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Abstract Through a threshold equation, we propose a time-transformed accelerated
failure time (AFT) model with time-dependent covariate history in survival analysis.
This model contains a general class of semiparametric lifetime regression models,
including AFT with identical time-scale and a wide spectrum of Cox’s hazard regres-
sion models and their frailty variants. We first construct the semiparametric efficient
statistical inferences on the AFT model with identical time-scale. The theoretical
semiparametric Fisher information bound is explicitly derived under right-censored
data setting. And the overidentified estimating equation (OEE) approach based on two
martingale processes is shown to achieve this semiparametric efficiency bound. Exten-
sions of the semiparametric efficient statistical inferences to the time-transformed AFT
versions are also discussed. We also conclude that most log-rank estimating equations
would suffer severe information loss primarily caused by wiggling pattern of the base-
line hazard function, while the OEE approach can alleviate the damaging effects. A
simulated biological life history example is numerically studied.
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2 H. Fushing

1 Introduction

The primary goal of survival analysis is to foster better understanding into the dynamics
under study by inferring the relationship between the event of interest and the con-
tinuous progress or development preceding the occurrence of the event. For instance,
scientists investigate AIDS dynamics from HIV infection to the diagnosis of AIDS
disease, or dyadic dynamics from marriage to divorce, or aging dynamics from birth
through death. Along the temporal axis of the dynamic system, the continuous mea-
surements leading to the designated event is generically called time-dependent covar-
iate history. Although this covariate history is an indisputable manifestation of what is
responsible for the event, two rather distinct viewpoints regarding its effects are taken
in statistical literature.

The first viewpoint is that it has instantaneous impacts to make the event of interest
more (or less) likely to occur at any point in time (Aalen and Gjessing 2001). This
perspective is well captured in the classic Cox (1972) hazard regression models and its
variants with or without frailty, see Andersen et al. (1993). The second viewpoint is that
the covariate history only influences the underlying mechanisms in such a way that it
gradually speeds up (or slows down) the event’s occurrence in the future. The second
viewpoint seems to better seize the developmental characteristics of biological and
physical dynamics. The semiparametric AFT model with time-dependent covariate
proposed in Cox and Oakes (1984) genuinely captures this viewpoint.

Nowadays these two viewpoints still widely separate researchers in different areas
of sciences. For example, researchers in industry reliability and engineering make
heavy use of parametric time-independent version of AFT model, see Escobar and
Meeker (1992) and reference therein, while majority of researchers in biology and
medicine and social sciences apply Cox’s hazard regression model. In fact there is a
bit of concern that the great popularity of hazard regression model might have been
mainly attribute to the simplicity of the partial likelihood approach for statistical infer-
ences, rather than its appropriateness of scientific interpretation.

One way of addressing this concern is to construct a unified framework that simulta-
neously accommodate these two sharply contrasting effects of time-dependent covar-
iate history. This unified framework would provide a platform for scientists who can
probe various modeling conditions and link them with biological and physical mech-
anisms. By doing such explorations, scientists are likely to achieve better statistical
modeling and to arrive with proper and accurate interpretations. In this paper, we
construct such a unified modeling framework, called time-transformed AFT model,
through the following threshold equation:

U =
∫ T

0
eβ

′ Z(t) d�0(t) (1)

where T and Z(t) are the observable survival time and time-dependent covariate,
respectively, on time scale t . And �0(t) = ∫ t

0 λ0(s)ds is a monotone, but unknown
transformation on the time-scale t . Here U is more than a pure positive random noise.
It denotes an unobservable threshold that represent a key random biological quan-
tity associated with the dynamics. It is observable only when Z(t) = 0 for all t . Its
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Regression with time-dependent covariates 3

unknown distribution is denoted by F(u) = ∫ u
0 f (v)dv and its cumulative hazard

function by �U (u) = ∫ u
0 λU (v)dv on a hypothetical time scale u.

From mechanistic perspective, the acceleration factor eβ
′ Z(t)λ0(t) in Eq. (1) is

modeling the rate of using up the threshold quantity U to lead to the observable event
at time T . This threshold type of equation is ubiquitous in biological and physical
systems.

From statistical modeling perspective, it is an extension of semiparametric linear
regression models with capacity of accommodating time-dependent covariates. To
see this, let the covariate Z(t) ≡ Z be time-independent; then Eq. (1) becomes a clas-
sic semiparametric linear regression model with an unknown transformation on the
dependent variable as H(T ) = −β ′Z + log U, where the monotone transformation
H(.) = log{�0(.)} and log U is the error term, see also Horowitz (1996). This simple
framework indeed includes: the accelerated failure time (AFT) model, or so-called lin-
ear regression with censored data (when H is known, see e.g. Tsiatis 1990; Wei et al.
1990; Ritov 1990; Lai and Ying 1991; Ying 1993; Hsieh 1997), Cox’s proportional
hazard model (when U is exponential distributed, see e.g. Cox 1972), frailty model
(when U = U1/U2 and U1 is exponential distributed, while U2 has a frailty distribu-
tion, see e.g. Vaupel et al. 1979; Heckman and Singer 1984; Hougaard 1986; Nielsen
et al. 1992), and transformation models (when U is known distributed according to
Normal, Logistic or other distributions, see e.g. Box and Cox 1964; Bickel and Doksum
1981; Dabrowska and Doksum 1988; Hsieh 1995, 1996a; Murhpy et al. 1997).

Further by denoting the covariate history up to time t as Z̄(t) = {z(s) : 0 < s < t},
the cumulative hazard rate of the observed survival time T under model (1) is calcu-
lated as:

�(t;β, Z̄) = �U

[∫ t

0
eβ

′ Z(s)λ0(s) ds

]
. (2)

Again, if�U (t) ≡ t , then we have Cox’s model with time-dependent covariate. There-
fore, from Eqs. (1) and (2), all the time-dependent extended versions of aforementioned
models with time-independent covariate are unified under one single framework of the
time-transformed AFT model. In this way the two kinds of effect of time-dependent
covariate history discussed above is accommodated in one unified framework.

It is noted that the simplest model in the class specified by Eq. (1) is the following
identical time-scale version as:

U =
∫ T

0
eβ

′ Z(s)ds, (3)

with �0(t) ≡ t . This simple AFT model indeed plays a rather fundamental role
in the following way. The unknown transformation d�0(t) = λ(t)dt in Eq. (1) can
be absorbed into the accelerating factor. Hence the time-transformed AFT model is
re-expressed as:

U =
∫ T

0
eβ

′ Z(t)+g(t)dt (4)
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4 H. Fushing

with g(t) = log λ0(t). Furthermore, if g(t) = ∑
a jϕ j (t) with {ϕ j (.), j = 1, . . . n}

being a known basis of functions on [0,∞), then we arrive at an equation as:

U =
∫ T

0
eβ

′ Z(t)+∑
aiψi (t)dt. (5)

This fact very importantly indicate that modeling equations (1) and (2) and all trans-
formation models and their variants can be rewritten or approximated by the identical
time-scale version of AFT in Eq. (3). Thus theoretical and computational develop-
ments for statistical inferences on the time-transformed AFT model of Eq. (1) can be
very well achieved by the less complex developments for the simpler equation (3).
This distinct perspective offers a resolution to statistical inferences in semiparametric
transformation models, which is still plunged by well-known theoretical and compu-
tational difficulties, see Bickel and Doksum (1981), Dabrowska and Doksum (1988),
and Murhpy et al. (1997).

The identical time-scale version of AFT model in (3) was first proposed in Cox
and Oakes (1984). Its statistical inference was first pioneered in Robins and Tsiatis
(1992) using log-rank estimating equations. They indicated that their estimating equa-
tions are efficient when the baseline hazard λU (u) is constant. They also speculated
that, under general setting, the semiparametric efficiency could be achieved by com-
bining increasing number of estimating equations as sample size n increases, see
also Lin and Ying (1995). However, Hsieh (1997) pointed out that log-rank estimat-
ing equation could have severe information loss primarily due to the possible wig-
gling patterns of λU (u) even under the time-independent covariate setting. To avoid
such a information loss, the weighting function built into the log-rank estimating
equation must adapt to precise locations of sign-changes of the ratio λ′

U (u)/λU (u).
This is not an easy task. Certainly this information loss problem remains for log-
rank estimating equations under the time-dependent covariate setting with even more
profound computational and theoretical complexities. Thus so far semiparametric
efficient inferences for this model (3) are still missing in survival analysis litera-
ture.

In this paper, we provide a comprehensive account of semiparametric efficient
inferences on model (3). The semiparametric Fisher information bound is explicitly
calculated and the efficient scoring function is proved in Sect. 2. The computational
weakness of log-rank estimating equation, specifically called local confounding, is
demonstrated in Sect. 3. In Sect. 4, the overidentified estimating equation (OEE)
approach, see Hsieh (1997, 2001), is applied to achieve the semiparametric efficiency
bound. Several extensions to general settings are also briefly mentioned. In Sect. 5, a
numerical example of evaluating the effect of reproductive costs on female’s survival
is studied. The purpose of this numerical study is twofold. First, it illustrates applica-
bility of (1) and (3) in one central issue of life history theory in aging biology. Second,
several regression parameters estimators are compared to manifest the effect of local
confounding on log-rank estimating equations. Discussions of related issues are col-
lected in the last section. All proofs of theoretical results and regularity conditions are
stated in “Appendix”.

123



Regression with time-dependent covariates 5

2 Fisher information bound in AFT model with right censored data

In this section, the efficient score function and the semiparametric Fisher information
bound are calculated for the regression parameter β under the AFT model in Eq. (3)
with right censored data. For expositional simplicity, let β be a real value parame-
ter from here on. Results of inferences for a vector value parameter can be similarly
derived.

Let (Xi , δi , Z̄i (Xi )), i = 1, . . . , n be n independent copies of observable random
vectors with possibly censored survival time Xi = (Ti ∧Ci ) and the censoring indica-
tor δi = 1 if Xi = Ti , and 0 otherwise, and Z̄i (Xi ) the covariate history only observed
up to Xi . Here the uncensored survival time Ti is generated by solving the Eq. (3) given
Ui and the covariate history Z̄i (t) = {zi (s) : 0 < s < t} up to t ≤ Ti . We further
assume that Ci , i = 1, . . . , n, are independent and identically distributed, and, for
each i , Ci is independent of Ti given Z̄i (t) for any t . This identically distribution
condition is made only for simplicity in asymptotic arguments. It could be further
relaxed.

The following notations are used throughout this paper:

ψ{Z̄i (t), β} =
∫ t

0
eβZi (s)ds,

Ui (β) = ψ{Z̄i (Ti ), β}, Vi (β) = ψ{Z̄i (Xi ), β}.

That is, if Ti is not censored, then the otherwise uncomputable baseline survival time
Ui (β) is equal to Vi (β). And from here on the subscript U for the baseline hazard rate
λU (u) is suppressed, and is denoted simply by λ(u).

Furthermore, let β0 denote the true value of β. Then Ui (β0) = Ui and Vi (β0) = Vi .
These two simple observations give rise to the heuristic idea that if β takes the value β0
in the ψ(.) transformation, then the hazard rate of Vi (β0) would be equal to the base-
line hazard rate, λ(u), and would be independent of the covariate history of Zi (t) up
to ψ−1(Xi , Z̄i , β0); that is, Z̄i (ψ

−1(Xi , Z̄i (Xi ), β0)), see Robins and Tsiatis (1992)
for more detailed causal interpretations regarding this independence.

To setup an estimating equation, we calculate the hazard rate of the transformed
variable Vi (β) for any givenβ, instead of that of Xi . Under the AFT model, the survival
probability of Ui (β) is calculated as

Pr{Ui (β) > u} = Pr{Ti > ψ−1(u, Z̄i , β)},
= Pr [Ui > ψ{Z̄i (ψ

−1(u, Z̄i , β)), β0}]
= e−�(ψ{Z̄i (ψ

−1(u,Z̄i ,β)),β0}).

Further denote the corresponding hazard rate ∂�(ψ{Z̄i (ψ
−1(u, Z̄i , β)), β0})/∂u by

λi,β(u) with

λi,β(u) = λ(ψ{Z̄i (ψ
−1(u, Z̄i , β)), β0}) exp{(β0 − β)Zi (ψ

−1(u, Z̄i , β))}. (6)
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6 H. Fushing

In Robins and Tsiatis (1992), a scoring function for the i th subject is defined
on the baseline time scale, u, as Gi (u, β) = g[Z̄i {ψ−1(u, Z̄i , β)}], where g(.) is
a real-valued function of covariate history up to the corresponding real time t =
ψ−1(u, Z̄i , β). Typical examples of g{Z̄i (t)} might include cumulative exposure,∫ t

0 Zi (u)du, or its current value, Z(t). In this paper, we mainly consider the following
two scoring functions:

Ri (u, β) =
∫ ψ−1(u,Z̄i ,β)

0
Zi (v) exp{βZi (v)}dv

Zi (u, β) = Zi {ψ−1(u, Z̄i , β)}.

For convenience, define:

Y (u, β) =
n∑
1

Yi (u, β), Y K (u, β) =
n∑
1

Ki (u, β)Yi (u, β),

where K (u, β) is any possible scoring function, and Y j (u, β) = I {Vj (β) ≥ u} indi-
cates whether the j th individual is still at risk in terms of its estimated baseline survival
time Vj (β).

With a chosen scoring function, Gi (u, β), the log-rank estimating equation consid-
ered in Robins and Tsiatis (1992) is S(β) = 0 with

S(β) =
n∑
1

	i [Gi {Vi (β), β} − Gav{Vi (β), β}],

Gav{u, β} = Y G(u, β)

Y (u, β)

being the average scores values among those individuals who are still at risk at time
u; that is, for those j , Y j (u, β) = 1.

A more convenient expression of the above log-rank estimating equation is in terms
of a counting process representation. That is, let Ni (u;β) be the counting process for
the i-th individual defined as: Ni (u;β) = I {Vi (β) ≤ u, δi = 1}, with its random
intensity process derived from (6) as λi,β(u, β)Yi (u, β). Then a log-rank estimating
equation truncated at a prespecified time point, u, is

S(u, β) =
n∑
1

∫ u

0
{Gi (v, β)− Gav(v, β)}dNi (v;β). (7)

Therefore, the estimating equation S(β) originally proposed in Robins and Tsiatis
(1992) is equal to S(∞, β) without imposing a finite truncation. Below the efficient
score function, says Gop is derived and the detailed proof is given in “Appendix”.
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Regression with time-dependent covariates 7

Theorem 1 Under the AFTM model specified in (3) with right censored data, the
efficient score function is calculated as

∫ ∞

0
I{Qi (β)≥v}[GOP,i (v, β)− E[GOP,i (v, β)|Vi (β) ≥ u]]dMi (v),

=
∫ ∞

0
[GOP,i (v, β)− E[GOP,i (v, β)|Vi (β) ≥ u]]dMi,uc(v),

where

Qi (β) =
∫ Ci

0
exp{βZi (v)}dv, GOP,i (u, β) = Ri (u, β)

λ′(u)
λ(u)

+ Zi (u, β),

E[GOP,i (u, β)|Vi (β) > u] = E[Ri (u, β)|Vi (β) > u]λ
′(u)
λ(u)

+E[Zi (u, β)|Vi (β) > u],

and martingales

Mi (u) = I{Ui ≤u} −
∫ u

0
I{Ui ≥v}d�(v), Mi,uc(u) = I{Vi ≤u,δi =1} −

∫ u

0
I{Vi ≥v}d�(v).

It is noted that Theorem 1 contains the finite-sum version of the time-transformed
AFT model (5) by including the functions ϕ j (.) as components of multivariate time-
dependent covariate Z(t).

With the efficient score function given in Theorem 1, the semiparametric Fisher
information of β contained in the data of the i th subject is, again by martingale
calculations,

Ii (β0) = E
∫ ∞

0
I{Qi ≥u}[G O P,i (v, β0)− E[G O P,i (v, β0)|Qi ≥ u]]2 I{Ui ≥v}d�(v),

= E
∫ ∞

0
I{Qi ≥u}[G O P,i (v, β0)− E[G O P,i (v, β0)|Qi ≥ u]]2dF(v),

=
∫ ∞

0
E[1{Qi ≥u}]{G O P,i (v, β0)− E[G O P,i (v, β0)|Vi (β0) ≥ u]}2dF(v).

Furthermore, this semiparametric Fisher information bound suggests the efficient
estimating equation is

0 =
n∑
1

∫ ∞

0
[GOP,i (v, β)− Gav

OP,i (v, β)]dNi (v;β).

This estimating equation seems not practically feasible because GOP,i (u, β)
involves with the ratio of unknown baseline hazard and its derivative, λ′(u)/λ(u).
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8 H. Fushing

Very naively smoothing techniques, such as in Ramlau-Hansen (1983) and many oth-
ers, could be applied for estimating this ratio, and then plug it in to construct an
approximate efficient estimating equation.

Unfortunately the problem generated by the presence of this ratio has a subtlety that
could not be resolved nicely by this simple-minded strategy. A clear picture of this
subtlety in computation is given in the next section. An brief and intuitive idea of it is
that, due to the sensitivity in bandwidth selection in estimating the ratio λ′(u)/λ(u), it
is very difficult to make the estimated ratio and the true ratio to have synchronous sign
changes. Without such synchronization, the information of the regression parameter
β is deemed to lose. And the severity of information loss essentially depends on the
structure of λ(u). This phenomenon is called local confounding in Hsieh (1997).

3 Effects of local confounding on log-rank estimating equations

In this section, we discuss how the phenomenon of local confounding could possibly
arise, and analytically show its effect on the log-rank estimating equations. Heuristic
comments regarding to smoothing techniques to this phenomenon and a remedy are
also discussed.

Recall the log-rank estimating equation (7) and consider following approximations
of the difference S(u;β)− S(u;β0) given β within a close vicinity of β0:

S(u;β)− S(u;β0)

≈
n∑
1

∫ u

0
{Gi (v, β0)− Gav(v, β0)}[λi,β(v)− λ(v)]Yi (v, β0)dv,

≈ (β − β0)

n∑
1

∫ u

0

n∑
1

{Gi (v, β0)− Gav(v, β0)}{dλi,β0(v)/dβ}Yi (v, β0)dv,

≈ n(β − β0)[1/n
∫ v

0

n∑
1

{Gi (v, β0)− Gav(v, β0)}

×{Ri (v, β0)λ
′(v)+ Zi (v, β0)λ(v)}Yi (v, β0)dv],

where both Ri (u, β) and Zi (u, β) are defined in the last section. The first approximat-
ing equation is obtained by canceling off two nearly identical zero-mean martingales,
see also Tsiatis (1990). And the remaining approximations are so called the locally
asymptotic linearities. They are rigorously stated in the following theorem under the
regularity conditions on bounded variations of the covariates zi (t) and on tail behaviors
of the baseline density function f (u) given in “Appendix”.

Theorem 2 Let

M̄1(u;β) =
n∑
1

∫ u

0

{
Ri (v, β)− EY R(v, β)

EY (v, β)

}
dE Ni (v, β),
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Regression with time-dependent covariates 9

M̄2(u;β) =
n∑
1

∫ u

0

{
Zi (v, β)− EY Z (v, β)

EY (v, β)

}
dE Ni (v, β),

A1,n(u) = n−1
n∑
1

∫ u

0

{
Ri (v, β)− EY R(v, β)

EY (v, β)

}

×
{

Zi (v, β)+ λ′(v)
λ(v)

Ri (v, β)

}
Li (v, β) dF(v),

A2,n(u) = n−1
n∑
1

∫ u

0

{
Zi (v, β)− EY Z (v, β)

EY (v, β)

}

×
{

Zi (v, β)+ λ′(v)
λ(v)

Ri (v, β)

}
Li (v, β) dF(v),

with Li (v, β) = Pr{Qi (β) > v}.
Under regularity conditions (C1) to (C4), the martingale processes Mi (u;β), i =

1, 2, has the following strong approximations which hold uniformly for u ∈ [0, uk(n)]
with uk(n) going to ∞ in a rather slow rate, such as log nη for some positive η.

(i) For any fixed B > 0 and ε > 0

sup
|β−β0|≤B

{
|Mi (u;β)− M̄i (u;β)

}
= o(nε) almost surely;

(ii) and for each j and any positive sequence dn → 0 almost surely

sup
|β−β0|≤dn

{
|	 j Mi (u;β)−	 j Mi (u;β0)

−n	 j Ai,n(u)(β − β0)|/(n1/2 + n|β − β0|)
}

= o(nε)

almost surely (or with great probability).

Further denote, for any scoring function G and K ,

AG
K (u, β) = lim 1/n

∫ u

0

n∑
1

{Gi (v, β)− Gav(v, β)}Ki (v, β)Yi (v, β)dv,

and

ρG(u;β, λ) =
∫ u

0
[AG

R (v, β)λ
′(v)+ AG

Z (v, β)λ(v)]dv.

Then, with Theorem 2 and the approximations given before it, we have the locally
asymptotic linearity expressed as:

S(u;β)− S(u;β0) ≈ n[β − β0]
∫ u

0
[AG

R (v, β0)λ
′(v)+ AG

Z (v, β0)λ(v)] dv,

= n[β − β0]ρG(u;β0, λ). (8)
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10 H. Fushing

Let β̂TLN
u be the β solving the truncated long-rank estimating equation S(u;β) = 0.

Since the equation S(u;β) = 0 is monotonic in β, β̂TLN
u is unique in the sense that

the set of generalized solutions is convex, see also Fygenson and Ritov (1994). With
the locally asymptotic linearity (8), Rebolledo’s martingale central limit theorem on
S(u;β0) renders that

√
n(β̂TLN

u −β0) converges in distribution to a zero mean normal
distribution with variance σ 2

G(u):

σ 2
G(u) = {ρG(u;β0, λ)}−2 HG(u),

HG(u) = lim
n→∞ 1/n

∫ u

0

n∑
1

{Gi (v, β0)− Gav(v, β0)}2Yi (v, β0)λ(v) dv.

It is essential to note that (ρG(u;β0, λ))
2 is not necessary increasing in u, while

HG(u) is surely increasing. Therefore the asymptotic variance σ 2
G(u) might not be

decreasing in u. This phenomenon implies that, by making the truncating time u
larger to incorporate more uncensored data points into a log-rank estimating equation,
we might end up losing more information. This is counter-intuitive. For this reason, the
original proposal of untruncated log-rank estimating equation S(∞, β) = 0 in Robins
and Tsiatis (1992) could be very inefficient, when λ(u) indeed wiggles up and down
along its time scale u. This phenomenon called local confounding. Such phenome-
non was studied in Hsieh (1997) for censored linear regression with time-independent
covariates.

Apparently the non-monotonicity of function (ρG(u;β, λ))2 is caused by either
the presence of the derivative function λ′(u), or the time-dependent interaction terms
between the scoring functions G(.) and R(.) and Z(.). As for eliminating the possible
effects coming from latter interactions, we simply choose the scoring function G(.)
either R(.) or Z(.).

But, no matter which single scoring function is chosen, the local confounding still
could have its effects. Since the ratio λ′(u)/λ(u) is built in the locally asymptotic
linearity (8). A simple-minded strategy toward this problem is to apply the smoothing
techniques; for example, in Ramlau-Hansen (1983), for estimating λ(u) as well as its
derivative λ′(u), and then plug in an estimated ratio into the efficient score to result
an estimated efficient score equation. However, in order for this plug-in estimating
equation to work against the local confounding, the estimated and the true ratios must
have synchronized sign changes. Without such synchronization, the effects of local
confounding is deemed to cause information loss.

It is known that hardly such guarantee could be granted from any smoothing tech-
nique to achieve this synchronous behavior. This difficulty resides on two types of
sensitivity: one is a reasonably robust initial estimate of β; the other is a suitable
bandwidth. The first choice is in general an issue in the semiparametric literature.
And the second choice is clearly crucial. Since, on one hand, under-smoothing would
automatically cause information loss due to the frequent sign changes of the estimated
λ′(u); on the other hand, over-smoothing would miss the true sign changes of λ′(u)
and result in information loss as well.

Below a resolution for local confounding is proposed. Consider an log-rank esti-
mating equation S(u;β0) constructed from a scoring function G. A reliable initial
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Regression with time-dependent covariates 11

estimate of β and then an improved version are derived via a simple methodology
with capability to alleviate the effect of local confounding. The heuristic idea is that
we partition the entire concerned time interval into several sub-intervals. Practically
we might be able to contain all possible effects of local confounding within just a few
subintervals, while the function ρG(u;β0, λ) is monotonic in the rest of subintervals.
These extra computations would put a premium on the efficiency of estimating β as
illustrated below.

With S(u;β0) being a martingale process, we define a process as

M(u;β) = n−1/2
n∑
1

∫ u

0
{Gi (v, β)− Gav(v, β)} dNi (v;β).

Further, for a chosen set of time points {u1, u2, . . . , uk} with u0 = 0 and uk+1 = ∞,
denote the increments by 	i K = K (ui ) − K (ui−1) for i = 1, . . . , k + 1, where K
can be any function, matrix of functions, or martingale process. Again by applying
Rebolledo’s central limit theorem, see Andersen and Gill (1982), and the locally
asymptotic linearity (8), we have a system of k + 1 regression equations:

	i M(u;β) = M(ui ;β)− M(ui−1;β)
≈ 	i M(u;β0)+ N 1/2(β − β0)	iρG(u;β0, λ),

	i M(u;β0)
d≈ N(0,	i HG(u)).

Let an initial estimate be constructed as β̂0 = argβ inf
∑k+1

1 {	i M(u, β)}2. Then,

with β̂0, the functions HG(u) and �(u) are estimated. In turn, the one-step estimate
of β is derived as

β̂G,k = argβ inf
k+1∑

1

{	i M(u, β)}2/	i ĤG(u),

so is the following asymptotic result:

n−1/2(β̂G,k − β0)
d≈ N(0, σ 2

G,k),

σ−2
G,k =

k+1∑
i=1

(	iρG(u;β0, λ))
2/	i HG(u).

If a truncated time point u∗(≤ ∞) is previously taken, that is, ui < u∗, i =
1, . . . , k, and k is large, then we have

σ−2
G,k ≈

∫ u∗

0
(dρG(v;β0, λ))/dv)

2/{dHG(v)/dv} dv,

=
∫ u∗

0
[{AG

R (v, β0)λ
′(v)+ AG

Z (v, β0)λ(v)}2/{AG
G(v, β0)λ(v)}] dv,
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12 H. Fushing

≥
[∫ u∗

0
{AG

R (v, β0)λ
′(v)+ AG

Z (v, β0)λ(v)} dv

]2/[∫ u∗

0
{AG

G(v, β0)λ(v)} dv

]
,

= {ρG(u
∗)}2/HG(u

∗) = σ−2
G (u∗).

where the above inequality follows the Cauchy–Schwarz inequality, and the last equal-
ity denotes the inverse of the asymptotic variance of the estimator β̂TLN

u∗ , which solves
the log-rank estimating equation 0 = S(u∗;β) = n1/2 M(u∗;β).

The above derivations clearly illustrate a methodology to reduce the effect of local
confounding and, at the same time, to secure the information contained in the data to
a certain extent. This methodology is indeed the backbone of the OEE proposed and
discussed in the next section.

4 The OEE approach

In this section, the OEE approach is applied to AFT model (3) simultaneously based
on the following two processes constructed through scoring functions Ri (u, β) and
Zi (u, β), respectively:

M1(u;β) = n−1/2
n∑
1

∫ u

0
{Ri (v, β)− Rav(v, β)} dNi (v;β),

and

M2(u;β) = n−1/2
n∑
1

{Zi (v, β)− Zav(v, β)} dNi (v;β).

Explicitly this inference approach for β has neither involvement of the unknown
derivative λ′(u), nor its estimate. As for λ(u), it appears only in the predictable covari-
ance processes of the above two martingales. However, we would show that the OEE
approach indeed achieves the semiparametric Fisher information bound calculated in
Sect. 2. It is noted that the above system of martingale processes can be correspond-
ingly extended to accommodate functions ϕ j (.) as components of multivariate Z(t)
in the finite-sum version of the time-transformed AFT model (5).

For the time being, let our discussion of the OEE approach be restricted on a finite
and fixed interval [0, u∗]. Such a finite truncation would theoretically free us from deal-
ing with complicated tail conditions on the baseline hazard function λ(u). Practically,
from the perspective of local confounding, it would be unrealistic for any inference
procedure to extract information beyond a large truncating time point if λ(u) has a
wiggling tail as in most real world problems. It is noted that the regularity conditions
C(1)–C(4), given in “Appendix”, are needed for the argument with u∗ being depending
on n and going to ∞ in whatever slow rate. So that they are slightly more than what
is needed with a finite u∗ to ensure the validity of Rebolledo’s central limit theorem
for a local square integrable martingale.

By applying Rebolledo’s central limit theorem, martingale processes M1(·;β) and
M2(·;β), evaluated at β0, converge jointly in D[0, u∗] to the continuous Gaussian
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Regression with time-dependent covariates 13

martingales W1(·) and W2(·), respectively, with W1(0) = W2(0) = 0 and a 2 × 2
matrix of covariance functions

cov[{W1(u1),W2(u2)}, {W1(v1),W2(v2)}T ] = H(u1 ∧ v1, u2 ∧ v2;β0, λ)

for all positive ui , vi (≤ u∗), where

H(u, v;β, λ) =
[

H11(u;β, λ) H12(u ∧ v;β, λ)
H21(u ∧ v;β, λ) H22(v;β, λ)

]
,

with

H11(u;β, λ) =
∫ u

0
AR

R(v, β)λ(v) dv,

H12(u;β, λ) = H21(u;β, λ) =
∫ u

0
AR

Z (v, β)λ(v) dv,

and

H22(u;β, λ) =
∫ u

0
AZ

Z (v, β)λ(v) dv.

Again consider a k-vector of ordered cutoff points {u1, u2, . . . , uk}T , with u0 = 0
and uk+1 = u∗. Then the above weak convergence of {M1(u;β0),M2(u;β0)} render
the following approximations as:

{	i M1(t;β0),	i M2(t;β0)} d≈ N{0,	i H(t, t;β0, λ)}. (9)

Similarly, for any u in [0, u∗], the locally asymptotic linearities (8) pertaining to
M1(u;β) and M2(u;β) can also be derived. Hence we have the following system of
regression equations with approximated Gaussian errors: for j =1, 2, i =1, . . . , k+1,

	i M j (u;β) = 	i M j (u;β0)+ n1/2(β − β0)	iρ j (u;β0, λ), (10)

where

ρ1(u;β, λ) =
∫ u

0
{AR

R(v, β)λ
′(v)+ AR

Z (v, β)λ(v)} dv,

and

ρ2(u;β, λ) =
∫ u

0
{AR

Z (v, β)λ
′(v)+ AZ

Z (v, β)λ(v)} dv.

Then, based on the above approximated regression setting, an initial estimate β̂0
can either be calculated as argβ inf

∑k+1
1 {	 j M1(t;β)}2 +{	 j M2(t;β)}2, or simply

as argβ inf
∑k+1

1 {	 j M1(u;β)}2. Clearly both β̂0 are root-n-consistent.
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14 H. Fushing

Further, with β̂0, the function H12(u;β, λ) is consistently estimated by Ĥ12(u) =∫ u
0 ÂR

Z (v, β̂0) d�̂(v), where

ÂR
Z (u, β) = 1

n

n∑
i=1

{Ri (u, β)− Rav(u, β)}{Zi (u, β)− Zav(u, β)}Yi (u, β),

and

�̂(u) =
n∑

i=1

∫ u

0

dNi (v, β̂0)∑n
j=1 Y j (v, β̂0)

.

Here �̂(u) is Nelson–Aalen estimate of the cumulative hazard function �(u) =∫ u
0 λ(v)du based on calculated baseline failure times {Ui (β̂0)}. Likewise H11(u;β, λ)

and H22(u;β, λ) are estimated.
Finally, with β̂0 and the 2 × 2 matrix, Ĥ , our OEE estimate of β, denoted by β̂OEE

k ,
is calculated as β̂OEE

k = argβ inf χ2
k+1(β), where

χ2
k+1(β) =

k+1∑
j=1

{	 j M1(u;β),	 j M2(u;β)}{	 j Ĥ(u, u)}−1

×{	 j M1(u;β),	 j M2(u;β)}T .

By standard asymptotic arguments, we have the following result:

√
n(β̂OEE

k − β0)
d≈ N(0, σ 2

k ),

σ−2
k =

k+1∑
j=1

{	 jρ1(u),	 jρ2(u)}	 j H(u, u)−1{	 jρ1(u),	 jρ2(u)}T .

Theoretically, if k is chosen to grow with n in a rate, even as slow as log n, to make
the corresponding mesh max1≤i≤k(n)(ui − ui−1) shrink to zero as n goes to ∞, then
the semiparametric Fisher information bound is obtained as a limit of σ−2

k(n). This is,

σ−2
k(n) ≈ lim

n→∞ 1/n
n∑
1

∫ u∗

0
{G O P,i (v, β0)− Gav

O P (v, β0)}2Yi (v, β0) dv,

=
∫ u∗

0
[AR

R{λ′(v)}2 + 2AR
Zλ

′(v)λ(v)+ AZ
Z {λ(v)}2]/λ(v) dv,

where the efficient scoring function recalled from Sect. 2 is

GOP,i (u, β) = d log{λi,β}/dβ,= Ri (u, β)λ
′(u)/λ(u)+ Zi (u, β).

In this sense our OEE estimate β̂OEE
k(n) of β achieves the information bound given any

finite truncation at u∗.
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Regression with time-dependent covariates 15

In fact, with slightly modification on the above asymptotic argument, we could
allow the finite truncation u∗(n) to be depending sample size n and go to ∞ in rather
slow rate. By doing so, the OEE approach can asymptotically achieve the semipara-
metric Fisher information bound calculated in Theorem 1. This result is summarized
in the next theorem.

Theorem 3 Under the conditions of Theorem 2, let α and ζ be positive constants
and take k0 = α + ζ and k(n) = {log n}k0 . Then mesh max1≤i≤k(n)(ui − ui−1) =
O({log n}−ζ ) with uk(n) = O({logn}α). Now the estimate, β̂OEE

k(n) , is consistent and
asymptotically normal; that is

√
n(β̂OEE

k(n) − β0)
d≈ N(0, σ 2∞),

where

σ−2∞ = lim
n→∞ 1/n

n∑
i=1

∫ ∞

0

{[
Zi (v, β)− EY Z (v, β)

EY (v, β)

]

+λ
′(v)
λ(v)

[
Ri (v, β)− EY R(v, β)

EY (v, β)

] }2

Li (v, β) dF(v).

Finally, as a by-product, the statisticχ2
k+1(β̂

OEE
k ) is in fact a Chi-squared (χ2) statis-

tic for testing the AFT model assumption in (3). Specifically, under the null hypothesis,
this statistic is asymptotically χ2 distributed with degree of freedom 2K + 1.

Remark 1 Theorem 3 also works the finite-sum version of the time-transformed AFT
model (5) without extra arguments needed. However, for infinite-sum version, which is
equivalent to Eq. (1), we need extra approximation arguments. Based on some smooth-
ness assumptions on�0, we grow the finite-sum at a certain rate that is regulated by the
nonparametric converging rate of approximating�0. For finite sample computations,
ideally we should choose a reasonable basis {ϕ j (.), j = 1, . . . n} that can facilitate an
efficient approximation on �0.

Remark 2 The OEE approach can be easily adapted for the time-dependent struc-
ture of β(t) by imposing piece-wise constant on every subinterval involved in the
development of the approach, and by solving individually equations in (10).

5 A simulated biological example

The goal of the numerical study reported in this section is twofold. First, to illustrate
that the basic lifetime regression model, the identical time scale AFT model (3), can
be used for modeling reproductive cost on female animal’s survival time. Second, to
numerically exhibit the effects of the phenomenon of local confounding.

Let m̃ = {m(i), i = 1, 2, . . .M} denote the age-specific fecundity schedule expe-
rienced by a female individual who is capable of reproducing more than once. Here
m(i) is the number of off-springs reproduced at the age i . The M is taken to be the
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16 H. Fushing

default of the highest attainable age, while the reproductive span is limited within
[1, 10]. That is, m(i) = 0, for all age i greater than 10. Also we take m(0) = 0 to
indicate that the age at sexual maturity not at 0, but at age 1.

For an individual who experiences the reproductive schedule specified by m̃, her
observable survival time is T and the corresponding (age-specific) hazard function,
denoted by λ(t;β, m̃), is calculated based on the identical time scale AFT model
(3). Let the zero-vector m̃0 = {0, . . . , 0} denote the case of having no reproduction
throughout a female’s whole life span. With m̃0, the individual is thought of investing
all her vital resource and energy reserve for somatic (bodily) repair and maintenance,
not on reproduction. Hence, her random survival time corresponds to the baseline
survival time U with the baseline hazard rate λ(t) to be defined on [0,M].

Instead of using m̃ directly as the covariate history, we derive its impact function
via the shock model, see Griffiths (1988), for the covariate Z(t) as follows. Let

Z(s) =
M∑

i=1

mi K (s − i); K (s) = β1 I[0,1](v)+ β∞ I[0,∞](v),

where I[a,b] is the indicator function on interval [a, b]. Here the kernel function K (s)
is the impact waveform caused by a single reproduction. Further K (s) is a combi-
nation of two types of reproductive cost: one is the immediate effect with size β1;
and the other is the ever-lasting damaging effect with size β∞. Evaluating the latter
effect is in fact a central concern in theories of life history and aging. Therefore, the
time-dependent covariate history Z̄(T ) = {Z(t)|0 < t < T } considered here is the
linear combination of waves of impact functions caused by the m̃.

Then the hazard function of T is calculated via Eq. (2) as

�(t; θ, m̃) = �

[∫ t

0
eβZ(s)(s) ds

]
.

Therefore, the novelty of this biological example is that the lifetime of a female is
shorten from her baseline survival time U by a rate of eβZ(t), which is characterized
by the composed impacts of reproductive costs underlying her fecundity schedule m̃.

It is interesting to note that, if the above hazard rate plays the role of age-specific
mortality on a particular population, then immediately, we are in a significantly dif-
ferent position from that of classic Life Table analysis, which basically relies on the
key assumption of independence between age-specific mortality and fecundity. Hence,
the novelty of this modeling also bears several evolutionary implications through the
sensitivity of Malthusian parameter, so-called the force of natural selection, in theories
of life-history and aging and in demography, as reported Hsieh (2003).

To the end of this section, we report results of estimating β from three simulated
scenarios under the above setting. For the first two scenarios, the baseline hazard
function is taken as:

λ(u) = 0, 0 < u ≤ 1,

= b(u − 1)a, 1 < u ≤ 6,

= c

1 + (u − 6)
, 6 < u,
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Regression with time-dependent covariates 17

where constants a, b are chosen such that the survival probability Pr(U > 6) = 0.5,
and c is chosen such that λU is continuous at age 6. Therefore,λ(t) is strictly increasing
on [1, 6] and is strictly decreasing on (6,∞).

The reproduction schedule m̃ is generated as follows. For each i , m(i) takes values 0
or 1. The starting m(1) is always generated from a fair coin, then m(i +1) is generated
following a Markov process of Bernoulli random variable with transition probabilities
specified by Pr(m(i+1) = 1|m(i) = 1) = p1 and Pr(m(i+1) = 0|m(i) = 0) = p0.
No censoring is considered throughout this simulation study.

For illustrating purpose two models are separately considered: one with β1 = 1
and β∞ = 0; and the other with β∞ = 1 and β1 = 0. Such considerations would
facilitate our evaluations of the effects of local confounding on estimating β∞ and β1
with identical m̃.

We divide the time scale of u into three pieces:[0, 6], [6, 10] and (10,∞), that is,
k = 1 and u1 = 6 and u2 = 10 = u∗ as in Sect. 4. Then we compare the performance
in terms of mean squared error (MSE) of the following four estimates of β:

β̂0 = argβ inf
k+1∑
j=1

{	 j M1(t;β)}2,

β̂OEE
k = argβ inf

k+1∑
1

{	 j M1(t;β),	 j M2(t;β)}{	 j Ĥ(t, t)}−1

×{	 j M1(t;β),	 j M2(t;β)}T ,

β̂LN = argβ inf{M1(∞;β)}2, β̂TLN = argβ inf{M1(10;β)}2

Here β̂0 is the initial estimate, and would be compared with the log-rank estimate β̂LN

solving the untruncated estimating equation S(∞, β) = 0 in Sect. 3, as used in Robins
and Tsiatis (1992), and the truncated one β̂TLN in regarding to local confounding.

All results reported here are based on 500 replications. Each replication is consist-
ing of a sample of size 100. As the first scenario, both p1 and p0 for reproductive
schedule are taken to be 0.5. This gives rise to a rather varying on-and-off pattern of
short-term impact effect. All four estimators are equally unbiased, but rather different
in MSEs. For both short and long-term effects, in Table 1, β̂OEE

k consistently out per-

Table 1 Comparing the four estimates: β̂0, β̂OEE
k , β̂LN and β̂TLN, in terms of MSEs under varying

reproductive schedules

Estimates Short-term effect (β1) Long-term effect (β∞)

Sample mean MSE Sample mean MSE

β̂0 0.987 18.498 × 10−4 1.005 2.964 × 10−4

β̂OEE
k 1.001 6.870 × 10−4 1.004 1.186 × 10−4

β̂LN 1.008 3.343 ×10−2 1.002 2.226 × 10−2

β̂TLN 1.006 3.313 ×10−2 0.997 2.015 × 10−2
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18 H. Fushing

Table 2 Comparing the four
estimates: β̂0, β̂OEE

k , β̂LN and

β̂TLN, in terms of MSEs under
non-varying reproductive
schedules

Estimates Short-term effect (β1)

Sample mean MSE

β̂0 1.007 3.140 × 10−4

β̂OEE
k 1.008 2.302 × 10−4

β̂LN 1.010 1.997 × 10−2

β̂TLN 1.008 1.851 × 10−2

Table 3 Comparing the four
estimates: β̂0, β̂

OEE
k , β̂LN and

β̂TLN, in terms of MSEs under
varying reproductive schedules
with a smooth baseline hazard
function

Estimates Long-term effect (β∞)

Sample mean MSE

β̂0 0.995 1.622 × 10−3

β̂OEE
k 1.004 1.633 × 10−3

β̂LN 1.001 3.509 × 10−2

β̂TLN 1.015 4.428 × 10−2

forms all other three estimates of β. Even β̂0 works much better than β̂LN and β̂TLN.
It is noted that, among these four competing estimates, only the un-truncated log-rank
estimate β̂LN makes use of the 10% of data (falling into (10,∞)). But still it performs
no better than the truncated log-rank estimate β̂TLN. This clearly and exactly exhibits
the effect of local confounding.

From reported MSEs in Table 1, we see that the amount of information of parameter
β∞(=1) is five times more than that of β1(=1) given the same reproduction schedules.
This numerical result suggests that the long-term effect is indeed estimable in most
real data sets even when its value is much smaller than the short-term effect.

In the second scenario, we take p1 = p0 = 0.9 to give rise to reproductive sched-
ules not so varying as that considered in Table 1. From Table 2, the MSEs of the four
estimates show that more information of the short-term effect is contained in the data
with stable and frequent reproductions, while keeping the same ranking pattern as
seen in Table 1.

Finally, the baseline hazard function is changed into a very smooth and slowly
increasing function as:

λ(u) = 0, 0 < u ≤ 1,

= b(u − 1)a, 1 < u.

Since there is no cusp at 6 in λ(u). Therefore, no effect of local confounding would
be expected. From Table 3, β̂0 and β̂OEE

k are still significantly out-perform the two
log-rank estimates. This result further confirms the practical advantage of the OEE
approach on extracting more information given that it is free of the necessity of choos-
ing among weighting functions. Again it is noted that the untruncated log-rank estimate
β̂LN makes use of 20–30% of data falling in [10,∞) in this scenario. This is the reason
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Regression with time-dependent covariates 19

that MSEs are higher in Table 3 than that in Tables 1 and 2. The reason behind the
equal performance of β̂0 and β̂OEE

k is that the scoring function R(u, β) only contrib-
utes a limited amount of information about the regression parameter β∞ due to the
derivative λ′

U (u) being drastically decreasing to zero.
As a practical suggestion for real data analysis with OEE approach, the numerical

results reported in this section indicates that is essential to plot the estimated cumu-
lative baseline hazard function �̂(t), and then to look for reflection points where the
concave upward pattern turns into downward, or vise versa. And a partition on the
time scale is then accordingly made. As demonstrated in Table 3, even when �̂(t)
looks consistently concave either upward or downward, it is still worthy of making a
partition for applying the OEE approach.

6 Discussion

In part I of this paper, results of semiparametric efficient estimation via OEE approach
achieving the Fisher information bound are derived and proved under the identical
time-scale version of AFT model. The statistical inference approach based on a sys-
tem of martingale equations is simple and practical for real world applications. And
the model is illustrated with biological plausibility, and might be taken as the most fun-
damental lifetime regression model with time-dependent covariate history. Therefore
the model and its comprehensive accounts of semiparametric statistical inferences are
important in their own right.

Certainly the real world biological, or social research mostly takes a much more
complex form than the one discussed in Sect. 5. As demonstrated in Sect. 1, the time-
transformed AFT model via threshold equation (1) exactly exhibits the wide spectrum
of modeling capacity being necessary for an ideal lifetime regression model in sur-
vival analysis. Especially, a glimpse of its significance is seen as that Cox’s hazard
regression and transformation models and most of their variants are included as its
special cases.

Although the semiparametric efficient estimation pertaining to this time-trans-
formed AFT model involved with greater complexity than that have derived in this
paper, the light of feasibility of OEE approach is shed through its applicability on
the finite-sum version of model (5). The full and rigorous account of development
can be achieved with more detailed approximation arguments under some smoothness
conditions on �0(.).

From computational and information conserving perspectives, the phenomenon of
local confounding is not only a reasonable, but necessary concern in making statistical
inferences via lifetime regression analysis. It is worthy emphasizing this point by look-
ing the interesting example reported in Vaupel and Carey (1993), where a mixture of 12
Gompertz mortality curves are needed to model the wiggle mortality curve calculated
from the survival times of 1.2 million medflies reported in Carey et al. (1992).

We end this discussion by pointing out how the identical time-scale AFT model
accommodates various aspects of heterogeneity. To evaluate measurable sub-popula-
tional heterogeneity, a heteroscedastic extension of model (3) via a power transforma-
tion on U can be formulated as, see Hsieh (1996b)
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U 1/α(X) =
∫ T

0
eβ

′ Z(s) ds,

where α(0) = 1 and X is a time-independent environmental condition with each of
its values specifying a subpopulation. The backbone of the above model is the now
classic heteroscedastic semiparametric linear regression model

log T = −βZ + 1/α(X) log U,

when Z(t) is time-independent.
As for unmeasurable individual heterogeneity, as demonstrated in Sect. 1, the AFT

models in (3) could adapt frailty adjustment in someway better than the proportional
hazard model. Keiding et al. (1998) gave an interesting discussion on this perspective
under a setting with time-independent covariates.

Appendix

First, the four regularity conditions needed in Theorems 2 and 3 are listed, and the
proofs.

[Regularity conditions]

(C1) Each covariate process, Zi , is uniformly bounded for all i = 1, . . . , n.
From (C1), we obtain the unique Jordan decomposition Zi (t) = Zi (0)+Z+

i (t)−
Z−

i (t), where both Z+
i (t) and Z−

i (t) are increasing functions with Zi (0) = 0;
while Z+

i (u, β) = Z+
i (ψ

−1(u, β)) and Z−
i (u, β) = Z−

i (ψ
−1(u, β)).

(C2) There are η0 > 0 and κ0 > 0 such that

sup
|u−v|+|b−β|<n−κ0

n−1
n∑
1

|Z+
i (u, β)− Z+

i (v, b)| = O(n−1/2−η0).

And for 0 < dn → 0, there exists ε > 0 such that

sup
|u−v|+|b−β|<dn

n−1
n∑
1

|Z+
i (u, β)− Z+

i (v, b)| = o(max{dε0
n , n−ε0}).

The same conditions also hold for Z−
i (u, β).

(C3) The baseline density, f , and its derivative, f ′, are bounded, and

∫ ∞

0

[
f ′(u)
f (u)

]2

f (u) du < ∞,

∫ ∞

0
uθ0 f (u) du < ∞, for some θ0 > 0.

(C4) The common density function, g, of Ci is uniformly bounded and goes to zero
in the tail faster than 1

t1+α0
.

It should be noted here that Ri (u, β) is continuous and differentiable with respect
to u as well as to β with derivatives

123



Regression with time-dependent covariates 21

∫ ψ−1(u,Z̄i ,β)

0
Zi (v)[Zi (u, β)− Zi (v)] exp{βZi (v)} dv, and Zi (u, β),

respectively. From (C1), Zi (t) is uniformly bounded, such that the growth rate of
Ri (u, β) is of the order O(u). These four conditions are close to those used in Lin and
Ying (1995).

Proof of Theorem 1 With the definition of Qi (β), we have Vi (β) = Ui (β) ∧ Qi (β),
and Ui (β0) and Qi (β0) are independent under the censoring assumption given Z̄i (t)
for any t . According to argument used in Ritov and Wellner (1988), we begin by cal-
culating scores for β and f , the density corresponding to the unknown baseline hazard
rate, λ, in the model (3). By straightforward calculation, the density of Ui (β) derived
from λi,β(u) is

fi,β(u) = [1 − Fi,β(u)]−1λ

[∫ ψ−1(u,Z̄i ,β)

0
exp{β0 Zi (v)} dv

]

× exp{(β0 − β)Zi (ψ
−1(u, Z̄i , β))},

and the score function for β is Guc
O P,i (u, β) = Ri (u, β)

λ′(u)
λ(u) + Zi (u, β).

To calculate the score for f , let { fη : η ∈ R} be a regular parametric family, and
set a = ∂

∂η
log fη. Then the score for f is a(Ui (β0)).

Under model (3) with right-censored data, the two scores for β and f can be further
calculated by the following conditional expectation as

sβ(u) = E[Guc
O P,i (u, β)|Z̄i (ψ

−1(u, Z̄i , β)),Fu],
and

sa, f (u) = E[a(Ui (β0))|Z̄i (ψ
−1(u, Z̄i , β)),Fu]

evaluated at u = Qi (β) where Fu ≡ σ {Ui (β0) ∧ u, I {Ui (β0) ≤ u}}.
Further, by applying Proposition 3.1 in Ritov and Wellner (1988) and simple

calculations, we have

sβ(u) =
∫ u

0
R[Guc

O P,i ](v, β) dMi (v),=
∫ ∞

0
1{Qi ≥u}[R[Guc

O P,i ](v, β) dM(v)

=
∫ ∞

0

{
Ri (u, β0)

λ′(u)
λ(u)

+Zi (u, β0)

}
dMi,uc(v)=

∫ ∞

0
G O P,i (v, β) dMi,uc(v),

sa, f (u) =
∫ u

0
R[a](v) dMi (v) =

∫ ∞

0
R[a](v) dMi,uc(v),

where R is the R operator defined in Ritov and Wellner (1988).
To find the efficient score for β, we need to solve for an a∗ with

∫
a∗dF = 0 in the

following equation, for all functions a ∈ L0
2(F),
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0 = E{[sβ − sa∗, f ]sa, f } = EE{[su;β − su;a∗, f ]su;a, f |Z̄i (∞), Qi }
= E

∫ ∞

0
I{Qi ≥u}[GOP,i (v, β)− R[a∗](v)]R[a](v) dF(v)

=
∫ ∞

0
{E[I{Qi ≥u}GOP,i (v, β)] − E[IQi ≥u]R[a∗](v)}R[a](v) dF(v)

=
∫ ∞

0
E[1{Qi ≥u}]{E[GOP,i (v, β)|Qi ≥ u] − R[a∗](v)}R[a](v) dF(v).

Therefore it is easy to make the right choice of a∗ such that R[a∗](u) = E[G O P,i (u, β)
|Qi (β) ≥ u], and the efficient score is

sβ(u)− sa∗, f (u) =
∫ u

0
IQi ≥u[GOP,i (v, β)− E[GOP,i (v, β)|Qi ≥ u]] dMi (v),

=
∫ ∞

0
[GOP,i (v, β)− E[GOP,i (v, β)|Qi ≥ u]] dMi,uc(v),

=
∫ ∞

0
[GOP,i (v, β)− E[GOP,i (v, β)|Vi (β) ≥ u]] dMi,uc(v),

where the last equation follows from the independence of (Zi , Qi ) and Ui . 
�
Proof of Theorem 2 It is noted that for any finite u, Mi (u;β) = 0, i = 1, 2, is a trun-
cated (at u) log-rank estimating equation. And, in this theorem, we are only concerned
with the two asymptotic properties on the sequence of intervals [0, uk(n)]. Further-
more, both asymptotic properties of M2(u;β) have been well treated in Theorem 1 of
Lin and Ying (1995). So that we only need to prove these two properties for M1(u;β).

The argument below condition C(4) assures that Ri (u, β) is continuous and dif-
ferentiable with bounded derivatives, with respect to β, of the order O({log n}k0) on
[0, uk(n)]. Therefore {Ri (u, β) : 0 < u ≤ tk(n), |β| < B} as a family of weights for
the martingale process M1(t;β) has a sequence of packing numbers of a polynomial
order of n and log n. Hence Bennett’s inequality (Shorack and Wellner 1986) can
be applied in the same way as in Lemma 1 of Lin and Ying (1995) to establish the
following approximations.

Let J (u, β) be any of the two processes {N R(u, β),Y R(u, β)} satisfying the
following:

(i) For any B > 0 and small positive number ε > 0

sup
|β−β0|≤B

|J (u;β)− E J (u;β)| = o(n1/2+ε) almost surely;

(ii) for every γ > 0, there exists η > 0 such that

sup
|β−β0|≤n−γ

|J (u;β)− E J (u;β)− J (u;β0)+ E J (u;β0)|

= o(n1/2+ε)almost surely.
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With these approximations together with integration by part, we then have

	 j M1(u;β)−	 j M̄1(u;β)

=
n∑
1

∫ u j

u j−1

Ri (v, β)d[Ni (u;β)− E Ni (u;β)]

+
n∑
1

∫ u j

u j−1

EY R(u, β)

EY (u, β)
d[Ni (u;β)− E Ni (u;β)]

−
n∑
1

∫ u j

u j−1

{
Y R(u, β)

Y (u, β)
− EY R(u, β)

EY (u, β)

}
dNi (v, β)

= o(n1/2+ε).

Hence result (i) of this theorem can be established in the above manner. Result (ii) of
this theorem can be proven by using the above results and an argument similar with that
of the Lemma 5 of Ying (1993) for	 j M̄i (u;β)−	 j M̄i (u;β0) = n{	 j Ai,n(u)(β −
β0)+ r j,n(β)} with r j,n(β) satisfying sup|β−β0|≤dn

ri,n(u)(β)
n−1/2+|β−β0|) = o(nε). 
�

Proof of Theorem 3 The consistency and asymptotic normality of β̂OEE
k(n) are immedi-

ate consequences of results (i) and (ii) of Theorem 2. An approximated log-likelihood
function of β based on {	 j M1(u;β),	 j M2(u;β0) : j = 1, . . . , k(n)}, denoted by
lk(n)(β), can be derived as

lk(n)(β) =
k(n)∑

1

{	 j M1(u;β),	 j M2(u;β)}{	 j Ĥ}−1{	 j M1(u;β),	 j M2(u;β)}T .

Further, via the asymptotical linearity in Theorem 2 and the derivative of lk(n)(β)
with respect to β, we arrive at β̂OEE

k(n) estimate by solving the following equation:

0 =
k(n)∑
i=1

{	 j A1,n(u),	 j A2,n(u)}{	 j Ĥ}−1{	 j M1(u;β),	 j M2(u;β)}T .

We then have approximated equation for the estimate β̂OEE
k(n)

n1/2(β̂k
OEE − β0)

=
k(n)∑

1

{
(	 j A1,n(u),	 j A2,n(u)){	 j Ĥ}−1(	 j A1,n(u),	 j A2,n(u))

T
}−1

×{	 j A1,n(u),	 j A2,n(u)}{	 j Ĥ}−1{	 j M1(u;β),	 j M2(u;β)}T .

Hence the asymptotical variance of the normalized error n1/2(β̂OEE
k(n) − β0) is then

calculated as the inverse of the following limit
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σ−2∞ = lim
n→∞

k(n)∑
1

(	 j A1,n(u),	 j A2,n(u)){	 j Ĥ}−1(	 j A1,n(u),	 j A2,n(u))
T ,

= lim
n→∞

n∑
1

1

n

∫ ∞

0

{ [
Zi (v, β)− EY R(v, β)

EY (v, β)

]

+λ
′(v)
λ(v)

[
Ri (v, β)− EY R(v, β)

EY (v, β)

]}2

Li (v, β) dF(v).
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