∗ iff

f (t, c; θ) = f (t, c; θ∗) a.e. on [0, b]×Cr , for some b ∈ [0, τ ], where τ = sup{t :
FR(t) < 1} and P(T ∈ [0, b]) > 0.

Hereafter, we shall present Examples 5–10, which are helpful in understanding these
identifiability assumptions. The detailed proofs of the arguments in some of these
examples are given in Yu et al. (2009). First we provide an example of a consistent
MLE.

Example 5 Assume the conditions in Example 1. Thus fT,C = fT fC . Suppose that
P(δ = 1)> 0, θ1, θ2 and θ3 are unknown parameters and Mi ’s are always of the
forms {1}, {2}, {3}, {2, 3} if δi = 1. Let ηi j = 1(Mi ={ j}), j = 1, 2, 3, and let Y =
(η1, η2, η3, δ, V ) be the sample means of ηi j ’s, δi ’s and Vi ’s. A medical research data
set given by Dinse (1986) has such form (see also Sect. 6); and it is the case when
conditional on δ = 1, � only takes values 1 and 2, corresponding to the partitions P1
and P2 defined in Example 1. Then it can be shown that the MLE of p j ’s and β are

p̂1 = η1
δ
, p̂2 = η2

η2+η3

δ−η1
δ
, p̂3 = 1 − p̂1 − p̂2, β̂ = δ/V . It follows from the invari-

ance of the MLE that θ̂ j = p̂ j β̂. Since the MLE has an explicit form and is a smooth
function of the sample mean Y , its strong consistency and asymptotic efficiency can
be easily established under the RPM model.

However, there are cases that there exists no consistent MLE such as in Example 6.

Example 6 Assume the assumptions in Example 1 except that R ∼ bin(1, 1/2).

(1) Suppose that either Mi = {1} or Mi = {2, 3} if δi = 1 (i.e., f�(2) = 1), and
θi ’s are all unknown parameters. Then an MLE of (p1, p2, β) is p̂1 = η1/δ,
β̂ = δ/V and p̂2 = p for an arbitrary p ∈ [0, 1 − p̂1]. Consequently, p̂1 and β̂
are consistent, but not p̂2.
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(2) Suppose that f�|R(1|0) = 1 and f�|R(5|1) = 1. Hence Mi = Cr ∀i , and
θi ’s are all unknown parameters. Then an MLE of (p1, p2, β) is ( p̂1, p̂2, β̂) =
(p, q, δ/V ) for each (p, q) with p, q ≥ 0 and p + q ≤ 1. Thus p̂c’s are incon-
sistent.

In both cases of Example 6, A2 fails and the MLE p̂2 is inconsistent. Notice that in case
(2), even though (φ({1}), φ({2}), φ({3})) is of rank 3 (= J ) where P(M = { j}) > 0
for j = 1, . . . , 3, A2 still fails, as Mo only takes one value Cr and thus (φ(W1)) has
rank 1 < J .

If one defines P1 to be the partition with components { j}, j = 1, . . . , J , then a
sufficient condition of A2 is f�|R(1|t) > 0 if FR(t) > 0 with t < τ . In fact, { j}, j =
1, . . . , J , are J distinct values of Mo, and the J × J matrix A = (φ({1}), . . . , φ({J }))
is the J × J identity matrix. Notice that in Example 5, f�|R(1|r) ∈ (0, 1), where
r ∈ [a, b]. Thus A2 holds. Moreover if f�( j) = 1 and j 
= 1, then Mo does not have
J or more distinct values and thus the first matrix in A2 is of rank< J . Consequently,
A2 does not hold and it leads to inconsistency as in Example 6.

Assumption A3 eliminates the case that a bivariate distribution in the RMCR esti-
mation problem can be converted to a univariate distribution such as in Example 7
below.

Example 7 Let the notations and assumptions be the same as in Example 1, except
that θi = iθ , i = 1, 2, 3, with unknown parameter θ . Even under the assumptions
in cases (1) and (2) of Example 6 (that is, even when A2 fails), θ can be identified
through ST . Verify that fC (i) = i/6, i = 1, 2, 3. Thus the degree of freedom of the
parameters related to fC is zero in this case. The MLE of θ is δ/(6V ). It is essential
a univariate distribution problem.

Now we consider how to find the MLE in some special cases based on a random
sample of size n from the RPM model. A closed-form solution can be found in Exam-
ple 5. However, in general there is no closed form solution for the MLE such as in
Example 3.

Example 3 (continued). Assume that A1 and A2 hold. There is no closed form solu-
tion to the MLE. The MLE of γ is a zero point of ∂lnL(γ )

∂γ
= 0, where ∂lnL(γ )

∂γ
is derived

in a technical report (see Yu et al. 2009). One can use the Newton–Raphson method
to find the MLE.

If there is no closed form solution for the MLE, one can also use the Self-consistent
(SC) algorithm to find the MLE (see Example 8 below).

Example 8 Suppose that A1, A2 and S4 hold, and X j has the survival function
(So(t))θ j , where So is a known survival function with θ j > 0. Thus fT,C = fT fC .
The MLE of β maximizes ln

∏n
i=1(βho(Vi ))

δi
∏n

i=1(So(Vi ))
β or

∑
i δi ln(βho(Vi ))+

β
∑

i lnSo(Vi ).Thus the MLE β̂ = δ/lnSo(V ), where lnSo(V ) = ∑
i lnSo(Vi )/n. The

MLE p̂c maximizes
∏

i (
∑

c∈Mi
pc) and can be obtained by the SC algorithm (see

Turnbull 1976):

1. Assign mass p(1)c = 1/J to each point c in Cr .
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2. For h ≥ 1, update p(h+1)
c by p(h+1)

c = ∑
W∈J

∑n
i=1 1(Mi =W )

n
p(h)c 1(c∈W )∑J

k=1 p(h)k 1(k∈W )

, c =
1, . . . , J ; stop at convergence.

Sometimes, one may combine both the SC and the Newton–Raphson algorithms
as follows.

Example 9 Continuing from the previous example with the same notations. Sup-
pose that J = 3, FT |C is U (a, b) and (3), A1 and A2 hold. Verify that the
MLE of a is â = min{Vi : δi = 1, i ∈ {1, . . . , n}}; the MLE of p j ’s are
the same as in Example 8. Finally, to find the MLE of b it suffices to maximize∏n

i=1[(1 − Vi −a
b−a )

1(a<Vi<b) ]1−δi ( 1
b−a )

∑n
i=1 δi , b ≥ maxi {Vi : δi = 1}; the MLE b̂ of b

should satisfy the equation D(b) = 0, where D(b) = ∑
i

1−δi
b−Vi

− n
b−â . A zero point

can be obtained by the Newton–Raphson method.

Notice that A4 holds for Examples 1–5, 7, 8, and 9, but not in case (2) of the
following example.

Example 10 Suppose that J = 2, R ≡ 0 and T has range {0, 1}. Let p = fC (1) and
pkc = fT |C (k|c). Consider two cases: (1) fT,C (0, 1)+ fT,C (0, 2)+ fT,C (1, 1) = 1,
(2) no further assumption is imposed. Then A3 holds in case (1) but not in case (2).

Proof Case (1). Since p01 + p11 = 1 and p02 = 1, fT,C (0, 1) = pp01 and
fT,C (0, 2) = 1 − p, then pp01 = p∗ p∗

01 and 1 − p = 1 − p∗ iff p = p∗ and
p01 = p∗

01. Thus A4 holds.
Case (2). Since p0c + p1c = 1 for c = 1, 2, fT,C (0, 1) = pp01 and fT,C (0, 2) =

(1 − p)p02, then pp01 = p∗ p∗
01 and (1 − p)p02 = (1 − p∗)p∗

02 do not imply that
p = p∗ and p02 = p∗

02. For instance, take p∗ = p∗
01 = p∗

02 = 1/2, the solutions to
pp01 = 1/4 and (1 − p)p02 = 1/4 are not unique. Thus A4 fails and the parameters
p and fT |C (k|c) are not identifiable. ��

4 Asymptotic properties of the MLE

The theorems about the consistency and asymptotic normality of the MLE are given
in this section. Since this is a finite dimensional parametric estimation problem, under
certain regularity conditions, their proofs are quite standard. For a better presentation,
we shall relegate their proofs to Yu et al. (2009).

Theorem 1 Suppose that (1) A1, A2 and A4 hold; (2) T is continuous and the df of
(T,C) belongs to a parametric distribution family { f (t, c; θ) : θ ∈ �}, where � is
a compact subset of Rk , k is a positive integer; (3) ln

∑
c∈B f (t, c; θ) and lnST (; θ)

are continuous in θ uniformly in t in the sense that given ψ , ∀ε > 0, ∃η > 0 which
is independent of t such that |ln∑c∈B f (t, c; θ) − ln

∑
c∈B f (t, c;ψ)| < ε and

|lnST (; θ)− lnST (;ψ)| < ε whenever |ψ − θ | < η, where B ∈ J ; (4) |E(H(θo))| <
∞, where θo denotes the true value of θ and H(θ) = 1

n lnL(θ). Then the MLE of θ is
consistent.
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Let I (θ) = E( ∂
2 H(θ)
∂θ∂θ ′ ). Notice that

∂H(θ)

∂θ
= 1

n

n∑
i=1

{
δi

∑
c∈Mi

∂
∂θ

f (Vi , c; θ)∑
c∈Mi

f (Vi , c; θ) + (1 − δi )

∂
∂θ

ST (Vi ; θ)
ST (Vi ; θ)

}
= 1

n

∑
i

hi (θ),

where hi (θ) = h(Vi ,Mi , δi , θ) and h(t, B, δ, θ) =
{
δ

∑
c∈B

∂
∂θ

f (t,c;θ)∑
c∈B f (t,c;θ) + (1 − δ)

∂
∂θ

ST (t;θ)
ST (t;θ)

}
.

Theorem 2 Suppose that the assumptions in Theorem 1 hold, |I (θo)| 
= 0, and
h(t, B, δ, θ) is continuous in θ uniformly over t , in the sense that for each B ∈ J
and δ, given ψ , ∀ε > 0, ∃η > 0 which is independent of t such that |h(t, B, δ, θ) −
h(t, B, δ, ψ)| < ε whenever |θ − ψ | < η. Then the MLE of θ is asymptotically
efficient.

5 Simulation results

We have carried out simulation results to see whether the MLE and the estimate of its
standard deviation provided by Theorem 2 are close to the true values for moderate
sample sizes. The RPM model can easily be implemented in a simulation study. For
instance, in Example 1, one can proceed as follows.

1. Generate random vector (T,C) and random variable R independently, say (t, c, u).
2. Set V = min{t, u} and δ = 1(t≤u).
3. If δ = 0, set Mo = {1, 2, 3}.
4. If δ = 1, generate a random number � from Z + 1 where Z ∼ bin(4, p), with

p = 1
2 + 1

4 FR(u). Choose partition Ph if � = h. Let Phj ’s be the sets in the
partition Ph , then among them ∃! Phj such that c ∈ Phj . Define Mo = Phj . By
now, an observation (V, δ,Mo) is obtained, no matter whether δ = 0 or 1.

5. Repeat steps 1, 2, 3 and 4 n times, and obtain (V1, δ1,M1), . . . , (Vn, δn,Mn).

This scheme contains partially masked Mi such as {1, 2}, as well as unmasked Mi ’s,
that is, { j}’s. One can replace bin(4, p) by other distributions on {0, 1, 2, 3, 4}, but
should make sure that A2 is satisfied. The aforementioned scheme assumes that R and
� are dependent.

In Table 1 we present simulation results under the assumptions in Example 5. In
particular, assume T ∼ Exp(1), J = 3, (C − 1) ∼ bin(2, 0.5), R ∼ U (1, 2) (or
U (1, 3) in the second block of Table 1) (so that the censoring rate c changes), � and
R are independent, and Z ∼ bin(1, 0.7) (or bin(1, 0.5) in the second block) with Ph

defined in Example 1 (so that the masking rate m changes). For each case, we repeated
10,000 times. The simulation results are given in Table 1. The row with γ̂n(SE) gives
the sample means of the MLE’s γ̂n = ( p̂1, p̂2, β̂) with a sample size of n and their
standard errors (SE’s) in brackets. The rows with σ̂γ̂ and (SE) give the empirical
estimates of the Cramer–Rao lower bound (CRLB) (see Ferguson 1996) and their
SE’s respectively. It is seen that the MLE almost obtains the CRLB for the standard
deviations of the estimators even with a sample size of 50.
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Table 1 MLE under
exponential distribution with
T ⊥ C

True value β = 1 p1 = 0.25 p2 = 0.5

(m, c) = (0.637, 0.233)

γ̂50 (SE) 1.014 (0.165) 0.249 (0.070) 0.501 (0.135)

(SE) σ̂γ̂ (0.025) 0.162 (0.007) 0.069 (0.024) 0.124

γ̂100 (SE) 1.006 (0.114) 0.250 (0.049) 0.500 (0.093)

(SE) σ̂γ̂ (0.012) 0.114 (0.004)0.049 (0.011) 0.090

(m, c) = (0.476, 0.159)

γ̂50 (SE) 1.016 (0.158) 0.250 (0.067) 0.499 (0.102)

(SE) σ̂γ̂ (0.025) 0.155 (0.007) 0.066 (0.010) 0.098

γ̂100 (SE) 1.007 (0.109) 0.250 (0.047) 0.499 (0.071)

(SE) σ̂γ̂ (0.013) 0.109 (0.003) 0.047 (0.005) 0.070

Table 2 MLE under exponential distribution with T 
⊥ C

γ p1 = 0.25 p2 = 0.5 β1 = 1 β2 = 2 β3 = 3

γ̂58 0.244 (0.117) 0.513 (0.482) 1.220 (0.590) 2.142 (0.639) 3.292 (1.436)

σ̂γ̂58
(0.038) 0.063 (0.115) 0.092 (0.368) 0.538 (0.261) 0.643 (1.873) 1.787

γ̂400 0.248 (0.025) 0.501 (0.034) 1.027 (0.155) 2.014 (0.220) 3.031 (0.465)

σ̂γ̂400
(0.001) 0.025 (0.001) 0.034 (0.035) 0.152 (0.025) 0.222 (0.079) 0.474

In Table 2, we present simulation results under the assumptions in Example 3. In
particular, (C − 1) ∼ bin(2, 0.5); T |C ∼ Exp(C) with mean C ; Z ∼ bin(1, 0.5);
R ∼ U (1, 2). The censoring rate c = 0.091 and masking rate m = 0.450. We only
present the sample means of the MLE’s and their SE for sample sizes 58 (same as the
data in Dinse 1986) and 400. γ̂n and σγ̂n represent the averages of the MLE and the
estimate of its standard deviation (SD) of sample size n in 10000 replications, and SE
represents the corresponding standard error.

The results in these tables suggest that the approximation of the MLE to the true
parameters are quite satisfactory for moderate sample sizes n = 58 and the estimates
of the SD’s are good for sample size n = 400.

6 Data analysis

We consider two sets of data here: one is a medical research data set and the other is
an industrial data set. We consider the parametric set-ups in Example 3. Denote Ho:
β1 = β2 = β3(= β), and H1 : Ho does not hold.

6.1 A medical data set

Dinse (1986) provides a data set in the medical research and studies the non-parametric
estimation of two age-specific descriptors of disease development and the subsequent
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Table 3 Time to death (in days)
and status at death, with respect
to NRVD for 58 female RFM
mice

Type Mi Time (T )

Absent {1} 231 444 468 473 527 550 593

{1} 600 610 650 655 660 715 720

{1} 752 785 832 838 859 891 896

{1} 904 931 952 998

Incidental {2} 559 595 598 603 765 783 794

{2} 811 856 870 883 897 975 978

{2} 991 1005 1023 1026 1053

Fatal {3} 500 591 713 751 778 784 786

{3} 796

Unknown {2, 3} 593 735 816 848 850 1048

Table 4 MLE based on Dinse’s medical research data

p1 p2 β̂ or β1 β2 β3

Ho: 0.431 (0.065) 0.400 (0.068) 0.151 (0.001)

H1: 0.431 (0.065) 0.400 (0.068) 0.154 (0.627) 0.149 (1.082) 0.152 (2.119)

effects of a disease on longevity: prevalence and mortality. The data in his Table 1 are
not formulated as the masked competing risks (MCR) data form, but can be converted
to MCR data as in Table 3.

The data can be interpreted as three causes of death: (1) the disease is not present
at death and the death is due to other causes; (2) the death is not due to the disease
though the disease is present; (3) the death is due to the disease. There are 4 types of
Mi ’s and they can be classified as in Table 3.

We obtain the MLE through the Newton–Raphson algorithm based on the data in
Dinse (1986). Under Ho it can be shown that T ⊥ C and thus it becomes the case in
Example 5. Then the MLE has closed form solution (see Example 5). The standard
deviation of p̂ can be obtained by the inverse of the Fisher information matrix. For the
data given in Table 3 with Ti replaced by lnTi , the MLE under Ho or H1 is presented
in Table 4.

The results in Table 4 have a strong indication that T ⊥ C for this data set: (1)
the MLEs p̂c do not change under these two models; (2) the MLEs β̂c’s are almost
identical under these two models; (3) a χ2 test of degree of freedom 1 for testing Ho

results in a test statistic value of 10−4 (for details see Yu et al. 2009).

6.2 An industrial data set

Consider the MCR data set about 682 PS/2 computer systems in Reiser et al. (1995)
with 8 failed (Vi ,Mi ) : (1, {1}), (1, {1}), (1, {1, 3}), (1, {1, 2, 3}), (16, {3}), (17,
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{2, 3}), (21, {2}), (222, {2}), 348 right-censored at 67, 246 right-censored at 200, 26
right-censored at 800, and 54 right-censored at 4000.

For this data set with Ti replaced by 2+ lnTi (as Ti = 1 for some i), the MLE under
the assumptions in Example 3 is

p̂1 p̂2 β̂1 β̂2 β̂3
0.987 (0.009) 0.007 (0.008) 0.00001 (0.000007) 0.004 (0.007) 0.092 (0.084)

It can be shown that under Ho the MLE ( p̂1, β̂) = ((4 − √
2)/7, δ/V ) = (0.369,

0.000026) and p̂2 = p̂1, as the likelihood is L = p4
1(1 − 2p1)(1 − p1)

2βnδe−nV .

Unlike the data in § 6.1, the current data set suggests that Ho is unlikely to be true, as
the MLE’s of p̂1 under Ho and H1 satisfy |0.987 − 0.369| > 3 × 0.009.

Remark 1 In data analysis, an interesting issue is to construct a goodness-of-fit test
procedure to check whether the parametric model assumption is valid for the data. A
possible procedure is the Kolmogorov test statistic

∑
t,c |FT,C (t, c; θ̂ ) − F̂T,C (t, c)|

where F̂T,C is the generalized MLE (GMLE) of FT,C . However, the GMLE is not
uniquely defined and the one defined in the literature is erratic (Dinse 1982, p.42511).
Moreover we shall show in a forthcoming paper that the GMLE defined in the literature
is inconsistent if T is continuous.

7 Comparison between the RPM model and CMP models

In this paper, we propose the RPM model. We shall first examine CMP Model 1 under
the RPM model in the following three lemmas. For a better presentation, the proofs
of the lemmas in this section are given in Yu et al. (2009).

Lemma 1 ∀A ∈ J νc(A) =
{

0 if c /∈ A∑
h: A∈Ph

f�(h) if c ∈ A.
Thus S1a holds.

Lemma 2 ∀A ∈ J νt,c(A) =
{∑

h: A∈Ph
f�(h) if c ∈ A and fT,C (t, c) > 0

0 if c /∈ A or fT,C (t, c) = 0.

Lemma 3 Assumption S1 is valid iff the following assumption holds

A5 for each t, fT (t) > 0 implies fT,C (t, c) > 0 for each c ∈ Cr .

Remark A5 is valid in Examples 1, 3, 5–8, but not in Examples 2, 4 and 9.

It can help us appreciate the RPM model by comparing masking and right censoring,
which have a strong analog. The random set M in masking corresponds to a random

interval I in right censoring, where Ide f=
{
(V,∞) if T>V
[V,V ] if T ≤V,

which is also a random set.

C and T are the variables of interests in masking and right censoring, respectively, but
C ∈ M and T ∈ I. In the RPM model, a new random variable � chooses a partition
Ph(= (Ph1, . . . , Phkh )) of Cr , then M = Phj if C ∈ Phj ; whereas in the right cen-
sorship model, a random variable V induces a partition {(−∞, V ), [V, V ], (V,∞)}
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of (−∞,∞), then I is determined by the interval that T falls in. The likelihood � in
(1) for RMCR data also corresponds to a likelihood Lrc for the RC data, where

Lrc =
n∏

i=1

( fT (Vi )P{I =[Vi , Vi ]|T = Vi })δi

(∫ ∞

Vi

fT (t)P{I =(Vi ,∞)|T = t}dt

)1−δi

∝
n∏

i=1

( fT (Vi ))
δi (ST (Vi ))

1−δi if P{I = (Vi ,∞)|T = t} is free of t .

The latter corresponds to the conditions that P(M = A|C = c) is free of c in masking
and P(M = A|T = t,C = c) is free of t in the CMP models. Such a right censorship
model is probably not an attractive alternative to the standard right censorship model.

The difference between the CMP models and the RPM model can be listed as
follows.

1. The CMP Model 1 does not allow the case that fT (t)SR(t−) > 0 but fT,C (t, c) =
0 for some c ∈ Cr (see Lemma 3 and Examples 2, 4 and 9). However, the RPM
model has no such restriction.

2. Under the RPM model S2 implies � ⊥ R, as S2 says M ⊥ R. The CMP Model
relies on S2. In fact, the first equality in the likelihood in (1) does not hold if
S2 fails, as fT,C,M,R 
= fT,C,M fR without S2. However, the RPM model is
valid without S2, as long as A1 holds (see step 4 of the simulation procedure for
generating M in Sect. 5).

3. It is much simpler to implement a simulation study with the RPM model than with
CMP Model 1. Under CMP Model 1, in order to generate M, one has to solve
for fM|C ’s subject to constraints

∑
A:A∈J fM|C (A|c) = 1 and S1a. This can be

done but is not as simple as the procedure for generating M under the RPM model
(see step 4 in Sect. 5).

4. The CMP models are based on S3 too. It can be easily shown that assumption S3
is a false statement, unless that it is further assumed that n1 is not random. The
disproof of S3 as stated is very similar to the proof that the order statistics of i.i.d.
random variables are dependent.

5. In this paper, to avoid the ugly assumption S3, we define Mo and impose (3).
Mukhopadhyay (2006, p.80613) maybe the first person who points out that M 
=
Cr if T > R. M is what we know about C at the failure time T and Mo is what
we know about C at the observable time V . Under the RPM model, if T ≤ R,
C ∈ A ∈ Ph and � = h then Mo = M = A.

6. The CMP Model 1 does not have the restriction A1, which is critical in the RPM
model. Thus neither of these two models is a special case of the other. They both
are useful alternative to each other.

7. The CMP Model 2 has more parameters than the RPM model, and thus it is more
flexible. However, unless additional constraints are imposed, the parameter under
CMP Model 2, can be non-identifiable under assumptions A1, A2 and S4 (see
Example 11).
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Example 11 Suppose that J ≥ 2; there is no censoring; X j has the survival

function S(t) = e−λ j (t)
β j

where t > 0; X j ’s are independent; Mi ∈ {{1},
{2}, Cr } with fM(Cr ) > 0 and fM({ j}) > 0; and βi = β j for some
i 
= j . Then the parameter under �c is not identifiable. For instance, let
J = 2, write β = β1 = β2, and ψ = ∑

k λk , then fC ( j) = λ j/ψ .
Let θ = (p1, p2, μ11, μ22, μ13, μ23) be the parameter corresponding to the true
value ( fC (1), fC (2), ν1({1}), ν2({1}), ν13(Cr ), ν23(Cr )), denoted by θo. Without S1a,

�c(β, ψ, θo) = �c(β, ψ, θ) for each θ =
(

p, 1 − p, u1
p ,

u2
1−p , 1 − u1

p , 1 − u2
1−p

)
with p ∈ [u1, u1+u3], where u1 = fM({1}), u2 = fM({2}), and u3 = fM(Cr ) > 0.
Thus the parameter θ is not identifiable. This example basically shows that even under
the assumption of the popular Weibull distribution family, which is quite common
in real data, the parameters are not identifiable if βi = β j for two coordinates of
(β1, . . . , βJ ) (which is the case in the data analysis in Sect. 6.1). Thus CMP Model 2
is not that useful, unless stage-2 data or prior information are available.
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